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Stabilizer circuits play an important role in quantum error correction protocols, and will be vital
for ensuring fault tolerance in future quantum hardware. While stabilizer circuits are defined on
the Clifford generating set, {H, S, CX}, not all of these gates are native to quantum hardware.
As such they must be compiled into the native gateset, with the key difference across hardware
archetypes being the native two-qubit gate.

Here we introduce an intuitive and accessible method for Clifford gate compilation. While multiple
open source solutions exist for quantum circuit compilation, these operate on arbitrary quantum
gates. By restricting ourselves to Clifford gates, the compilation process becomes almost trivial and
even large circuits can be compiled manually.

The core idea is well known: if two Clifford circuits conjugate Paulis identically, they are equiv-
alent. Compilation is then reduced to ensuring that the instantaneous Pauli conjugation is correct
for each qubit at every timestep. This is Tableaux Manipulation, so called as we directly interrogate
stabilizer tableaux to ensure correct Pauli conjugation. We provide a brief explanation of the process
along with a worked example to build intuition; we finally show some comparisons for compiling
large circuits to open source software, and highlight that this method ensures a minimal number of
quantum gates are employed.

I. INTRODUCTION

In the future running a quantum algorithm on a
fault tolerant machine will not be unlike running a
circuit through a quantum API today. Quantum soft-
ware will ensure that the complexities of fault toler-
ance — codes, decoders and logical primitives — are
abstracted away from the end user. To achieve this
there are a number of stages that must be automated.

At the highest level, converting an algorithm of N
logical qubits into a network of M ≫ N physical
qubits will require insight into the algorithm being
executed. Logical qubit placement will depend on
(logical) two-qubit interactions, and minimising the
(logical) ancillae overhead [1]. Once this task is com-
plete the physical circuit must be constructed. Qubit
preparation and logical gates, as well as the fundamen-
tal operations of the target error correction scheme
(e.g. in the case of the surface code, lattice surgery
operations such as growth, merge, split etc. [2]) all
require a number of rounds of syndrome extraction to
ensure errors are caught and accounted for. The result
is an extremely deep circuit across an array of phys-
ical qubits, with the bulk of operations likely defined
in terms of the Clifford generating set {H, S, CX}.
The final step will be conversion from this gateset into
the hardware instruction set. At this final stage the
scope for minimising error events is limited, as the
noisest processes in the experiment (two-qubit gates
and measurements) have already been determined by
the previous stages of the pipeline. Nevertheless, we
will show that even modest circuit optimisations can
have a positive impact on experiment performance.
Quantum hardware has advanced significantly in re-

cent years, and continues to do so. The race to quan-
tum advantage has resulted in a number of public and
private enterprises employing varying quantum hard-
ware modalities. The platforms that have achieved
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the most experimentally are superconducting qubits
[3], trapped ion systems [4] and more recently neu-
tral atoms [5]. Even within a qubit modality, differ-
ences between experimental groups abound. Beyond
the disparities of noise models and connectivity, a key
difference is in the entangling operations.

Trapped ion models employ a Mølmer-Sørensen in-

teraction, which manifests as a XX(θ) = e−
iθ
2 X⊗X

rotation, where setting θ = π/2 makes this in-
teraction maximally entangling [6]. In this work,
when speaking of a Mølmer-Sørensen gate, we mean
XX(θ = π/2) which we denote

√
XX. Supercon-

ducting systems developed by IBM use the echoed
cross-resonance interaction (ECR) [7]. This gate im-
plements 1√

2
(I ⊗X −X ⊗ Y ) onto the qubits, and is

equivalent to a CX gate up to single qubit rotations.
Conversely, Google’s superconducting qubit proces-

sors have either an iSWAP = e
iπ
4 (X⊗X+Y⊗Y ) or CZ

gate as the native two-qubit gate [8].

This brief work will present a method for rewrit-
ing quantum stabilizer circuits into alternative sets of
Clifford gates, with a focus on circuits with practical
applications. We are referring to this process as “com-
pilation”, although it could equivalently be called gate
decomposition. We are not setting ourselves the task
of amending a circuit to fit a specific qubit connec-
tivity, i.e. we will not be adding or removing qubits.
These restrictions create a narrow problem statement,
but one that is key to using quantum computers ef-
fectively.

The process is straightforward and surprisingly
powerful when compared to existing available open-
source compilers. Importantly this method can be
implemented with little effort; it is simple to compile
a circuit consisting of 10-20 qubits manually, if a little
tedious. There is minimal information to keep track
of, as this method only relies upon the instantaneous
Pauli conjugation of an individual qubit at each layer
of the circuit. We employ an example driven approach
to build intuition for the method. We also draw com-
parison to the Qiskit open-source compilation func-
tionality and show that, for a key class of circuits, we
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can always reduce the number of quantum operations
executed.

Much work has been done within the Clifford set,
from generating random circuits [9, 10] to optimiz-
ing the number of two-qubit unitaries required within
a circuit [11, 12]. The techniques used in this work
are not new; ultimately we are simply tracking and
amending the instantaneous Pauli conjugation of in-
dividual qubits. The author could not find any work
in the literature with significant overlap to the the
results contained within, but welcomes indication to-
ward existing work.

II. PRELIMINARIES

We assume familiarity with quantum computing
and quickly summarise the key concepts relevant to
this work. The Pauli group consists of four operators
{I, X, Y, Z} and is defined as the lowest level of the
Clifford hierarchy [13]. A Pauli product is a collec-
tion of Pauli operators applied to individual qubits:
XiYjZk applies Pauli-X to qubit i, Y to qubit j and
Z to qubit k. Any qubit index not involved in the
Pauli product has the identity applied.

The next level of the hierarchy, the Clifford group,
constitutes a key component of fault tolerant uni-
versal quantum computation [14]. The Clifford
group contains operators that conjugate Paulis into
Paulis, and its generating set of operators consists of
{H, S, CX}. For example, the conjugation of Paulis
by the Hadamard gate H is:

H†XH = Z, H†Y H = −Y, H†ZH = X.

A stabilizer circuit consists solely of elements from
the Clifford group and destructive operations in the
Pauli-Z basis. A unitary stabilizer circuit does not
contain measurements or reset operations. This uni-
tary circuit can be defined by how it conjugates Pauli
products, and this information can be summarised via
tableaux.

Consider the following tableau, representing a CX
gate where qubit 0 is the control and qubit 1 is the
target:

0 •
1

=

X0 Z0 X1 Z1

± + + + +
0 X Z Z
1 X X Z

. (1)

The columns Xj , Zj detail the conjugation of these
Paulis by the circuit. For example, X0 is conjugated
by a CX gate into +X0X1; Z1 is conjugated into
+Z0Z1. An underscore indicates that the input Pauli
does not propagate onto that output wire: a Z (X)
term commutes through a CX gate if it is input on
the control (target) qubit. Tableaux such as this (or
in the alternative Aaronson-Gottesman format) com-
pletely define a Clifford interaction, as input Pauli
products can be conjugated by first decomposing to

their generators and using the distributive property:

CX†(Y0Z1)CX = CX†(X0Z0Z1)CX

= (X0X1) (Z0) (Z0Z1)

= X0Y1. (2)

Where we ignore global phase. Importantly unitary
stabilizer circuits are also uniquely defined via their
tableaux. In Ref. [15], Lemma 1 states:

Let C1, C2 be unitary stabilizer circuits,
and let T1, T2 be their respective final
tableaux when we run them on the stan-
dard initial tableau. Then C1 ≡ C2 iff
T1 ≡ T2.

Where here the “standard initial tableau” defines all
qubits prepared in the Pauli-Z basis, which we assume
implicitly throughout. This Lemma tells us that as
long as our tableaux are equivalent, the unitary action
will be the same. By observing the differences in two
tableaux, we are able to directly modify the circuit in
a minimal way to achieve the correct Pauli product
conjugation.

In addition to the conjugation of Pauli terms, we
will also speak of the propagation of Paulis. Propa-
gation simply refers to the qubit indices present in
the Pauli conjugation, i.e. X0Z1Y2 has the same
propagation as Y0X1Z2. This is a useful abstrac-
tion when thinking about the action of Paulis in cir-
cuits, specifically their commutation relations with
two-qubit gates. If qubits j and k only interact once
and k does not appear in the conjugation of Pj , then
the instantaneous conjugation1 of Pj must commute
through the two-qubit gate acting on j and k.

We will employ a number of single qubit Clifford
gates to aid intuition when converting between Pauli
bases. The nomenclature for these gates is borrowed
directly from the stim package [16]. We list them here

along with their decomposition into S,
√
X and Pauli

gates:

• H: standard Hadamard gate, swaps X and Z
bases.

◦ H ≡ S
√
X S

• HXY : a Hadamard-like gate that swaps X and
Y bases.

◦ HXY ≡ S Y

• HY Z : a Hadamard-like gate that swaps Y and
Z bases.

◦ HY Z ≡
√
X Z

• CXY Z : a basis-cycle gate, moves X → Y → Z.

◦ CXY Z ≡
√
X S

1 ‘Instantaneous conjugation’ here referring to the conjugation
of a Pauli at a certain point in the circuit.
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• CZYX : a reverse basis-cycle gate, moves Z →
Y → X.

◦ CZYX ≡ S
√
X Z

The role of Pauli gates in these circuits is to ensure
that the sign changes are consistent on both sides
of each equivalency. For example, HXY conjugates

Pauli-Z like H†
XY ZHXY = −Z, whereas an S gate

conjugates: S†ZS = +Z. As such, HXY and S are
equivalent up to the application of a Pauli gate. In
practice this equivalency can be tracked in software
and we refer to it as the Pauli frame.
The CX and iSWAP gates are typically used to

classify the different kinds of entangling Cliffords.
Gates such as CZ,

√
XX and ECR are classed as

CX-like, as they are within single qubit rotations
to CX. Gates such as CXSWAP and CZSWAP
(again borrowing terminology from the stim pack-
age) are iSWAP -like, as they are within single qubit
rotations to iSWAP . Throughout we will focus on
compiling CX-like gates into CX-like gates, although
the process outlined below is equally valid for com-
piling iSWAP -like into iSWAP -like. In Appendix
A we provide discussion around exchanging entan-
gling Clifford type: compiling a CX-like gate into an
iSWAP -like gate and vice versa. We omit entirely dis-
cussion around the two-qubit, non-entangling Clifford
gate SWAP .

III. TABLEAUX MANIPULATION

A common approach to circuit compilation is to
identify repeated components of the circuit and com-
pile these individually, before replacing them back into
the circuit in the relevant locations. From here, gate
optimisations and cancellations can take place to re-
duce the number of operations and the circuit depth.
When our circuits are composed solely of Clifford op-
erations, we can instead tackle the compilation of the
entire circuit at once.

Consider a circuit C that we wish to compile into
a gateset G. This circuit will provide us with a de-
sired (or ‘target’) Pauli conjugation on each qubit:
P̄j = C−1PjC where P ∈ {X,Z}. Rather than work-
ing on C directly, we can instead create a new circuit
C′ whose only entries are gates in G. This initial con-
dition provides us with conjugations P ′

j = (C′)−1PjC′.
From here the task becomes: what gates do I need to
add to C′ to make P ′

j ≡ P̄j for all j?
Motivated by the disparities of native entangling

Cliffords in different quantum hardware, we employ
the following initial condition for our compiled circuit
C′: for each entangling operation in C, introduce an
entangling operation native to G into C′. A circuit
consisting solely of entangling operations is the short-
est possible circuit after compilation. From this start-
ing point, we can work through qubits individually
and ensure that their Pauli conjugation is correct.
Tableaux Manipulation has two key steps: first fix

the propagation of Paulis in the circuit, and then fix
the conjugation of Paulis after the circuit. To fix the
propagation, the process is as follows:

1. For each qubit index j, isolate its subcircuit (the
timeline of gates it is involved in)

2. For each entangling operation between qubits j
and k, determine if k is in the propagation of
the target P̄j :

2.1. If it is, add a gate to the circuit (prior to
the entangling operation) such that the in-
stantaneous Pauli conjugation of Pj anti-
commutes with the two-qubit gate.

2.2. If it is not, add a gate to the circuit (prior
to the entangling operation) such that the
instantaneous Pauli conjugation of Pj com-
mutes with the two-qubit gate.

With the caveat that, if the instantaneous conjugation
already anticommutes with the two-qubit interaction
(or commutes, as the case may be) then no gate need
be added.

Once the propagation of all P ′ matches that of P̄ ,
we must fix the conjugation. For each qubit j, we
compare the output on qubit j for both P̄j and P ′

j
2.

Correcting the conjugation is then choosing the appro-
priate basis-change Pauli from a lookup table, Table I.

A. Worked Example

Here we work through an example of using the
Tableau Manipulation method to compile a 4-qubit
system, ostensibly measuring a XX and ZZ stabiliser
with two auxiliary qubits:

0 H • • H

1 •

2 •

3

(3)

=

X0 Z0 X1 Z1 X2 Z2 X3 Z3

± + + + + + + + +
0 X Z X X X
1 X X Z Z
2 X X Z Z
3 X X X X Z

.

For this exercise we’ll use an ECR gate, common to
some superconducting systems. We represent it with
the following circuit diagram and display it’s tableau:

0 ECR0

1 ECR1

=

X0 Z0 X1 Z1

± − − + +
0 Y Z Z
1 X X Y

. (4)

As the ECR gate is not symmetric we must keep track
of which qubit is the control and target during each

2 This is equivalent to inspecting the diagonal entries of the
tableaux we are comparing.
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X̄ = X X̄ = Y X̄ = Z
P ′

P̄
Z̄ = Y Z̄ = Z Z̄ = X Z̄ = Z Z̄ = X Z̄ = Y

X ′ = X
Z′ = Y I HY Z HXY CXY Z CZY X H
Z′ = Z HY Z I CXY Z HXY H CZY X

X ′ = Y
Z′ = X HXY CZY X I H HY Z CXY Z

Z′ = Z CZY X HXY H I CXY Z HY Z

X ′ = Z
Z′ = X CXY Z H HY Z CZY X I HXY

Z′ = Y H CXY Z CZY X HY Z HXY I

TABLE I: Lookup table for changing Pauli basis depending on the desired conjugation P̄ and the current conjugation
P ′. For example if our desired conjugation is (X̄, Z̄) = (Y, X) and our current conjugation is (X ′, Z′) = (Z, Y ), we

apply a CZY X gate to that qubit.

interaction. Similar to a CX gate, Pauli-Z commutes
through on the ‘control’ wire (0) and Pauli-X com-
mutes through on the ‘target’ wire (1).
We employ our initial condition from Tableaux Ma-

nipulation, and create a new circuit whose only entries
are ECR:

0 ECR0 ECR0

1 ECR1 ECR0

2 ECR0 ECR1

3 ECR1 ECR1

(5)

=

X0 Z0 X1 Z1 X2 Z2 X3 Z3

± − + − + + − + −
0 X Z Z Z Z Z
1 Y Y X Z
2 X Z Y Y
3 X X X X X Z

.

First we must fix the propagation for each Xj , Zj ,
starting with j = 0. Note that our desired conjugation
Z̄0 = Z0X1X2X3 has the same propagation as our
current X ′

0 = X0Y1X2X3, and vice versa. In this case
we can simply prepend a Hadamard gate to qubit 0
to swap the action of X and Z Paulis.

Skipping ahead to qubit 1, we see that the propaga-
tion of X̄1 and X ′

1 are equal, and the only erroneous
term is X3 in the conjugation Z ′

1. Qubit 1 is initially
acting as a target qubit in an ECR gate with qubit
0, then as a control qubit in an ECR gate with qubit
3. We need the instantaneous Pauli conjugation of Z1

to commute through this last ECR gate. Below, we
track the conjugation where the Paulis on the right
hand side represent the conjugation after the opera-
tion on the left.

Initial : Z1

ECR(0, 1) : Z0Y1

ECR(1, 3) : Z0X1X3

As the instantaneous conjugation of Z1 prior to the
ECR(1, 3) gate is a Pauli-Y , we have to convert this
to a Pauli-Z in order to commute through. Therefore,

we add a HY Z after ECR(0, 1). The circuit now looks
like:

0 H ECR0 ECR0

1 ECR1 HY Z ECR0

2 ECR0 ECR1

3 ECR1 ECR1

(6)

=

X0 Z0 X1 Z1 X2 Z2 X3 Z3

± + + + + + − + −
0 Z X Z Z Z Z
1 Y Y Z Z
2 X Z Y Y
3 X X X X Z

.

For qubit 2, the propagations of Z̄2 and Z ′
2 are equal,

and the only erroneous term is the Z0 term in X ′
2.

Again, let’s look at the instantaneous Pauli conjuga-
tion of qubit 2:

Initial : X2

ECR(2, 3) : Y2X3

ECR(0, 2) : Z0Z2X3

To avoid picking up the Z0 term in the ECR(0, 2)
gate, we need Y2 to commute through. As qubit 2 is
a target in this gate we must convert Y2 into X2:

0 H ECR0 ECR0

1 ECR1 HY Z ECR0

2 ECR0 HXY ECR1

3 ECR1 ECR1

(7)

=

X0 Z0 X1 Z1 X2 Z2 X3 Z3

± + + + + − + + +
0 Z X Z Z Z
1 Y Y Z Z
2 X X Y Y
3 X X X X Z

.

Now that the propagation is correct across all inputs,
we have to modify the conjugation after the circuit.
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Where fixing the propagation involved inspecting the
columns of the tableau, fixing the conjugations re-
quires inspecting the rows of the tableau. For each
(X ′

j , Z ′
j) we isolate the output on qubit j. For ex-

ample, (X ′
0, Z ′

0) = (Z0, X0) in Eq. (7). Looking

at Eq. (3) we see this should be (X0, Z0) and so we
append a Hadamard onto qubit 0. Repeating this pro-
cess for qubits 1, 2 and 3 we see that we need to apply
a HXY to qubit 1, HY Z to qubit 2 and qubit 3 re-
mains untouched. Skipping ahead to the final circuit
in terms of S and

√
X:

0 S
√
X S ECR0 ECR0 S

√
X S

1 ECR1
√
X ECR0 S

2 ECR0 S ECR1
√
X

3 ECR1 ECR1

=

X0 Z0 X1 Z1 X2 Z2 X3 Z3

± + + + + + − + −
0 X Z X X X
1 X X Z Z
2 X X Z Z
3 X X X X Z

. (8)

XX X S XX X / X ( ) Z / S( )
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FIG. 1: Gate distribution when compiling a syndrome
extraction circuit on a rotated surface code of distance

d = 11. The original circuit is 6 layers of gates, defined in
terms of H and CX. Tableaux Manipulation (left, dark
blue) and Qiskit (right, dark red) both compiled into a

gateset with
√
XX as the native two-qubit gate.

This circuit requires a frame correction of X2 to be
exactly equivalent to Eq. (3).

B. Comparison to open-source software

Here we provide some comparisons to the Qiskit
compiler functionality [17]. We will be comparing a
single round of syndrome extraction on a distance
d rotated surface code. For all code distances this
circuit has depth-6 where four layers of CX gates are
sandwiched by a layer of Hadamards on either side.
The circuits are generated with stim [16] using the
stim.Circuit.generated functionality, with kwargs
code task=surface code:rotated memory z,
distance=d, rounds=1. The circuit is identical
regardless if the memory basis is chosen as X or Z.
We compare compilation procedures using both

the
√
XX gate and the ECR gate. When compiling

with the Tableaux Manipulation method, compilation
was performed on stim.Circuit objects using S
and

√
X as single qubit gates. We do not include

frame-fixing Paulis when compiling with TM. When

compiling with Qiskit, we convert the circuit from
stim.Circuit into qiskit.QuantumCircuit, and
call the qiskit.compiler.transpile function. The
basis gates provided are basis gates=[‘rxx’,
‘rx’, ‘rz’] for

√
XX compilation and

basis gates=[‘ecr’, ‘rx’, ‘rz’] for ECR
compilation.

We permit arbitrary angle rotations in Qiskit as we
found this provided the most compact compilation.
Manual checks were performed to ensure all angles
were within tolerance to ±π or ±π/2, making the gate
Clifford. Where possible the optimization level
kwarg was set to 3, however when compiling with√
XX on distances d = 5 and above this had to

be dropped to optimization level=1 as non-Clifford
gates were being introduced. By explicitly setting
the basis gates kwarg to be a list of Clifford opera-
tions, i.e. [‘z’, ‘s’, ‘sdg’, ‘x’, ‘sx’, ‘sxdg’,
‘ecr’ / ‘rxx’], the compiled circuit had signifi-
cantly more gates (in the case of ecr) or raised an
error (rxx).

1.
√
XX

To provide insight on the gate distributions of dif-
ferently compiled circuits, we start by displaying a
bar chart of the gates present for a d = 11 rotated
surface code syndrome extraction circuit, Fig. 1. The
uncompiled circuit consists of 440 CX gates and 120
Hadamard gates. As Qiskit has access to arbitrary
rotations in both X and Z bases it introduces a mix
of S, S† and Z (and their equivalent Pauli-X rota-
tions). Tableaux Manipulation only introduces either

S or
√
X. For both compiled circuits the number of

two-qubit gates is 440 as expected. TM also intro-
duces marginally more S gates than Qiskit, but sig-
nificantly fewer

√
X gates.

To quantify this difference as the circuit size
changes, in Fig. 2 we plot the ratio of gate counts
when compiling with TM against Qiskit. In the left
hand plot we are displaying a breakdown of the sin-
gle qubit Cliffords present in both circuits. Splitting
them into their respective X-type and Z-type rota-
tions, we can see that TM is consistently introducing
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FIG. 2: Left : Ratio of single qubit gates present in the circuit when compiling with Tableaux Manipulation against
Qiskit. Ratios are split into X-type (orange circles) and Z-type (blue triangles) single qubit gates. Right : Ratio of the
total gates (navy arrowheads) and total single qubit gates (red squares) when compiling with Tableaux Manipulation

against Qiskit.

more S gates than Qiskit for all code distances: 125%
of the Qiskit count for d = 3 and decreasing towards
116% as the distance increases. However, TM intro-
duces far fewer

√
X gates than Qiskit: 56% of the

Qiskit count for d = 3 and trending to below 15% for
increasing code distance. For some hardware archi-
tectures, such as superconducting qubits, Z-type ro-
tations can be implemented ‘virtually’ making them
effectively noiseless [18]. The right hand plot com-
pares both the single qubit gate count and the total
gate count ratios. The first point in both curves repre-
senting d = 3 is an outlier, as the circuit is quite small.
For higher distance values, the single qubit gate count
in a TM compiled circuit approaches 43% of that in
one compiled by Qiskit. In terms of total number of
quantum operations, TM only uses 57% of those used
by Qiskit for a d = 17 syndrome extraction circuit.
With regards to circuit depth, for both Qiskit and

TM-compiled circuits across all code distances, the
resulting circuits had 14 layers of gates.

2. ECR

The ECR gate, while Clifford, is not a native gate
to stim. When compiling with this gate in stim
we used the equivalent circuit in alternative Clifford
gates:

ECR0

ECR1

=
S • X

√
X

(9)

Where the subscripts 0, 1 in the ECR gate diagram
represents the role of the qubits, as the gate is anti-
symmetric. The tableau for ECR is shown in Eq. (4).
This circuit was treated as a single two-qubit gate and
gates were only added before or after ECR layers.
In Fig. 3 we display the equivalent bar chart as in

Fig. 1 for compilation with an ECR gate. While the
effect is perhaps more muted than that of

√
XX, TM

is consistently introducing fewer single qubit gates
than Qiskit. This reduction is quantified across all

ECR X S ECR X / X ( ) Z / S( )
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FIG. 3: Gate distribution when compiling a syndrome
extraction circuit on a rotated surface code of distance

d = 11. The original circuit is 6 layers of gates, defined in
terms of H and CX. Tableaux Manipulation (left, dark
blue) and Qiskit (right, dark red) both compiled into a

gateset with ECR as the native two-qubit gate.

code distances in Fig. 4, where we plot the ratio of
gate counts of TM against Qiskit. Across all code
distances we introduce fewer single qubit gates than
Qiskit, with the effect more pronounced for X-type
rather than Z-type gates. For Z-type gates, we re-
duce the total count down to 75% of Qiskits total for
d = 17; for X-type gates TM introduces only 57% of
gates compared to Qiskit.

Looking at the right hand plot, the ratio of single
qubit gates introduced by TM against Qiskit drops
from < 82% for the smallest code size and approaches
66% for the highest distance considered. When com-
piling with an ECR gate for d = 17, a circuit com-
piled by TM will only have about 76% of the gates
compared to one compiled by Qiskit.

With regards to circuit depth we take into ac-
count that when compiling with the circuit equiva-
lency shown in Eq. (9) a single layer is being repre-
sented by three layers. Correcting for this, across all
code distances for both Qiskit and TM-compiled cir-
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Qiskit. Ratios are split into X-type (orange circles) and Z-type (blue triangles) single qubit gates. Right : Ratio of the
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against Qiskit.

cuits, the compiled circuits had 15 layers of gates.
Qiskit was the best performing open-source com-

piler we tested. A future version of this paper may
include comparisons to other compilers. We compare
favorably to Qiskit as it is not a Clifford compiler: it is
designed for arbitrary quantum gates. As mentioned,
restricting Qiskit to only use Clifford operations re-
sulted in either a failure or degrading performance,
indicating that this process (or one similar to it) is
not being employed.

C. Implications for logical error

Here we will briefly highlight how the above results
affect the logical error probability of quantum mem-
ory experiments. We present the results for a d = 11
quantum memory being compiled into a gateset with√
XX. As this gate is native to stim it is straight-

forward for noisy simulations. For context, at this
distance TM uses about 58.5% of the quantum oper-
ations compared to Qiskit (see Fig. 2).
The circuits are generated with stim as described in

Sec. III B, setting distance=11 and rounds=11. The
syndrome extraction subcircuit (4 layers of CX sand-
wiched by 2 layers of H) is extracted and individually
compiled using both TM and Qiskit into a gateset
with

√
XX as the two-qubit gate. The single qubit

gates used for compilation are as in Sec. III B. The
compiled circuits are then reinserted into the stim cir-
cuit in place of the H + CX subcircuit, such that we
have three copies of the same d = 11 quantum mem-
ory experiment defined in stim: one using H + CX,
one compiled by TM and one compiled by Qiskit.
We apply a depolarizing noise model to each circuit,

such that:

• Two-qubit gates have a two-qubit depolarizing
channel applied with probability p.

• Single qubit gates have a single qubit depolariz-
ing channel applied with probability p/10.

• Reset operations in the Z basis have a single
qubit depolarizing channel applied with proba-
bility p/10.

• Measurement outcomes are flipped with proba-
bility p.

• For each layer in the circuit, any idle qubits have
a single qubit depolarizing noise channel applied
with probability p/10.

Decoding was then performed using the PyMatching
package [19], with each circuit being sampled with
100p−2 shots. We ran simulations for varying noise
values around the threshold, which for this noise
model on logical-Z memory using a H + CX gate-
set is 0.00927(9). When compiling with Qiskit, the
threshold drops to 0.00747(23); for TM the threshold
is 0.00797(54). The results for the d = 11 case are
reported in Table II.

We see that compiling into a native gateset causes
the logical error probability to jump significantly, and
that this effect is suppressed by using Tableaux Ma-
nipulation. At p = 0.01, we see that TM is reduc-
ing the logical error probability by about ∼ 11%, and
this reduction improves as the physical error decreases
below threshold. At p = 0.004, we are achieving
∼ 18% fewer logical errors by compiling with TM ver-
sus Qiskit. Beyond this point the TM / Qiskit ratio
begins to rise again, as we enter the regime where sin-
gle qubit gates become essentially noiseless in compar-
ison to two-qubit gates and measurements. Far below
threshold, say at p = 10−4, it is likely that the logical
error probability would be equivalent across all three
circuit implementations. However, we argue that it is
still advantageous to employ TM as communicating
instructions to physical qubits still entails a non-zero
heat cost, and TM allows you to achieve the same cir-
cuit implementations with fewer quantum operations.
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Depolarizing

Noise p H+CX TM Compiled Qiskit Compiled TM / Qiskit

0.002 (6.12± 2.81)× 10−6 2.07(43)× 10−5 2.49(41)× 10−5 0.846(187)

0.004 4.13(42)× 10−4 1.39(8)× 10−3 1.70(7)× 10−3 0.819(48)

0.006 4.68(24)× 10−3 1.41(3)× 10−2 1.7(0)× 10−2 0.828(25)

0.008 0.023(1) 0.06(1) 0.07(1) 0.851(15)

0.01 0.0683(12) 0.152(2) 0.172(2) 0.886(13)

TABLE II: Logical error values for a d = 11 quantum memory experiment experiencing a depolarizing noise model
decoded with minimum weight perfect matching. We compare the original circuit defined in terms of H + CX to a

circuit compiled into a gateset using
√
XX with both TM and Qiskit.

IV. DISCUSSION

We have presented a simple, intuitive method for
compiling a Clifford interaction into another by run-
ning a find-and-replace protocol for entangling opera-
tions, and fixing up the instantaneous Pauli conjuga-
tion as necessary. In comparing to open-source alter-
natives, compilation of syndrome extraction circuits
for the rotated surface code resulted in a reduction of
required quantum operations across all code distances.

For the class of circuits we have considered, exper-
imentally this method provides a net positive with
no clear downsides. For near-term devices exhibiting
a noise profile roughly around 1% depolarizing, this
method of compilation will improve logical fidelity in
experiments. When hardware improves to the point
that single qubit gates are effectively noiseless, this
protocol maintains an advantage over existing com-
pilers by requiring fewer quantum operations commu-
nicated to physical qubits.

Practicality aside, the procedure outlined above is
useful for building intuition around Clifford gates and

circuits, and accelerating certain aspects of research
when dealing with alternative Clifford gatesets beyond
{H, S, CX}. Directly dealing with tableaux allows
extraneous detail of the Clifford interaction to be ab-
stracted away and reduced to ensuring the conjugation
is correct.

We have only considered circuits employing one
kind of entangling Clifford, and focused on compil-
ing into gatesets using the same kind of entangling
Clifford; we provide some discussion about replacing
a CX-like gate with an iSWAP -like gate in Appendix
A. However, this is insufficient to determine how this
process would perform on arbitrary Clifford circuits.
Given a gateset with both CX- and iSWAP -like Clif-
fords, the initial condition can be easily adapted to
replacing each entangling gate in an arbitrary circuit
with its corresponding type in our gateset. If we only
have access to one type of entangling Clifford, compil-
ing an arbitrary stabilizer circuit would likely require
further algorithms to ensure the minimal number of
entangling gates is employed, such as that in Ref. [11].
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Appendix A: Caveats for the broader Clifford
class

0 H • • • • H

1

2

3

4

(A1)

=

X0 Z0 X1 Z1 X2 Z2 X3 Z3 X4 Z4

± + + + + + + + + + +
0 X Z X X X X
1 X X Z
2 X X Z
3 X X Z
4 X X Z

.

In the main text we are focused on circuits defined
on CX-like entangling Cliffords being compiled into a
gateset which also uses CX-like entangling Cliffords.
The same process can be directly applied to circuits
defined on only iSWAP -like entangling Cliffords, be-
ing compiled into a gateset which also uses iSWAP -

like entangling Cliffords. As the protocol relies on a
heuristic of replacing entangling gates with entangling
gates (implicitly between the same qubits), it applies
equally to both these cases. However, if we wish to
compile a circuit defined on a CX-like gate into a gate-
set that only uses an iSWAP -like gate, or vice versa,
this heuristic breaks down.

Consider the weight-4 X-stabiliser circuit shown in
Eq. (A1). If we replace each CX gate with an iSWAP
between the same qubits (such that qubit 0 is involved
in four iSWAP operations) we will not be within sin-
gle qubit rotations to the desired Clifford interaction.
Due to the swapping aspect of these gates we must
be aware of which qubit states have been swapped,
tracking an ‘instantaneous qubit index’ so to speak.
Consider the following as an alternative initial circuit
for TM compilation:

0 iSWAP

1 iSWAP iSWAP

2 iSWAP iSWAP

3 iSWAP iSWAP

4 iSWAP

(A2)

=

X0 Z0 X1 Z1 X2 Z2 X3 Z3 X4 Z4

± + + + + + + + + + +
0 Z Y Z
1 Z Y Z
2 Z Y Z
3 Z Y Z
4 X Z Z Z Z Z

This circuit can be made equivalent to Eq. (A1) using
only single qubit Clifford gates, up to some permu-
tation of rows. Qubit 0 is no longer the qubit to be
measured, and has been swapped into qubit 4. This
is a relaxation of the requirement that two stabilizer
tableaux be equal to ensure compilation, but comes
at the cost of qubit state shuffling. Indeed, on cer-
tain qubit architectures the connectivity graph dic-
tates that the circuit in Eq. (A1) is valid and the cir-
cuit in Eq. (A2) is not. In this case we can then either
a) introduce further qubits to the tableaux to act as
intermediaries, wherein our goal is to replicate the tar-
get tableau in a subset of rows in the new tableau, up
to some permutation, or b) introduce further iSWAP
and single qubit gates within the original set of qubits
to undo the state swapping.

In the cases where an informed initial condition is
not immediately obvious, we propose employing the
initial condition as normal and then inserting SWAP
gates after each iSWAP , between the same qubits,
such that (iSWAP + SWAP ) approximates a CX.
Compilation can then proceed as normal. Once the
tableaux are equivalent, iterate through the circuit
removing each SWAP (i, j) gate sequentially, and up-
dating following qubit indices (i ↔ j) as necessary.
This will not correct for all possible edge cases, such
as the restriction in connectivity mentioned above.
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