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Combinatorial problems are a common challenge in business, requiring finding optimal solutions
under specified constraints. While significant progress has been made with variational approaches
such as QAOA, most problems addressed are unconstrained (such as Max-Cut). In this study, we
investigate a hybrid quantum-classical method for constrained optimization problems, particularly
those with knapsack constraints that occur frequently in financial and supply chain applications.
Our proposed method relies firstly on relaxations to local quantum Hamiltonians, defined through
commutative maps. Drawing inspiration from quantum random access code (QRAC) concepts,
particularly Quantum Random Access Optimizer (QRAO), we explore QRAO’s potential in solving
large constrained optimization problems. We employ classical techniques like Linear Relaxation
as a presolve mechanism to handle constraints and cope further with scalability. We compare
our approach with QAOA and present the final results for a real-world procurement optimization
problem: a significant sized multi-knapsack-constrained problem.

I. INTRODUCTION

The concept of leveraging quantum computers to gen-
erate approximate solutions for NP-hard combinatorial
problems dates back more than two decades, initially in-
troduced through quantum adiabatic eigenstate evolu-
tion [1]. This foundational idea evolved into the Quan-
tum Approximate Optimization Algorithm (QAOA) [2]
and Variational Quantum Eigensolver [3], which en-
tails variational optimization of quantum parameters [4].
With considerable interest in harnessing quantum advan-
tage for classical combinatorial problems, extensive re-
search has scrutinized the performance of QAOA [5–7].
These quantum optimization techniques rely on estab-
lishing a bijective mapping between the space of classical
binary variables and logical basis states of a collection
of qubits, as originally outlined [2]. Within the QAOA
framework, the cost function optimized on a quantum
computer typically features a classical maximal eigen-
state, which doesn’t strictly necessitate superposition
and entanglement for preparation. This contrasts with
quantum many-body Hamiltonians or quantum chem-
istry, where extremal eigenstates often exhibit significant
entanglement. In such cases, quantum computers benefit
from a natural memory advantage in storing the ground
state.
While QAOA and VQE represent classical-quantum

hybrid algorithms tailored for near-term quantum de-
vices capable of executing only shallow circuits, several
critical issues persist including the concerns of scalability.
Given that QAOA and VQE encode one classical bit into
one qubit, the maximum number of qubits for near-term
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quantum devices are limited. Consequently, the sizes of
problem instances that can be addressed are severely re-
stricted. This limitation poses a significant obstacle to
the widespread applicability of these algorithms in tack-
ling larger-scale computational challenges.

QRAO [8] offers a solution to this challenge by encod-
ing multiple classical bits (typically three or fewer) into
one qubit. By doing so, it facilitates the generation of
approximate solutions for combinatorial problems that
seek extremal eigenstates of local quantum Hamiltoni-
ans. These local quantum Hamiltonians represent relax-
ations of the original combinatorial problems. For each
element in the image of a combinatorial cost function, it
becomes feasible to construct a quantum state with the
same Hamiltonian expectation value. This integration
between classical combinatorial optimization and quan-
tum relaxation is a key feature of QRAO, making it a
promising approach for addressing complex optimization
challenges using quantum-inspired techniques [9]. Recent
results of QRAO give hints of its robustness to quantum
noise [10], and its power to leverage quantum entangle-
ment to obtain optimal and better solutions [11]. How-
ever, the problems addressed by QRAO were all uncon-
strained optimization.

In this study, our objective is to address a complex con-
strained supply chain problem using QRAO. We will ex-
plore the effectiveness of QRAO in addressing the inher-
ent complexities of constrained supply chain problems, by
solving a Multiple Knapsack Problem (MKP) and com-
paring it with the well-studied QAOA approach which is
effective in solving unconstrained problems such as Max-
Cut [13]. We will also be scaling up a real-world multiple
knapsack-based Risk-Aware Procurement Optimization
problem involving≥ 100 variables and demonstrating the
prospect of combining QRAO with a classical method in
operations research, namely Linear Relaxation (LR)[14].
In this work, we aim to merge quantum and classical com-
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putation to expand the utility of quantum algorithms,
enabling the solution of larger instances. Through this
endeavor, we demonstrate the scalability of QRAO and
its efficacy in handling larger problem sizes, where tradi-
tional methods like QAOA encounter limitations due to
the requirement of more qubits and memory.
The subsequent sections of this paper are structured

as follows: In Section. II we described the formulation
for Multiple Knapsack Problem (MKP) and the Risk-
Aware Procurement Optimization problem, followed by
Section. III where we introduced the details of Quantum
Random Access Encoding. In Sec. IV we explain our
approach on using Linear Relaxation and in Section. V
we present the results of the comparison of QAOA and
QRAO on MKP problem and the performance of QRAO
with Linear Relaxation on Risk-Aware Procurement Op-
timization problem. Finally in Section.VI we provide the
concluding remarks and the future outlook of the work.
This research will contribute valuable insights into the

practical applicability of quantum and classical hybrid
optimization methods for complex optimization chal-
lenges in finance and supply chain management.

II. PROBLEM SETTINGS

We consider two problem settings. First, the Multiple
Knapsack Problem, which is a strongly NP-hard prob-
lem with no fully polynomial-time approximation scheme
(FPTAS) (unlike the standard Knapsack Problem). On
this problem, we compare the QAOA and QRAO per-
formance on multiple randomly generated test instances.
Next, we consider a real-world supply chain problem akin
to an MKP but with an added risk dimension. This is a
significantly larger problem, which cannot be solved via
QAOA due to the current limit of hardware and memory.
The two problems are described as follows:

A. Multiple Knapsack Problem (MKP)

The Multiple Knapsack Problem(MKP) [15] is a gener-
alization of the standard knapsack problem (KP) from a
single knapsack to m knapsacks with (possibly) different
capacities. MKP involves allocating a subset of n items
to m different knapsacks, aiming to maximize the total
profit of the selected items while ensuring that the capac-
ity of each knapsack is not exceeded. This problem finds
applications in various fields such as naval and financial
management, where resources need to be efficiently allo-
cated while considering capacity constraints.
We are given n items that need to be distributed

among m knapsacks, each with a distinct capacity ci for
i = 1, . . . ,m. Each item j has an associated profit pj and
weight wj . The objective is to select m disjoint subsets
of items, ensuring that the items in subset i fit within
the capacity ci of knapsack i while maximizing the to-
tal profit of the selected items. Formally, the MKP can

be formulated as an Integer Linear Programming (ILP)
problem as follows:

Maximize:

m
∑

i=1

n
∑

j=1

pjxij

Subject to:

n
∑

j=1

wjxij ≤ ci, i = 1, . . . ,m

m
∑

i=1

xij ≤ 1 j = 1, . . . , n,

xij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n
(1)

where xij = 1 if item j is assigned to knapsack i ,
and xij = 0 otherwise. It is usual to assume that the
coefficients pj, wj , and ci are positive integers, and to
avoid trivial cases we demand that:

max
j=1,...,n

wj ≤ max
i=1,...,m

ci

max
i=1,...,m

ci ≤ max
j=1,...,n

wj

n
∑

j=1

wj ≤ max
i=1,...,m

ci

(2)

Note that we assume every item j can fit into at least
one knapsack; otherwise, the item should be disregarded.
Furthermore, if the second inequality is breached, we can
disregard the smallest knapsack, as it will not accom-
modate any item. Lastly, the last inequality prevents a
trivial solution where all items can fit into the largest
knapsack.

B. Risk-Aware Procurement Optimization

Optimization techniques have found wide application
in addressing various challenges within supply chain and
logistics management, particularly in mitigating risks
and managing uncertainties. For instance, the clas-
sic Newsvendor Problem [16] tackles the dilemma of
making purchasing decisions amidst uncertain demand,
while disruptions in the supply chain can be managed
through portfolio approaches that assess the impact of
delays across multiple periods [17]. In scenarios where
the ramifications of disruptions can be precisely quanti-
fied, stochastic optimization techniques are typically em-
ployed, solving deterministically across numerous gener-
ated scenarios [18]. However, when data limitations hin-
der the accurate realization of scenarios for optimization,
methods that directly incorporate risk into the optimiza-
tion process become essential. This can involve integrat-
ing risk minimization as a joint objective alongside cost
minimization or constraining cost minimization problems
with risk considerations [19].
Supply chain disruptions, whether stemming from un-

foreseen events like the COVID-19 pandemic or more
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routine challenges such as labor disputes and adverse
weather conditions, pose significant risks to global com-
panies. These disruptions can lead to delays in deliv-
eries, missed orders, and financial losses. Addressing
these challenges requires a comprehensive approach that
combines accurate risk quantification with cost-effective
decision-making. Following the methodology outlined in
[20], we first establish a supplier risk score metric by an-
alyzing various data sources and identifying key risk fac-
tors through factor analysis. With these risk scores in
hand, we develop a risk-constrained optimization model
to formulate strategic procurement plans for multina-
tional computer manufacturing firms. We construct the
following simplified model for a typical procurement set-
ting, with multiple parts to procure from multiple sup-
pliers.
We assign a risk score ri ∈ [0, 9], for each supplier, i,

derived from Supplier Risk Analysis [20]. The per part
cost for procuring part j from supplier i is known in ad-
vance and denoted as ci,j . For simplicity we assume every
supplier can produce all parts, in the case where a sup-
plier doesn’t produce certain parts, the respective costs
will be set to a large value. For each part j, there is
a demand dj to be fulfilled by sourcing from multiple
suppliers and a risk tolerance level ψj . The objective is
to choose suppliers to fulfill the demands for each part
at minimized costs while managing the risk of suppli-
ers within a given tolerance. (4) represents the demand
constraint and (5) ensures the weighted average risks for
each part are within the given thresholds.

TABLE I: Notations used in the model

Symbol Description
i Supplier index from set I
j Part index from set J
yi,j Number of part j obtained from supplier i
ri Risk score for supplier i
ψj Risk tolerance level for part j
ci,j Per part cost of procuring part j from supplier i
dj Demand for part j

Following the notations given in Table I, the following
is the MILP formulation:

Minimize:
∑

i∈I

∑

j∈J
ci,jyi,j (3)

Subject to:
∑

i∈I
yi,j ≥ dj ∀j ∈ J (4)

∑

i∈I
riyi,j ≤ ψjdj ∀j ∈ J (5)

III. QUANTUM RANDOM ACCESS CODES

The representation of n qubits as a vector in C
2n may

initially suggest a higher information capacity compared

to classical n bits. However, it is worth noting that ac-
cording to the Holevo bound [21], transferring n-bit clas-
sical information without error requires n qubits. Never-
theless, if some errors are permissible, it becomes possible
to encode multiple classical bits into a single qubit us-
ing (n, 1, p)-QRAC codes [22]. In this context, (n,m, p)-
QRAC refers to quantum random access codes that en-
code n classical bits into m qubits.
Definition 1: An (n, 1, p)-QRA coding is a func-

tion that maps n-bit strings x ∈ {0, 1}n to 1-qubit
states ρx satisfying the following condition that for every
i ∈ {1, 2, ..., n} there exists a POVM

Ei = {Ei
0
, Ei

1
}

such that

Tr(Ei
xi
ρx) ≥ p

The POVM Ei is integral to the decoding process,
enabling the extraction of the i-th encoded bit xi from
the measured encoded state ρx with probability p. It’s
important to note that (n, 1, p)-QRA codes lack signifi-
cance when p ≤ 1

2
, as p = 1

2
implies random selection of

binary bits. Additionally, (n,m, p)-QRA coding, where
m ≥ 2, follows a similar definition. Notably, specific in-
stances include (2, 1, 0.85)- and (3, 1, 0.78)-QRA coding
employed in QRAO [8]. However, further extension to
(n, 1, p) coding with n ≥ 4 and p > 1

2
is impractical. This

limitation arises from the geometric constraint where a
three-dimensional ball cannot be partitioned into sixteen
non-empty regions using only four planes [23].
Example 1: (2, 1, 0.85)-QRA Encoding
This encoding maps x1, x2 ∈ {0, 1}2 to a pure state

ρx1x2
= |ψ(x1x2)〉〈ψ(x1x2)| , considering the map:

(x1, x2) 7→ ρx1,x2
:=

1

2

(

I +
1√
2

(

(−1)x1X + (−1)x2Z
)

)

(6)
where

|ψ(0, 0)〉 = cos
π

8
|0〉+ sin

π

8
|1〉

|ψ(0, 1)〉 = cos
3π

8
|0〉+ sin

3π

8
|1〉

|ψ(1, 0)〉 = cos
5π

8
|0〉+ sin

5π

8
|1〉

|ψ(1, 1)〉 = cos
7π

8
|0〉+ sin

7π

8
|1〉

Then, this map is a (2, 1, 0.85)-QRA coding with the
POVMs

E1 = {|+〉〈+|, |−〉〈−|}, E2 = {|0〉〈0|, |1〉〈1|},



4

The measurements described above are conducted in
both the X and computational bases. The X basis mea-
surement is specifically aimed at decoding the first clas-
sical bit, whereas the computational basis measurement
is employed to decode the second classical bit. This dual
measurement approach facilitates the extraction of both
classical bits encoded within the quantum state.
Example 2: (3, 1, 0.78)-QRA Encoding Considering

the map:

(x1, x2, x3) 7→ ρx1,x2,x3

:=
1

2

(

I +
1√
3

(

(−1)x1X + (−1)x2Y + (−1)x3Z
)

)

(7)

For every pair of (x1, x2, x3), ρx1,x2,x3
is a pure

state and can be written in the form ρx1,x2,x3
=

|ψ(x1, x2, x3)〉〈ψ(x1, x2, x3)|, where:

|ψ(0, 0, 0)〉 = cos θ̃|0〉+ e
πι

4 sin θ̃|1〉
|ψ(0, 0, 1)〉 = sin θ̃|0〉+ e

πι

4 cos θ̃|1〉
|ψ(0, 1, 0)〉 = cos θ̃|0〉+ e

−πι

4 sin θ̃|1〉
|ψ(0, 1, 1)〉 = sin θ̃|0〉+ e

−πι

4 cos θ̃|1〉
|ψ(1, 0, 0)〉 = cos θ̃|0〉+ e

3πι

4 sin θ̃|1〉
|ψ(1, 0, 1)〉 = sin θ̃|0〉+ e

3πι

4 cos θ̃|1〉
|ψ(1, 1, 0)〉 = cos θ̃|0〉+ e

−3πι

4 sin θ̃|1〉
|ψ(1, 1, 1)〉 = sin θ̃|0〉+ e

−3πι

4 cos θ̃|1〉

(8)

where θ̃ satisfies the condition (cos(θ̃)2 = 1

2
+ 1

2
√
3
>

0.79. Then this map is a (3, 1, 0.79)-QRA codings with
the POVMs

E1 = {|+〉〈+|, |−〉〈−|}, E2 = {|+ ι〉〈+ι|, | − ι〉〈−ι|}
E3 ={|0〉〈0|, |1〉〈1|} (9)

The measurements described above are conducted in
the X , Y , and computational bases. Each measure-
ment is specifically performed to decode the correspond-
ing classical bit encoded within the quantum state. By
employing these multiple bases, the decoding process
enables the extraction of classical information encoded
within the quantum system.
Utilizing QRAO [8], multiple classical bits are com-

pactly encoded into a reduced number of qubits using
Quantum Random Access Codes (QRACs), as explained
earlier. For instance, employing a (3, 1)-QRAC, three
classical binary variables x1, x2, and x3 are mapped to a
single qubit through the application of the Pauli X , Y ,
and Z operators, respectively. In comparison to meth-
ods like QAOA or VQE, QRAO boasts a constant-factor
space complexity advantage. Consequently, our focus in
this study lies on leveraging QRAO with a (3, 1)-QRAC
approach.

The objective is to simplify the optimization problem
by directing it towards the exploration of the maximum
eigenstate of the relaxed Hamiltonian Hrelax. To achieve
this, we first map classical binary variables into qubits
through the construction of a relaxed Hamiltonian. This
process involves performing a graph coloring of the in-
stance graph G, (made from the objective problem) us-
ing the Large Degree First (LDF) method [24], with
time complexity of O(|V (G)| log |V (G)|+deg(G)|V (G)|),
where deg(G) represents the maximum degree of the
graph G. Upon completion of the LDF algorithm, the
vertices are partitioned into the set Vc associated with
the color c ∈ C. Here, the color of the i-th vertex vi is
denoted as color(i). This partitioning satisfies the follow-
ing condition:

ei,j ∈ E(G) ⇒ color(i) 6= color(j)

Next, we allocate
⌈

|VC |
3

⌉

qubits for each color c ∈ C,

enabling up to three vertices to be assigned to a sin-
gle qubit. These vertices are ordered, and the Pauli
operators X , Y , and Z are assigned accordingly. Sub-
sequently, we employ variational methods like VQE to
explore the maximum eigenstate of Hrelax. Unlike the
diagonal structure of the original Hamiltonian, Hrelax

comprises non-classical states, characterized by super-
position and entanglement, as its maximal eigenstates.
Consequently, the eigenstate obtained for Hrelax cannot
be directly linked to the classical solution due to its quan-
tum nature. Instead, it represents a quantum state cor-
responding to the relaxed solution of the optimization
problem, where the constraint that the solution must be
a binary vector is lifted. To recover the classical solu-
tion, we employ quantum state rounding algorithms, as
proposed in [8].

The first rounding algorithm, Pauli rounding, deci-
phers the encoded three classical bits in each qubit using
the POVM outlined in Eq. 9. Essentially, this procedure
involves measuring the j-th qubit with sufficient repeti-
tions, determining the majority measurement outcome,
and assigning it as the rounded value of the correspond-
ing classical bit. However, Pauli rounding may encounter
limitations when the relaxed state exhibits significant en-
tanglement, preventing its representation in the form of
ρ1 ⊗ ρ2 ⊗ . . . ⊗ ρn. In such cases, the algorithm’s ef-
fectiveness may be compromised due to the oversight of
correlations among the qubits.

In contrast to Pauli rounding, the second rounding al-
gorithm, known as Magic Rounding, mitigates the afore-
mentioned issue. This method aims to decode three clas-
sical variables simultaneously from a single qubit. For
a comprehensive understanding of Magic Rounding, fur-
ther details can be found in [8] and [12].
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IV. PROPOSED APPROACH

An integer linear program (ILP) consists of a linear
program requiring variables to be integers. ILPs serve as
expressive tools for formulating combinatorial optimiza-
tion problems. Nonetheless, solving ILPs optimally is
NP-hard.
One standard method to find an approximate solution

for a combinatorial optimization problem is via Linear
Relaxation:

• Formulate the optimization problem as an ILP.

• Derive a linear program (LP) from the ILP by re-
laxing the integrality constraints on variables. This
resulting LP termed a relaxation of the original
problem, retains the same objective function but
operates over a broader solution set, leading to
opt(LP ) ≤ opt(ILP ) for minimization problem.

• Solve the LP optimally using an efficient linear pro-
gramming algorithm and rounding variables to in-
tegers by some rounding techniques.

In the current NISQ era, quantum algorithms still suf-
fer from scaling to large-size problems. In our approach,
we apply linear relaxation as a method to reduce the
problem size. Given the LP relaxed solution, the binary
decision variables that are solved to extreme values, i.e.
very close to 0 or 1, will be rounded accordingly and fixed,
leaving a reduced-size problem for QRAO to tackle.

V. RESULTS

We conducted initial investigations to ascertain the
optimal ansatz and associated parameters for leveraging
(3, 1, p)−QRAO by solving a simpler version of our prob-
lem. All experiments are conducted with Qiskit’s [25]
AerSimulator.
Notably, our findings consistently favored the Effi-

cientSU2 ansatz employing full entanglement over al-
ternatives such as PauliTwoDesign and RealAmplitudes.
This preference stems from the intrinsic characteristics
described in Eq. 8, where we see that (3, 1, p)−QRAC
has complex amplitudes. In contrast, the RealAmplitudes
ansatz exclusively addresses real-valued parameters. The
superiority of EfficientSU2, denoted by its designation,
lies in its design tailored for hardware efficiency within
SU(2) 2-local circuits. These circuits comprise layers of
single-qubit operations interconnected by SU(2) and CX
entanglements, where SU(2) denotes the special unitary
group of degree 2. Such circuits are characterized by 2×2
unitary matrices with determinant 1, exemplified by the
Pauli rotation gates.
As observed in Table II, for the (3, 1, p)-QRAO sce-

nario, the EfficientSU2 ansatz demonstrates superior
performance with five repetitions and full entanglement.
Conversely, as previously discussed, the RealAmplitudes
ansatz exhibits notably poor performance in this context.

EfficientSU2 PauliTwoDesign RealAmplitudes
Reps. Circ. Full Linear Circ. Full Linear Circ. Full Linear

0 27 30 33 20 19 18 0 0 0
1 18 5 2 4 9 9 0 0 0
2 21 27 12 26 24 14 0 0 0
3 32 20 10 3 4 2 0 0 0
4 23 31 12 1 7 7 0 0 0
5 30 38 24 12 5 18 0 0 0

TABLE II: Number of solved instances for various
ansätze, employing different types of entanglement,

with increasing repetitions.

A. QAOA vs QRAO on Multiple Knapsack
Problem

Subsequently, we conducted a comparative analysis be-
tween QAOA and (3, 1, p)−QRAO, evaluating their per-
formances on 20 randomly generated, non-trivial (guar-
anteed by Eq. (2)) instances of the Multiple Knapsack
Problem (MKP). The problem sizes comprised a maxi-
mum of 20 binary variables. In QAOA, each variable ne-
cessitated one qubit, while QRAO utilized fewer qubits
due to compression as shown in Tab. (III) and Tab. (IV)
respectively.

Instance # vars # qubits Optimal QAOA Obj. Opt. gap

1 13 13 20 20 0%
2 18 18 25 25 0%
3 17 17 15 15 0%
4 20 20 15 12 20%
5 15 15 20 20 0%
6 15 15 19 19 0%
7 16 16 17 17 0%
8 20 20 19 16 15.79%
9 14 14 19 19 0%
10 18 18 15 13 13.33%
11 16 16 9 8 11.11%
12 18 18 32 32 0%
13 19 19 14 infeasible N.A.
14 14 14 15 15 0%
15 17 17 15 15 0%
16 13 13 18 18 0%
17 16 16 14 11 21.43%
18 15 15 12 12 0%
19 14 14 12 12 0%
20 15 15 19 19 0%

TABLE III: Multiple Knapsack Problem QAOA Results

In QAOA, we employed the default QAOAAnsatz,
while in (3, 1, p)−QRAO, we used the EfficientSU2
ansatz with full entanglement, based on the findings pre-
sented in Tab. II. In both the cases, we used COBYLA as
the classical optimizer. The rounding scheme employed
for QRAO adhered to the Magic Rounding method.
The optimal solutions’ objective values, obtained by

CPLEX, is used to compare with the solutions obtained
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Instance # vars # qubits Optimal QRAO Obj. Opt. gap

1 13 5 20 20 0%
2 18 6 25 25 0%
3 17 6 15 15 0%
4 20 7 15 13 13.33%
5 15 5 20 20 0%
6 15 5 19 19 0%
7 16 6 17 17 0%
8 20 7 19 19 0%
9 14 5 19 16 15.79%
10 18 6 15 infeasible N.A.
11 16 6 9 5 44.44%
12 18 6 32 32 0%
13 19 7 14 14 0%
14 14 5 15 15 0%
15 17 6 15 15 0%
16 13 5 18 18 0%
17 16 6 14 14 0%
18 15 5 12 12 0%
19 14 5 12 12 0%
20 15 5 19 9 52.63%

TABLE IV: Multiple Knapsack Problem QRAO Results

from QAOA/QRAO. The optimality gap is the absolute
difference between the solved objective value and the op-
timal objective value, over the optimal objective value in
percentage.

The results in Tab. V is an overall summary for Tab.
III and Tab. IV, which showed a slightly better perfor-
mance for QRAO.

Method Feasible Optimal
QAOA 95% 70%
QRAO 95% 75%

TABLE V: Multiple Knapsack Problem performance
comparison of QAOA vs QRAO results

B. QRAO with Linear Relaxation on Risk-Aware
Procurement Optimization Problem

We generated multiple random instances of the Risk-
Aware Procurement Optimization problem, each featur-
ing approximately 100 binary variables. The sheer scale
of these problems surpasses the current hardware limi-
tations of QAOA, rendering them challenging to tackle.
Moreover, as the size of the problems expands, the effi-
ciency of QRAO is similarly impacted. To mitigate these
hurdles, we employed the Linear Relaxation technique as
a strategic response. We first tried with a random num-
ber of variables being fixed, and compared it to 90% of
the variables being fixed. This approach aids in navigat-

ing the complexities posed by the increasing dimensions
of the problems at hand, offering a viable pathway for-
ward.

Method Feasible Optimal

QRAO-LR 100% 80%
QRAO-LR 90% 70% 50%

TABLE VI: QRAOs’ (with Linear Relaxation)
performance comparison

VI. CONCLUSION & FUTURE OUTLOOK

This paper introduces a hybrid methodology aimed
at addressing constraint optimization problems prevalent
in business contexts. It focuses on two knapsack prob-
lem variants: the Multiple Knapsack Problem (MKP)
and MKP incorporating an additional risk dimension.
Our analysis reveals that, despite utilizing fewer qubits,
QRAO achieves performance comparable to QAOA. No-
tably, QRAO demonstrates an added advantage by en-
abling problem-solving for problems ranging ≥ 100 bi-
nary variables. This scalability advantage is particularly
significant as QAOA encounters challenges with errors
stemming from its high qubit and memory demands at
such scales.
Moreover, our study demonstrates that by integrat-

ing the classical technique of Linear Relaxation, we can
achieve a further reduction in qubit demand. This inte-
gration not only minimizes the resources needed but also
enhances the quality of the obtained results. By lever-
aging Linear Relaxation alongside quantum approaches,
our method offers a comprehensive solution framework
that optimizes both resource utilization and solution ef-
ficacy. This combination underscores the versatility and
effectiveness of our hybrid approach in tackling complex
optimization challenges across diverse business domains.
Expanding on this study, we aim to enhance our ap-

proach by integrating stochastic elements into the prob-
lem formulation. This entails addressing uncertainty sur-
rounding both demand and supply variables [28]. Ad-
ditionally, we intend to explore alternative encoding
schemes such as multi-basis encoding (MBE) [26] and
leverage polynomial space compression techniques [27].
Furthermore, we will investigate the potential of employ-
ing various classical methods to streamline the problem-
solving process. These adaptations are anticipated to
broaden the scope of our methodology and enhance its
effectiveness across diverse problem landscapes.
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