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New phenomenology in the first–order thermodynamics of scalar–tensor gravity for

Bianchi universes
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The phase space of Bianchi I universes in vacuum Brans–Dicke gravity is analyzed in terms
of physical variables. The behaviour of the solutions of the field equations near the fixed points
(which are solutions of Einstein gravity) is compared with basic ideas of the recent first–order
thermodynamics of scalar-tensor gravity, elucidating new phenomenology.

I. INTRODUCTION

Shortly after the introduction of general relativity
(GR), researchers began looking for alternative theories
of gravity, moved by pure curiosity about how things
could be different in nature [1, 2]. More concrete mo-
tivation emerged with the birth of quantum field the-
ory, when the question arose of how to reconcile the two
biggest physics discoveries of the twentieth century, quan-
tum mechanics and GR. The reason is that, as soon as
one introduces the lowest–order quantum corrections to
GR, one simultaneously causes deviations from it in the
form of higher derivative terms in the field equations or
extra degrees of freedom [3, 4]. This situation does not
change in string theory: the simplest string theory, the
bosonic string, has a low–energy limit that reproduces
not GR, but an ω = −1 Brans–Dicke gravity [5, 6]. The
prototype of alternative gravity is scalar–tensor grav-
ity, which contains only a scalar degree of freedom φ
in addition to the two massless spin two modes famil-
iar from GR. The original Jordan–Brans–Dicke theory
[7] was later generalized to wider scalar–tensor theories
[8–11] in which the “Brans–Dicke coupling” parameter
became a function ω(φ) of the scalar field φ, which was
also endowed with a potential V (φ).
There is independent motivation for the study of al-

ternative theories of gravity coming from cosmological
observations. The 1998 discovery, made with type Ia su-
pernovae, that the present expansion of the universe is
accelerated led to introducing overnight a completely ad

hoc dark energy with very exotic properties (equation of
state parameter close to w ≃ −1), of completely unkown
nature and comprising approximately 70% of the energy
content of the universe (see [12] for a review). A wide
range of dark energy models have been proposed in the
literature, but none is compelling and this state of af-
fairs is deeply unsatisfactory from the theoretical point
of view. For this reason, many cosmologists have turned
to questioning whether, instead, we do not understand
gravity on the largest (cosmological) scales and dark en-
ergy simply does not exist [13, 14]. This idea had led to
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formulating and testing modified gravity models. Among
a spectrum of possibilities, the most popular models be-
long to the so–called metric f(R) gravity class (see [15–
17] for reviews). Metric f(R) gravity contains only one
extra massive, propagating, scalar degree of freedom and,
therefore, falls into the wider category of scalar–tensor
gravity [15–17]. Even Starobinski inflation [18], the first
scenario of inflation and the one currently favored by ob-
servations [19], is based on quadratic corrections to the
Einstein–Hilbert action and is ultimately a scalar–tensor
theory.

In the past decade, the problem of finding the most
general scalar–tensor theory expressed by field equations
that are at most of second order led to the rediscovery
and intense study of the older Horndeski gravity [20].
This sought–for property was found to belong not to
Horndeski gravity but to the more general Degenerate
Higher Order Scalar–Tensor (DHOST) theories, a sub-
class of higher order gravities in which a degeneracy con-
dition brings the order of the field equations back to two
(e.g., [21–33], see [34–36] for reviews).

Given the wide spectrum of scalar–tensor gravities (not
to mention other alternatives richer in propagating de-
grees of freedom that are difficult to identify and count
[37]), what is the role of GR in this landscape? A pro-
posal is well–known in the context of emergent gravity,
in which the field equations can be deduced as an emer-
gent or collective property of underlying degrees of free-
dom and are not fundamental. The seminal paper by
Jacobson [38] derived the Einstein equations of GR from
purely thermodynamical considerations, an idea referred
to as “thermodynamics of spacetime”. This feat was re-
peated with quadratic f(R) gravity producing a new pic-
ture: GR is somehow a state of “thermal equilibrium” of
gravity, while alternative theories correspond to entropy
generation and to excited thermal states [39]. This view
has been very influential and has generated a large lit-
erature but, unfortunately, no substantial progress has
been made since its early days. Specifically, the “tem-
perature of gravity” (or other order parameter) has not
been identified and no equation describing the relaxation
of alternative gravity to GR has been proposed, although
there are reasons to believe that such phenomena could
have occurred in the early universe [40, 41].

Recently a new proposal has been advanced, known as
the first–order thermodynamics of scalar–tensor gravity
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[42–46]: it has nothing to do with Jacobson’s thermo-
dynamics of spacetime, although some of its ideas share
the same spirit. It is a far–reaching analogy (but, still,
only an analogy) between the description of the effec-
tive stress–energy tensor of the scalar degree of freedom
φ of scalar–tensor gravity and the stress–energy tensor
of a dissipative fluid. By writing the field equations of
scalar–tensor gravity as effective Einstein equations, the
contributions of φ and of its first and second derivatives

form an effective stress–energy tensor T
(φ)
ab which has the

form of a dissipative fluid stress–energy tensor [42] (this
fact has been known for a long time for special theo-
ries or special geometries [47, 48] and has been recently
recognized also for “viable” Horndeski gravity [49, 50]).
Specifically, if the scalar field gradient ∇aφ is timelike
and future–oriented [45], its normalized version

ua ≡ ∇aφ√
−∇cφ∇cφ

(1.1)

can be seen as the four–velocity of an effective fluid with
stress–energy tensor of the form

T
(φ)
ab = ρuaub + Phab + πab + qaub + qbua , (1.2)

where ρ is an effective energy density, P is an effective
isotropic pressure, πab is an effective anisotropic, trace–
free, stress tensor, and qa is an effective heat flux density.
Here hab ≡ gab + uaub is the Riemannian three-space
metric seen by observers comoving with this fluid (with
ha

b the projector onto this 3-space), while πab and qa are
purely spatial:

habu
a = habu

b = 0 , πabu
a = πabu

b = 0 , qcu
c = 0 .

(1.3)

The fact that this T
(φ)
ab has the dissipative fluid form con-

tains no physics: the decomposition (1.2) holds true for
any symmetric two–index tensor [46]. However, when one
takes seriously this dissipative fluid structure and tries to
apply to it Eckart’s [51] theory of dissipative fluids [42–
44] one discovers that, miraculously, Eckart’s constitutive
relation

qa = −Khab

(

∇bT + T u̇b
)

(1.4)

holds. Here T is the temperature of the dissipative fluid,
K is the thermal conductivity, and u̇a is the fluid four–
acceleration. Equation (1.4) is nothing but the relativis-
tic generalization of Fourier’s law with the addition of an
inertial term proportional to the four–acceleration, which
takes into account the fact that heat is a form of energy
and its transport contributes to the energy flux in a way
that was absent in pre–relativistic physics [51]. The un-
expected fact that this relation holds for the effective
φ–fluid makes it possible to define the product KT for
scalar–tensor gravity.
Let us refer, for simplicity, to “first–generation” (i.e.,

pre–Horndeski) scalar–tensor gravity: in the Jordan

frame, the gravitational sector of the theory is described
by the action1

SST =
1

16π

∫

d4x
√−g

[

φR− ω(φ)

φ
∇cφ∇cφ− V (φ)

]

(1.7)
where φ > 0 is the Brans-Dicke scalar (approximately
equivalent to the inverse of the effective gravitational
coupling strength G−1), the function ω(φ) (which was a
strictly constant parameter in the original Brans-Dicke
theory) is the “Brans-Dicke coupling”, and V (φ) is a
scalar field potential (absent in the original Brans-Dicke
theory). When ∇aφ is timelike and future–oriented, the
product of effective thermal conductivity and effective
temperature is found to be [43, 44]

KT =

√
−∇cφ∇cφ

8πφ
. (1.8)

It is apparent that GR, reproduced for φ = const. > 0,
corresponds to KT = 0. It is rather intuitive that, when
extra degrees of freedom with respect to GR are excited,
gravity is in some sense excited and “hotter” than the
GR state in which the extra degrees of freedom are ab-
sent. The “temperature of gravity” T is, in this sense, a
temperature relative to the GR state of equilibrium.
The first–order thermodynamics of scalar–tensor grav-

ity has been extended [50] to “viable” Horndeski grav-
ity, i.e., to the subclass in which gravitational waves
propagate at the speed of light, and applied to vari-
ous situations in cosmology and other contexts [46, 53–
60] (see [61] for a recent review). Two basic qualitative
ideas emerge from these studies: near spacetime singu-
larities gravity is “hot”, i.e., it diverges from GR; the
expansion of the three–space perceived by comoving ob-
servers (with 3–metric hab) “cools” gravity, bringing it
closer to GR. These ideas have been tested against var-
ious situations of physical interest or mathematical con-
venience (for which it is possible to draw analytically
definite conclusions). Here we continue this program.
While it was natural to apply the first–order thermody-
namics of scalar–tensor gravity to Friedmann–Lemâıtre–
Robertson–Walker (FLRW) cosmology [54, 62], here we
extend the description to anisotropic Bianchi universes.
For simplicity, we confine ourselves to Brans–Dicke grav-
ity and to the simplest anisotropic cosmologies described
by spatially flat Bianchi I geometries. To describe the
dynamics we resort to a phase space view and, contrary

1 We adopt the notation of Ref. [52]: the signature of the spacetime
metric gab is −+++ and units are used in which the the speeed
of light c and Newton’s constant G are unity. The Ricci tensor
and Ricci scalar are

Rab ≡ Rc

acb
= ∂cΓ

c

ba
− ∂bΓ

c

ca + Γc

cd
Γd

ba
− Γc

bd
Γd

ca , (1.5)

R ≡ Ra
a = ∂cΓ

c

ba
− ∂bΓ

c

ca + Γc

cd
Γd

ba
− Γc

bd
Γd

ca . (1.6)
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to the literature that we are aware of, we choose as phase
space variables the average Hubble function H , the scalar
field φ, and its time derivative φ̇ that have a direct phys-
ical meaning instead of other variables obtained by var-
ious non–linear combinations of physical ones (for this
reason we cannot avail ourselves of existing phase space
analyses).

II. FIELD EQUATIONS AND BIANCHI I

GEOMETRY

The (Jordan frame) vacuum field equations obtained
by varying the action (1.7) with respect to the inverse
metric gab and the scalar φ are

Rab −
1

2
gabR =

ω

φ2
(∇aφ∇bφ− 1

2
gab∇cφ∇cφ)

+
1

φ
(∇a∇bφ− gab�φ)− V

2φ
gab ,

(2.1)

�φ =
1

2ω + 3

(

φ
dV

dφ
− 2V − dω

dφ
∇cφ∇cφ

)

. (2.2)

In the following we assume V (φ) ≥ 0, constant Brans–
Dicke coupling ω, and 2ω+3 > 0 to avoid phantom scalar
fields φ.

The line element of a Bianchi I universe is

ds2 = −dt2 +A2(t)dx2 +B2(t)dy2 + C2(t)dz2 (2.3)

in Cartesian comoving coordinates (t, x, y, z), where
A(t), B(t), and C(t) are the scale factors associated with
the three orthogonal spatial directions. This anisotropic

universe has average scale factor a(t) ≡ (ABC)
1/3

and
average Hubble parameter

H ≡ ȧ

a
=

1

3

(

Ȧ

A
+

Ḃ

B
+

Ċ

C

)

≡ 1

3
(HA +HB +HC) ,

(2.4)
where an overdot denotes differentiation with respect to
the cosmic time t, Hi ≡ Ȧi/A (where Ai = A,B, or C),
and

H2 =
1

9

(

H2
A +H2

B +H2
C + 2HAHB + 2HAHC

+2HBHC) . (2.5)

The shear scalar Σ for this scalar–tensor gravity, com-

puted in terms of φ and its derivatives, is given by [42]

σ ≡
√

1

2
σabσab

= (−∇eφ∇eφ)
−3/2

{

1

3
(∇a∇bφ∇aφ∇bφ)2

+
1

2
(∇eφ∇eφ)

2

[

∇a∇bφ∇a∇bφ− 1

3
(�φ)2

]

− (∇eφ∇eφ)

×
(

∇a∇bφ∇b∇cφ− 1

3
�φ∇a∇cφ

)

∇aφ∇cφ

}1/2

,

(2.6)

where σab is the shear tensor [52]. For clarity, we use the
shear variable Σ ≡ 1

2σ
2 which, in the Bianchi I geome-

try (2.3), assumes the form

Σ =
1

6A2B2C2

(

B2C2Ȧ2 +A2C2Ḃ2 +A2B2Ċ2

−ABC2ȦḂ −AB2CȦĊ −A2BCḂĊ
)

=
B2C2Ȧ2 +A2C2Ḃ2 +A2B2Ċ2

6A2B2C2

−CȦḂ +BȦĊ +AḂĊ

6ABC

=
1

6

(

H2
A +H2

B +H2
C −HAHB −HAHC −HBHC

)

=
1

4

(

H2
A +H2

B +H2
C

)

− 3

4
H2

=
3H2

2
− 1

2
(HAHB +HAHC +HBHC) . (2.7)

Σ vanishes if and only if all the components of σab vanish
[63], in which case the Bianchi geometry reduces to a
FLRW one.

The only non–vanishing Christoffel symbols of the ge-
ometry (2.3) are

Γt
xx = AȦ , Γt

yy = BḂ , Γt
zz = CĊ ,

Γx
tx = Γx

xt =
Ȧ

A
, Γy

ty = Γy
yt =

Ḃ

B
,

Γz
tz = Γz

zt =
Ċ

C
, (2.8)

while the non–vanishing components of the Ricci tensor
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are

Rtt = −
(

Ä

A
+

B̈

B
+

C̈

C

)

, (2.9)

Rxx =
ABCÄ+

(

ACḂ +ABĊ
)

Ȧ

BC
, (2.10)

Ryy =
ABCB̈ +

(

BCȦ+ABĊ
)

Ḃ

AC
, (2.11)

Rzz =
ABCC̈ +

(

BCȦ+ACḂ
)

Ċ

AB
, (2.12)

and the Ricci scalar reads

R = 2

(

Ä

A
+

B̈

B
+

C̈

C
+HAHB +HBHC +HAHC

)

(2.13)

= 6

(

Ḣ + 2H2 +
2Σ

3

)

. (2.14)

The time–time component of the Brans–Dicke field
equations (2.1) is

H2 =
ω

6

(

φ̇

φ

)2

+
V

6φ
+

2Σ

3
−H

φ̇

φ
, (2.15)

while the spatial components read

−ωABCφ̇2 +ABCV φ− 2φ2
(

AB̈C +AḂĊ +ABC̈
)

−2ABCφφ̈− 2φφ̇
(

AḂC +ABĊ
)

= 0 , (2.16)

−ωABCφ̇2 +ABCV φ− 2φ2
(

ÄBC + ȦBĊ +ABC̈
)

−2ABCφφ̈− 2φφ̇
(

ȦBC +ABĊ
)

= 0 , (2.17)

−ωABCφ̇2 +ABCV φ− 2φ2
(

ÄBC + ȦḂC +AB̈C
)

−2ABCφφ̈− 2φφ̇
(

ȦBC +AḂC
)

= 0 . (2.18)

and the trace of the field equation (2.1) is

Ḣ = −ω

6

(

φ̇

φ

)2

+
V

3φ
− 2Σ

3
−2H2−

(

φ̈+ 3Hφ̇
)

2φ
. (2.19)

Equation (2.2) for the scalar field is

φ̈+ 3Hφ̇+
φV ′ − 2V

2ω + 3
= 0 , (2.20)

where a prime denotes differentiation with respect to φ.
Combining these three equations yields

Ḣ = −ω

2

(

φ̇

φ

)2

− 2Σ + 2H
φ̇

φ
+

(φV ′ − 2V )

2φ (2ω + 3)
. (2.21)

By inserting Eq. (2.20) for the scalar field φ into (2.19)
and combining the result with Eq. (2.15), one obtains

Ḣ = −3H2 − Hφ̇

φ
+

φV ′(φ) + (2ω + 1)V (φ)

2φ(2ω + 3)
. (2.22)

To summarize, the field equations to be solved for
the scalar field φ(t) and the Hubble function H(t) are
Eq. (2.20) and Eq. (2.22), respectively. Once these quan-
tities are known, Eq. (2.15) gives the shear Σ.

III. PHASE SPACE

Let us discuss the phase space of Bianchi I cosmolo-
gies in vacuum Brans–Dicke gravity, where the dynamics
is due entirely to the Brans–Dicke scalar φ. We use the

variables
(

H,φ, φ̇
)

which are physical: the Hubble pa-

rameter H is a cosmological observable (although its ac-
tual value is subject to a very significant tension [64, 65]),
while φ is the extra scalar degree of freedom of scalar–
tensor gravity in addition to the two spin zero massless
modes of GR contained in the metric gab. The strength
of the gravitational coupling G ≃ φ−1 is measured di-
rectly by Cavendish experiments and its time variation
(i.e., Ġ and, consequently, φ̇) is subject to observational
constraints [66, 67]. By contrast, much of the existing lit-
erature on Bianchi cosmologies uses variables which are
complicated functions of H,φ, and φ̇ and do not have
direct physical interpretation. Although they may make
the study of the phase space dynamics more convenient
from the formal point of view, they have no direct phys-
ical meaning. Here we want to interpret the dynamics
and compare it with the first–order thermodynamics of
spacetime, therefore we must use physical variables.
Equation (2.15) yields the shear

Σ
(

H,φ, φ̇
)

=
3

2



H2 +H
φ̇

φ
− ω

6

(

φ̇

φ

)2

− V

6φ



 (3.1)

as a function of the three phase space variables, there-
fore Σ is not an independent variable, although it will be
relevant in our analysis.
With our choice of variables the fixed points in the

phase space, if they exist, have necessarily the form
(

H,φ, φ̇
)

= (H0, φ0, 0), with H0 and φ0 > 0 constants.

They are solutions of the Einstein equations located on
the “GR plane” φ̇ = 0 of the phase space identified by
constant scalar field, the condition that reproduces GR.
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Using the notation V (φ0) ≡ V0 and V ′(φ0) ≡ V ′
0 ,

Eq. (3.1) that must be satisfied by the fixed points gives

Σ0 =
3

2

(

H2
0 − V0

6φ0

)

, (3.2)

while the mix of Eqs. (2.19) and (2.20) gives, using Ḣ =
ω′ = 0,

H2
0 =

V0

6φ0
− Σ0

3
+

φ0V
′
0 − 2V0

4φ0 (2ω + 3)
(3.3)

and the scalar field equation degenerates into

V ′
0 =

2V0

φ0
(3.4)

(which is non–negative since V ≥ 0 and φ > 0) reducing
Eq. (3.3) to

H2
0 =

V0

6φ0
− Σ0

3
. (3.5)

Comparing Eqs. (3.2) and (3.5), one obtains Σ0 = 0: as
expected, the shear vanishes at the fixed points, which
have A = B = C ≡ a(t) and the average Hubble function
H(t) coincides with the FLRW one. Equation (3.3) then
becomes H2

0 = V0/ (6φ0), or

H0 = ±
√

V0

6φ0
= ±

√

V ′
0

12
. (3.6)

The degenerate fixed points corresponding to V0 = V ′
0 =

H0 = 0 are Minkowski spaces, while those corresponding

to V0 > 0, V ′
0 > 0, and H0 = ±

√

V0

6φ0
are de Sitter

spaces.2 When φ becomes a constant φ0 and V (φ0) ≡ V0

is positive, the theory of gravity reduces to GR with a
positive cosmological constant Λ = V0.
In the study of exact solutions of the field equa-

tions, one sometimes find solutions
(

H(t), φ(t), φ̇(t)
)

with φ(t) → 0+ at late times t → +∞: these are patho-
logical as the effective gravitational coupling Geff → +∞.
The line φ = 0 in the “GR plane” φ̇ = 0 corresponds to
singularities at which Geff changes sign, but it does so
by going through Geff = ∞ (a similar situation occurs
with conformally coupled scalar fields [68, 69]). Exact
solutions with these properties are unphysical and can-
not be regarded as GR solutions, even though the first–
order thermodynamics of scalar–tensor gravity does not,
strictly speaking, indicate a pathology or a gross devia-
tion from GR in this situation (see Appendix A).

2 With an abuse of nomenclature, we refer to the fixed points with
H0 > 0 as “expanding de Sitter spaces” and to those with H0 < 0
as “contracting de Sitter spaces”.

A. Stability of the equilibrium points

Let us examine the stability of the fixed points with
respect to homogeneous perturbations described by

φ(t) = φ0 + δφ(t) , (3.7)

H(t) = H0 + δH(t) . (3.8)

Evolution equations for the perturbations δφ(t), δH(t)
are obtained from Eq. (2.20) for the scalar field φ and
Eq. (2.22) for H .
Let us begin with the stability of the scalar field. By

expanding the scalar field potential, V (φ) ≃ V0 + V ′
0 δφ,

and using the zero–order field equation (2.20), one ob-
tains the linearized equation for δφ

δφ̈+ 3H0δφ̇+ ω2
0 δφ = 0 , (3.9)

where

ω2
0 ≡ φ0V

′′
0 − V ′

0

2ω + 3
=

φ0V
′′
0 − 2V0/φ0

2ω + 3
=

φ0V
′′
0 − 12H2

0

2ω + 3
.

(3.10)
The ansatz

δφ(t) = δ0 e
αt (3.11)

with δ0 and α constants yields the algebraic equation

α2 + 3H0α+ ω2
0 = 0 (3.12)

with roots

α(±) =
−3H0 ±

√

9H2
0 − 4ω2

0

2
≡ 1

2

(

−3H0 ±
√
∆
)

(3.13)

and two modes δφ(±)(t) = δ0 e
α(±)t (this applies if α(±) 6=

0; the case α(±) = 0 is discussed separately).

• If ∆ < 0, corresponding to ω2
0 > 9H2

0/4 and ω0

real, then

δφ(±)(t) = δ0 e
−

3H0t

2 e±
i

2

√
|∆| t : (3.14)

the second exponential in the right–hand side os-
cillates while, as t → +∞, the first exponential
diverges if H0 < 0 and decays if H0 > 0 (it remains
constant if H0 = 0). In this case the fixed point is
stable if H0 ≥ 0 and unstable if H0 < 0.

• If ∆ = 0, corresponding to ω2
0 = 9H2

0/4 (and ω0

real), the scalar field perturbation is simply δφ(t) =

δ0 e
−

3H0t

2 and is stable if H0 ≥ 0, unstable if H0 <
0.

• If ∆ > 0, corresponding to ω2
0 < 9H2

0/4 then it is
convenient to write

α(±) =
3H0

2



−1±

√

1−
(

2ω0

3H0

)2


 . (3.15)
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If ω0 is real, corresponding to φ0V
′′
0 ≥ 12H2

0 , then
√

1−
(

2ω0

3H0

)2

< 1 and −1 ±
√

1−
(

2ω0

3H0

)2

< 0,

hence α(±) < 0 if H0 > 0, or α(±) = 0 if H0 =
0 (corresponding to a Minkowski fixed point), or
α(±) > 0 if H0 < 0. Fixed points with H0 ≥ 0 are
stable while those with H0 < 0 are unstable.

If instead ω0 is imaginary, ω0 = i|ω0|, cor-
responding to φ0V

′′
0 < 12H2

0 , then we have
√

−1 +
(

2ω0

3H0

)2

> 0 and −1 −
√

1−
(

2ω0

3H0

)2

< 0.

The mode δφ(+) is unstable (i.e., α(+) > 0) if
H0 > 0, while the other mode δφ(−) is unstable
(i.e., α(−) > 0) if H0 < 0. In short, when ω0 is
imaginary and H0 6= 0 there is always a unstable
mode and the fixed point is unstable.

If instead ω0 is imaginary and H0 = 0 (Minkowski
fixed point), the equation for the scalar field per-
turbations reduces to

δφ̈− |ω2
0 |δφ = 0 , (3.16)

which describes an unstable inverted harmonic os-
cillator.

An exception not included in the previous discussion
is the situation in which V = 0 and H0 = 0, ω0 = 0 cor-
responding to a Minkowski space. In this case, Eq. (3.9)

reduces to φ̈ = 0, which has a linear solution and this
Minkowski space is unstable.
Let us consider now the perturbation δH(t). Using

the zero–order equations, Eq. (2.22) gives the linearized
equation of motion for δH

δḢ + 6H0δH = −H0

φ0
δφ̇+

[V ′′
0 φ0 + (2ω + 1) V0

φ0
]

2φ0 (2ω + 3)
δφ

(3.17)

and Eq. (3.10) yields

δḢ + 6H0δH = −H0

φ0
δφ̇+

(

ω2
0 + 6H2

0

)

2φ0
δφ . (3.18)

Using the explicit form δφ(±)(t) of the scalar field per-
turbation gives

δḢ + 6H0δH = β(±)δφ , (3.19)

where

β(±) =
ω2
0 + 6H2

0 − 2α(±)H0

2φ0
. (3.20)

The solution of this inhomogeneous ordinary differential
equation is

δH(±)(t) =
β(±)

α(±) + 6H0
δφ+ C e−6H0t

=

(

H0 − α(±)

)

2φ0
δφ+ C e−6H0t , (3.21)

where C is an integration constant. The perturbation
δH(t) diverges for H0 < 0 regardless of the behaviour of
the scalar field perturbation δφ.
To summarize:

• Contracting de Sitter spaces are always unstable
fixed points, which can be understood as the effect
of anti–friction in the (anti–)damped harmonic os-
cillator equation (3.9).

• Expanding de Sitter fixed points are stable if
φ0V

′′
0 > 12H2

0 and unstable if φ0V
′′
0 < 12H2

0 .

• Minkowski fixed points are (marginally) stable if ω0

is real (corresponding to φ0V
′′
0 ≥ 12H2

0 ) and un-
stable otherwise. The exception is the Minkowski
space obtained for V ≡ 0, H0 = 0, which is unsta-
ble.

Let us consider now the ratio of the shear variable
to the expansion variable Σ/H2

0 , which quantifies the
amount of anisotropy and the departure from GR (re-
member that the fixed points, when they exist, all lie in
the GR plane φ̇ = 0 and Σ = 0). Since the equilibrium
points are isotropic de Sitter spaces, the shear (3.1) is
purely perturbative and given by

Σ = δΣ =
3

2

[

(H0 + δH)
2
+

δφ̇

φ0 + δφ
(H0 + δH)

−ω

6

(

δφ̇

φ0 + δφ

)2

− (V0 + V ′
0δφ)

6 (φ0 + δφ)



 (3.22)

which, to first order, reduces to

δΣ

H2
0

=
3

2H0

[

2δH +
δφ̇

φ0
− H0

φ0
δφ

]

. (3.23)

Inserting the solution for the perturbations δφ, δH into
this equation and using Eq. (3.12) to express ω2

0 yields

δΣ

H2
0

=
3C

H0
e−6H0t , (3.24)

(Since Σ ≃ δΣ ≥ 0, one deduces that sign (C) =
sign (H0).)
The ratio Σ/H2

0 vanishes as t → +∞ for all solu-
tions that are perturbations of expanding de Sitter fixed
points, and diverges in the same late–time limit near con-
tracting de Sitter fixed points.
Let us now examine the significance of these results

with respect to the first–order thermodynamics of space-
time of Refs. [42–46]. We emphasize that the follow-
ing discussion is meaningful only because physical phase

space variables
(

H,φ, φ̇
)

have been chosen at the outset.

de Sitter solutions with non–constant scalar field,
which are possible in scalar–tensor gravity but not in
GR, have been discussed in Ref. [57].
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B. Comparison with the first-order

thermodynamics of scalar–tensor gravity

In Brans–Dicke theory, the temperature of gravity rel-
ative to the GR state of equilibrium [42–46] is given by
Eq. (1.8). For linear homogeneous perturbations of the
fixed points, it reads

KT =
|α(±)||δφ(±)|

8πφ0
≥ 0 . (3.25)

The fixed points, which lie in the GR plane with φ̇ = 0
clearly correspond to KT = 0. KT assumes the same
form as in a FLRW universe, but the solution φ(t) is, in
general, different in Bianchi I and in FLRW universes.

If the orbit of a solution in the
(

H,φ, φ̇
)

phase space

lies near an expanding de Sitter fixed point and is at-
tracted to it, the anisotropic three-space expands, and
the solution converges to the zero–temperature state
of equilibrium, while Σ/H2

0 → 0 and this three-space
isotropizes. The cooling of gravity (KT → 0) is indeed
another way of saying that GR is a late–time attractor
of the dynamics. The situation is not so trivial, how-
ever, because there are exceptions for φ0V

′′
0 < 12H2

0 . In
this case three–space still expands exponentially but the
de Sitter fixed point nearby is a repellor. It is still the
case that H0 > 0 and Σ/H2

0 → 0 as t → +∞. How do
we understand this situation in the light of scalar–tensor
thermodynamics? The answer comes from examining the
equation ruling the approach to/departure from the GR
equilibrium state derived in Refs. [42–46]

d (KT )

dτ
= 8π (KT )

2 −ΘKT +
�φ

8πφ
, (3.26)

where τ is the comoving time of the effective φ–fluid (i.e.,
the proper time of observers comoving with this fluid and
with four–velocity (1.1)) and Θ is the expansion scalar
of the fluid [52]. In a Bianchi I universe Θ = 3H and
τ = t. Near a fixed point (which lies in the GR plane)
KT is a first–order quantity and Eq. (3.26) reduces, to
linear order, to

d (KT )

dt
= −3H0KT −

(

δφ̈+ 3H0δφ̇
)

8πφ0
(3.27)

or, in the light of the previous discussion,

d (KT )

dt
= −3H0|δφ̇|

8πφ0
+

ω2
0δφ

8πφ0
. (3.28)

For expanding de Sitter spaces with purely imaginary
ω0 it is ω2

0 < 0. In order for the scalar field gradient

∇aφ = −φ̇ δa0 to be future–oriented it must be φ̇ < 0,
which implies that δφ = δ0 e

αt < 0, or δ0 < 0. Then,
for the exceptional expanding de Sitter fixed points with

imaginary ω0, we have

d (KT )

dt
= −3H0α|δφ|

8πφ0
+

ω2
0δφ

8πφ0

=
|δφ|
8πφ0

(

−3H0α− ω2
0

)

=
α2

8πφ0
|δφ| > 0 (3.29)

using Eq. (3.12): KT always grows near these repellors,
describing the departure from the GR equilibrium state.
The reason for this behaviour is clearly due to the third
term �φ/(8πφ) in the right–hand side of Eq. (3.26).

IV. CONCLUSIONS

Two basic insights have been obtained thus far in the
first–order thermodynamics of scalar–tensor (including
viable Horndeski) gravity [42–46]. The first one is that
the expansion of the three–space seen by observers co-
moving with the effective φ–fluid “cools” gravity. The
second is that gravity is “hot” (i.e., KT → +∞) near
spacetime singularities.
The idea that “expansion cools gravity” (i.e., KT → 0)

was deduced in Refs. [42–46] using situations in which
�φ = 0. The lesson from the present study is that
this statement is not always true when �φ 6= 0. The
term �φ/(8πφ) in Eq. (3.26) cannot be expressed un-
ambigously in terms of KT or its powers or derivatives.
This third term in the right–hand side of (3.26) is rem-
iniscent of entropy generation terms in non–equilibrium
thermodynamics and it is fair to say that it is the dy-
namics of the scalar field itself, embodied in �φ/φ, that
drives gravity away from the GR equilibrium state.
When ω = const., V (φ) ≡ 0, and in the presence of

conformally invariant matter (for example, in the radia-
tion era), it is �φ = 0 because Eq. (2.2) in the presence
of matter and with a quadratic potential V (φ) = m2φ2/2
becomes

�φ =
8πT (m)

2ω + 3
(4.1)

where T (m) is the trace of the matter energy–momentum
tensor. �φ vanishes in the presence of conformally in-
variant matter with zero trace, such as a radiation fluid
in the radiation era, during which the expansion of space
causes gravity to approach GR. This phenomenon was in-
deed reported in FLRW scalar–tensor cosmology [40, 41].
However, was not expected in other cosmological eras.
The convergence of scalar–tensor to GR cosmology has
been debated at length and we hope that our approach
can shed some light on this issue, which we will discuss
in a future publication.
Another lesson garnered from the discussion of the pre-

vious section is that the degree of anisotropy Σ/H2
0 com-

monly used in the literature on Bianchi universes does
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not tell the full story about the approach to, or depar-
ture from the GR state because it tends to zero for the
exceptional expanding de Sitter fixed points with imagi-
nary ω0 that are phase space repellors.
To conclude, more research is needed to understand

scalar–tensor gravity (and even more for Horndeski grav-
ity) from the point of view of first–order thermodynam-
ics. We remind the reader that this formalism is, ulti-
mately, only an analogy; nevertheless, it is proving useful
from the theoretical point of view and it is building up
to a consistent framework to understand at least scalar–
tensor gravity in the increasingly wider spectrum of al-
ternatives to GR.
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Appendix A THE PATHOLOGICAL LINE φ = 0
IN THE φ̇ = 0 PLANE OF THE PHASE SPACE

Let us consider an exact Bianchi I solution of Brans–
Dicke gravity that asymptotes to a φ = 0 solution. As-
suming V (φ) ≡ 0, which yields �φ = 0, consider the
power–law ansatz for the scalar field

φ(t) = φ0t
α (A.1)

where φ0 is a positive constant, t > 0, and α is assumed to
be negative to guarantee that the gradient∇aφ is future–
oriented. The corresponding Hubble function

H(t) =
1− α

3t
(A.2)

is always positive, describing an expanding universe, and
H(t) → 0+ as t → +∞. The shear

Σ(t) = −
(

3α2ω + 4α2 − 2α− 2
)

12t2
(A.3)

is positive if

ω < −2 (2α+ 1) (α− 1)

3α2
. (A.4)

It is interesting that the quantity Σ/H2, which measures
the ratio of anisotropy to expansion, remains exactly con-
stant during the evolution of this universe, signalling that
GR (which corresponds to exactly vanishing Σ) is not ap-
proached. Formally, for this solution it is

KT =
|φ̇|
8πφ

=
|α|
8πt

→ 0+ as t → +∞ . (A.5)

Although the expansion of 3–space “cools” this Brans–
Dicke gravity, the zero temperature limit is not GR and
is indeed a physical pathology corresponding to infinite
Geff , which should be excluded from the range of physical
possibilities. This means that a grain of salt is needed in
the physical interpretation of the first–order thermody-
namics of scalar–tensor gravity (which is not defined for
φ = 0). In any case, the Minkowski space obtained for
V ≡ 0, H0 = 0, ω0 = 0 is unstable, as seen in Sec. III A.
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