arXiv:2404.19413v1 [hep-lat] 30 Apr 2024

KUNS-3002

Gauge invariant discretization of Chern-Simons couplings

Kohta HATAKEYAMA,*! Matsuo SATO**? and Gota TANAKA,***3

*Department of Physics, Kyoto University, Kyoto 606-8502, Japan
“*Graduate School of Science and Technology, Hirosaki University
Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
“* Institute for Mathematical Informatics, Meiji Gakuin University,
1518 Kamikuratacho, Totsuka-ku, Yokohama, Kanagawa 244-8539, Japan

Abstract

We discretize Chern-Simons couplings in gauge invariant way. We obtain (p + ¢)-forms repre-
senting Chern-Simons couplings on (p + ¢)-simplexes from wedge products of p- and g-forms
on p- and g-simplexes, respectively, where p- and g-simplexes form (p+ ¢)-simplexes by having
a common vertex. We show that the Chern-Simons couplings on simplicial complexes reduce
to Chern-Simons couplings on the manifolds in a continuum limit. Moreover, we prove that a
typical discretized Chern-Simons term that has the Chern-Simons coupling is gauge invariant.
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1 Introduction

Superstring theory is a promising candidate for a unified theory including gravity. One of the
recent main problems in string theory is to determine a true vacuum among extremely large
numbers (> 10°%°) of perturbatively stable vacua, which are called the string theory landscape.
If this problem is solved, string theory predicts physical phenomena, which can be captured by
experiments and observations. One of the most reasonable ways to determine a true vacuum
in string theory is to formulate string theory non-perturbatively, derive its effective potential for
string backgrounds, and find the minimum. Because string backgrounds are the expectation values
of the bosonic fields in the supergravities and the D-brane effective theories, the effective potential
is a functional of these bosonic fields. Actually, such an effective potential for string backgrounds is
derived from string geometry theory, which is one of the candidates of nonpertubative formulations
of string theory [1-9].

The potential energies of manifolds and fields on them are difficult to compare in usual general
relativity because they are defined by patching local coordinates. On the other hand, if we discretize
general relativity by Regge calculus [10] or causal dynamical triangulation [11], we can globally
define manifolds and the fields, and then we can compare the potential energies of them.

So far, discretization has been performed on the Einstein-Hilbert action and gauge theories
in the standard model, which do not have Chern-Simons couplings. On the other hand, because
the supergravities and the D-brane effective theories have Chern-Simons couplings, we need to
discretize Chern-Simons couplings. Although there are many quantization proposals in [12-16] by
discretizing the three-dimensional Abelian Chern-Simons theory, which is a special theory where
the Chern-Simons coupling becomes topological, our purpose is to just evaluate the values of the
effective potentials and actions. Then, it is enough that discretized effective potentials and actions
are gauge invariant and reduce to the continuum ones in the continuum limit. In this paper, we will
discretize Chern-Simons couplings and show that the discretized Chern-Simons couplings are gauge
invariant and reduce to continuous Chern-Simons couplings in a continuum limit. This enables us
to perform Regge calculus and causal dynamical triangulation not only on all the bosonic terms in
the supergravities and the D-brane effective theories but also on the effective potentials for string
backgrounds in superstring theory.

The organization of this paper is as follows. In section 2, we review field strengths of p-form
fields on simplicial complexes. In section 3, we formulate Chern-Simons couplings on simplicial
complexes and show that they reduce to Chern-Simons couplings on manifolds in a continuum
limit. In section 4, we prove that a typical discretized Chern-Simons term that has a Chern-
Simons coupling defined in the previous section is gauge invariant. In appendixes, we summarize
properties and their proofs of the discretized Chern-Simons couplings defined in the main text.

2 Field strengths on simplicial complexes

In this section, we review discretization of the field strength F},.; of a p-form field C}, on a simplicial
complex. Cyy ..y, is discretized by a link variable I'c, (15, ,) defined on a p-simplex Tg, .
where 0,1,2,...,p correspond to vertices 17,17, T3, - -+, T). After we define a relation between
the continuous variable C,, ,,,..,, and the link variable I'c, (1), ), we will show that F, ,, .., is
obtained from a plaquette variable on a (p + 1)-simplex made of I'c,, (T5}5. ,,) in a continuum limit.



The relation between C,,, ..., and I'c, (T35, ,) is defined by

FCp(T012 p) = €Xp [21/012 pCl2 P ( (U + Vg + - + p))} ) (2.1)
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The plaquette variable I'r, ,, on ngf.p 41 corresponding to F,4; is defined by
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and we have used I'(=T) = I'"1(T). Tgfl’gn_;,ﬂr1 is a p-simplex obtained by omitting a vertex T from
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From now on, we will show that field strengths are obtained from the plaquette variables in a
continuum limit. In the following, we will evaluate the exponent of the plaquette up to the leading
order in a, corresponding to the continuum limit. First, we consider the ¢ # 0 case in (2.2), where
we set O-coordinates on the (p + 1)-simplex. The link variables in (2.2) are given by

FCP (T012 p+1)

0 a oo — — —
=exp ZVol...q—lq+1...p+1C12...q—1q+1...p+1 m(vl + Uy 4 Uy + Vg1 + -+ Upy)
= _ A Y . i,
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where
a
. = U + Vo + -+ -+ 1 . 2.5
p+1 p—i—l(l 2 pi1) (2.5)
Next, we consider the ¢ = 0 case. On the (p + 1)-simplex, we set 1-coordinates y* whose origin
is TP and which are spanned by vectors )y, W, . .., W,y1 given by
5 éTIOTk (k % 1)7
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The link variable in (2.2) is given by

) » a }
F(Tfég...pﬂ) = exp Z‘/l(2p3)...p+lc213...p+l (m(wz +wg+ -+ wp+1))} . (2.7)

We transform 1-coordinates to 0-coordinates because we need to calculate in single coordinates
to evaluate (2.2). A general point P in Té’f;.l“pﬂ is written as

PO = 1’1’171 + LL’QUQ R Sl?p_|_1’(7p+1, (28)
in 0-coordinates and
P! = yy1y + yoily - - + Ypt1Wpt1, (2.9)

in 1-coordinates. The difference of the origins gives a relation between P° and P! as

P = aw, + P°. (2.10)
From the relation between o; and w;;
Uy = Wy — W (2.12)
Us = Wy — W (2.13)
Up41 = Wyt — Wi, (2.14)
we obtain
Pl = (a — X1 — Ty — " — :Ep+1)1,U1 + 1'21172 + 1'31173 + 4 l'p+1117p+1. (215)

By using 2.10), we obtain a coordinate transformation,

Tn=Yn 2<n<p+1). (2.17)

By using this, we obtain (2.7) in 0-coodinates,

r (Tfégp—l—l )
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To summarize, (2.2) becomes
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Note that we have taken a continuum limit where the length of all the edges is a in the second
equality and used

YD — VP +2 a v (®)
V2(p+1)p+1

in the last equality. As a result, we have obtained [}, from the plaquette variable I'r,,, in the
continuum limit a — 0.

(2.20)

3 Chern-Simons couplings on simplicial complexes

In this section, we formulate Chern-Simons couplings on simplicial complexes. Explicitly, we
display discretization of H3 A C,_5 on a (p 4 1)-simplex T?*!. The field strength Hj of a 2-form
field B, is defined on a 3-simplex T° that is a 3-subsimplex of TP whereas a (p — 2)-form field
Cp_s is defined on a (p — 2)-subsimplex 7?2, The placement of these subsimplexes is

T2 uTrP? = TPt (3.1)
T°NTP2 =77,



analogous to the cup products of cochains'. In this placement, T is a vertex in TP which is
necessarily overlapped by the 7% and T?~2 because the p + 2 vertices that consist of the TP*! are
less than the p + 3 vertices that are the 4 vertices that consist of the T plus the p — 1 vertices
that consist of the TP~2.

We define a link variable I'g,nc,_, on T' P+l corresponding to Hs A Cp_2 as

1
FHS/\Cp72 (T(?lg...p+1)

,év(P-i-l)

D S SIS

0<po<p1 <p2<p3<p+10<k<3 vo€{uo,p1, 12,13}

—1)k 4 " 1 _
« DT \félog (T ae)) o108 (T (127, ) Sgn<<’>] (3:3)
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where,
0<m <1<+ <Vpo<p+1, (3.4)
Vi, V2, ,Vp—2 ¢ {/“L07/~L17/~L27/J’3}7 (35)
and
(Mo M1 2 M3 V1 V2o ... Vp_2
“‘(0 1 2 3 4 5 - p+1)' (3:6)
The summation over k implies the summation over the 2-simplexes on the boundary of the 3-
simplex, including their orientation. T2*  is a 2-simplex obtained by omitting the vertex 7},
from the 3-simplex 77 , ... The coefficient 1/(p + 2) comes from the number of choices of a

common vertex between the 3-simplex and the (p —2)-simplex where the H; and C),_, are defined,
respectively, among the p + 2 vertices of the (p 4+ 1)-simplex.

In the following, we will see that this link variable gives the wedge product Hs A C),_5 in the
continuum limit. As an example, we take a continuum limit when p = 4. First, on a 5-simplex
T19345, We set six coordinates where the vertices 19, T, T3, T, T2, T are the origins, respectively.
The coordinates with origin 7) are spanned by vectors ¥; 1, T, . . ., U; 5 given by

éTiOTkB (k # 1),
T = (3.7)
LTOT (k= ).

The origin in the coordinates of 7% where Hj is defined is a point whose index is the smallest

number, whereas the origin in the coordinates of T? where C is defined is the common point in
(3.2). In these coordinates, (3.3) becomes

v 7(5)
iV
FHa/\Cz = €Xp % {H1023(025 + Ois + CZs + Cis) - H?24(O§5 + C§5 + 03?5 + C§5)

+ o4 H3(C3 + C3y + Cyy + 0551)}] . (3.8)

!The authors in [15,16] proposed a quantization of the 3-dimensional Chern-Simons theory in a non-compact
formulation based on the cup products of cochains.



Although the arguments of H3 and C),_, are different, they coincide in the continuum limit because
T shrinks to a point. Then, we do not describe the arguments. The upper indices of Hz and C),_5
represent the origins in the coordinates.

If we transform the coordinates to 0-coordinates, (3.8) becomes

Vi)
exp | {HY,(Cls + Ol — Oy + Ofy + Cls — O + €5, + Oy — O + C5))

— H?24(0§35 + Cg5 — Cfs + Cls 4+ Cgs — C35 + Chs + Cf; — Cs — C5,)
+---+<H§45 HYys 4 Hyss — Hyg,)(CF, + Cly 4 CYy + Cfs) }]

iV
= €Xp 012345 {6H1230z(1)5 - 6H1024C§5 +oet 6H:?45C?2

= €Xp [2%12345 {H123025 - H?24C§5 +eet H:?450102 } . (3-9)

That is, we have obtained H3 A C,_s from the link variable in the continuum limit.

4 (Gauge invariance

In this section, we will prove the gauge invariance of a typical discretized Chern-Simons term that
has a discretized Chern-Simons coupling defined in the previous section.

4.1 (p+ 1)-form field strength

In this subsection, we will define gauge transformations on the link variables on p-simplexes, and
prove the gauge invariance of the field strengths of the link variables on (p 4 1)-simplexes.

Gauge transformations on link variables I'c, (1) are defined with gauge parameters I'y,_, (77~1)
by

T (T7) =T, (T?) [ Tap (777 (4.1)

Tr—1CoTP

The relation between FAIH(Tp_l) and the corresponding continuum gauge parameter Ao, is
defined by

_ . D 1, . .
FApfl(T(i]DlQ.l..p—l) = eXp [Z Vo12 p— 1A£ p—1 (1_)(”0,1 +Uo2+ -+ 'U07p—1)):| . (4.2)

As a result, the continuum limit of (4.1) is given by
exp [iV(p)C’I',] =exp [{VP (Cp + dA,-1)] (4.3)

where the continuum gauge transformation is realized.
Under (4.1), the plaquette variable of the field strength I'r, ., is transformed as

1
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Because a (p—1)-simplex in a (p+ 1)-complex is boundaries of two p-simplexes and the boundaries
have opposite orientations, we have

p+l p+l
Z log I'a, , (T7~ D) Z Z [IOgFAp 1 Té)l21 ;—?—1) log ', (Tglzl ;’11)]
TP—1CH2Tr+1 r=0 q=0,%r
=0, (4.5)

where we have used (B.1). Therefore, we have proved the gauge invariance of the plaquette variable
of a field strength;

/Fp+1(T(;;)1;1 p+1) FFpH(T(I;)l;l p+1) (46)

4.2 Chern-Simons term

In this subsection, we will prove the invariance of a typical discretized Chern-Simons term that has

a discretized Chern-Simons coupling defined in the previous section under the gauge transformation

of the link variable on a p-simplex defined in the previous subsection. Explicitly, we will prove the

invariance of a discretized Chern-Simons term reducing to f M Cy N Hs A F3 in the continuum limit.
In the continuum case, the gauge invariance can be proved as

5/ Cy N Hz A\ F
M
:/ dAg/\Hg/\Fg
M
M
——/ d{d(dAs A By) A Cs}
M

=0. (4.7)

As in the same steps, it can also be proved in the discretized case as follows.
The discretized Chern-Simons term corresponding to a Chern-Simons term f m CaNH3 A\ Fyis
defined as the Chern-Simons coupling in the previous section,

Z FC4/\H3/\F3 (Tlo)
T10CM
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1 1 4 1 4
x s log T, (1) — \[6 log T's(T%) \[6 log T'e,, (T™)sgn (7). (4.8)

(4.8) is invariant under the transformations of By and Cy because Hs and Fj are invariant as in




the previous subsection. Under the gauge transformation of Cy, (4.8) is transformed as

6 Z 1—‘C4/\1;13/\d02(Yﬁlo)
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where 1 =0,1,2,3,4,7=1,2,3,k=0,1,2,3,4,5,6,7,

0.< pr<p2<ps <10, pj & {juss i}, (4.10)
(Mo M1 ot 4 V1 Vo V3 P P2 P3
U_<0 1T e e e e 1(])’ (4.11)
and
r_ (Ho pr - M7 P P2 P3
U_<0 R 10)' (4.12)

Link variables Lyagnm (Thho. 7) and Ta@aagap,)nc, (I7) are defined as:
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0<po<p1<-<pa<7 p=0 vo€{u;} ¢=0

(_1>p+q 3,iL 1 4 2,0, "
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where 0 <1y <1, <3 <7, v; ¢ {u;}, and

p_ (B0 mo v vy v
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and

VO -
LCagansaBo)ncs (TShs..0) =€xP Zl—O Z Z Z

0<po<p1 <---<p7<9 p=0 voe{pu;}

(=1 /8 6.i1p 1 2
X e ﬂlogFdA3/\BZ(TMOZ1---M7)Z'V(2) log e, (T3 1,0, )580(0™) |, (4.15)

where 0 < v <1y <9, vy,15 & {x}, and

m (Mo M1 - M7 V1 Vo
g _<0 1 e e 7)' (4.16)

In the last equality in (4.9), we have used (D.11). Here, (B.1) and (C.1) lead Tyr,a5(T°) =
FJKSAB(—T%. Then, (4.15) implies

I‘d(dAg/\Bg)/\C'g (T9> = F;(ldA.‘S/\BQ)/\CQ (_Tg) . (417)

Then, (4.9)=0 because T® in T is boundaries of two T%s and the boundaries have opposite
orientations. Therefore, we have proved the gauge invariance of the Chern-Simons term (4.8).

5 Conclusion

We have discretized Chern-Simons couplings in a gauge invariant way. We have obtained (p + ¢)-
forms representing Chern-Simons couplings on (p + ¢)-simplexes from wedge products of p- and
g-forms on p- and ¢-simplexes, respectively, where p- and g-simplexes form (p + ¢)-simplexes by
having a common point. We have shown that the Chern-Simons couplings on simplicial complexes
reduce to Chern-Simons couplings on the manifolds in a continuum limit. Moreover, we have
proven that a typical discretized Chern-Simons term that has the Chern-Simons coupling is gauge
invariant. We have also proven some properties of the Chern-Simons couplings.

Based on these results, we can perform Regge calculus on the effective potentials for string
backgrounds and find their minimums by numerical simulations [17]. As a result, we may determine
a true vacuum in string theory.
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A Wedge product on simplex

A wedge product A A B of p-form A and ¢-form B is discretized on the (p 4 ¢)-simplex ngf]ﬂp »

by a link variable,

FA/\B(Téjl—;?.p-i-q)

yirto g 1
= exp Z Z PSR Wavr) log T4 (T )iV(‘l) logT'p(T9)sgn (o) (A.1)
TP<TP+a T9<TPta
L TINTP=T9

—en| X >

| 0<po<pn <+ <pp<p+q vo€{po, i1, sip}
v (p+9) 1

X
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log TA(T? )i log (T )sgnQTﬂ , (A.2)

Kop1--tp/ 517 (q) VoV1...Vq

where 0 <1y <o <--- <y, <p+gq, {vi,va,....v,} ={0,1,2,....p+q}/{o, tt1, - - -, 1}, and

o= Mo M1 =+ MUp V1 V2o oo Vg
O 1 . . . e e p+q :

Ho, f1s - - - by are vertices of p-simplex TP < TP*9 where A is defined, vy, vy, ..., v, are vertices of
g-simplex T < TP*4 where B is defined, and 1y is also shared by TP. Note that vy, vs, ..., v, are
automatically fixed once we determine fi, pi1, . . . 1, because {vy,vs,...,1,} is the complement of
{10, pu1, - - - ptp}. The summations over pig, p1, . . . 1, and v in (A.2) is equivalent to those over 1%
and 77 in (A.1).

In the continuum case, let A be a p-form and B be a ¢-form, then a wedge product A A B
satisfies

AANB = (—1)P"BA A (A.3)

We will show the analogous fact that the link variable I' 445 of the wedge product A A B satisfies

Pq

Tynp =I5 0" (A.4)
We begin with rewriting the summations over vertices in (A.2) as
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where

e < vy < flpr1, Y < Vg < V1, (A.6)
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Using these results, we obtain
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1
X 108 FB(Tfl...uluoul+1~~.uq)sgn(a”)}

Vit q
=6&Xp Z Z p+qg+1 1V (P (_1)Pq log FA(TiHoul"'upﬂ)

0<vo<v1 <+ <vg<p+q pe{vo,v1,...,vq}

1
X W IOg FB (Tgoul...uq>sgn(o-//):|

pq

=Thaa (T7F). (A.13)
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B Dupp(—T7"1) =T 5(T7)
To show that the link variable " 4, 5(TP%?) of p-form A and ¢-form B satisfies

Pang(=T7H7) = T 5(T7), (B.1)
we will prove

P+q p+q
since To1o” pig = —Tloz. prq-

First, we decompose the summation over g, i1, ..., and 1 in (A.2) into the sum of the
following eight parts P, Ps, ..., Ps given in the following:
log(FZ/l\B(T(Z)DlEq p+q)) = Pl + P2 +oee At PSa (BB)
and then exchange the labels of vertices as 0 <> 1.

1. Py is a part of the summation where pg =0, p; =1, and vy = 0 and given by

v (p+a) 1 . 1
Pl = Z p+q_|_1ZV(P) ]'OgFA(T()lNZN-?”'N ) V(q logFB(TOV1 Vg )
2< o <pu3 < <pp<p+q
0 1 po ps ... pp 11 V2oLl Vg
X%nc)l 2 3 ... ... ... ... ... op+q) (B4)

2. P, is a part of the summation where g =0, pu; = 1, and 1y = 1 and given by

v (p+4q 1 . 1 .
Py = > e 17 08T T ) 7y 08T (T )
2<po<p3 << pp<p+q
0 1 po ps .. pp Vi Voo Vg
ngn(01 2 3 .. .. ... .. p+q)
Then, P,| > v 1 log T A(TF, ) log Ta(TH, )
en, 1|01 = ; 0g 1l A(Lqg oglpliyy, 4
(») M2 3. M 1---Fq
2<pa <p3<--<pp <p+q Praqt LV iV
10 pe ps oo pp v 12 ... Y
ngn<10 2 3 .. ... ... ... ... . p+tq
Z vV (p+a) o ( MR ( )
== - 3 gFA T(]Lu 13- pop Og PB le Vg
2< e <p3<--<pp<p+gq pra+ LV o W@ :
0 1 po ps .. Wy 11 Vo ... U
ngn(01 2 3 ... p+gq
- = P27
v (p+4q 1 1
and Py|oe; = > — 5 log Ta (T )7 108 Tp(Tg,, )
(p) Opaps...pp Ovy...vq
2<po<pz << pp<p+q ptatl i iV
10 pe ps oo pp v 12 ... Y
ngn<10 2 3 ... ... ... ... ... . p+tq

12



v (pt+a)

— 3 —_Jog I'4(TP )~ 108 Ts(T5, )
(p) Olpaps...pup (q) Ovy...vq
2 e <p3 < <pp<p-+q pra+ 1Vt iV
0 1 po ps .. Wy 11 Vo ... Uy
ngn(01 2 3 ... .. p+gq

. P5 is a part of the summation where pp =0, 1 = 1, and 1y # 0, 1, and given by

yta 1 .
Py = Z Z +qg+1:V® log FA(TOluw% Mp) V(@ log FB(TVOVl Vq)
2< pa <p3 < <pp <p+q voE{p2,143,....p } # 4
0 1 po ps . pp 11 Voo ... I/q)
X sgn .
& Q}1 2 3 ... ... ... ... ... ptq
v (p+a) 1
2< pa<p3 < <pp <p+q
10 pe ps oo pp v va ... I/q)
X sgn
& Q 0 2 3 ... oo i . ptg
v (pt+a)
=— > ——log T'a(T} )——logTp(T,, )
(p) 0lpaps...tp (q) VoV1...Vgq
2 pa <p3 < <pp<p-+q pPrq+ 1y WV
0 1 po pas . pp 11 Vaoo... I/q)
X sgn
& C]l 2 3 .. . .. ... ... ptgq

. Py is a part of the summation where pg =0, 14 = 1, and vy = 0, and given by

yta 1
P, = > p+q+1w%”%FM%mmuﬂvwl%Fﬂﬂlu)
2< 1 <po < <pp<p+q
0 p1 po p3 .. pp 1 wo .. Vg
X%n<o 1 2 3 ... ... .. ... p+q) (B.7)

. Ps is a part of the summation where pg =1, 14 =0, and vy = 1, and given by

Py = 3 pi;ili;G)bgFAaL“m M)‘i log T5(T},, )
2<p <pe<-<pp<p+q
(o G o )
(r+a)
fhets Bl :2<u1<uz;<up<p+qp‘izj-1ﬂ/1( logFA(Tl“”‘? “”) Vl(q tog T (T Vq)
L R B
Y R RTAThy ) DT )

2< 1 <po < <pp<p+q

13



Lo po ps pp 0 1 Vq
XSgn(O 1 2 3 p+q
= - P57
vieto g 1
and Ps|ge; = Z _ logFA(T J——1log (T}, )
(p) Opapz...pp (q) 01...vq
2<p1 <p2<-<pp<p+q pta+l Wi v
0 w1 pe ps .. pp 1 vo .o 1
><Sgn<1 0 2 3 ... ... ... ... ... ptg
v (p+4q 1 1
=— > ——log (T} ) log (T3, )
(p) Oprpz...php (q) 01...4
2< g <pz<-<pp<p+q pta+ LV i
R R T S R S N R . 7
XSg”‘(O 12 3 ..o o p—%q)

. Py is a part of the summation where ;o = 0, v1 = 1, and 1y # 0, and given by

vt 1
Fs = Z Z p+qg+1iVP) log FA(TOmuz up) iV (@ log FB(TVol Vq)
2< g <pra < <pp<p+q voE{pt1,142,....p }
0 p1 po p3 .. pp 1 wo .. Vg
X%n<0 1 2 3 ... ... . .. .. p+q) (B-9)

. P; is a part of the summation where ;o = 1, 1 = 0, and 1y # 1, and given by

yra 1
P7 = Z Z D+q+ 1V ® lo gFA(Tl,ulug p ) V@ logFB(TVOO Vg )
2< 1 <p<-<pp<p+q voE{p2, U3, ., bp }
M fo ps . py 00 e L Vg
XSg“‘(O 12 3 .o p—kq)'
yra 1
Then7 P6|0<—>1 = Z Z D + q +1 zV(P) lOg FA(Tlp,ulug ,u;,) V( lOg FB(TII()O Vg )
2< g <pra < <pp<p+q voE{p1,142,....p }
o po o ps oo oy 0 1 L. Vg
X%n<1 0 2 3 ... i o phg
yirto g 1
-y > 7108 LA (T, i 08 Ta(T. )
(p) lpipa...up 100...vq
2y <prg < <pp<p+q voE{ 1,42, bp } p + q + 1 ZV V
o po o ps oo oy 0 v L. Vg
X%n<0 1 2 3 ... o . pag
= - P7a
yta 1
and Prlop1 = Z Z S ) og Ta(T4,01 5. ) 0y V@ log (T )
2<p1 <pra < <pp<p+q vo€{p1,12,....1p }
0 po p3 .. pp 1 v .o 1
XSgn<1 0 2 3 ... ... ... ... .. ptq

14



yirto g , 1 .
- 2 2 p+q+1iV® 108 DA (Tt ) 77777 108 T8 (Lot
2<p <p2 < <pp<p+q roE{p1, 12, .., bp }
M1 fo g3 py 1 e L Vg
XSgn(o 12 3 oo p+q)
- P (B.10)

8. Py is a part of the summation where v; =0, vy =1, po > 2, and given by

yta ) 1 .
P8 - Z Z p+q+ 14V ®) 10g FA(TMOMle---Mp>W 10g I'p (TVO()l---Vq
2<po<pp1 <+ <pp <P+q voE{ 0, 415 hp }
R R I T U S TR 2
XSgn(o 12 3 o p+q)‘
y+a 1
Then, Ps|oe1 = > > T T log PA(Tgwm___W)W log Ts(T} 1. .,
2<po<pp1 < <pp <P+q voE{ 0, 415 hp }
o H1 H2 oo pp 10 e oy
XSgn(l 0 2 3 ... .o p+q)
yta  q
-~ Yy ¥ R T )
®) HOHL K2 i
2<po<p1 < <pp<p+q voE{po 15 p } prat LV
1 g fo p1 p2 oo gy 01w oy
* W@ logrB(Tvom---”q)Sgn(o 1 2 3 ... .. .. .. ptg
Note that we have utilized the fact that link variables 'y and I'g satisfy
DA(T7) =T3'(~T7), (B.12)
Lp(T7) =T (=T7). (B.13)
From these results, we obtain
log(FAj/l\B(Té)l-;qp—l—q)) = - (Pl + P2 Tt P8)
=P+ P+ -+ Pyoo
=108(Lan(Tors! pig)|gr)- (B.14)
Thus, we have
F,:1/1\B (T(g)l—;]..p-i-q) = FA/\B (Tglgfl..p-l—q)‘o(_)l . (B15)
We can discretize more general wedge products A A B A C A --- by link variables I'4ngacn...

given by straightforward generalizations of (A.1). In the above proof, we have utilized only two
facts that I'y and I'p satisfy I'y g(T") = FZ}B(—T) and that a wedge product A A B is discretized
by a link variable (A.1). We can thus inductively show that the link variables I s4pnprcn... satisfy
Cansrcn.(T) = Dyhgaon. (=T) using this result.
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For example, we consider the wedge product A A B A C represented by the link variable
Capgac (TP where C is an r-form. T xpac(TPT9T") is given by the extension of (A.1) as
follows:

Canpac(TPFT)

=exp (¢ Z Z Z

Tp<TPrat+r Tacrtatr  Trpp+atr
TINTP=T0 T N(TPUT?)=T"0

V(;D-I-q-l-r) 1 1
X
p+q+r+1lp+qg+1iVP

1 1
log T (TP) —= V@ logFB(Tq) Ry loch(TT)sgn(a)] (B.16)

Z-v(p+q+r)

—ew| Y > > > oo

0< o <pr1 <+ <pp SPp+q+1 vo€{ 0,1, opip } 0SV1 <2 <o <WgSPHGHT po €{ 10,01 5+ 5 4p V15,1255V |
V1,020, Vg E{ 10,11 5 hp }

1 1 1 1
log Ua(Th 0 ) =y V@ s log Us(T,,, )70y Ry ylogTa (T, . pr)sgn(a)}, (B.17)

X .
p+q+1iV®

where {p1,pa2,....p-} ={0,1,2,....p+q+r}/ {10, poay s plpy 1, VooV, 0 < pp < po < -0 <
pr<p+q+r,and

N R VS R 2 S 2SN R 2 B Pr
U_<0 1 e e e e [N [N e e e p_|_q+fr> (B18>
Hos fa, - - -, f4p are vertices of TP, vy, 14, ...,1, are those of T? and 1y is also shared by 77, and

P05 P1, - - -, pr are those of T7 and pg is also shared by the union 7?7 U TY9.

In (B.16), we choose one of the sub p-simplex T? of T?*9*" and then choose the one of the sub
g-simplex T of TPT4*" that shares one of its vertices T° with T?. This is equivalent to choosing
the one of the sub (p + ¢q)-simplex TP+ of TPT9%" and then p-subsimplex TP and g-subsimplex T
of TP 5o that they share one of their vertices 7°. Using this fact, we rewrite the summations
over subsimplex in (B.16) as

2> > = Dy s (B

Tr<LTPta+r T4 <TPtatr TT <TPtatr Trra<Tptatr TP<TPta Ta<TPta  TT<TPH+T
TINTP=T9 T"N(TPUT?)=T"° TINTP=T0 T NTP+I=T"°

Using (B.19), we obtain

L anprc(TPTHT)

el DD DD SRS

Trra<Trtatr TPLTPHa Te<TPTa  TroTptatr
TINTP=T° T NTPTI=T"0

Ve ! logI'4(T? log'g(T1 log'c(T
X r
ptq+r+1lp+q+1iVe 0g a )V 0g I )V og l'c(T")sgn(o)
iV pratn) sgn(o’(T? Vetd
—exp | ———— E e E E log CA(T?)
(p+
p+q+r+1 Tod Tt 1V (pt+a) ) p+q+1iVE@)
TINTP=T

16



1
v(q logIp(T?) >, —=logTe(T")sgn(o”)

Tr <TP+a+r
TrTPHa=7"0
iV (patr) 1 1
=exp | ————— Z ————log T 4np(T7"9) Z ——logTc(T")sgn(c”)
pragtr+l TrracTrtatr i Tr< et e
TrNTPHa=7"0
=Lanpync (TP, (B.20)

Since T 4rp(TP+9) satisfies Tanp(TPT9) = T1h 5(=T7+9) as we have already shown, we have

Cianpync(TPHT) =T

(A/\B)/\C( TPratn. (B.21)

Thus, we have proven ['anpac(T) = T4 gho(=T). In the second equality of (B.20), we have used

sgn(o) = sgn(o)sgn(ao”), (B.22)
and this can be easily shown as follows. ¢, ¢’, and ¢” can be written in terms of (11, ft1, - - -, fp—1, tp),
(r1,v0, ..., Vy—1,Vy), and (p1, pa, - . -, pr—1, pr), the vertices of TP, T9, and T, respectively, as

T T T R 2 TR B B.93
g (0 1 e e e e e e e e e p+q+7‘)’ ( : )
P (Mo Mo pp V1 V2ot Yq B.24
g <O 1 e ﬁl e /6’!‘ e p+q_|_r)’ ( : )
and
0 1 e /61 e ,57“ e p+q+r pl p2 e pr
"o
g _<0 1 e e e . . e . . . p_l_q_l_fr' : (B25)
Using the fact
{p17p27"'7p7“} = {071727”'7p+q+r}/{:u07:u17'"7“1!171/171/27”'7Vq}7 (B26)
we can rewrite o as a product of permutation of (uo, ft1, ..., fip, V1, V2, ... Vg—1,V,), and that of
(p1>p2> e Pr—1, pT’):
o =0 xa" (B.27)

C [ HTPHY) = Dga(—T7 )

In this section, we verify that the plaquette variable T'y4(T?T!) of the exterior derivative dA of a
p-form A satisfies

LoA(TP) = Dga(=T74). (C.1)
Since 185 41 = —Tina. 11, it is enough to show
F (Toplgl p+l) FdA(Tgng_l__p+1)|0<—>l~ (C~2)
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First, Ty (TP) is given by

FdA(Tp—irl)
[ 2
=exp p+ Z logFA (T7)
L TP o+
r +1
_ P+2 < »
=exXp 2(p+ 1) Z ' log L' T012...k...;n+1)
r +1
_ . p+2 \ (_l)k P 1 P 1 P
=€xp _Z 2+ 1) {kz:; ; log FA(T012___k___ +1) ZIOgFA(T123...p+1) - glOg La(T823. p11) ¢ | -

(C.3)

where I'4(TP) is a link variable of A and satisfies I'4(—T?) = ';'(T?). Next, exchanging the label
of vertices as 0 <+ 1, we obtain

1
FdA(Téjl—;...p—‘rl) |0<—>1

2 SR EUh Vi M ogra )= Lrogran, )\
= 0 - lo ——lo
exp _Z 2+ 1) 2 8L AU g1 fopr) T 7108 A3 1 ; 08t Aoz p |
[ +1 q
_ . p+2 \ (_1)k P 1 p 1 D
= €Xp _Z 200+ 1) {k:2 ; log FA(T102...k... +1) B log (T3 p11) — 7 log I'4(T13s.. p+1) |
- +1
— p+2 1 P 1 P < (= >k P
=€xp (2 2+ 1) {—; log FA(T123_..p+1) + 7 log FA(T023...p+1) - ; i log I'4 (T012...k...p+1)
I +1
. . p+2 S (_ )k P
=exp |—i 2 1) kZ:O - logFA(TmzmkmpH)
:F;j(T(fl2...p+1)‘ (C4)

From this result, we can see that I'y4(77) satisfies (C.2).

D Leibniz rule on simplex

It has been pointed out that the Leibniz rule is violated on the lattice. For example, we consider
I(f(x)g(x)), where f(x) and g(z) are scalar functions. In the continuum, we have

O(f(x)g(x)) = 0f (x)g(x) + f(x)Ig(x). (D.1)

On the lattice, derivatives are replaced with differences as

of(x) = lim LEF =@ Jlwtap) = f(z)

dz—0 dx a

, (D.2)

18



where a is a lattice spacing and [ is a unit vector in x direction. Discretizing the both sides of
(D.1) by using this replacement, we obtain

[z +ap)g(z + afi) — f(x)g(x)

Of(x)g(x)) — -
o) = 1) ) | olosai) —ole) g
o J )~ S gl i) ~gle) D3

from the left-hand side and

Of (z)g(z) + f(z)0y(x) —% {f(z+ap)g(x) = f(x)g(x) + f(x)g(x + afp) — f(x)g(z)}

a
from the right-hand side. (D.3) does not agree with (D.4) due to the lattice artifact that is formally
of order O(a). We can thus see that we cannot naively discretize both sides of (D.1).

However, in the special case where df = 0 or dg = 0 holds, we can ignore the lattice artifact
and discretize both sides of (D.1).

This fact can be generalized to the case of tensors. For instance, we consider the discretization
of

(D.4)

Y

d(df - g) = —df Ndg (D.5)
on the 2-simplex T3,. Supposing that the length of all edges of T3, is a, the discretization gives

(LHS of (D.5)) — ) \/g ( > f(T°)> <% > g(TO)), (D.6)

T1COTE, TOCOT? TO<T?
2 0y _ 0 _
(RHS of (D.5)) — — @a > > %f(Tf“) - STh) 9(T11) - g(T”OO)sgn(a), (D.7)
0<po<p1<2 voe{po,m1}
where 11 € {0,1,2}/{po, pt1}, and

() (D3)

After some calculation, we obtain from (D.6),

> 2 ( )3 f(T°)> (; > g<T0>>
TICOTE, TOCaT? TO<T!
:\/% [(F(T3) = F(1D)) (9(T7) + 9(T3)) = (F(T3) = (1)) (9(T3) + 9(15))

+ (1Y) = A(T1D) (9(17) + 9(T7)) ]

\/51 [(F(TY) = £(17)) (9(T7) + 9(T3)) — (F(T3) = F(T)) (9(T%) + 9(Tp))

12
FTD) — FID) (9(T2) + 9(TD)]
B L@ 0(9) - 9(TD) + FIDG(T) - oT9) + FT T — o)) . (D9)
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and from (D.7),
V3a? LA(T,) = F(T5) 9(T)) — 9(T3))
4 Z Z 3

a a

sgn(o)
0<po<p1<2 voe{po,pu1}

—— ) — ) 0(T) — 9T + (9(T3) - (T}

— (A(13) = F(I)) {(9(T7) — 9(13)) + (9(T7) — 9(T0)) }
+H(A(TY) = A1) {(9(T5) — 9(T3)) + (9(T5) — 9(17)) }]

F(T)(9(T3) — 9(T7)) + F(TT)(9(T5) — 9(T) + F(T3)(9(T7) — 9(Tp))] - (D.10)

=S

As (D.9) agrees with (D.10), we see that (D.5) can be discretized on the simplex and that the
Leibniz rule is not violated on the lattice.

For another example, we will discretize the both sides of
d(dAs N\ By) = —dA3 N\ dBs (D.11)

on a 7-simplex T{, - and show that results are the same. First, the left-hand side of (D.11) is
discretized as

d(dAs N By)

S DV D YRR VD >

r=0 0<v1<2o<T7 L0<g<r<ri<re 0<g<ri<r<ve 0<g<vi<vo<r

DD DD DD DA D S D

r<q<vi<vz r1<qg<r<vs r1<q<va<r r<vi<qg<vz ri<r<q<vz v1<vo<q<r

S EED SN vl I W

<r<vi<ra<g<T 1 <r<re<g<T v1<re<r<q<7] 1e{0,1,2,...7}/{r,v1,v2}

L L B o ra @) L log T (T2, )sen(0) (D.12)
7 ’LV(4) 8 AlFo12..7 ZV(2) B\L vov100 5 .
where
_ o012 ... /f?71917792 7 1%} V9
U—<0 1 2 .- 7 7)7 (D.13)

r and g are vertex that we omit when we obtain the 6-simplex T° from T, , and 3-simplex 7 from
4-simplex T, respectively, and Tpi5"1” is a 3-simplex obtained by omitting vertices 79, T 0T,
and T, from Tg), ;.

Using the fact that

(=1t (r <)
sgn(o) = ¢ (—1)nt (1 <r<uy), (D.14)
(1)t (g < pp <7)
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The right hand side of (D.12) becomes

MDD SRR VRS

r=0 0<v1 <2 <7 L0<g<r<ivi<va 0<g<v1<r<vg 0<g<vi<vo<r

PP DD VLD DA D SR DD

rq<ri<vz r1<qg<r<vz r1<gq<vo<r r<vi<qg<vz i <r<q<v2 v <vo<g<r

_ Z _ Z _ Z Z (_1)r+q+u1+u2—1

Sr<v <ve<g<7 i <r<wve<g<7  v1<ve<r<g<T7] 1€{0,1,2,...7}/{r,v1,v2}

5
X —i log T'a( Tg’lg‘W?)

3 log Tp(T},,.,)

voviv2

1
V(@)

7
ZZ 2. 2 )

r=0 0<v1 <2 <7 L0<g<r<rvi<va 0<g<v1<r<va 0<g<vi<vo<r

P D D D DD DR DS

rq<ri<vz 1 <qg<r<vz r1<q<vao<r r<ri<g<vsz r <r<g<vz r1<ve<q<r

— Z + Z _ Z ] (_1)T+q+l/1+u2—l

Sr<v<re<g<7  n<r<ve<q<T v1<ve<r<q<7

7

' m

ve 1 /5 NP |
X 7 @\ g log FA(Tg)lzq 7 2) V@ Z log PB(TI/20V1V2) — log FB(TT2V1V2)
10€{0,1,2,...7}

V8 N ve 1 /5 1
_ _1\r+gtrvitre—1 © 3,7q102
=g, 2 D 7w\ g lostallon ) g

0<g<r<vi<vo<7
lOg FC(TI/20V1V2) - log FC (TT’2V1V2) - Z lOg FC (Tl?o?”l/z) - log FC (T31TV2)
1/06{0 1,2,..7} 10€{0,1,2,...7}

Z lOg FC(TI/20TI/1) - lOg FC 1/27’1/1 lOg FC 1/01/11/2 log FC ql/11/2)
10e{0,1,2,...7} I/oE{O 1,2,..7}

> logTe(T2,,) | —logTe(T, q} log Do (T2, ) —logTe(T2,,,)

v€{0,1,2,..7} I/oE{O 1,2,.7}

10gFC lOgFC

10€{0,1,2,...7}

(L5 ) )
(5 o) ]
)

Vqu2 qu’2

v€{0,1,2,..7}

v€{0,1,2,..7} 10€{0,1,2,...7}

IOch

Z lOg FC(szzoqyl) lOg PC’ rqu1

v€{0,1,2,..7}

qur

s ) i |
{ Z IOgFC(TEqu) —logI'e(T, ngr } {

( Z 10g FC’ I/()q7‘

V()e{071727"'7}
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_ /8 g V@ 1[5 3.iqoniny O
R A o LR S

0<g<r<vri<va<7
x [logTp(T73,,,) — log PB(TjM) + log FB(quyl) — log PB(TfM)} . (D.15)

Next, the right-hand side of (D.11) is discretized as

dANdB

v 1 /5 .1 1 i /
Ty Z Z Z Z Z-V(4)\/g10gFA(T )W élogFB(T )sgn (o)

TA<TT T3COT  T3<T6  T2COT"3
T3AT =10

(7 AR
P> [ YoX X - X ] G

0<<r1<re<v3<7 [0<r<iy v1<r<vsg vo<r<us v3<r<T7
3
(=1)* /4 5
x 2 2 | 5o T s, (D.16)
vp€{0,1,2,...,7} /{v1,v2,v3} ¢=0

where

o 012 --- 191,192,193 7 %1 Vo s
U_<0 1 2 ... B (D.17)

vi, 15 and vy are the vertices of 7" that are not shared by 7%, and r and v, are the vertex which
we omit when we obtain 7% from 7% and 7" from T", respectively. Using the fact that

sgn(o’) = (—1)"tretrs (D.18)
the right hand side of (D.16) becomes
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[lOg PB(Tulugug) - lOg 1—‘B (TV2()V2V3) + lOg FB(T1/20V1V3) log FB( 1/01/11/2)}
V(7 r4+uv1+rotu 1 5 P11 DD 1 4
0<r<v1<va2<v3<7
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+ {lOg 1—‘B (TT’2V1V3) - lOg PB(T30V1V3) + log PB(TEOTW) log FB 1/07’1/1)}
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X [lOg FB(TI/21V2V3) - lOg I'p (Tgugug) + lOg I'p (Tgulug) - lOg FB(T5V1V2):| : (D]'g)

Finally, redefining the label of vertices as r — q,v; — r, 5 — v, /3 — 1o, the right hand side
of (D.19) becomes

8 r4uv1 4ot 1 5 2,701 a3 3
—\/ 7 2y 3¢V<4>\/glogFA(T012 7

0<r<v1<rvo<w3<7
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/8 Ve 1 5 3
q+r+vitrve © © 2,FD Dol
14 Z ( 1) 7 v(4) 8 ]'Og I‘/\(,'1—7(.,'12 e ) v(Q)
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X [lOg I'p (T7‘21/1 l/2) lOg I'p (TqV1 l/2) + lOg I'p (Tq2r1/2> IOg I'p (Tqrul )} : (D20)

This result agrees with (D.15), and we see that we can discretize both sides of (D.11) on a simplex.

References

[1] M. Sato, “String geometry and nonperturbative formulation of string theory,” Int. J. Mod.
Phys. A 34 no. 23, (2019) 23, arXiv:1709.03506 [hep-th].

[2] M. Sato and Y. Sugimoto, “Topological string geometry,” Nucl. Phys. B 956 (2020) 115019,
arXiv:1903.05775 [hep-th].

[3] M. Sato and Y. Sugimoto, “Perturbative string theory from Newtonian limit of string geom-
etry theory,” Eur. Phys. J. C' 80 no. 8, (2020) 789, arXiv:2002.01774 [hep-th].

23



[4] M. Honda and M. Sato, “String Backgrounds in String Geometry,” Int. J. Mod. Phys. A 35
no. 27, (2020) 27, arXiv:2003.12487 [hep-th].

[5] M. Honda, M. Sato, and T. Tohshima, “Superstring Backgrounds in String Geometry,” Adv.
High Energy Phys. 2021 (2021) 9993903, arXiv:2102.12779 [hep-th].

[6] M. Sato, Y. Sugimoto, and K. Uzawa, “Path integrals of perturbative strings on curved
backgrounds from string geometry theory,” Phys. Rev. D 106 no. 8, (2022) 086006,
arXiv:2203.16304 [hep-th].

[7] M. Sato and K. Uzawa, “Path integrals of perturbative superstrings on curved backgrounds
from string geometry theory,” Phys. Rev. D 107 no. 6, (2023) 066023, arXiv:2211.16959
[hep-th].

[8] M. Sato and T. Tohshima, “T-symmetry in String Geometry Theory,” arXiv:2301.08952
[hep-th].

9] K. Nagasaki and M. Sato, “The effective potential for string backgrounds from string geom-
etry theory,” [arXiv:2309.10394 [hep-th]].

[10] T. Regge, “GENERAL RELATIVITY WITHOUT COORDINATES,” Nuovo Cim. 19, 558-
571 (1961)

[11] J. Ambjorn and R. Loll, “Nonperturbative Lorentzian quantum gravity, causality and topol-
ogy change,” Nucl. Phys. B 536, 407-434 (1998) [arXiv:hep-th/9805108 [hep-th]].

[12] D. Eliezer and G. W. Semenoff, “Intersection forms and the geometry of lattice Chern-Simons
theory,” Phys. Lett. B 286, 118-124 (1992) [arXiv:hep-th/9204048 [hep-th]].

[13] F. Berruto, M. C. Diamantini and P. Sodano, “On pure lattice Chern-Simons gauge theories,”
Phys. Lett. B 487, 366-370 (2000) [arXiv:hep-th/0004203 [hep-th]].

[14] W. Bietenholz, J. Nishimura and P. Sodano, “Chern-Simons theory on the lattice,” Nucl.
Phys. B Proc. Suppl. 119, 935-937 (2003) [arXiv:hep-lat/0207010 [hep-lat]].

[15] M. DeMarco and X. G. Wen, “Compact U*(1) Chern-Simons Theory as a Local Bosonic
Lattice Model with Exact Discrete 1-Symmetries,” Phys. Rev. Lett. 126, no.2, 021603 (2021)
[arXiv:1906.08270 [cond-mat.str-el]].

[16] T. Jacobson and T. Sulejmanpasic, “Modified Villain formulation of Abelian Chern-Simons
theory,” Phys. Rev. D 107, no.12, 125017 (2023) [arXiv:2303.06160 [hep-th]].

[17] K. Hatakeyama, K. Nagasaki, M. Sato, Y. Sugimoto, and G. Tanaka, work in progress.

24



