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Abstract—ML-enabled systems that are deployed in a produc-
tion environment typically suffer from decaying model prediction
quality through concept drift, i.e., a gradual change in the
statistical characteristics of a certain real-world domain. To
combat this, a simple solution is to periodically retrain ML
models, which unfortunately can consume a lot of energy. One
recommended tactic to improve energy efficiency is therefore to
systematically monitor the level of concept drift and only retrain
when it becomes unavoidable. Different methods are available
to do this, but we know very little about their concrete impact
on the tradeoff between accuracy and energy efficiency, as these
methods also consume energy themselves.

To address this, we therefore conducted a controlled exper-
iment to study the accuracy vs. energy efficiency tradeoff of
seven common methods for concept drift detection. We used
five synthetic datasets, each in a version with abrupt and one
with gradual drift, and trained six different ML models as
base classifiers. Based on a full factorial design, we tested 420
combinations (7 drift detectors × 5 datasets × 2 types of drift ×
6 base classifiers) and compared energy consumption and drift
detection accuracy.

Our results indicate that there are three types of detectors: a)
detectors that sacrifice energy efficiency for detection accuracy
(KSWIN), b) balanced detectors that consume low to medium en-
ergy with good accuracy (HDDM W, ADWIN), and c) detectors
that consume very little energy but are unusable in practice due
to very poor accuracy (HDDM A, PageHinkley, DDM, EDDM).
By providing rich evidence for this energy efficiency tactic, our
findings support ML practitioners in choosing the best suited
method of concept drift detection for their ML-enabled systems.

Index Terms—energy efficiency, machine learning, concept
drift, Green AI, controlled experiment

I. INTRODUCTION

More and more industry domains employ machine learning
(ML) [1] for advanced prediction functionality. Once an ML
model with sufficient prediction quality has been trained, it is
integrated into an ML component that is deployed as part of an
ML-enabled system [2]. However, the successful development
and especially the long-term operation of ML-enabled systems
requires considerable expertise due to many challenges [3, 4].
In rapidly evolving domains, one particular problem is the
dynamic nature of real-world data. This phenomenon is known
as concept drift, i.e., a decline in predictive accuracy over

time due to changing statistical relationships in the under-
lying data distribution of the real-world phenomenon [5].
For most use cases, this means that deployed ML models
will unavoidably decay over time without periodic retraining
based on newly collected data. To identify when this happens
in a production system, sophisticated monitoring capabilities
are required, which requires the development of robust drift
detectors. By now, a wide variety of such techniques have been
proposed [6, 7] and implemented for popular ML frameworks,
such as scikit-multiflow.1

The primary quality concern for drift detectors is obviously
their ability to quickly and correctly identify drift, which in
turn is the foundation for improving the accuracy of the mon-
itored model through retraining. However, there is evidence
that drift detectors have a negative impact on the energy
consumed by ML-enabled systems [8], which already require
significant amounts of energy that lead to carbon dioxide
emissions. Although these systems can also be used to improve
environmental sustainability, e.g., ML-enabled systems that
support the identification of water contaminants and their
recycling2, the emissions generated by their development and
operation are a rising concern [9, 10, 11]. For example,
the training phases of LLaMA [12] and Code LLaMA [13]
released a total of 1,015 tons of carbon emission (tCO2eq)
and 63.5 tCO2eq respectively.

Since (re-)training a complex model (called the base clas-
sifier in our context) can consume substantial amounts of
energy [14], simple periodic retraining is often not a solution
that favors energy efficiency. Instead, relying on informed
adaptation through monitoring and only retraining when nec-
essary is a recommended tactic in this space [15]. While
various researchers have analyzed the accuracy of drift detec-
tors [7, 16], there is little evidence and no fine-grained analysis
examining the impact of different drift detectors on the energy
consumed by ML-enabled systems at runtime. Drift detection
can increase the energy consumed by the system in two main
ways: a) the energy consumed by the detectors themselves,

1https://scikit-multiflow.github.io
2https://www.cbsnews.com/news/water-reuse-recycling-toilet-to-tap-yuck-factor/
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and b) the energy consumed through model retraining once a
detector triggers an alarm. A single instance of the first is much
smaller than the second, but this energy is also continuously
expended during system operation, and potentially also for
multiple ML models. For the second, the decision to retrain
an ML model leads to the consumption of a substantial amount
of energy, which means that the accuracy of a detector also
indirectly impacts energy efficiency at the system level. To
make an informed decision about which drift detector to use
under which conditions, it is important to look at these two
quality attributes holistically.

In this experiment, we focus on the tradeoff between energy
efficiency vs. accuracy while using various concept drift de-
tectors for retraining decisions and examine their performance
across synthetic datasets. The exploration of energy consump-
tion holds paramount importance, as it directly influences the
practical viability of these detectors in real-world applications.
By shedding light on the energy dynamics of concept drift
detection, this study aims to contribute valuable insights to
the optimization of ML-enabled systems, ensuring their ef-
fectiveness and environmental sustainability in dynamic, data-
evolving scenarios. ML researchers and practitioners can use
our results to guide their selection of drift detectors. Our study
answers the following research questions:

RQ1: How does the tradeoff between accuracy and energy
efficiency manifest in different concept drift detectors?

Ideally, a drift detector would exhibit very good accuracy
and energy efficiency at the same time. However, it is also
possible that some detectors sacrifice energy efficiency for
accuracy or vice versa. We want to analyze this relationship
for different detectors.

RQ2: How does the type of dataset influence this tradeoff?
It is possible that different types of datasets change how this

tradeoff manifests, e.g., for abrupt drift or gradually introduced
drift. Existing research has shown differences in accuracy
based on different drift datasets [7], so it is natural to assume
that differences do exist for energy consumption as well.

RQ3: How does the type of base classifier influence this
tradeoff?

Additionally, it is also possible that the type of the mon-
itored ML model (the base classifier) influences the results,
which previous research showed for accuracy [7]. Since we
also holistically include the energy consumption of retraining
the base classifier, this tradeoff might manifest differently for
different types of ML models.

In the following sections, we first explain the necessary
background for our study and present related work in the area.
We then describe our detailed experiment design, provide the
results, and discuss their implications. Lastly, we comment on
threats to the validity of our study and present a conclusion.

II. BACKGROUND AND RELATED WORK

A. Concept Drift in ML

ML-enabled systems are unique software systems with
behavior that is heavily influenced by their application con-
text [17]. This context dependence poses a challenge in main-

taining ML model prediction quality, especially when faced
with non-stationary contexts that affect the data distribution.
We can identify two primary causes of concept drift affecting
model accuracy [17, 18]. The first cause is external events that
arise in the environment of the ML-enabled system. Examples
of these events include marketing campaigns targeting specific
demographics, shifts in user behavior, and changes to the user
interface. The second cause of concept drift in ML-enabled
systems stems from data integrity issues [19]. These arise from
continuous updates in the data pipeline, a common aspect
of the dynamic workflow in ML engineering. Such updates
can accidentally introduce errors or bugs, such as swapping
columns or representing a column with the wrong unit of
measurement, e.g., using miles instead of kilometers.

The impact of distribution changes on model accuracy,
whether due to external events or data integrity issues, varies
based on the severity and type of drift. We differentiate
between virtual drift (also known as feature drift or covariate
shift), which is a change in the input distribution P (X), and
real concept drift (or model drift), a change in the conditional
probability distribution of the target variable for a given
input P (Y |X) [5]. Virtual drift typically has a benign effect,
impacting prediction quality only when new observations
fall into areas of the training distribution that are uncertain
or underrepresented. In contrast, real concept drift always
leads to a deterioration in model accuracy, as the underlying
relationship is no longer captured by the learned mapping
function. This difference is visualized in Fig. 1.

Fig. 1: Difference between concept drift (middle) and virtual
drift (right), taken from Gama et al. [5]

The nature of the cause of concept drift influences its
characteristics, such as abruptness or gradualness, severity,
recurrence, and duration [20]. These factors are important to
consider when setting up monitoring systems and selecting
concept drift detection algorithms. For example, data integrity
issues often cause abrupt changes, leading to immediate shifts
in the data distribution [18]. External events, in contrast, tend
to result in more gradual changes, manifesting as a slow
but constant evolution of the data distribution. Gradual drift
therefore has a start and an end, after which the change
becomes permanent. The distance between start and end is
called drift width (see Fig. 2).

Concept drift has been a research topic in the data mining
community for decades, leading to the development of various
detectors and mitigation methods [6]. Traditionally, these
tools are designed under the assumption of immediate label
feedback, where the label for a prediction is available shortly

2



Fig. 2: Gradual concept drift (top) vs. abrupt concept drift
(bottom), taken from Poenaru-Olaru et al. [21]

after the prediction is made. Under this assumption, it is not
necessary to distinguish between types of drift. Instead, model
accuracy serves as a general indicator of drift, enabling the use
of a single drift detector that analyzes model errors to identify
distribution shifts. In this work, we focus on settings with
immediate label feedback, allowing drift detectors to identify
any type of drift by directly comparing model predictions to
the true labels.

B. Energy Consumption of ML-Enabled Systems

In recent years, ML models and systems that integrate them
have been more and more associated with large energy and
carbon footprints. For example, training a common natural lan-
guage processing (NLP) model based on transformers can lead
to greenhouse gas emissions that are similar to those produced
by several cars throughout their lifetime [14]. As a result,
Schwartz et al. [9] coined the distinction between Green AI
and Red AI. Historically, AI development was primarily aimed
at achieving high prediction quality without caring too much
about energy efficiency (Red AI). Green AI development, on
the other hand, is conscious about the potential environmental
impact of AI and tries to minimize energy consumption and
carbon emissions without substantially impacting accuracy.

While accuracy and energy efficiency are still often regarded
as a tradeoff [22], studies have shown that there are many
techniques to substantially reduce energy consumption with
a negligible decrease in accuracy [23, 24, 25]. Today, Green
AI is an active field of research, with a recent review from
Verdecchia et al. [26] identifying 98 primary studies on the
topic. As the initial development of ML models is commonly
considered the most energy-intensive phase within the life
cycle of ML-enabled systems [27], making ML training more
energy-efficient receives a lot of attention. However, other
phases like the operation of ML-enabled systems also hold
much potential for reducing their environmental footprint. In
this study, we focus on the continuous operation phase of such
systems.

C. Related Work

In the exploration of software energy consumption, various
studies have investigated the impact of different programming
languages [28], data structures [29], and frameworks [30, 31].
With the advancing progress in AI and the inherently energy-
intensive nature of AI systems, there is a growing demand for

energy in both training and maintaining these systems [32].
Recent research has honed in on the energy consumption of
ML systems, aiming to mitigate the energy demands of ML-
enabled systems [26, 15]. Different studies have concentrated
on energy consumption of various phases of ML system
development. For instance, Verdecchia et al. [23] focused
on data-centric approaches to minimize energy consumption
during training. In the context of evolving data that influences
and degrades ML accuracy, concept drift requires model
retraining [33]. Strategies addressing concept drift detection
and management have been developed [7], and comparative
studies, such as the one by Goncalves et al. [34], have assessed
the accuracy of different drift detectors. In the realm of drift
detection, studies, including those by Barros et al. [7], have
scrutinized various methods using different classifiers and
datasets. However, this analysis lacks an essential metric:
energy consumption. We address this gap by conducting a
comprehensive comparison of different drift detection meth-
ods. While accuracy is considered, our primary focus centers
on analyzing the tradeoffs between accuracy and energy, shed-
ding light on the energy efficiency of these diverse detection
methods. To the best of our knowledge, no other study has so
far considered this tradeoff in detail.

III. EXPERIMENT DESIGN

We designed a controlled experiment to answer our research
questions [35]. In this section, we describe the important
details associated with this research method, namely our
experiment objects (concept drift detectors, datasets, and base
classifiers), experiment variables, experiment execution, and
data analysis.

A. Concept Drift Detectors

Many different methods for concept drift detection have
been studied and implemented for popular ML frameworks.
Since the chosen framework may also affect energy consump-
tion, it is important to focus on a single framework. For
an accurate comparison, we therefore selected all seven con-
cept drift detectors implemented in scikit-multiflow3:
ADWIN, DDM, EDDM, HDDM-A, HDDM-W, KSWIN, and
PageHinkley. These methods are usable within the same pop-
ular ML framework, scikit-learn4, and are also among
the most used detectors in studies about concept drift [7].
They also employ reasonably different strategies that could
affect their energy consumption. For a fair comparison, we
implemented each detector with its default configuration. We
briefly describe each detector below. For more details, please
refer to the official documentation of each detector.5

• ADWIN (Adaptive Windowing) dynamically adjusts its
window size based on statistical measures. It monitors
average and variance for incoming data to detect changes
for both gradual and abrupt concept drift.

3https://scikit-multiflow.github.io
4https://scikit-learn.org
5https://scikit-multiflow.readthedocs.io/en/stable/api/api.html#

module-skmultiflow.drift detection
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• DDM (Drift Detection Method) is a statistical approach
based on the standard deviation of performance measures
to identify changes. It triggers an alert when the deviation
exceeds a predefined threshold.

• EDDM (Exponentially Weighted Moving Detection
Method) extends DDM by assigning exponentially de-
creasing weights to older instances. It gives priority to
recent data while being robust against noise.

• HDDM A (Hoeffding’s Drift Detection Method - Adap-
tive) is an adaptive version of Hoeffding’s method, using
the Hoeffding bound to detect data distribution changes
and adjusting sensitivity based on observed variance.

• HDDM W (Hoeffding’s Drift Detection Method - Win-
dow) is a window-based adaptation of Hoeffding’s
method. It maintains a fixed-sized window to monitor
mean changes using the Hoeffding bound.

• KSWIN (Kernelized Sliding Window INterval) applies a
kernel function to data using a sliding window. It moni-
tors the estimated kernel density for significant changes.

• PageHinkley computes a cumulative sum of differences
between expected and observed values. It triggers an alert
when the cumulative sum exceeds a predefined threshold.

B. Datasets

To connect our experiment to previous work, we selected
five popular synthetic datasets available in the Harvard Data-
verse6, a public repository of research data. This collection of
drift datasets was curated by Lobo [36] via stream generators.
In January 2024, it had accumulated over 7,600 downloads.
The datasets have been used in similar studies [16] and
feature both gradual and abrupt concept drifts. To incorporate
some diversity into our experiment, we selected five different
datasets from the collection:

• sine: two numeric attributes (X1 and X2), where the
class is assigned based on the sine function

• stagger: three nominal attributes (X1, X2 and X3)
• mixed: two numeric attributes (x1 and x2) and two

boolean attributes (x3 and x4)
• sea: three numeric attributes (x1, x2, and x3)
• RT: two numeric attributes (x1 and x2)
Each of the five datasets is available in two versions: one

with abrupt drift and one with gradual drift. Notably, the
dataset creator introduced concept drift into each dataset in
three locations. At each location, i.e., at each occurrence
of concept drift, the classification is reversed, or in other
words, the conditional probability P (Y |X) changes. Each
abrupt dataset consists of 40,000 instances and gradual dataset
41,000 instances. The drift is positioned at specific intervals:
10,000, 20,000, and 30,000 instances for abrupt drift datasets,
and 9,500, 20,000, and 30,500 instances for gradual drift
datasets. The width for the gradual drift is 1,000, i.e., the
drift starts around time step 9,500 and increases for 1,000
instances, covering the range from 9,500 to 10,500. Similarly,
another gradual drift occurs around time step 20,000 and

6https://dataverse.harvard.edu

covers instances from 20,000 to 21,000. The third gradual
drift starts around time step 30,500 and covers instances from
30,500 to 31,500. In contrast to real-world datasets where the
precise start of concept drift cannot be objectively determined,
the artificial placement of drifts facilitates a controlled en-
vironment for evaluating concept drift detectors, simplifying
the comparison of results. This pre-defined drift position
is particularly advantageous, offering a clear and consistent
basis for assessing the tradeoff between accuracy and energy
consumption.

C. Base Classifiers
For our drift detector comparison, we also needed ML

models as base classifiers to predict the class of the incoming
data streams, which is compared to the correct class. In
similar studies, two ML algorithms are commonly used as
base classifiers: Naive Bayes and Decision Tree. Since these
classifiers differ in terms of energy efficiency, we also want
to understand their effects on the drift detector and the overall
energy consumption, which includes the retraining of models.
Therefore, in addition to Naive Bayes and Decision Tree, we
selected five more classifiers that have been studied in previous
work [23] for their energy efficiency during the training phase.
We want to investigate whether previous findings remain valid
for these classifiers when dealing with concept drift. The
six included classifiers are Support Vector Machine (SVM),
Hoeffding Tree, k-nearest neighbors (KNN), Random Forest,
AdaBoost, Bagging Classifier.

This selection provides a decent variety for analyzing the
energy consumption in this context. For each classifier, we
used the scikit-learn implementation with the default
configuration. Please refer to the official documentation for ad-
ditional details about each classifier.7 Note that we consciously
focused on more traditional ML algorithms and excluded deep
learning. While different neural network architectures would
also be interesting candidates for such analyses, they are
outside the scope of this study.

D. Experiment Variables
We focus on the comparison of two dependent variables:
• Energy consumption measured in Joule (J); this includes

the energy consumed by the drift detector plus the re-
training of base classifiers when drift was detected.

• Detection accuracy for each drift detector; if a detector
correctly identified drift within the window (start of new
concept until end of concept), we documented it as a
true alarm. Warning about drift outside of the window
was documented as a false alarm. We calculated the true
alarm percentage. For the true alarms, we additionally
calculate how quickly the drift was detected, i.e., the
distance between the start of the drift and the instance
for which drift was detected.

Based on our experiment objects, we had several indepen-
dent variables that we manipulated to see how they influence
the dependent variables:

7https://scikit-learn.org/stable/supervised learning.html
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• Drift detector: ADWIN, DDM, EDDM, HDDM A,
HDDM W, KSWIN, PageHinkley

• Dataset: sine, mixed, RT, sea, stagger
• Type of drift: abrupt, gradual
• Base classifier: Naive Bayes, SVM, Decision Tree, KNN,

Random Forest, AdaBoost, Bagging Classifier
The different drift detectors were the primary independent
variables (treatments) that we manipulated for RQ1. The
synthetic datasets and the types of drift were manipulated for
RQ2, with the base classifier manipulation answering RQ3.
Since this study was exploratory in nature, we did not have
any preconceived hypotheses to confirm.

E. Experiment Execution

Based on the different independent variables, we opted for
a full factorial design [35], meaning we had an experiment
space of 7 drift detectors × 5 datasets × 2 types of drift ×
6 base classifiers (420 combinations). For each combination,
we followed these steps, which constitute one iteration in our
experiment:

1) Train the initial base classifier on the first 8.5k instances
of the dataset.

2) Record energy consumption and accuracy.
3) Predict labels for the remaining instances of the dataset.
4) Individually pass each predicted and true label to the

drift detector.
5) If drift is detected, stop detection and record drift

position and consumed energy for drift detection.
6) Calculate base classifier accuracy on data from 10k to

the drift position.
7) Retrain the base classifier on the dataset from 0 to the

drift position and record energy and accuracy.
Before the initiation of the experiment, a warm-up function

was executed to stabilize the system and optimize its perfor-
mance before data collection began. To minimize the effects of
non-determinism and potential fluctuations in the experiment
infrastructure, e.g., other processes briefly consuming more
energy than usual, each iteration was repeated 10 times. Ad-
ditionally, 5-seconds sleep interval was incorporated between
each iteration to ensure that the infrastructure conditions could
return closer to the initial state. These measures collectively
contributed to the reliability of our experimental framework,
allowing for a thorough and dependable assessment of the
energy consumption of concept drift detectors in machine
learning.

For the experiment instrumentation, we wrote several scripts
in Python, the de facto standard language for data and ML
practitioners, which automated the complete process described
above. To estimate the energy consumption, we used the
CodeCarbon software package.8 While CodeCarbon is not as
precise as hardware-based measurements, it has been shown
to underreport the actual energy consumption only by a few
percentage points [37], with very strong correlation between

8https://codecarbon.io

both measurements (ρ = 0.94). It is therefore accepted prac-
tice to use software-based estimation tools like CodeCarbon
when the focus of the study is to compare differences in energy
consumption between several variants. The complete repro-
ducible code is publicly available in our artifact repository.9

We ran the study on dedicated experiment infrastructure for
software energy experiments located at our university. The
infrastructure contains a server equipped with 36 TB HDD,
384 GB RAM, and an Intel Xeon CPU including 16 cores with
hyperthreading running at 2.1GHz (i.e., 32 vCPUs). Access
to the server was restricted during experiment execution to
prevent unwanted additional load.

F. Data Analysis

As an initial step, we assessed the normality of the dis-
tribution of results with the Shapiro-Wilk test [38]. The
obtained result indicates that the data exhibits non-normal
distribution characteristics, as evidenced by a p-value of <=
5.6e-45. For the purpose of comparing and identifying sig-
nificant differences in the energy consumption among various
drift detectors, we therefore employed the Mann-Whitney U
test [39], which can handle such distributions. To compare the
magnitude of effects, we computed the percentage difference
between the mean energy consumption values of distinct drift
detectors. Furthermore, Cohen’s d values were computed for a
more comprehensive understanding of the effect size [40]. In
exploring the influence of drift types, we conducted analogous
tests to those used for comparing drift detectors. Since we per-
formed many pair-wise hypothesis tests, the Holm-Bonferroni
correction was used to combat the multiple comparison prob-
lem [41]. To investigate the impact of base classifiers on both
the energy consumption of drift detectors and their accuracy,
we applied the Spearman correlation test [42].

IV. RESULTS

In this section, we present the experiment results according
to the research questions.

A. RQ1: How does the tradeoff between accuracy and energy
efficiency manifest in different concept drift detectors?

We delved into the energy consumption of various concept
drift detectors, and the results depicted in Fig. 3 revealed
several variations among them. Notably, the most energy-
intensive method for both abrupt and gradual drifts was found
to be KSWIN. Following closely as the second highest con-
sumer of energy was ADWIN, while the remaining detectors
displayed varying levels of energy consumption, albeit with
less pronounced differences.

These findings were further substantiated through statistical
analysis, employing the Mann-Whitney U test with p-values
adjusted using the Holm-Bonferroni method. The pair-wise
tests of the differences in overall energy consumption of all
detectors resulted in significant differences for each compar-
ison. To quantify the extent of the difference between each
pair of methods, we calculated the percentage differences

9https://doi.org/10.5281/zenodo.10613150
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TABLE I: Pair-wise Mann-Whitney U tests for energy consumption of detectors (Holm-Bonferroni adjusted p-values, α = 0.05,
significant p-values in bold)

Detector 1 Detector 2 p-value Detector 1 Mean Detector 2 Mean Difference (%) Cohen’s d

KSWIN PageHinkley 0.00013 0.0181 0.0055 69.8 7.53

KSWIN HDDM A 0.00015 0.0181 0.0058 67.7 7.20

KSWIN DDM 0.00011 0.0181 0.0059 67.6 7.24

KSWIN EDDM 0.00012 0.0181 0.0060 67.0 6.82

KSWIN HDDM W 0.00013 0.0181 0.0060 67.0 7.16

KSWIN ADWIN 0.00014 0.0181 0.0091 49.4 4.97

ADWIN PageHinkley 0.00034 0.0091 0.0055 40.2 6.16

ADWIN HDDM A 0.00022 0.0091 0.0058 36.2 5.15

ADWIN DDM 0.00024 0.0091 0.0059 35.9 5.20

ADWIN HDDM W 0.00030 0.0091 0.0060 34.7 5.07

ADWIN EDDM 0.00026 0.0091 0.0060 34.7 3.98

PageHinkley EDDM 0.00048 0.0055 0.0060 08.5 1.25

PageHinkley HDDM W 0.00060 0.0055 0.0060 08.5 1.47

PageHinkley DDM 0.00040 0.0055 0.0059 06.7 0.90

HDDM A PageHinkley 0.00020 0.0058 0.0055 06.3 1.16

HDDM A EDDM 0.00017 0.0058 0.0060 02.3 0.44

HDDM A HDDM W 0.00018 0.0058 0.0060 02.3 0.23

EDDM DDM 0.00238 0.0060 0.0059 01.9 0.57

HDDM W DDM 0.00079 0.0060 0.0059 01.9 0.41

HDDM A DDM 0.00016 0.0058 0.0059 00.4 0.19

HDDM W EDDM 0.00119 0.0060 0.0060 0.00 0.28

Fig. 3: Energy consumption of different drift detectors and
drift types

and Cohen’s d values. The maximum disparity was noted
between KSWIN and PageHinkley (69.78%), implying that
employing KSWIN over PageHinkley consumed nearly 70%
more energy, with very large effect size of d = 7.53. Similarly,
KSWIN consumed 49.44% more energy than ADWIN. On
the other end of the spectrum, the minimum difference was
observed between HDDM W and EDDM, totaling a mere
0.02%. DDM, DDM A, and DDM W, along with EDDM,
exhibit relatively equal energy consumption, with differences
below 2.3%. Therefore, the effect sizes are small between
DDM, DDM A, DDM W, and EDDM, as their Cohen’s d
values are below 0.5. Detailed information regarding the test
and mean differences between methods is presented in Table I.

Throughout these experiments, drift positions were

Fig. 4: True alarm percentage vs. energy consumption

recorded, enabling the assessment of the accuracy of
alarms in relation to the actual drift position. This involved
calculating the percentages of true alarms, number of false
alarms, and missed alarms. Additionally, the relative closeness
of the detected drift to the actual drift position was quantified,
with values ranging between 0 and 1, i.e., the higher the
closeness value, the smaller the distance between the detected
drift position and the actual start drift position. Values
close to 1 indicate the detector identified the drift extremely
quickly, while values close to 0 indicate very late detection.
These results are displayed in Table III. In terms of accuracy,
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TABLE II: Accuracy of drift detectors for abrupt and gradual drift (ordered by true alarm percentage)

Drift Detector Drift Type # of True Alarms # of False Alarms # of Missed Alarms True Alarm % Mean Detection Closeness

KSWIN abrupt 279 21 0 93.0 0.998

HDDM W gradual 180 120 0 60.0 0.838

HDDM W abrupt 179 121 0 59.7 0.873

ADWIN gradual 175 118 7 58.3 0.830

KSWIN gradual 171 129 0 57.0 0.804

ADWIN abrupt 152 136 12 50.7 0.843

HDDM A gradual 24 243 33 8.0 0.734

PageHinkley abrupt 23 259 18 7.7 0.849

HDDM A abrupt 21 240 39 7.0 0.679

PageHinkley gradual 19 252 29 6.3 0.779

DDM gradual 18 240 42 6.0 0.679

DDM abrupt 10 252 38 3.3 0.711

EDDM gradual 4 223 73 1.3 0.435

EDDM abrupt 2 242 56 0.7 0.365

Fig. 5: Drift detection closeness for true alarms vs. energy
consumption

KSWIN emerged as the top-performing method in abrupt drift
scenarios, with an impressive 93% true alarm rate and 0.998
closeness. For gradual drift, however, its performance was
notably worse (57%, 0.804). In these scenarios, HDDM W
took first place (60%, 0.838). Its similarly good performance
for abrupt drift (59.7%, 0.873) positioned it as a balanced
and top-performing method. The fairly balanced ADWIN
came in third. It performed slightly better for gradual drift
scenarios (58.3% vs. 50.7%) than for abrupt ones (50.7%,
0.843). Interestingly, all other four methods (HDDM A,
PageHinkley, DDM, EDDM) can be considered useless for
production systems based on our results. Even though the
detection closeness for true alarms was decent for some of
these methods, their overall true alarm rate was below 10% in
all cases. The least effective method was EDDM. Considering
missed alarms, we observe that the best-performing methods
in drift detection closeness and true alarms percentage also
excel in minimizing missed alarms. Importantly, the results

highlighted the absence of a singular method excelling across
all compared metrics. It is crucial to acknowledge that this
comparison is generalized and does not account for specific
datasets or base classifiers used. The nuanced impact of drift
type and base classifier is scrutinized in greater detail in RQ2
and RQ3.

Answer to RQ1: KSWIN trades off energy efficiency
for very good detection accuracy. It consumes by
far the most energy. ADWIN shows good detection
accuracy and requires less energy, but still more than
the remaining detectors. The most balanced detector
is HDDM W, which consumes little energy with very
good detection accuracy. The remaining four detectors
consume even less energy, but are useless from an
accuracy perspective (<10%).

B. RQ2: How does the type of drift influence this tradeoff?

The visual comparison of the energy consumption between
the two types of drift in Fig. 3 indicates that three drift detec-
tors (KSWIN, EDDM, and ADWIN) seem to consume more
energy for gradual drift than for abrupt drift. To validate these
visual observations, Mann-Whitney U tests were conducted
and percentage differences and Cohen’s d were calculated for
each drift detector. The results are displayed in Table III.

Specifically, EDDM exhibited the maximum disparity be-
tween gradual and abrupt drifts, with gradual drift consum-
ing 8.3% more energy. This difference is significant with a
Cohen’s d of 0.77, indicating a medium to large effect. For
KSWIN, the test also resulted in a significant p-value, with
gradual drift consuming 4% more energy than abrupt drift.
This difference led to a Cohen’s d of 0.32, representing a
small effect size. While ADWIN also displayed a difference,
with gradual drift consuming 1.7% more energy than abrupt
drift, this test was not statistically significant. The same is
true for the remaining four detectors, where the differences

7



between abrupt and gradual drift were between 0.2 and 0.5%.
A further, more fine-grained analysis was conducted to analyze
this difference also between the dataset generators and base
classifiers. Even for these conditions, the findings indicated
that gradual drift tended to consume on average slightly more
energy than abrupt drift in the specified detectors. Nonetheless,
there were also a few instances where the opposite was
true, such as KSWIN detecting abrupt drift using a decision
tree base classifier and the dataset generated with the mixed
generator. Detailed results are available in the replication
package.

Regarding the impact of drift types on accuracy, Table II
already showed that most detectors reached a better true alarm
rate for gradual drift. Notable exceptions were PageHinkley
and KSWIN, with the latter performing substantially better
for gradual drift (93% vs. 57%). However, when drift was
successfully detected, the detection closeness was generally
better for abrupt drift, except in the case of EDDM and
HDDM A.

Answer to RQ2: We find that most drift detectors
consume almost the same amount of energy for both
types of drift, with gradual drift showing a tendency
for slightly more energy consumption than abrupt drift.
Exceptions were EDDM and KSWIN, which both
consume significantly more energy when detecting
gradual drifts, namely 8.3% for EDDM and 4.0% for
KSWIN. In terms of detection accuracy, most detectors
perform better with gradual drifts than abrupt ones,
except for KSWIN and PageHinkley.

C. RQ3: How does the type of base classifier influence this
tradeoff?

To explore this relationship, we employed the Spearman
rank correlation test to evaluate whether there is a statistically
significant correlation between the used base classifier and the
energy consumption of the drift detector. The outcomes of the
analysis suggest that, based on the collected data, there is no
discernible and statistically significant correlation between the
choice of base classifier and the energy consumption of the
drift detector. Detailed information, including the comprehen-
sive table of test results, is available in the replication package.

Additionally, to further understand the interplay between the
drift detection closeness and the choice of base classifier, we
also applied the Spearman rank correlation test. The test results
indicated that there is also no significant correlation between
these two factors, with the minimum p-value recorded at 0.122.
This finding supports the notion that the selected base classifier
does not significantly influence the drift detection closeness.
Further details can be explored in the replication package that
provides a comprehensive overview of the test outcomes.

Answer to RQ3: The choice of base classifier does not
have a significant impact on the energy consumption
and drift detection closeness of various drift detectors.

V. DISCUSSION

Based on our results, as summarzied in Fig. 4 and Fig. 5
we can categorize our studied detectors into three types: a)
detectors that sacrifice energy efficiency for detection accu-
racy (KSWIN), b) balanced detectors that consume low to
medium energy with good accuracy (HDDM W, ADWIN),
and c) detectors that consume very little energy but are
unusable in practice due to very poor accuracy (HDDM A,
PageHinkley, DDM, EDDM). From a Green AI perspective,
the most compelling option for energy-efficient drift detection
is HDDM W, which balances high accuracy with low energy
consumption. It excels in gradual drift scenarios, combining
a close drift position detection with good true alarm rates.
Similar to previous work [23, 24, 25], HDDM W is another
great example that ML practitioners do not always have to
choose between accuracy and energy efficiency and that there
are many ML use cases where there is no or only a negligible
tradeoff between these two quality attributes. KSWIN, on the
other hand, achieves the highest accuracy for abrupt drifts, but
its significantly higher energy consumption makes it less at-
tractive. Interestingly, even for abrupt drifts, HDDM W offers
a notable 67% energy saving while maintaining good accuracy.
In general, the expected type of drift should slightly influence
the decision for a detector, e.g., in a scenario where KSWIN
is selected to be best guarded against the likely occurrence of
abrupt drift, but much less than expected. Similarly, the type
of base classifier should play no role at all when choosing a
detector, at least in our context of traditional ML algorithms.

While there is no study we can compare our energy ef-
ficiency results to, the results regarding detection accuracy
can be compared to related work. In another study about
the accuracy of different error-based drift detection methods,
it was found that ADWIN is the best performer in terms
of drift position closeness and false alarms rate [21]. Our
results are similar, but with the distinction that our study
included all error-based drift detection methods implemented
in scikit-multiflow, whereas the mentioned study did
not include KSWIN, which was our top performer regarding
accuracy in abrupt drift scenarios. ADWIN and HDDM W
show similar performance in accuracy metrics, but HDDM W
is also an energy-efficient method compared to ADWIN and
KSWIN.

Even though the energy consumption per detection instance
is crucial in high-scalability scenarios, considering other fac-
tors is also vital. Drift position closeness directly affects
energy usage. Earlier drift detection like KSWIN’s can save
energy despite higher consumption per instance, compared
to less energy-intensive methods like PageHinkley with less
accurate drift detection. An increased false alarm rate may also
cause more frequent model retraining, subsequently increasing
energy consumption due to reduced retrain intervals. This
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TABLE III: Mann-Whitney U tests for energy consumption of drift types (Holm-Bonferroni adjusted p-values, α = 0.05,
significant p-values in bold, ordered by effect size)

Detector Type 1 Type 2 p-value T1 Mean T2 Mean Difference (%) Cohen’s d

EDDM abrupt gradual 2.61E-17 0.0058 0.0064 8.3 0.77

KSWIN abrupt gradual 2.30E-07 0.0173 0.0181 4.0 0.32

ADWIN abrupt gradual 5.02E-01 0.0091 0.0093 1.7 –

DDM abrupt gradual 1.00E+00 0.0058 0.0057 0.5 –

HDDM A abrupt gradual 1.00E+00 0.0059 0.0058 0.4 –

PageHinkley abrupt gradual 1.00E+00 0.0054 0.0054 0.2 –

HDDM W abrupt gradual 1.00E+00 0.0059 0.0059 0.2 –

amount can be significant if we consider, e.g., that training
OpenAI’s GPT-3 a single time produces 552 tCO2 and con-
sumes 1,287 MWh [43]. This energy can power an average
U.S. household for 120 years. From a Green AI perspective,
false alarms are therefore much worse than missed alarms.

However, while false alarms can lead to unnecessary re-
training, increasing energy consumption, their impact might
be mitigated by optimizing retraining intervals or employing
techniques to reduce false alarms. Additionally, real-world
scenarios often lack complete information like true labels
and window sizes, necessitating data-distribution-based drift
detection. Investigating their energy consumption remains an
open area. Furthermore, drift width can influence perfor-
mance [21]. While our study used equal lengths, exploring the
impact of varying drift lengths on energy consumption would
provide valuable insights. Importantly, our findings support the
conclusion of [21] that error-based drift detection might not
be reliable as an alarming system due to low true alarm rates.

VI. THREATS TO VALIDITY

Internal Validity A potential challenge to internal validity,
linked to historical factors, may have arisen in our experiment
due to the potential impact of executing successive iterations
on our measurements, e.g., due to rising hardware tempera-
tures. To address this concern, we implemented measures by
introducing a 5-second sleep operation before each experimen-
tal iteration. This ensured more uniform hardware conditions
for all runs. Likewise, a warm-up operation was conducted to
guarantee that the initial iteration occurred under very similar
conditions to subsequent ones, mitigating potential influences
on our measurements. As a threat to reliability of measure, the
presence of background tasks during the experiment execution
could have served as confounding factors, thereby affecting
our energy measurements. To address this concern, we took
preemptive measures by terminating processes that were not
essential for the execution of the experiment and restricted
access to the infrastructure. Furthermore, we conducted each
experiment 10 times to minimize the impact of any unforeseen
background processes.

External Validity Regarding the generalizability of our
findings, we carefully chose datasets with two primary types
of concept drifts. These datasets were generated using five
synthetic dataset generators. In addition to selecting two

commonly used base classifiers, we introduced four additional
base classifiers to enhance the diversity of our study. The
choice of synthetic datasets, where the drift positions are
known, facilitates easy comparison of accuracy across various
methods. This deliberate selection of datasets and classifiers
contributes to a more robust evaluation of the generalizability
and effectiveness of the examined methods.

Reliability To ensure the reproducibility of our study, we
have made the replication package accessible online.10 Run-
ning the experiments on different hardware yielded consistent
results, reinforcing the reliability of our findings and offering
assurance in the robustness of the outcomes. Relying solely
on a tool called CodeCarbon could threaten the construct
validity of our experiment. To mitigate this risk, we took two
steps. First, we leveraged its open-source nature to examine
its implementation and verify its use of RAPL on Linux for
gathering energy data. Second, we ran the experiment on two
different systems to confirm consistent results.

VII. CONCLUSION

This study investigated the tradeoff between accuracy and
energy efficiency in various concept drift detectors. The find-
ings revealed that there is no single method that excels across
all metrics. KSWIN and ADWIN are the most energy-intensive
detectors, while PageHinkley is the most energy-efficient.
On the other hand, KSWIN is the best performer in abrupt
drift detection, while HDDM W is the best in gradual drift
detection. The type of drift influences the energy consumption
of drift detectors, with gradual drift tending to consume more
energy than abrupt drift for three detectors: KSWIN, EDDM,
and ADWIN. The type of drift also influences the accuracy
of drift detectors, with gradual drift generally performing
better in terms of true alarm rate and drift position closeness.
The base classifier does not significantly influence the energy
consumption or accuracy of drift detectors.

There are several avenues for future research to build on
and extend our results.

• Include more drift detectors, potentially implemented in
other libraries

• Replicate the study for various neural network architec-
tures instead of using more traditional ML algorithms

10https://doi.org/10.5281/zenodo.10613150
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• Investigate the tradeoff between accuracy and energy
efficiency in online learning settings

In this study, we focused on the case of immediate label
feedback, where labels are received immediately after making
a prediction. This scenario has been the most prominent in
concept drift research in recent years [6]. Our study offers
a comprehensive understanding of the accuracy vs. energy
efficiency tradeoff in the methods developed for this con-
text. However, in practical settings, labels are often absent
or delayed. This reality has sparked research into novel
methods for detecting model performance issues caused by
concept drift, particularly through various performance esti-
mation techniques [44, 45, 46]. In future work, we aim to
expand our research to include scenarios with delayed and
absent label feedback to provide more comprehensive insights
for practitioners regarding the accuracy vs. energy efficiency
tradeoff in monitoring ML models.
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[44] S. Rabanser, S. Günnemann, and Z. Lipton, “Failing
loudly: An empirical study of methods for detecting
dataset shift,” Advances in Neural Information Process-
ing Systems, vol. 32, 2019.

[45] T. S. Sethi and M. Kantardzic, “On the reliable detection
of concept drift from streaming unlabeled data,” Expert
Systems with Applications, vol. 82, pp. 77–99, 2017.

[46] D. Guillory, V. Shankar, S. Ebrahimi, T. Darrell, and
L. Schmidt, “Predicting with confidence on unseen distri-
butions,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2021, pp. 1134–1144.

11

https://doi.org/10.7910/DVN/5OWRGB
https://doi.org/10.7910/DVN/5OWRGB

	Introduction
	Background and Related Work
	Concept Drift in ML
	Energy Consumption of ML-Enabled Systems
	Related Work

	Experiment Design
	Concept Drift Detectors
	Datasets
	Base Classifiers
	Experiment Variables
	Experiment Execution
	Data Analysis

	Results
	RQ1: How does the tradeoff between accuracy and energy efficiency manifest in different concept drift detectors?
	RQ2: How does the type of drift influence this tradeoff?
	RQ3: How does the type of base classifier influence this tradeoff?

	Discussion
	Threats to Validity
	Conclusion

