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Abstract. The goal of inductive program synthesis is for a machine to
automatically generate a program from user-supplied examples of the
desired behaviour of the program. A key underlying assumption is that
humans can provide examples of sufficient quality to teach a concept
to a machine. However, as far as we are aware, this assumption lacks
both empirical and theoretical support. To address this limitation,
we explore the question “Can humans teach machines to code?”.
To answer this question, we conduct a study where we ask humans
to generate examples for six programming tasks, such as finding
the maximum element of a list. We compare the performance of a
program synthesis system trained on (i) human-provided examples,
(ii) randomly sampled examples, and (iii) expert-provided examples.
Our results show that, on most of the tasks, non-expert participants
did not provide sufficient examples for a program synthesis system
to learn an accurate program. Our results also show that non-experts
need to provide more examples than both randomly sampled and
expert-provided examples.

1 Introduction

Synthesising a computer program from an incomplete specification
is known as (inductive) program synthesis1 and is a grand challenge
in AI [14, 17]. In programming by examples (PBE), the specification
consists of a set of input-output examples of the desired program’s
behaviour. These examples are typically provided by humans with
little programming experience [27].

Program synthesis can be viewed as a machine learning problem
[31]. However, whereas standard machine learning approaches learn
a model represented as attribute-value pairs [10], program synthesis
approaches learn a computer program, such as a LISP [41], Prolog
[38], or Haskell [21] program.

As with all forms of machine learning, the performance of a pro-
gram synthesis system depends on the quality of its training examples
[43, 13]. To achieve good performance, training examples must be
representative of the concept being taught. Most machine learning
approaches rely on large amounts of training data to ensure good
performance. However, in many program synthesis applications, it is
impractical to obtain thousands of training examples, especially appli-
cations that obtain examples directly from a user. For instance, Flash-
Fill [16] induces string transformation programs from user-provided
examples in Microsoft Excel, such as transforming “Alan Mathison
Turing” to “A.M. Turing”. In such scenarios, it is unrealistic to expect
human users to provide thousands of training examples.

∗ Corresponding Author Email: celine.hocquette@cs.ox.ac.uk.
1 We acknowledge there are other forms of program synthesis, such as deduc-

tive program synthesis [30]. We focus on inductive program synthesis.

In these user-focused applications, it is widely assumed that humans
can provide sufficient training examples for a synthesis system to learn
the target concept [26, 24]. However, to the best of our knowledge,
this assumption lacks both empirical evidence and theoretical support.
In other words, it remains an open question whether humans provide
sufficient examples to teach a program synthesis system a concept.

To overcome this knowledge gap, our goal is to answer the question
“Can humans teach machines to code?”. Specifically, our research
question is “Do humans provide sufficient examples to teach a pro-
gramming concept to a program synthesis system?”. By sufficient,
we mean that a synthesis system learns a program with high accuracy
on unseen examples of the target concept. This question differs from
existing work that explores whether humans can teach arbitrary con-
cepts to arbitrary machine learners [5] since we focus on teaching
program synthesis concepts. Moreover, we are interested in whether
humans naturally supply examples from which a program synthesis
system generalises the desired concept.

To answer this question, we focus on recursive list manipulation
concepts. We focus on lists as they have been extensively investigated
both in program synthesis [41, 38, 19, 16, 28, 11, 9, 35] and human
learning [34, 36] contexts2. For instance, suppose you want to teach a
machine the concept “return the last element of a list”. Then a human
teacher might provide examples such as [a,l,i,c,e] 7→ e, [j,i,m] 7→ m,
[s,a,l,l,y] 7→ y. Given these examples, a program synthesis system
should generate a program that correctly generalises the training
examples and, crucially, generalises to unseen examples.

We conduct an empirical study where we ask human participants to
provide minimal sets of examples to teach programming concepts. We
do not provide teaching guidance to participants, as we are interested
in whether humans naturally provide sufficient examples to teach a
program synthesis systems, rather than exploring whether humans can,
in principle, provide helpful examples. We solicit examples from three
different groups: (i) non-computer scientists, (ii) computer scientists
who do not necessarily work on machine learning or program syn-
thesis, and (iii) expert computer scientists who know about program
synthesis. We hypothesise experts know the best examples to provide.
We evaluate the predictive performance of a program synthesis system
trained on each of these example sets.

Novelty and Contributions

The main contribution of this paper is an empirical study that inves-
tigates whether humans can teach machines to code. As far as we
are aware, this empirical study is the first that evaluates how well
humans can train program synthesis systems. Our results show two

2 See Rule [35] (Chapter 3) for more background on list concepts.
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key insights. First, many program synthesis (and machine learning)
researchers work under the assumption that humans are capable of
providing sufficient examples to teach a concept to a machine. How-
ever, our empirical results suggest that this assumption does not hold.
On most of the tasks evaluated, non-expert participants did not pro-
vide sufficient examples for the program synthesis system to learn
an accurate hypothesis. This result has potential implications for the
applications of program synthesis. For instance, if using program
synthesis to teach a home robot assistant to perform a task, our results
suggest that a human could need to provide more examples than they
would prefer to achieve the desired functionality. Second, our results
show that synthesis systems perform better on randomly generated
examples compared to examples provided by non-expert humans.
Since many machine learning researchers optimise their algorithms
on synthetic datasets, our results suggest that such systems might
struggle when trained on human-provided examples.

2 Related Work

Machine teaching. Machine teaching [44, 42] is the problem of find-
ing an optimal (usually minimal in size) training set for a teacher such
that a learner can uniquely identify a target concept. Goldman and
Kearns [15] show that the problem of finding an optimal teaching
sequence for an arbitrary concept, i.e. of finding a minimal sequence
of examples, is NP-hard. While most existing literature on machine
teaching are theoretical results based on learnability, we present em-
pirical results involving humans. Machine teaching encompasses dif-
ferent scenarios in which the teacher and the learner may be humans
or machines [45]. In this paper, our focus is on the scenario of humans
teaching machines. Our work also differs in that we do not search
for an optimal training set, but instead investigate whether humans
naturally provide sufficient training examples to effectively teach
concepts.

Curriculum learning. In curriculum learning, training examples
are ordered, typically by increasing complexity, to facilitate learning
[12, 1]. Curriculum learning can accelerate convergence towards more
accurate models [1, 28]. Lelis et al. [25] look at the problem of using
neural-guided tree search algorithms to generate curricula for helping
humans learn puzzle games. In our work, we evaluate whether humans
provide helpful examples to teach a machine.

Pedagogical reasoning. In the context of human-to-human con-
cept teaching, it is generally assumed that the human teacher has full
knowledge of a concept. Their goal is to choose data to facilitate
learning. Shafto et al. [37] show that examples selected by the teacher
exhibit a distinct non-random pattern. For instance, when teaching
prototype concepts, teachers purposefully select examples that repre-
sent the mean and extent of the true distribution, rather than selecting
examples at random. Such purposeful selection improves the effec-
tiveness of the learning process compared to random examples. Our
work considers machine learners instead of human learners.

Human teaching humans. In the context of human-to-human
teaching, empirical evidence suggests that human teachers select
examples which they consider to be most helpful to the information
needs of a human learner [37].

Human teaching machines. An empirical study by Khan et al.
[22] explores the strategies employed by humans when teaching ma-
chines. Their study centres on the task of teaching a threshold value
to a robot. Their results show that human teachers do not provide
examples near the decision boundary but use extreme examples first
which is consistent with the curriculum learning principle. Further-
more, their results show that human teachers did not provide minimal

example sets. Cakmak and Thomaz [5] investigate humans teaching
machine through three binary classification tasks: Chernoff faces, im-
age classification, and animals. Their results also show that humans
do not generate minimal example sets. These works focus on tasks
involving sequential decision-making [4] and binary classification [5].
By contrast, our study focuses on program synthesis tasks, which use
recursion. Cakmak and Thomaz [5] evaluate the impact of different
teaching guidance on learning performance. By contrast, we compare
the performance of machine learners trained on human-generated ex-
amples against those trained on randomly sampled examples. Butler
et al. [3] show that generating a solution requires more cognitive effort
than selecting it from a set of predefined sets. By contrast, we provide
little teaching guidance to participants and evaluate whether humans
naturally do provide sufficient examples.

List transformations. Rule [35] uses list transformation problems
to explore how well humans can learn concepts and how well humans
perform compared to program synthesis approaches. However, they
do not consider the question of how well a human can teach a program
synthesis system a concept. Recursion is crucial to generalise from a
small number of examples to lists of arbitrary size. However, recursion
is a cognitively challenging task in contrast to natural categories for
which humans can be considered experts [20].

3 Teaching Problem

We describe our problem setting.

3.1 PBE problem

An example is a pair (i, o) formed of an input i and an output o. We
denote as X an example space, i.e. a set of examples. We denote as
H a hypothesis space, i.e. a set of programs. We define a PBE task:

Definition 1 (PBE task). A PBE task is a tuple (E,H) where E ⊆ X
is a set of examples.

Given a program p and an input i, we denote as [[p(i)]] the result of
executing p on i. We define a PBE solution:

Definition 2 (PBE solution). For a PBE task (E,H), a program
p ∈ H is a PBE solution when p satisfies every example in E, i.e.
[[p(i)]] = o for every (i, o) ∈ E.

We evaluate a PBE solution using predictive accuracy. We assume a
probability distribution D over X and define the predictive accuracy:

Definition 3 (Predictive accuracy). The predictive accuracy of p ∈
H with respect to a target program t ∈ H and distribution D over X
is the probability that p produces the correct output for an example
(i, o) ∈ X drawn at random according to D:

acc(p, t) = P(i,o)∈X∼D[[p(i)]] = [[t(i)]]

3.2 Teaching Problem

We define a teaching task:

Definition 4 (Teaching task). A teaching task is a tuple (X , t, α)
where t ∈ H is a target program and α is a real number verifying
0 ≤ α ≤ 1.

We define a teaching solution:



Definition 5 (Teaching solution). For a teaching task (X , t, α) and a
distribution D over X , a set of examples E ⊆ X is a teaching solution
when there exists a solution p to the PBE task (E,H) which has
predictive accuracy with respect to t and D at least α: acc(p, t) ≥ α.

We call E ⊆ X an example set of X . Let P(X ) be the powerset of X ,
i.e. the set of all example sets of X . In general, there might be multiple
solutions to a teaching task. We associate a cost to each example set
and prefer optimal solutions, which are solutions with minimal cost.
Let cost : P(X ) → N be an arbitrary cost function that measures the
cost of an example set. We define an optimal teaching solution:

Definition 6 (Optimal teaching solution). For a teaching task
(X , t, α), a set of examples E ⊆ X is an optimal teaching solu-
tion when (i) E is a teaching solution for (X , t, α), and (ii) for
all E′ ⊆ X such that E′ is a teaching solution for (X , t, α),
cost(E) ≤ cost(E′).

In other words, the teaching problem is to find a set of examples
from which a learner can identify the target program. In the following,
we use the term target concept interchangeably with the term target
program.

In this paper, our goal is to evaluate the performance of humans in
solving teaching tasks. In other words, given a target program t, our
goal is to evaluate how well humans find an example set E so that a
learner can learn t from E.

4 Empirical Study
We conduct an empirical study to explore whether humans provide
a teaching solution (Definition 5) to teaching tasks (Definition 4),
i.e. whether humans provide an example set from which a program
synthesis system learns the desired concept. Our primary question is:

Q1. Do humans provide sufficient examples to teach a programming
concept to a program synthesis system?

To answer Q1, we ask participants to provide examples to solve teach-
ing tasks where the target is a programming concept. We then evaluate
the predictive accuracies of a program synthesis system trained with
human-provided examples. We evaluate whether human examples are
sufficient to achieve high predictive accuracies. Unlike similar studies
[5, 22], we do not give teaching guidance to participants, i.e. we do
not give instructions on the kind of examples they should provide. In
this open-ended context, rather than exploring whether humans can,
in principle, provide helpful examples, we are interested in whether
humans naturally supply examples from which a program synthesis
system generalises the desired concept.

We hypothesise that familiarity with the problem domain can help
humans choose better examples. For instance, individuals with pro-
gramming experience might be aware of edge cases, such as the empty
list for list manipulation tasks. Therefore, our second question is:

Q2. Does having a background in computer science impact a human’s
ability to teach a programming concept to a program synthesis
system?

To answer Q2, we compare the learning performance of a program
synthesis system trained with examples from participants with varying
levels of computer science expertise. Specifically, participants belong
to three groups (i) a group with no programming experience (NCS),
(ii) a group with computer science education (CS), and (iii) an expert
in program synthesis (Expert).

As mentioned in the introduction, machine learning researchers of-
ten optimise their algorithms using synthetic datasets. We investigate
whether human-provided examples differ from such random/synthetic
examples. Therefore, our third question is:

Q3. Do humans provide better examples than randomly sampled
examples?

To answer Q3, we compare the learning performance of a synthesis
system when trained with human-provided examples versus randomly
generated examples.

4.1 Material and Methods

4.1.1 Programming concepts

We use six list transformation concepts shown in Table 1. These
concepts are commonly used in introductory computer science courses
and are designed to be understandable even for non-experts without
programming expertise. Moreover, these concepts are used as standard
benchmarks for inductive program synthesis systems [19, 8]. Figure
1 shows an example program for the concept dropk. Recursion is
necessary to write a program for each of these concepts. While a
program for these concepts can theoretically operate on lists with
elements of any type, we instruct participants to restrict their examples
to lists of natural numbers between 0 and 100.

def dropk(l:list, k:int):

if k == 0:

return l

return dropk(l[1:], k-1)

Figure 1: Example program for the concept dropk. This program
iteratively removes the first element from the input list and decrements
the integer k until k = 0, at which point it returns the input list. In
other words, given an input list l and an integer k, this program returns
a list which is equal to l without its first k elements.

4.1.2 Learning System

We use the state-of-the-art program synthesis system POPPER [8, 7],
an inductive logic programming [32, 6] system. We use POPPER be-
cause it can learn recursive programs from only positive examples and
tolerates noisy examples. Additionally, POPPER is guaranteed to find
the smallest program that correctly generalises the given examples3.
Following the literature [8], we allow POPPER to learn programs with
the triadic relation max, the dyadic relations head, tail, decrement,
increment, geq, eq, and the monadic relations empty, zero, one, even,
and odd. We also use the triadic relation comps for the task append.

4.1.3 Interface

We use a survey web application for data collection. We show partici-
pants the following introduction to the study:

This study is on teaching concepts to computers by providing
examples. The study focuses on list manipulation concepts.

We then present our definition of a list:

3 We also tried ALEPH [40] and METAGOL [33]. However, their performance
was considerably worse than POPPER on all example sets. We have therefore
excluded the results.



Name Concept Description

last Find the last element of a list Given as input a list, return the last element of that list.
length Find the length of a list Given as input a list, return the number of elements in that list.
append Append an element to a list Given as input a list and a natural number, return the list with the number inserted at the end of the list.
maxlist Find the maximum element of a list Given as input a list, return the element with the highest value in that list.
dropk Drop the first k elements of a list Given as input a list and a natural number k, return the input list without its first k elements.
sorted Identify a sorted list Given as input a list, return TRUE if the list is sorted in ascending order, and FALSE if it is not.

Table 1: Textual descriptions of the programming concepts considered.

A list is a sequence of comma-separated values between square
brackets, such as [1,2,3] or [7,4,15,8]. An empty list is written
as [].

We ask participants to provide examples in the form of input-output
pairs to explain the given concepts:

We will give you a verbal description of a concept. We will then
ask you to provide examples of the concept that you think are
necessary to teach the concept to a computer. An example has
both an input and an output. Inputs and outputs can be lists,
natural numbers, Booleans (TRUE/FALSE) or ‘none’ (no value).
Other symbols (negative integers, fractions, . . . ) are disallowed.
Use only natural numbers between 0 and 100. A concept might
have one or two inputs.

We show a worked-out example task (‘count the number of even
numbers in a list’). This example task includes a textual descrip-
tion of the concept (‘Given as input a list, find the number of
even numbers in that list.’) together with three input-output ex-
amples (the pairs [0, 2, 4, 6, 8] 7→ 5; [9, 7, 5, 3, 1] 7→ 0; and
[0, 5, 9, 4, 3, 1, 6, 7, 8, 10, 2] 7→ 6). We tell participants that they will
see several verbal descriptions of concepts and give them the follow-
ing instructions:

You can enter up to ten (10) examples for each concept. Try to
explain the concept using as few examples as you think are nec-
essary to teach the concept to a computer and give the examples
in the most informative order.

Next, we present participants with six textual descriptions correspond-
ing to each concept listed in Table 1. Concepts are presented in a
randomised order. Finally, we ask participants to provide demographic
information, which includes details about their background in com-
puter science.

The instructions do not mention a program synthesis system, as
participants have no experience with program synthesis. Throughout
the study, participants do not interact with the learning system, nor do
they receive any feedback while providing examples. The technical
appendix includes the full set of instructions presented to participants,
along with a screenshot of the interface.

4.1.4 Training examples

Participants. Participants of the study were recruited by e-mail.
We invited (i) computer science students (bachelor, master, and PhD),
(ii) students and other persons without a background in computer
science, and (iii) one postgraduate researcher who is familiar with the
underlying algorithm of the program synthesis system. The study was
completed by 40 participants, with 14 declaring having no background
in computer science (NCS group), 25 declaring having a background
in computer science (CS group), and one expert in program synthesis
(Expert). The mean age of participants was 25 ± 5. The NCS group
spent 36min ± 8min answering the survey and the CS group 21min
± 3min.

Illegal symbols and formatting errors. Some participants provided
examples including illegal symbols (NNCS = 0, NCS = 5). For
example, one participant provided the example [a, b, c, d, e, f, g] 7→ 7
for the task length, which is illegal because only natural numbers
were allowed as list elements. We corrected those symbols to the
closest admissible symbol. We did not correct elements greater than
100. Also, some participants provided examples in the wrong format
(NNCS = 13, NCS = 5). For instance, one participant wrote a
semicolon instead of a comma. Another participant provided the input
integer with the output for the task dropk. We re-formatted these
examples. Other errors, non-corrected, are discussed in Section 4.3.1.

Random examples. We compare human-provided examples with
randomly sampled examples. We sample positive examples for each
concept. We consider two random distributions. First, we sample
the length of lists in examples from a uniform distribution bounded
between 0 and 100 (RandomUniform). We hypothesise that longer
examples might be more informative, leading to better performance.
Therefore, we also consider a normal distribution which mimics the
distribution of the example lengths provided by non-experts (Ran-
domNormal). We sample example lengths from a truncated normal
distribution, to ensure lengths are positive. The mean, standard devi-
ation, minimum, and maximum are determined from the examples
provided by the human participants (CS or NCS) for each task. For
both the uniform and normal distributions, we sample elements within
lists from a uniform distribution bounded between 0 and 100.

4.1.5 Evaluation

For each task and for each participant p, we train POPPER using
the first n examples provided by p. We increment the number of
training examples n and repeat training. We measure the predictive
accuracy of the programs learned by POPPER using a set of k = 2000
test examples. The default predictive accuracy is 50%. We compare
predictive accuracies across different participant groups (NCS, CS,
and Expert) and against random distributions (RandomUniform and
RandomNormal). We calculate the mean and standard error. Error bars
in the figures and tables denote standard error. We also evaluate the
statistics of the examples provided by participants. Box plots display
the minimum, first quartile, median, third quartile, and maximum of
the statistics evaluated. We use an 8-core 3.2 GHz Apple M1 and a
single CPU to run the evaluation.

4.1.6 Ethics statement

No ethics statement was required by the home university for the
conducted empirical study.

4.2 Results

We present the results of our empirical study.



Task NCS CS Expert

last 89 ± 6 95 ± 3 100
length 100 ± 0 96 ± 3 100
append 95 ± 3 92 ± 3 100
maxlist 96 ± 4 82 ± 5 100
dropk 92 ± 5 80 ± 5 100
sorted 84 ± 5 77 ± 4 100

Table 2: Predictive accuracy for full example sets for the CS group,
NCS group, and the expert. The error bars denote standard error.

4.2.1 Q1. Do humans provide sufficient examples to teach a
programming concept to a program synthesis system?

Figures 2 and 3 show the mean predictive accuracies across all tasks
of the programs learned by POPPER trained on the first n examples
provided by a participant. The appendix shows the predictive accu-
racies for each task. We compare the examples from the NCS group
with expert examples (Figure 2), and those from the CS group with
expert examples (Figure 3). These results show that the expert con-
sistently provides sufficient examples, leading POPPER to achieve
maximal predictive accuracy (100%) for every task. Therefore, there
exists an example set which perfectly solves each of the teaching tasks
proposed. By contrast, both the NCS and CS groups provide examples
resulting in lower accuracy for almost all tasks.

This result indicates that non-expert participants struggle to provide
an example set from which the program synthesis system can identify
the desired concept. In other words, this result shows that humans
can provide sufficient examples but non-experts do not. For instance,
for the task sorted, none of the example sets provided by the NCS
group achieved maximal accuracy. In particular, no participant from
the NCS group included the base case, the empty list, as an example.
Out of 14 NCS participants, only 6 provided an example set resulting
in at least 99% accuracy. Similarly, among 25 CS participants, 10
provided an example set resulting in at least 99% accuracy, and 3
provided an example set resulting in maximal (100%) accuracy.

Overall, these results suggest that the answer to Q1 is no, i.e. non-
expert humans struggle to provide sufficient examples to teach con-
cepts to a program synthesis system. We discuss potential reasons for
this result in Section 4.3.
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Figure 2: Predictive accuracies for the NCS group over all tasks when
trained on progressively larger example sets. The error bars denote
standard error.
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Figure 3: Predictive accuracies for the CS group over all tasks when
trained on progressively larger example sets. The error bars denote
standard error.

4.2.2 Q2. Does having a background in computer science
impact a human’s ability to teach a programming
concept to a program synthesis system?

Table 2 shows the predictive accuracies achieved with the examples
from the NCS and CS groups. A Shapiro-Wilk test [39] shows that
these accuracies are not normally distributed. For many example sets,
POPPER identifies the desired program, achieving maximum accuracy
(100%). For many other example sets, POPPER identifies a program
with default accuracy (50%), and for fewer sets, POPPER achieves
an accuracy falling between these extremes. We exclude expert ac-
curacies from our statistical analysis due to the inability to conduct
meaningful statistical computations with a sample size of 1 and lack-
ing a measure of dispersion. A single Mann-Whitney U-test4 [29]
indicates that the difference between the NCS and CS groups is not
significant. The lack of a significant difference suggests that, in this
context and among non-experts, the background of participants does
not enhance their ability to teach a concept to a program synthesis
system. In other words, domain-specific knowledge might not always
improve teaching effectiveness. However, the performance of the
expert suggests that understanding the underlying algorithm of the
learner can play an important part. Therefore, these results indicate
that effective teaching requires not only familiarity with the concepts
being taught but also an understanding of the learner’s learning pro-
cess.

Overall, these results suggest that the answer to Q2 is no, i.e. the
background of a human does not significantly impact their ability to
teach a programming concept to a synthesis system. While under-
standing of the domain might not be beneficial, comprehension of the
learner’s learning algorithm can be.

4.2.3 Q3. Do humans provide better examples than
randomly sampled examples?

Figures 2 and 3 show the predictive accuracies of POPPER when
trained using non-expert examples and examples with length sampled
from a uniform or normal distribution. Due to the dependency of the
parameters in the truncated normal distribution on population metrics,
we perform multiple statistical tests. For each participant group (CS,
NCS), we conduct three separate tests, using the predictive accuracies
obtained from two, three, or all ten of the provided examples, resulting
in a total of six analyses. We choose these specific points to test how

4 A Mann-Whitney U-test is a non-parametric alternative for Student’s t-test.



Task NCS CS Expert

last 92 ± 5 95 ± 3 100
length 100 ± 0 96 ± 3 100
append 95 ± 3 98 ± 2 100
maxlist 96 ± 4 81 ± 5 100
dropk 99 ± 0 89 ± 5 100
sorted 83 ± 5 77 ± 4 100

Table 3: Predictive accuracy for full example sets for the CS group,
NCS group, and the expert, after ignoring example sets with system-
atic and non-systematic errors. The error bars denote standard error.

informative are (i) the first examples, and (ii) the full set of examples
provided by humans. Similar to the participant data, the accuracies of
programs learned from randomly generated examples do not follow
a normal distribution. A Kruskal-Wallis H-test5 [23], followed by
a Benjamini-Hochberg false discovery control method [2] to adjust
p-values to account for family-wise error rate6, shows a significant
group effect when using 2 examples for the NCS group, and when
using 2 or 10 examples for the CS group. A Post-hoc U-test [29]
further identifies that, for the NCS group, accuracies from humans
are significantly lower than accuracies from the uniform distribution
when using 2 examples (p = .01). For the CS group, accuracies
from the humans are significantly lower than accuracies from both
random distributions when using 2 examples (p < .001), and lower
than accuracies from the normal distribution when using 10 examples.
These results show that, compared to both a uniform and parameter-
matching normal distribution, the NCS and CS groups have worse
performance. We discuss potential reasons for this result in Section
4.3.

Overall, these results suggest that the answer to Q3 is no, non-
expert humans do not provide better examples than randomly sampled
ones.

4.3 Discussion

The results from Section 4.2 suggest that non-expert humans struggle
to provide examples sufficient to teach a programming concept to a
synthesis system. In this section, we discuss potential explanations.

4.3.1 Erroneous Examples

One explanation for why the NCS and CS groups did not achieve max-
imal accuracy is that some participants provided erroneous examples.
We identify two different types of errors.

Some participants made systematic errors which are similar er-
rors on all examples of their example set (NNCS = 3, NCS =
8). This kind of error suggests the participant provided examples
for a different concept. For instance, a participant from the NCS
group provided examples for the concept “return the first k ele-
ments of a list” for the task dropk, and provided examples such
as [4, 8, 7, 6, 2, 1, 5, 4, 8, 3, 1], 2 7→ [4, 8] when a correct output
for this input should have been [4, 8, 7, 6, 2, 1, 5, 4, 8, 3, 1], 2 7→
[7, 6, 2, 1, 5, 4, 8, 3, 1]. A participant from the CS group pro-
vided examples for the concept "remove the element k in the
input list" for the task dropk and provided examples such as
[20, 13, 42, 53, 23, 21], 23 7→ [20, 13, 42, 53, 21].

Some participants made non-systematic errors, which are errors
on a single example of their training set (NNCS = 1, NCS = 3).

5 A Kruskal-Wallis H-test is a non-parametric variant of the independent
one-way ANOVA.

6 When performing multiple statistical tests on the same data, the probability
of not falsely rejecting a null hypothesis is (1 − α)n with n being the
number of tests performed.

For instance, a participant from the CS group provided the example
[10, 0, 59, 68, 23, 42, 53] 7→ 59 for the task maxlist. A participant
from the NCS group provided the example [99999, 7676768] 7→
false for the task sorted.

To evaluate the impact of systematic and non-systematic errors,
we exclude example sets containing any of these errors and retrain
POPPER. Table 3 shows the predictive accuracy of POPPER on these
revised example sets. It shows that the predictive accuracy is not
maximal, suggesting that participants did not provide sufficient exam-
ples for the system to identify the desired concept. For instance, to
teach the concept last, one participant provided only two examples
of length 4, and POPPER learns the concept return the fourth element
of the input list. Similarly, for the concept sorted, another partici-
pant provided the examples [1, 2, 3, 4, 5] 7→ true; [0, 0, 0, 0, 1] 7→
true; [5, 4, 3, 2, 1] 7→ false; [1, 0, 0, 0, 0] 7→ false, and POPPER

learns that a list is sorted if its second element is greater or equal to
its first element.

Overall, these results suggest that, while human errors limit perfor-
mance, participants also did not provide sufficient examples.

4.3.2 Simpler Examples

Another factor contributing to low accuracy could be the simplicity
of examples provided by non-expert participants. To support this
explanation, we analyse statistics of the example sets provided by the
NCS group, the CS group, and the expert. We evaluate the number of
examples, the lengths of lists, and the values of elements within lists.

Number of examples. Figure 5 shows the distribution of the number
of examples provided by participants. It shows that, for all tasks,
both the NCS and CS groups typically provided a greater number
of examples compared to the expert. For instance, while the expert
provided only 3 examples for teaching the task maxlist, the NCS and
CS groups provided 6.7± 0.7 and 6.6± 0.5 examples, respectively.
A Shapiro-Wilk test [39] shows that the number of examples does
not follow a normal distribution. A H-test [23] shows a significant
effect for the group (p < .05), and post-hoc U-tests [29] show that
the expert provided significantly fewer examples than both the NCS
and CS groups over all tasks (p < .05). This result might surprise
the reader, as one might assume that more examples would be more
beneficial for teaching a concept. However, as Telle et al. [42] point
out, in machine teaching, it is crucial to consider not only the number
of examples but also the length of examples in example sets.

Length of lists. Figure 6 shows the distribution of the length of
lists provided by participants. Both the NCS and CS groups provided
examples of similar lengths across all tasks. However, the expert
provided examples of varying lengths depending on the task. For the
tasks last and length, both the NCS and CS groups provided examples
with lengths similar to those provided by the expert. Examples lengths
are relatively small. However, for the other tasks (append, maxlist,
dropk, and sorted), the expert provided examples with longer lengths,
while both the NCS and CS groups typically did not. As Figure 4
shows, these tasks are difficult for both the NCS and CS groups which
did not reach maximal accuracies. For instance, for the task maxlist,
while examples provided by the expert have a mean length of 8.7 ±
4.4, examples from the NCS and CS groups have a mean length of 5.3
± 0.2 and 5.1 ± 0.2 respectively. This difference is important because
examples with larger lengths can contain more bits and hence more
information.

Longer examples, such as those provided by the expert, tend to
rule out short programs. For instance, for the task last, one participant



provided two examples of length 4. POPPER learns the concept return
the fourth element of the list, which is simpler to express compared to
the concept of last. By contrast, the expert provided a single example
of length 6. POPPER learns the concept of last because the concept re-
turn the sixth element of the list is more complex to express compared
to the concept of last.

Non-expert participants might have provided cognitively simpler
examples because they are easier to generate. Moreover, human partic-
ipants might assume that the learner processes information similarly
to a human, leading them to avoid complex lists as they are more
difficult to parse. Conversely, experts likely included more complex
examples based on their deeper understanding of the synthesis sys-
tem. Figures 2 and 3 show that randomly sampling lengths of lists
can improve learning performance. Furthermore, they show using a
parameter-matching normal distribution yields performance closer to
that of humans for both the NCS and CS groups. However, despite
this improvement, the learning performance of non-expert humans
remains inferior to that achieved with normally distributed list lengths.
These results suggest that the length of lists greatly influences the
ability to teach a synthesis system a concept.

Elements values. Figure 7 shows the distribution of element values
provided by participants. It indicates that elements in lists from both
the NCS and CS groups generally have smaller values compared to
those provided by the expert. In particular, elements provided by non-
experts have less variability, resulting in a higher occurrence of coin-
cidental patterns. For instance, for the task sorted, one participant pro-
vided examples such as [1, 3, 6, 9, 14, 18] 7→ true; [1, 2, 3, 4, 5] 7→
true; [0, 1] 7→ true; [3, 1, 12, 2, 7] 7→ false. From these examples,
POPPER simply learns that a list is sorted if its first element is less
than or equal to 1. By contrast, the sorted lists provided by the expert
contain unique elements, with no element repeated in another sorted
list.

Overall, these results show that the quality of examples, rather than
their quantity, plays a crucial role in effective teaching.

5 Conclusions and Future Work
Our empirical study explores whether humans can teach machines to
code. Our results suggest that non-expert humans struggle to provide
sufficient examples to effectively teach list manipulation concepts to
a program synthesis system. Regardless of their computer science
background, in most cases, the examples provided by non-experts hu-
mans did not allow the system tested to induce the intended program.
By contrast, an expert familiar with the system provided examples
allowing the system to perfectly learn all the desired concepts.

This study is the first exploration of the question of whether humans
can teach machines to code. There are, therefore, limitations.

We showed participants a general instruction which did not specifi-
cally demand that the examples need to be aimed at a program synthe-
sis system. Therefore, it might be the case that participants provided
general-purpose examples. However, our results show that participants
with a background in computer science made use of their knowledge
of recursive programs and, for instance, often included an example for
the base case. Nevertheless, the effect of varying instructions to elicit
specific teaching strategies and help humans provide higher-quality
examples, similar to the methodologies proposed by Cakmak and
Thomaz [5] and Khan et al. [22], needs to be explored in future work.

Although we tested several synthesis systems [40, 33, 8], none of
them could learn the desired concepts from the non-expert examples.
By contrast, a system could learn perfectly accurate programs from
expert-provided examples. There might, however, be another untested
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system that could be successful in learning from the non-expert ex-
amples. This study highlights the need to extend current systems to
adapt to non-expert examples.

Our results have potential implications for the field of inductive
program synthesis. In PBE [27] or end-user programming [18], it
is assumed that humans can provide sufficient examples to teach a
concept. Our results suggest that this assumption does not always hold.
Furthermore, most of the existing work in program synthesis uses
randomly generated examples for training. Our results suggest that
training using randomly sampled examples yields substantially better
performance compared to using examples provided by non-expert
humans. If these systems are intended to be eventually trained by
humans, this result should motivate researchers to incorporate more
human-generated examples into the training dataset.

Consequently, our study raises two challenges for the field. Firstly,
our study emphasises the necessity of developing learning systems
that can better adapt to the teaching abilities of humans. Secondly, our



results highlight the need to build algorithms capable of generating
training sets of random examples that more closely resemble those
produced by humans.
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Appendices
A Interface

Figures 8 to 11 show our experimental interface. First, we showed par-
ticipants an introductory text (Figure 8). Then, we showed an example
of task (Figure 9). Next, we provided instructions on formatting an-
swers (Figure 10). Finally, we presented six tasks, such as identifying
a sorted list (Figure 11).

B Expert examples

Table 4 shows the examples provided by the expert.
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Figure 8: Introductory text presented to participants.

Figure 9: An example of task: count the number of even numbers in a list.



Figure 10: Description of our answer formatting.

Figure 11: Task sorted.



Task Examples

last [72, 88, 23, 92, 63, 100] 7→ 100
[] 7→ none

length [72, 88, 23, 2] 7→ 4

append [43, 99, 79], 66 7→ [43, 99, 79, 66]
[70, 30, 72, 44, 35, 67, 58, 79, 96, 41], 56 7→ [70, 30, 72, 44, 35, 67, 58, 79, 96, 41, 56]

maxlist
[71, 88, 23, 24, 44, 46, 77, 92, 66, 100, 26, 94, 49, 53] 7→ 100

[8, 74, 36, 28, 94, 55, 34, 98, 23, 12, 9, 2] 7→ 98
[] 7→ none

dropk [72, 88, 23, 100, 26, 42, 8, 79, 90], 6 7→ [8, 79, 90]
[23, 45, 87], 0 7→ [23, 45, 87]

sorted

[1, 2, 4, 9, 13, 26, 39, 42] 7→ true
[1, 2, 4, 9, 26, 25, 39, 42] 7→ false

[22, 32, 45, 48, 56, 68, 73, 88] 7→ true
[] 7→ true

Table 4: Examples provided by the expert

C Experimental results
Figures 12 to 17 show the detail of the results for each of the tasks
for the NCS group. Figures 18 to 23 show the detail of the results for
each of the tasks for the CS group.
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Figure 12: Predictive accuracies for the NCS group for the task dropk.
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Figure 13: Predictive accuracies for the NCS group for the task sorted.
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Figure 14: Predictive accuracies for the NCS group for the task append.
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Figure 15: Predictive accuracies for the NCS group for the task maxlist.
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Figure 16: Predictive accuracies for the NCS group for the task length.
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Figure 17: Predictive accuracies for the NCS group for the task last.
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Figure 18: Predictive accuracies for the CS group for the task dropk.
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Figure 19: Predictive accuracies for the CS group for the task sorted.
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Figure 20: Predictive accuracies for the CS group for the task append.
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Figure 21: Predictive accuracies for the CS group for the task maxlist.
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Figure 22: Predictive accuracies for the CS group for the task length.
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Figure 23: Predictive accuracies for the CS group for the task last.
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