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Abstract— Drawing inspiration from the Lyapunov control
technique for quantum systems, feedback-based quantum al-
gorithms have been proposed for calculating the ground states
of Hamiltonians. In this work, we consider extending these
algorithms to tackle calculating excited states. Inspired by the
weighted subspace-search variational quantum eigensolver al-
gorithm, we propose a novel weighted feedback-based quantum
algorithm for excited state calculation. We show that depending
on how we design the weights and the feedback law, we can
prepare the pth excited state or lowest energy states up to the
pth excited state. Through an application in quantum chemistry,
we show the effectiveness of the proposed algorithm, evaluating
its efficacy via numerical simulations.

I. INTRODUCTION

One of the primary applications where noisy intermediate-
scale quantum (NISQ) devices are expected to exhibit an
advantage over classical algorithms is preparing eigenstates
of Hamiltonians. Variational quantum algorithms (VQAs)
are considered the leading algorithms for NISQ devices,
fulfilling their requirements and anticipated to demonstrate
quantum advantage. For an in-depth exploration of VQAs
and their applications, see the comprehensive review by
Cerezo et al. [1]. Nevertheless, the effectiveness of VQAs
encounters challenges, such as the complex structuring of
ansatz designs and the requirement to address computation-
ally intensive classical optimization tasks for updating the
circuit parameters. Proposals to overcome these challenges
were proposed, such as dynamical construction of the pa-
rameterized quantum circuit [2], [3] and employing efficient
classical optimizers [4].

A proposed alternative to VQAs for addressing quadratic
unconstrained binary optimization (QUBO) problems is
the feedback-based algorithm for quantum optimization
(FALQON) introduced by Magann et al. in [5], [6]. FALQON
has the advantage of dynamically constructing the quantum
circuit and avoiding classical optimization to update the
circuit parameters. Instead, it assigns the circuit parameters
by measuring the qubits from the preceding layer and using
a feedback control law based on the quantum Lyapunov
control (QLC) theory. FALQON has also been applied to
solve constrained optimization problems [7]. Furthermore,
as explored in [6], FALQON can serve as an initialization
technique for the parameters of the quantum approximate
optimization algorithm (QAOA), enhancing its efficiency.

This application renders FALQON suitable for NISQ de-
vices. In [8], the feedback-based quantum algorithm (FQA)
was introduced as a generalization of FALQON for finding
ground states of systems of interacting electrons. In [9], a
randomized adaptive approach for preparing quantum states
is introduced that can be combined with feedback-based
quantum algorithms to improve the convergence properties
of such algorithms.

Calculating excited states of Hamiltonians has applications
in quantum chemistry [10] and combinatorial optimization
[11]. Various quantum algorithms have been proposed in
the literature to tackle the problem of calculating excited
states, including quantum imaginary-time evolution (QITE)
algorithms [12], quantum annealing (QA) algorithms [13],
quantum phase estimation (QPE) algorithms [14], VQAs [1],
and others [15], [16].

For VQAs, several approaches have been proposed to
extend the variational quantum eigensolver (VQE) frame-
work to calculate excited states, such as the subspace-search
variational quantum eigensolver for excited states (SSVQE)
[17], the variational quantum deflation (VQD) [18], quantum
subspace expansion (QSE) [19], constrained VQE [20] and
others [21]. VQD and SSVQE utilize the fact that the eigen-
states of any given Hamiltonian are orthogonal. In VQD,
an overlap term is added in the cost function to impose or-
thogonality with all lower energy eigenstates. However, this
technique requires knowledge of all lower energy eigenstates
and estimating overlap terms to evaluate the cost function.
Weighted SSVQE algorithm exploits the fact that unitary
transformation preserves orthogonality. Hence, starting from
initial orthogonal states and under unitary transformation,
orthogonality is preserved at output states. SSVQE can find
up to the pth excited state using one optimization procedure.

In [22], the feedback-based quantum algorithm for excited
states calculation (FQAE) was introduced as an extension of
FQAs to calculate excited states of Hamiltonians utilizing
tools from QLC theory and deflation techniques [23]. To
prepare the pth excited state, FQAE assumes knowledge of
all the lower energy eigenstates. Therefore, to prepare the pth
excited state, FQAE should be applied iteratively first to gen-
erate all the lower energy eigenstates. Inspired by weighted
SSVQE, this work proposes the weighted feedback-based
quantum algorithm for excited states calculation (WFQAE).
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WFQAE can calculate the lowest energy states up to the pth
excited state using a single optimization procedure.

The subsequent sections of this paper are organized as
follows: Section II provides an overview of FALQON and
its relation to QLC. In Section III, we present WFQAE.
Section IV explores the algorithm’s efficiency through ap-
plication in quantum chemistry. Lastly, Section V provides
a conclusion and future work.

II. PRELIMINARY

In this section, we give a general overview of FALQON
and its relation to QLC [5], [6].

Consider the Hilbert space H = CL equipped with the
associated orthonormal basis E = {| j⟩} j∈{0,...,L−1} and the
set of quantum states denoted by X = {|φ⟩ ∈ CL : ⟨φ |φ⟩=
∥|φ⟩∥2 = 1}. Hereafter, all operators will be expressed in
terms of the E basis. Let us consider a quantum sys-
tem governed by the controlled time-dependent Schrödinger
equation:

i
∣∣φ̇(t)〉= (Hd +α(t)Hc) |φ(t)⟩ , (1)

where ℏ is normalized to 1, α(t) denotes the control in-
put, Hd is the drift Hamiltonian with associated eigen-
vaules E0 < E1 < · · ·< EL−1 and corresponding eigenvectors
|E0⟩ , |E1⟩ , . . . , |EL−1⟩, and Hc is the control Hamiltonian.
Throughout this work, we assume that the Hamiltonians Hd
and Hc are non-commuting and time-independent, implying
[Hd ,Hc] ̸= 0.

The primary objective here is to devise a feedback control
law, α(|φ(t)⟩), ensuring the convergence of the quantum sys-
tem described in (1) to the ground state of the Hamiltonian
Hd , for all initial states. In other words, we seek to attain
the state

∣∣φg
〉
= argmin|φ⟩∈H ⟨φ |Hd |φ⟩.

Let V (|φ⟩) = ⟨φ |Hd |φ⟩ be the designed Lyapunov func-
tion, where its derivative along the trajectories of system
(1) is given by V̇ (|φ(t)⟩) = ⟨φ(t)| i[Hc,Hd ] |φ(t)⟩α(t). Con-
sequently, by designing α(t) according to

α(t) =−⟨φ(t)| i[Hc,Hd |φ(t)⟩ , (2)

it ensures that V̇ ≤ 0. The application of the controller
(2), under certain assumptions (see Appendix A of [6]),
guarantees asymptotic convergence to the ground state

∣∣φg
〉
,

for almost all initial states.
The solution of (1) is given as U(t) = ηe−i

∫ t
0 H(r)dr,

where η is the time-ordering operator. By dividing it
into l intervals of constant duration ∆t, we approximate
U(T,0) as ∏

l
k=1 e−iH(k∆t)∆t , with ∆t chosen small enough

for H(t) to remain approximately constant within each in-
terval. Employing Trotterization simplifies this to U(T,0)≈
∏

l
k=1 e−iα(k∆t)Hc∆te−iHd∆t . Consequently, we obtain a digi-

tized representation of the evolution in the form

|φl⟩=
l

∏
k=1

(
e−iα(k∆t)Hc∆te−iHd∆t) |φ0⟩=

l

∏
k=1

(
Uc(αk)Ud

)
|φ0⟩ ,

(3)

where the following notation is adopted. αk = α(k∆t),
Uc(αk) = e−iα(k∆t)Hc∆t , |φk⟩ = |φ(k∆t)⟩, Ud = e−iHd∆t . Note
that the values of the controller at each discrete time step
represent the circuit parameters. Throughout this work, the
terms controller and circuit parameters will be used inter-
changeably.

We assume that the drift Hamiltonian Hd is given as a
sum of Pauli strings in the form Hd = ∑

N0
j=1 c jS j, where

each Pauli string S j is a Hermitian operator represented
as S j = S j,1 ⊗ S j,2 ⊗ ... ⊗ S j,n with S j,n ∈ {I,σx,σy,σz},
and c j represents real scalar coefficients while N0 is a
polynomial function of the qubit count. Consequently, the
unitary transformation Ud can be efficiently implemented as
a quantum circuit. Likewise, for effective implementation of
the operator Uc as a quantum circuit, the control Hamiltonian
Hc should be designed as Hc = ∑

N1
j=1 c̄ jS̄ j. For details on the

implementation of Ud and Uc(αk) see [24].
The quantum circuit that implements U(T,0) simulates the

propagator U(t), where choosing ∆t sufficiently small can
guarantee that V̇ ≤ 0 [6]. For the feedback law, the following
discrete version of the controller (2) is adopted:

αk+1 =−⟨φk| i[Hc,Hd ] |φk⟩ . (4)

The algorithm is initialized by assigning an initial value
to α1 = αinit and specifying the time step ∆t. Next, a set
of qubits is initialized to an easily preparable state |φ0⟩,
followed by applying one circuit layer to prepare the state
|φ1⟩. To estimate the controller for the next layer α2, the
controller is expanded in terms of Pauli strings in the
following way:

αk+1 =
N2

∑
j=1

ĉ j ⟨φk| Ŝ j |φk⟩ , (5)

where Ŝ j represents a Pauli string, N2 denotes the total
number of Pauli strings. Note that N2 depends on both N0 and
N1, and given that N0 and N1 are polynomial functions of the
qubit count, N2 is similarly a polynomial function of the qubit
count. Hence, the controller can be evaluated by estimating
each expectation in (5). Next, the procedure of adding a
new layer and estimating the controller for the next layer
is iteratively repeated for l layers. The resultant quantum
circuit, denoted as ∏

l
k=1

(
Uc(αk)Ud

)
along its parameters

{αk}k=1,...,l serve as the output of the algorithm. This output
approximates the ground state of the Hamiltonian Hd .

Algorithm 1 FALQON [6]

Input: Hd , Hc, ∆t, p, |φ0⟩
Output: The quantum circuit to prepare the ground state

along its parameters {αk}k=1,...,l
1: Set α1 = 0
2: Repeat at every step k = 1,2,3, . . . , l −1
3: Prepare the initial state |φ0⟩
4: Prepare the state |φk⟩= ∏

k
l=1

(
Uc(αk)Ud

)
|φ0⟩

5: Calculate the controller αk+1 by estimating each expec-
tation term in (5)

6: Until k = l



III. WEIGHTED FEEDBACK-BASED QUANTUM
ALGORITHM FOR EXCITED STATES CALCULATION

This section introduces the problem of calculating excited
states of a given Hamiltonian and suggests a solution using
QLC. Based on this solution, we propose WFQAE.

Consider the following model:

i |φ̇ (0)(t)⟩= (Hd +α(t)Hc) |φ (0)(t)⟩ ,
i |φ̇ (1)(t)⟩= (Hd +α(t)Hc) |φ (1)(t)⟩ ,

...

i |φ̇ (p)(t)⟩= (Hd +α(t)Hc) |φ (p)(t)⟩ , (6)

where the initial states {|φ (q)
0 ⟩}q=0,...,p are assumed to be

orthogonal (i.e. ⟨φ (q)
0 |φ ( j)

0 ⟩ = δq, j). For the simplicity of
analysis, we consider one control input α(t). The analysis
can easily be extended to encompass multiple control inputs,
as further explored in the appendix. Note that since the
eigenstates of Hermitian operators are orthogonal, and since
we want the states to evolve into the eigenstates of Hd
eventually, we choose the initial states to be orthogonal.

Consider the state of the composite system:

|Φ⟩= |φ (0)⟩⊗ |φ (1)⟩⊗ · · ·⊗ |φ (p)⟩ . (7)

In addition, consider the following Hamiltonians:

Ĥd =
p

∑
q=0

H(q)
d , (8)

where we adopt the notation H(q)
d = I⊗·· ·⊗ Hd︸︷︷︸

qth position

⊗ . . . I.

Similarly, we have

Ĥc =
p

∑
q=0

H(q)
c . (9)

Since H(q)
d and H( j)

d commute for any q and j in {0, . . . , p},
the model in (6) is equivalent to the following model:

i|Φ̇(t)⟩= (Ĥd +α(t)Ĥc)|Φ(t)⟩, (10)

with the initial state defined as

|Φ0⟩= |φ (0)
0 ⟩⊗ |φ (1)

0 ⟩⊗ · · ·⊗ |φ (p)
0 ⟩ . (11)

Define the set Y = {|Φ⟩ ∈
(
CL

)⊗p+1 : ⟨Φ|Φ⟩= ∥|Φ⟩∥2 = 1}.
Since |Φ0⟩ is separable and the composite system in (10)
is decoupled, the solutions remain separable. Additionally,
since the initial states {|φ (q)

0 ⟩}q=0,...,p are orthogonal and
evolution is unitary, orthogonality is also preserved. As a
result, solutions of (10) remain in a subset Ȳ ⊂ Y , defined
as the set of (separable) states that can be written as a tensor
product of p orthogonal vectors in H .

Let Q be a Hermitian operator defined as follows:

Q :=
p

∑
q=0

wqH(q)
d , (12)

where the weights {wq}q=0,...,p are chosen such that wq > w j
for q < j. Consider a Lyapunov function defined in the set
Ȳ in the following form:

V = ⟨Φ|Q |Φ⟩ ,

=
p

∑
q=0

wq ⟨φ (q)(t)|Hd |φ (q)(t)⟩ . (13)

The minimum of V on Ȳ is then attained at the desired
state (|E⟩= |E0⟩⊗|E1⟩⊗· · ·⊗

∣∣Ep
〉
), which is the minimum

energy state of Q in the set Ȳ (see appendix of [17]). In
this case, the objective is to design a feedback control law,
α(|Φ(t)⟩), ensuring the convergence of the quantum system
described in (10) to the state |E⟩, for all initial states.

The derivative of V along the trajectories of system (10)
is given by:

V̇ =
p

∑
q=0

wq ⟨φ (q)(t)| i[Hc,Hd ] |φ (q)(t)⟩α(t). (14)

We design α(t) such that V̇ ≤ 0:

α(t) =−Kgh
( p

∑
q=0

wq ⟨φ (q)(t)| i[Hc,Hd ] |φ (q)(t)⟩
)
, (15)

where Kg > 0 and h is a continuous function satisfying h(0)=
0 and xh(x)> 0, for all x ̸= 0.

The application of the controller (15), under certain as-
sumptions (see Appendix A of [6]), guarantees asymptotic
convergence to the state |E⟩ for almost all initial states [25],
[6].

Utilizing a similar Trotterization procedure as presented
in Section II, we get the following:

|φ (q)
l ⟩=

l

∏
k=1

(
e−iα(k∆t)Hc∆te−iHd∆t) |φ (q)

0 ⟩ ,

=
l

∏
k=1

(
Uc(αk)Ud

)
|φ (q)

0 ⟩ . (16)

For the controller, the following discrete form of the feedback
law (15) is adopted:

αk+1 =−Kgh
( p

∑
q=0

wq ⟨φ (q)
k | i[Hc,Hd ] |φ

(q)
k ⟩

)
,

=−Kg

p

∑
q=0

wqB(q)
k , (17)

where B(q)
k = ⟨φ (q)

k | i[Hc,Hd ] |φ
(q)
k ⟩ and h(·) is chosen to be

the identity function.
The algorithmic steps for WFQAE to prepare the lowest

energy states up to the pth excited state are detailed in
Algorithm 2. The initial step involves seeding the procedure
with an initial value for the parameter of the first quantum
circuit layer α1 = αinit and setting a value for the time step
∆t. Subsequently, for all q ∈ {0,1, . . . , p}, the state |φ (q)

k ⟩
is prepared by applying one layer of the quantum circuit
to an initial state |φ (q)

0 ⟩. Note that besides being mutually
orthogonal, the initial states {|φ (q)

0 ⟩} j=0,...,p are chosen to be



easily preparable on a quantum computer, thereby facilitating
the implementation of the algorithm. The qubits are then
measured to estimate each of B(q)

k . To do so, we expand this
term in a Pauli basis as follows:

B(q)
k = ⟨φ (q)

k | i[Hc,Hd ] |φ
(q)
k ⟩=

N3

∑
j=1

ĉ j ⟨φ (q)
k | Ŝ j |φ (q)

k ⟩ , (18)

where Ŝ j is a Pauli string, N3 is the number of Pauli
strings and ĉ j is a real coefficient. Each of the expectations
⟨φ (q)

k | Ŝ j |φ (q)
k ⟩ is estimated, and their values are used to

evaluate the term B(q)
k . These values are then used to evaluate

the controller for the next layer using (17). Subsequently,
an additional layer is appended to the circuit, the controller
for the next layer is evaluated, and the process iterates until
the desired depth of l layers is achieved. The algorithmic
procedure for WFQAE is shown in Figure 1.

Algorithm 2 WFQAE to calculate the lowest energy states
up to the pth excited state

Input: Hc, Hd , ∆t, l, orthogonal initial states
{|φ (q)

0 ⟩}q=0,...,p, weights {wq}q=0,...,p such that wq > w j
for q < j

Output: The quantum circuit to prepare up to the pth
excited state along its parameters {αk}k=1,...,l

1: Set α1 = αinit
2: Repeat at every step k = 1,2,3, . . . , l −1
3: For q ∈ {0,1, ..., p} do
4: Prepare the state |φ (q)

k ⟩= ∏
k
r=1

(
Uc(αr)Ud

)
|φ (q)

0 ⟩
5: Estimate B(q)

k using (18)
6: End for
7: Calculate the controller αk+1 using (17)
8: Until k = l

Remark 1: If we are only interested in the pth excited state,
we only need to change the weights {wq}q=0,...,p , where
we choose wp = w with w ∈ (0,1), while wq = 1 for all
q ∈ {0,1, . . . , p− 1}. This results in the Lyapunov function
(13) being modified in the following way:

V = w⟨φ (p)(t)|Hd |φ (p)(t)⟩+
p−1

∑
q=0

⟨φ (q)(t)|Hd |φ (q)(t)⟩ .

(19)

Accordingly, the control law (15) will be modified in the
following way:

α(t) =−Kgh
(

w⟨φ (p)(t)| i[Hc,Hd ] |φ (p)(t)⟩ ,

+
p−1

∑
q=0

⟨φ (q)(t)| i[Hc,Hd ] |φ (q)(t)⟩
)
, (20)

where its discrete version has the following form

αk+1 =−Kgh
(

w⟨φ (p)
k | i[Hc,Hd ] |φ

(p)
k ⟩ ,

+
p−1

∑
q=0

⟨φ (q)
k | i[Hc,Hd ] |φ

(q)
k ⟩

)
. (21)

This results in a similar procedure as Algorithm 2 where the
input weight is updated and the feedback law (21) is used
in Step 7. Note that in this case, the operator Q will have
a degenerate spectrum. Hence, solutions will converge to a
subspace spanned by the eigenstates of the operator Q in Ȳ
that correspond to the degenerate eigenvalues (see Theorem
1 in [26]). However, this causes no problem for our purpose
since the state |φ (p)⟩ is equal to

∣∣Ep
〉

for all states in this
subspace.
Remark 2: From (17) and (21), it is seen that to evaluate the
controller, we need to estimate B(q)

k for all q ∈ {0,1, . . . , p}
while for FALQON we only need to estimate one equivalent
term. Hence, compared to FALQON [5], [6], WFQAE has
higher sampling complexity, which increases linearly with p.

𝛼𝛼1 = 𝛼𝛼init

Calculate
 𝛼𝛼2

…

𝑈𝑈𝑑𝑑 𝑈𝑈𝑐𝑐(𝛼𝛼1)𝜙𝜙0
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Calculate 
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𝑈𝑈𝑑𝑑 𝑈𝑈𝑐𝑐(𝛼𝛼1) 𝑈𝑈𝑑𝑑 𝑈𝑈𝑐𝑐(𝛼𝛼𝑙𝑙)𝑈𝑈𝑑𝑑 𝑈𝑈𝑐𝑐(𝛼𝛼2) . . .

…
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(1)
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(0)
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(1)
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…

Fig. 1: This figure represents the algorithmic steps for
WFQAE. The algorithm starts by setting an initial value
for the circuit parameter of the first layer α1 = αinit. Subse-
quently, for all q ∈ {0,1, . . . , p}, the state |φ (q)⟩ is prepared
by applying one circuit layer to the initial state |φ (q)⟩ =
Uc(αk)Ud |φ

(q)
0 ⟩. The qubits are then measured to estimate

the term B(q)
k . The circuit parameter for the next layer α2 is

then calculated either using (21) if the target is only the pth
excited state or using (17) if the target is to prepare lowest
energy eigenstates up to the pth excited state. Subsequently,
for the l −1 iterations, the quantum circuit is expanded by
appending a new layer of Uc(αk)Ud , where the controller
αk is calculated according to (17) or (21). Upon reaching
the maximum depth l −1, the procedure concludes, and the
algorithm’s output is the designed quantum circuit along its
parameters {αk}k=1,...,l .



IV. RESULTS AND DISCUSSION

In quantum chemistry, fermionic Hamiltonians are mapped
into qubit Hamiltonians using mappings such as Jordan-
Wigner (JW) and Bravyi-Kitaev (BK) [27]. The resulting
Hamiltonian, regardless of the mapping used, can be written
in general as a weighted sum of Pauli strings in the following
form (see Subsection IV-A of [10] for details):

HM =
Nm

∑
q

rqŜq, (22)

where rq are real scalar coefficients and NM is the number
of Pauli strings.

In this work, we consider the lithium hydride (LiH)
molecule. The resulting Hamiltonian of applying BK trans-
formation to the second quantization Hamiltonian using the
STO-6G basis for the LiH system are presented as follows
(for details, see Section V of [28]):

HM =g0I +g1σz,0 +g2σz,1 +g3σz,2 +g4σz,1σz,0 +g5σz,2σz,0

+g6σz,2σz,1 +g7σx,1σx,0 +g8σy,1σy,0 +g9σx,2σx,0

+g10σy,2σy,0 +g11σx,2σx,1 +g12σy,2σy,1, (23)

where σz, j is the Pauli σz operator applied to the jth qubit,
the coefficients gi are functions of the bond distance R.

The values for the numerical simulation are taken
from Table 1 in [29]. For an atomic distance of R = 2.5,
we have [g0,g1,g2,g3,g4,g5,g6,g7,g8,g9,g10,g11,g12] =
[−7.0582,0.0094,−0.2857,−0.347,0.0152,0.0152,0.0102,
0.0102,0.1957,0.2202,0.0208,0.0208,0.2563]. We
run WFQAE to calculate the four lowest energy
eigenstates of the LiH molecule using the statevector
simulator. We design the cost Hamiltonian as
Hc = ∑

3
j=1 α( j)Hc, j = α(1)Hc,1 + α(2)Hc,2 + α(3)Hc,3 =

α(1)(σz,0 + σx,0) + α(2)(σz,1 + σx,1) + α(3)(σz,2 + σx,2).
We run the WFQAE for a depth of 20 layers,
where the parameters are chosen as follows. We set
∆t = 0.05, the weights [w0,w1,w2,w3] = [8,6,4,2], the
controllers’ gains [kg,1,kg,2,kg,3] = [1,1,1] and the initial
values for the controllers [α

(1)
1 ,α

(2)
1 ,α

(3)
1 ] = [0,0,0].

The initial states are chosen as {|φ (q)
0 ⟩}q=0,...,3 =

{|−++⟩ , |−−+⟩ , |+−+⟩ , |++−⟩}, known to be
easily preparable and orthogonal. The simulation results are
shown in Figures 2 and 3. Through numerical simulations,
we note that starting from a different set of orthogonal
initial states affects the convergence rate drastically. For
example, for a different combination of the |+⟩ and
|−⟩ terms we get much slower convergence rate while
starting from different orthogonal initial states such as the
states {|φ (q)

0 ⟩}q=0,...,3 = {|100⟩ , |110⟩ , |010⟩ , |001⟩} help in
achieving faster convergence. Hence, valuable future work
will be to investigate further how to choose suitable initial
states for feedback-based quantum algorithms.
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Fig. 2: Simulation results for applying WFAQE to prepare
up to the 3rd excited state. The layer index k is plotted
against: (a) The feedback laws α

(q)
k , (b) The fidelity of

the evolved states with respect to the four lowest energy
eigenstates of HM , and (c) The Lyapunov function Vk =

∑
p
q=0 wq ⟨φ (q)

k |HM |φ (q)
k ⟩.

Figure 2 shows that the Lyapunov function monotonically
decreases to its minimum, and the fidelities of the evolved
states with respect to the four lowest energy eigenstates reach
more than 0.75 in 20 layers. Figure 3 shows that the energies
of the evolved states E(q)

k = ⟨φ (q)
k |HM |φ (q)

k ⟩ converges to the
exact energies of the four lowest energy eigenstates of the
Hamiltonian HM .
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Fig. 3: Simulation results for WFAQE applied to prepare up
to the 3rd excited state. The layer k is plotted versus the
energy, where the energy of the qth excited state is defined
as E(q)

k = ⟨φ (q)
k |HM |φ (q)

k ⟩.

V. CONCLUSION AND FUTURE WORK

We have introduced WFQAE to extend the feedback-
based quantum algorithms for calculating excited states of



Hamiltonians. WFQAE can calculate the pth excited state or
up to the pth excited state depending on how we choose
the weights and assign the circuit parameters. Compared
to FQAE [22], this algorithm has the advantage of only
needing one optimization procedure to calculate the targeted
eigenstate in contrast to FQAE, where all the lower energy
eigenstates need to be calculated in an iterative manner. In
addition, WFQAE does not require the calculation of inner
products and overlap terms. We have shown the efficacy
of WFQAE through an application in quantum chemistry,
specifically through calculating the molecular excited states
of the LiH molecule.

This work can be further enhanced by investigating a
suitable choice for the initial states. In addition, as explored
in [30], designing a suitable cost Hamiltonian can enhance
the algorithm’s performance.

Our algorithm advances quantum feedback-based method-
ologies, extending their applicability to a broader class of
problems within the quantum computing landscape. This
work highlights the capacity of quantum control theory to
ignite the advancement of efficient quantum algorithms.

APPENDIX

This appendix explores extending the analysis for the case
of multiple control inputs. Consider the model (10) being
modified as follows:

i|Φ̇(t)⟩= (Ĥd +
d

∑
j=1

Hc, jα
( j)(t))|Φ(t)⟩, (24)

where {α( j)(t)} j=1,...,d are the control inputs, with each cor-
responding to Hc, j. Considering similar Lyapunov function
as (13), its derivative along the trajecories of model (24) is
given as

V̇ =
d

∑
j=1

p

∑
q=0

wq ⟨φ (q)(t)| i[Hc, j,Hd ] |φ (q)(t)⟩α
( j)(t). (25)

We design α( j)(t) such that V̇ ≤ 0:

α
( j)(t) =−Kg, jh

( p

∑
q=0

wq ⟨φ (q)(t)| i[Hc, j,Hd ] |φ (q)(t)⟩
)
.

(26)
By employing a similar Trotterization method as in Sec-
tion II, we get the following modification of (16) :

|φ (q)
l ⟩=

l

∏
k=1

(
Uc(α

(1)
k , . . . ,α

( j)
k )Ud

)
|φ (q)

0 ⟩ , (27)

where Uc(α
(1)
k , . . . ,α

( j)
k )= e−i∆t ∑

d
j=1 α( j)(k∆t)Hc, j , and the feed-

back law (17) being modified as follows:

α
( j)
k+1 =−Kg, jh

( p

∑
q=0

wq ⟨φ (q)
k | i[Hc, j,Hd ] |φ

(q)
k ⟩

)
. (28)
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