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Abstract. Two major areas of interest in the era of Large Language
Models regard questions of what do LLMs know, and if and how they
may be able to reason (or rather, approximately reason). Since to date
these lines of work progressed largely in parallel (with notable excep-
tions), we are interested in investigating the intersection: probing for
reasoning about the implicitly-held knowledge. Suspecting the perfor-
mance to be lacking in this area, we use a very simple set-up of compar-
isons between cardinalities associated with elements of various subjects
(e.g. the number of legs a bird has versus the number of wheels on a
tricycle). We empirically demonstrate that although LLMs make steady
progress in knowledge acquisition and (pseudo)reasoning with each new
GPT release, their capabilities are limited to statistical inference only.
It is difficult to argue that pure statistical learning can cope with the
combinatorial explosion inherent in many commonsense reasoning tasks,
especially once arithmetical notions are involved. Further, we argue that
bigger is not always better and chasing purely statistical improvements
is flawed at the core, since it only exacerbates the dangerous conflation
of the production of correct answers with genuine reasoning ability.

Keywords: Large Language Models · Prompting · Knowledge extrac-
tion · Reasoning

1 Introduction

The introduction of the Transformer architecture [23], together with the un-
precedented abundance of data (in)untarily donated by the masses of social
media users and digital content producers, has brought about a fundamental
shift in Natural Language Processing, which had until then substantially lagged
behind Computer Vision. Although early forays into straightforward network
approaches to analysing textual data yielded a surprising success1 with the in-
troduction of word embeddings [15], arguably it was not until the release of GPT
and its successors that questions of knowledge, reasoning abilities, and even sen-
tience [22] of computers have become a mainstream topic of debate. Further
1 As well as a degree of controversy around the implicit biases in the data exposed

through vector algebra.
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additions of efficient fine-tuning solutions, as well as code-less options such as
in-context few-shot learning or chain-of-thought (CoT) prompting techniques,
have enabled these tools to become incredibly useful personal assistants and fur-
ther contributed to the perception that we are approaching Artificial General
Intelligence (AGI) [4]. Juxtaposing the extremely convincing nature of LLMs
and great appetite for adoption in every area of society with at times spectac-
ular failure modes [18,11] understandably elicits a host of safety, reliability and
trustworthiness concerns [6,9]. Specifically, while it may often seem that a model
is a thinking rational agent, not only capable of carrying out a conversation but
also performing useful tasks [19] and a degree of logical inference [17] or calcu-
lations [3], in reality it is simply performing (data-)informed guesses. Perhaps
the most stark illustration of this nature comes from research into memorisation
versus stability of acquired knowledge: the first arc shows that an astonishing
proportion of data examples can be recovered from an LLM by simply feeding it
part of the example [1,24]; the second arc on the other hand demonstrates that
small perturbations in prompts lead to a drastic drop in performance [13,10].

While there is no doubt that LLMs and their statistically-informed guesses
can be of great assistance in many fault-tolerant domains, in areas such as
medicine, governance or finance the bar is higher than current capabilities would
allow. There are two ways to try and meet such reliability demands: more
data covering more bases [13,7,16]; or a Neuro-Symbolic (NeSy) approach, be
it through hybrid ‘enablement’ with external solvers [17] or via integrated ar-
chitectural solutions [2,21]. We argue that the first path is doomed in the long
run, as it addresses the symptoms, not the underlying systemic flaw. Although
we are ultimately interested in more complex tasks such as satisfiability check-
ing, especially in hybrid languages such as satisfiability modulo theories (SMT),
here as a motivating example we carry out a quick and straightforward empir-
ical assessment at the intersection of knowledge extraction [13] and arithmetic
comparative reasoning [17].

We are interested specifically in finding out whether LLMs can perform one
of the most basic symbolic manipulations over entities recalled from memory.
That is, we probe for numerical adjectives that capture a comparison between
quantities, without providing these quantities but rather expecting the model to
rely on implicit knowledge; we refer to this as Entailed Arithmetic Relationship
probing, as we assume that the values are entailed by the textual description.
Inspired by [13] we use the number of elements of a subject (e.g. the number
of legs a bird has, the number of wheels on a tricycle), and for our ‘symbolic
solver’ [17] we directly employ the python interpreter, which allows us to cir-
cumvent the problem of parsing natural language into symbolic formulae2. We
use this simple approach rather than more sophisticated symbolic tasks as, first,
we expect sub-par performance, and, second, such a set-up allows us to clearly
and efficiently foreground our main argument: producing correct answers is not
synonymous with reasoning. We confirm our suspicions, in that LLMs struggle

2 As we turn to more complex arithmetic and logical reasoning, using an SMT solver
will be prudent, which we leave for future work.
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with basic mathematical inequalities between memorised or hallucinated facts,
and that performance on pure string matching surpasses taking into account fact
correctness. We also find, similarly to others, that the answers given by LLMs
are unstable and depend on prompt phrasing [11], and can be fairly clearly bi-
ased leading to concept entanglement [13]. The entanglements manifest most
prominently in areas of knowledge with presumed lack of explicit data regarding
the number 0, what we refer to as the ‘null value problem’, and which is a form
of a wider phenomenon of people typically ‘not stating the obvious’ [5,8].

2 Related work

There is a fast growing body of literature that addresses evaluating the capabil-
ities of LLMs across a whole spectrum of tasks, ranging from possessing general
commonsense knowledge to specialised domains (for a review we refer the reader
to [9]). In the area of knowledge extraction, of particular relevance is the work
of [13] which served as the inspiration for our data creation strategy. There, the
authors propose NumerSense, a human-verified benchmark dataset consisting of
masked sentences where the number or numeral is obscured, and which can be
used for probing or for fine-tuning language models (probing and tuning por-
tions are similarly constructed but from disjoint knowledge bases). They go on
to benchmark several models, including BERT and RoBERTa-Large fine-tuned
to a portion of the data, and demonstrate surprisingly weak arithmetical knowl-
edge of generally-pretrained models from the BERT family as well as GPT-2.
They further analyse the performance and show instability (susceptibility to ad-
versarial attacks) and entanglement of concepts or object bias. An example that
is also the namesake of their paper is one of predicting birds to have 4 legs,
presumably due to bias towards 4-legged animals and objects in the pretraining
corpus. In our experiments we add to that line of work by, first, examining the
latest GPT-family models, and second, extending to a situation where many of
the true answers are ‘zero’.

From the reasoning side we take our inspiration from [17], which introduces
LogicLM, and which compares the performance of GPT-family models on 5
logical reasoning tasks against a hybrid approach involving symbolic solvers.
In the latter, authors propose to use LLMs as merely parsers, and leverage
in-context learning to induce translation into appropriate formulations for the
external reasoning tools. The comparison of pure LLM reasoning versus the
hybrid approach comes out in favour of the symbolic approach, although we
note not uniformly so: for the simplest of the 5 logical tasks, both GPT-3.5-
turbo as well as GPT-4 reach better performance than the hybrid approach,
with GPT-4 improving on the hybrid by 15%. We highlight this, as such a result
might sound encouraging for pushing the efforts in simply making LLMs larger
and trained on more of the edge cases. However, we want to stress that the ‘win’
over a symbolic solver is merely because GPT-4 failed in appropriate parsing of
the problem, not because it can reason better than a symbolic solver. We take on
a much simpler problem here, and we construct the queries for LLMs from the
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underlying symbolic representation, so we do away with any issues of parsing.
We also differ in that we do not provide the predicates to reason over, we merely
refer to them and assume them to be part of LLMs’ knowledge base.

Several other recent studies tackle the related problems of relational infer-
ence [12], arithmetical reasoning [14] and causal inference [10,14]. Similarly to
ours, these are all empirical assessments of LLM performance, but in the setting
where the reasoning predicates are provided explicitly. We want to also highlight
that in the case of [10] the performance is sub-par without a full fine-tuning first.
Further, the authors point out that the fine-tuned model is biased and unsta-
ble to input perturbations: a mere swapping of labels on the query subjects
results in diminished performance, indicating memorisation of answers rather
than learning of causal structures.

The two works most closely aligned to ours overall are the introduction of
the VerbPhysics challenge and dataset [5] and a further follow-up study of the
same problem by [8]. Both address the task of inferring entailed relationships
from textual data, and although there are several differences to our work we feel
they are our predecessors in spirit. In the first of these studies the authors aim
to supplement visual commonsense reasoning by leveraging word embeddings.
Since many physical relationships between objects may be impossible to deduce
from a 2-D visual input (e.g. weight), and explicit data stating the obvious is
rare (e.g. ‘a human weighs less than a house’), the authors propose to mine the
semantic knowledge captured in contextual embeddings. Specifically, they pose
the problem of inferring a physical relationship as (joint) probabilistic graph
inference over nodes of either object pairs, or object-verb-object triplets, where
the similarity of nodes is informed by the semantic similarity captured by GloVe,
one of the earliest embeddings proposed. Intuitively, the idea is to use the fact
that pairs of similar objects are typically similarly related, and furthermore an
action verb tends to imply a particular physical relationship (e.g. ‘Joe entered
the house’ implies that Joe is smaller than the house, and a person is smaller
than a building etc). The authors then go on to demonstrate that the intuition
holds, and that text embeddings can be probabilistically mined for relationships
such as size, weight or speed. We note that although the paper also introduces a
crowd-sourced dataset, only 5% of it is used as seed knowledge. In the following
work of [8], the authors propose to simplify the inference further, and train a
single-layer fully-connected network with embeddings of single words as input
and relationship as output (again on only 5% of the VerbPhysics). They demon-
strate improved performance on three separate embeddings (GloVe, ELMo and
BERT) as compared to the graph inference approach, despite providing nomi-
nally less information. Both these works thus point to the fact that embeddings
are semantically rich enough to already capture a lot of relational knowledge.
In this sense, our work can be seen as an extension and further simplification
of these approaches. First, we also part-manually part-combinatorially create a
relational dataset within an area of reporting bias; however our relation regards
constitutive cardinalitites rather than physical attributes such as weight or size.
Second, we use even richer representations of GPT-3.5-turbo and GPT-4, models
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that are larger in parameter size, trained on more data, and with wider context
windows. Lastly, we do not impose a separate model for relational knowledge
inference but effectively use the LLM itself as the model, i.e., we leverage the
few-shot ‘reasoning’ capabilities of the latest pre-trained architectures.

Finally, in the context of using LLMs as out-of-the-box reasoners, and empir-
ical expositions of their flaws, another related study that aligns with our findings
is that of [3]. In there the authors conduct a thorough examination of several
powerful LLMs across a range of logical reasoning and arithmetical numeracy
tasks. They employ CoT prompting as well as causal interventions to infer the
underlying causal reasoning graph of LLMs. What emerges is that surprisingly
often the chain of thought that the models are supposed to follow appears to
not be used in determining the final answer. Further, while GPT-3.5 and GPT-4
appear to adhere to the CoT on some tasks, it is only on the minority, and the
implied reasoning graphs differ with task for each model. Although we target
implicit knowledge rather than providing predicates, and we do not use CoT
prompting, we arrive at very similar conclusions: LLMs can not reason, they
only fake it.

3 Methods: EAR probing

As we are interested in relational reasoning about implicit knowledge, we sepa-
rately probe the model for atomic facts relating to numbers, and separately for
relationships between the numbers entailed by (subject, elements) pairs, as illus-
trated in the bottom-left panel of Fig. 1. This allows us to (re-)examine numerical
factual knowledge, as well as relational knowledge and relational reasoning. The
last one, in particular is our main contribution: applying the ‘symbolic solver’ of
the python interpreter to check whether LLMs’ idea of arithmetic inequality is
correct when the numbers are not provided explicitly but rather assumed to be
elicited by the query (bottom-right panel of Fig. 1).

3.1 Data

Data is constructed by leveraging the very combinatorial explosion problem that
renders naturally produced text lacking with respect of negative statements.
First, a dictionary with 9 subjects and a defaultdict per subject with varying
number of constituent elements each (totalling 63) is manually constructed (this
was done by one of the authors and cross-checked by an independent party).
Since various subjects have a potentially overlapping but essentially different
sets of constituent parts, and a defaultdict allows us to specify a default value
for any missing key, we are thus able to generate 280 subject-elements pairs
associated with an atomic numerical fact, e.g. (sparrow, legs, 2) from explicitly
input data and (sparrow, wheels, 0) from the assumption of missingness (see
upper-left panel of Fig. 1). Second, from that base dictionary we then generate
a grand total of 6003 quad-tuples of the form (sparrow, wheels, tricycle, legs) by
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pairing subjects and possible parts each of them possesses (or does not)3. These
quad-tuples are then used to populate a template natural language statement
for probing the model. Each quad-tuple is also associated with a ground truth
numeral adjective relating the atomic facts (either ‘less’, ‘same’ or ‘more’), which
we obtain from our ‘symbolic solver’ i.e., a function that outputs one of these
strings depending on the relationship between the numbers from the atomic facts
dictionary (upper-right panel of Fig. 1).

Fig. 1. (upper-left) Data is constructed as subject-element pairs with known associ-
ated ground truth values from which many combinations of subject-element-subject-
element quad-tuples can be generated, assuming 0 for missing parts. (upper-right)
For each quad-tuple we can assign the ground truth relationship string, since we know
the atomic facts. (lower-left) From these pairs and quad-tuples, prompts for numer-
ical probing and entailed relationship probing are generated by populating templates.
(lower-right) To evaluate Entailment, once numerical answers are given by an LLM,
the relationship ‘reasoned’ by an LLM (orange) can be compared to an exact reasoning
carried out in Python (black).

3.2 Probing and evaluating the LLMs

We use the OpenAI API to prompt GPT-3.5-turbo and GPT-4 in three settings
differing in the formulation of the prompt, with the temperature parameter at
3 Note this number could be over 50% higher if we included quad-tuples where both

subjects do not contain the queried element, but we exclude those.
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0 to fetch only the most likely answer. The settings are all a form of mask-
prompting, with a preceding instruction to fill in the <mask> token; we employ
two 0-shot variants and one 1-shot variant, and two fact formulations, A and B.
Notably, the A and B versions differ in the preposition next to the <mask> token
for the relationship prompt:

– A typical <thing_a> has a number of <elements_a> that is <mask>
than the number of <elements_b> that a typical <thing_b> has.

– A typical <thing_a> has a number of <elements_a> that is <mask>
to/than the number of <elements_b> a <thing_b> has.

For the 1-shot setting, we include a single example of a query along with a correct
answer; the example is one not present in the dataset, but also in the domain of
commonsense numerical facts / comparisons. For each setting we iterate through
the atomic facts data, as well as the quad-tuple relational data, populating the
appropriate templates. The answers require little interpretation, as most often
either a single token is returned, or the sentence is repeated back with only the
<mask> replaced. For the remaining cases simple heuristics suffice to extract and
canonise the answer. We note that these heuristics are by no means universal
- they were developed iteratively, and a different model or prompt formulation
may result in a different behaviour. The few exceptions are where the chat an-
swers are not valid or coherent, which is highlighted in the Experiments section.
To evaluate either the numerical facts or the relationship, we can simply com-
pare the answers with the (known) ground truth; we report proportion of correct
answers. We also compute the Entailment, which is simply applying the propor-
tion of correct answers metric to a relationship string entailed by the extracted
numerical facts (rather than the one implied by the actual numerical facts).

4 Experiments

4.1 Numerical facts

When and how to pop the question? As can be seen in Fig.2, depending
on who one asks (GPT-3.5-turbo versus GPT-4), as well as how one asks (two
versions of 0-shot prompt formulation and one version of 1-shot formulation),
the answers differ. GPT-4 generally outperforms GPT-3.5, and does not benefit
nearly as much from a 1-shot demonstration setting; both these observations
are in line with expectation, as it is a newer and more powerful model, possibly
even explicitly addressing the gaps in factual knowledge identified by previous
research. A little surprising perhaps is the performance gain of GPT-3.5 in a 1-
shot setting, which improves the outcomes to almost match GPT-4 (and in the
case of the subject ‘human’, surpass GPT-4). Obviously GPT-3.5 has far more
room for improvement, but we further speculate that such a big change may
be due to the demonstration potentially counteracting the particular nature of
dominant hallucinations, which are biased towards subjects rather than elements,
as detailed in the next section. As a final note on the ‘fickle’ nature of the tested
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LLMs, for some queries the answer may change from one API call to another
with exact same prompt and despite setting the API parameters to minimally
‘creative’ values (temperature of 0); we suspect that may be the case when several
tokens have identical probabilities and one of them is being served randomly.
A common situation when this behaviour occurred was the numeral and the
number being used interchangeably. The notable example that alerted us to this
in the first place was the case of the ears of a sparrow, which about a third of
the time GPT-3.5 deemed to be ‘small’ rather than ‘two’.

Fig. 2. Proportion of correct answers on numerical facts, by subject. For each subject
the same set of elements was probed, e.g. number of legs, tyres, fins etc.

Null value blindness and subject bias. An interesting side-effect of the
statistical nature of the LLMs and the selective biases of widely available tex-
tual data is that all probed models struggle to correctly predict the occurrence
of zero, what we dubbed here the ‘null value blindness’4[5,8]. We suggest it is
simply due to the fact that data explicitly stating what a subject lacks is scarce.
As noted also in [5] and [8] in the context of physical knowledge, people do not
tend to state the obvious; and since data annotation is an expensive task, foun-
dational knowledge databases such as ConceptNet [20] are typically concerned
with identifying constructive elements and concepts, rather than (a much larger
set of) ones that are absent. With deficits in performance on the ‘null’ numerical
fact, what do then the models hallucinate? Following [13] and many other works
noting entanglement of concepts and biases towards more abundant data, we
suspected this may also show in our results and we had deliberately constructed
parts of the dataset to facilitate investigating this (e.g., having unicycle, bicycle
and tricycle as subjects). We choose GPT-3.5 in the 0-shot setting and fact for-
mulation A, as this model is the weakest and thus most illustrative. As shown in
3, there is a fairly obvious subject bias in the hallucinated answers that tend to
4 Interesting and at times highly amusing: when probed separately in early develop-

ment, GPT-4 has claimed that humans are equipped with tusks, dorsal fins and no
less than 10 suction cups.
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be 1, 2 and 3 for each of the corresponding ‘cardinalities’ of cycles. The notable
exceptions to this pattern are ‘toes on each foot’ and ‘fingers on each hand’,
which are conversely elements-biased, presumably since humans are likely the
most commonly occurring subject in the written language.

Fig. 3. Number of elements predicted by GPT-3.5 in a 0-shot setting with fact for-
mulation A, by element, for selected 3 illustrative subjects: a unicycle, a bicycle and a
tricycle. For majority of cases, answers are biased towards the defining characteristic
number of each subject; notable exception is fingers on each hand and toes on each
foot.

4.2 Numerical entailment

The main result of our probing study is summarised in Table 1, which details
the proportions of correct answers on different components of the arithmeti-
cal entailment: numerical facts from either side of the (in)equality in isolation,
and in concert; relation string of the (in)equality; all elements simultaneously;
and finally the entailed relation. We discuss all aspect in more detail below.
For reference we also compute two baselines. First is the random choice, where
atomic facts are sampled randomly from 0-10 once, and relationship strings from
‘less’,‘same’ or ‘more’; second is always choosing the majority label.

All ducks in a row First we would like to note that due to the combinatorial
construction of the dataset from a smaller set of isolated numerical facts, the
performance of all models on numerical facts in Table 1 is not representative
and does not match that of Fig 2, since some subjects-element pairs end up
over-represented in the quad-tuples for EAR probing. The same applies to the
random baseline, as we randomly sample atomic facts only once. We report
this primarily to illustrate the attrition of performance, which predictably drops
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Table 1. Proportion correct across the probed models and prompt configurations eval-
uated over the 6003 quad-tuples; best in-model performance in bold. Fact no.1/2 refers
to proportion of queries where first/second of the two numerical facts in a given re-
lational query was correct; note this is not equivalent to pure numerical facts since
different facts appear in probes with varying rates.

Model and prompt Fact no.1 Fact no.2 Both facts Relation All facts Entailment
base random 0.124 0.085 0.011 0.324 0.002 0.342
base majority 0.459 0.45 0.196 0.37 0.0 0.37
GPT-3.5 0-shot A 0.522 0.461 0.237 0.414 0.109 0.432
GPT-3.5 0-shot B 0.614 0.535 0.325 0.4 0.143 0.419
GPT-3.5 1-shot B 0.843 0.792 0.66 0.461 0.301 0.447
GPT-4 0-shot A 0.836 0.814 0.676 0.585 0.417 0.631
GPT-4 0-shot B 0.809 0.821 0.66 0.444 0.308 0.458
GPT-4 1-shot B 0.866 0.871 0.751 0.552 0.422 0.549

as conditions are added. Although ‘Relation’ alone is predicted at modestly
above chance levels, it obviously can’t be seen as a metric of relational reasoning
abilities of LLMs, since for anything resembling reasoning one needs a foundation
of correct assumptions; we suspect shortcut learning or some form of data bias
driving this performance. Hitting ‘all ducks in a row’ in the best case of GPT-4
in 1-shot settings achieves an impressive 42% improvement over either of the
baselines. However, as we expand on more later, we doubt this is any indication
of reasoning, but rather larger memory.

An EAR to the ground How then might performance look if one evaluates
the correctness of the predicted relational string not against the ground truth
but rather against the relation entailed by the implicit knowledge? As shown
in the last column of Table 1, the performance when factoring in the hallucina-
tory ‘knowledge’ of LLMs shows a performance modestly to substantially better
than chance, although with some counter-intuitive patterns. First, for GPT-3.5
as expected the best performing setting throughout, including ‘Entailment’, is a
1-shot prompt with fact formulation B. However, a closer look at just the ‘Entail-
ment’ column reveals that for ‘reasoning’ the 1-shot setting or fact formulation
have only a marginal impact; but what is more striking is that ‘Entailment’
is lower than ‘Relation’. Second, for GPT-4 the picture is yet more confusing,
with 0-shot setting decidedly outperforming the others. We pose that this is
simply due to the fact that EAR is not measuring actual reasoning abilities,
merely measuring how well LLMs fake reasoning; we expand on this in the next
subsection.

‘Circumvential’ evidence As shown recently in the excellent investigation
of Chain-of-Thought prompting by Bao et al. [3], it is highly questionable as
to whether LLMs can be said to ‘reason’. Even when they are encouraged to
bias themselves towards the correct answers by producing relevant supporting
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knowledge, they still may fail to be biased sufficiently to override underlying data
biases and then answer incongruently with the generated chain of thoughts. Thus
we highly doubt whether a mere invoking of two object-element pairs is sufficient
for the LLMs to put the 2 and 2 together and compare the relevant numbers; and
the case of GPT-4 performing best in 0-shot fact formulation A setting provides
the circumstantial evidence here. The main difference between fact formulation
A and B is that A uses the preposition ‘than’, while B uses ‘to/than’ in order
to not bias the model with grammar. This results in both GPT-3.5 and GPT-4
never answering ‘same’ in setting A and works as an interventional probe showing
that LLMs use the technically task-irrelevant information from other tokens and
circumvent relational reasoning in at least some of the cases. As a final note and
nail in the coffin, we have observed that when a rephrased answer is returned it
occasionally contains two conflicting relational strings, e.g.

– A typical bicycle has a greater number of handlebars that is fewer
than the number of exhaust pipes a car has.

5 Conclusion

Unsurprisingly, we have found that when LLMs are probed for relationships
between implicit knowledge, their performance is poor. Although better than
chance, we highlight that this is on very basic commonsense knowledge (as op-
posed to [13] whose data contains also specialist knowledge). We presume the
sub-par outcome to be due to scarcity of negative numerical statements and rela-
tionship comparisons in the training data. As has been noted before [5,8], explicit
data that ‘states the obvious’ is rarely recorded; humans are agents acting in a
physical world and hardly need to write down assumptions that go into every
mundane task. We further observe entangled concepts, instability and guesswork
on the part of LLMs. We conclude that non neuro-symbolic LLMs are in effect
big statistical search engines. Although the supported data distributions are
ever more rich with each GPT release, giving an impression of innate reasoning
capabilities, we emphasise that these models are not bona fide reasoners.
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