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SPHERICALLY SYMMETRIC EINSTEIN-SCALAR-FIELD
EQUATIONS FOR SLOWLY PARTICLE-LIKE DECAYING
NULL INFINITY

CHUXIAO LIUY* AND XIAO ZHANG234

ABSTRACT. We show that the spherically symmetric Einstein-scalar-
field equations for small slowly particle-like decaying initial data at null
infinity have unique global solutions.

1. INTRODUCTION

Spherically symmetric spacetime metrics can be written as
ds? = —gqdu® — 2gdudr + r*(df* + ssin® Odi)?) (1.1)

in Bondi coordinates, see, e.g. [3, 8, @], where g(u,r) and q(u,r) are C?
nonnegative functions over (0,00). The null frames are

B e N NS ¥ R S
CV9q T \Jggtor L7700 7 rsinfoy’
where
9 a9
ou 20r

is the derivative along the incoming light rays.

Throughout the paper, we denote f(r) the integral average of integrable
function f(r) over [0, r]

For a real spherically symmetric C? scalar field ¢(u,r) on (0, 00) x (0, 00),
the Einstein-scalar field equations are

Ry = 870,60,4, D¢ = 0. (1.2)

Under the following regularity conditions at » = 0 and boundary condition
at r = oo,
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Regularity Condition I: For each u,

. dg =~ 0q , r*dg 2 (00 qOP\2\
}E}I})(-T%‘FT%‘F%E—ST(T <————> =0. (13)

Regularity Condition II: For each u,
71»1—% (ro) = }1_1)12) (rq) =0. (1.4)

Boundary Condition: For each u,

lim g = lim ¢ =1, (1.5)

r—00 r—00

the Einstein-scalar field equations (L.2]) are equivalent to the following sys-
tems, see, e.g. [9]

00 _71)2
g:exp{_zlﬂ-/ ud?"/},
r T
S N 1.6
g=g=— [ gdr, (1.6)
™ Jo
Dh=2"9(h-h).
2r

The Bondi mass Mp(u), the final Bondi mass Mp1, the Bondi-Christodoulou
mass M (u) and the final Bondi-Christodoulou mass M; are given as follows
[1, 3, 18, 9]

r—00

Mp(u) = lim g(l—g>, Mp :ulLH;oMB(u),

M(u) = lim C(l—g>, M, = lim M(u).

r—oo 2 g U—00

In 3], 4, [5], Christodoulou proved the global existence and uniqueness of
classical solutions for spherically symmetric Einstein-scalar-field equations
with small initial data and the generalized solutions in the large for particle-
like decaying null infinity. He also studied the asymptotic behaviour of the
generalized solutions and proved the formation of black holes of mass M;
surrounded by vacuum when the final Bondi-Christodoulou mass M; # 0

[6].
Under the double null coordinates
ds* = —Q*dudv + r* (d6? + sin® 6dp?)

Christodoulou solved the characteristic initial value problem for small bounded
variation norm and showed the global existence and uniqueness of clas-
sical solution in spherically symmetric case for particle-like decaying null
infinity[7]. These results was extended to more general case by Luk-Oh-
Yang [10] [11], which are summarized as follows.
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Theorem 1.1. Let C,, be the initial curve with v > ug which satisfies

1
- a 9 ’ 0
oy 2 r(uo, uo) = m(ug, ug) =

Suppose the data on the initial curve is given by
20, (1) (ug,v) = ®(v),

where @ : [ug, 00) — R is a smooth function which satisfies

OpT

/uv |® (o, v")|dv" < e(v— u)l_ﬂy, | P (ug,v)| + ‘g—f(uo,v)‘ <e

for any v > u > ugy, where v > 0 is certain positive constant. Then there
exists a unique global solution to the spherically symmetric Einstein-scalar
field equations. And the resulting spacetime is future causally geodesically
complete. Moreover, the solution satisfies the following uniform priori esti-
mates,

1 1 2 2m 1
—= > O0r>—=, — <=

av )
T 3 T T3

and
|¢| < Cemin {1,777},
0,(r¢)| < C (|®(v)| 4+ emin {1,r77}),
|0u(re)| < Ce,
103(re)| + 1057 + 9 (ro)| + |05r| < Ce,

where C' > 0 is a constant depending only on . Furthermore, if ® satisfies
the strong asymptotic flatness condition

sup {(1+ )] (0)| + (1 + ) [2,2(0)[} < Ag < oo

VE[ug,00)

for some Ag > 0 and € > 1. Then the following estimates
9] < Ay min {u‘“’, r‘lu—(w—l)}’
|0y (r¢)] < Ay min {u‘“’,r—w},
10u(ro)| < Aju™",
02(r9)| < Ay min {0, = (0s D
102(r¢)| < Ayu~(WtD),
102r] < Aymin {u=%,r 7},
|0pr| < Aju?,

hold for some A; > 0 and w = min {¢, 3}.

(
(
(
(

In [§], Liu and Zhang proved the global existence and uniqueness for
classical solutions with small initial data, and for generalized solutions with
large initial data for wave-like decaying null infinity.
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Theorem 1.2. Let € € (0,2]. Given initial data h(r) € C'[0,00). Denote

alozinfalp{(l—kf)pre }

b>0 r>0 b
Then there exists 6 > 0 such that if dy < 6, there exists a unique global
classical solution

71(7’)‘ + (1 + %) o bg—é T)

h(u,r) € C1<[0,oo) X [o,oo))

of (IB) which satisfies the initial condition h(0,r) = h(r) and the decay
property
C C

1+e” 1+e
(1+%+r> <1+%+7‘)

for some constant C' depending on € only. Moreover, the corresponding
spacetime is future causally geodesically complete with vanishing final Bondi
mass.

[h(u, 7| <

Theorem 1.3. For any initial data h(r) € C[0,00) which satisfies

hr) = 0(#), g—é(r) = 0(%)

as r — oo for some € € (0,2], there exists at least one global generalized
solution which has the same data as a classical solution coincides with it in
the domain of existence of the latter.

We refer to [2,[12] for the spherically symmetric Einstein-scalar field equa-
tions with nontrivial potential for particle-like decaying null infinity, and to
[9] for wave-like decaying null infinity.

In this paper, we prove the global existence and uniqueness for classical
solutions for small slowly particle-like decaying null infinity.

Theorem 1.4. Let € € (0,1). Given initial data h(r) € C[0,00). Denote

o= ptmpd (045 o] (1) it

b
Then there exists § > 0 such that if dy < 0, there exists a unique global
classical solution

oh
bg (7’)

h(u,r) € C1<[0,oo) X [o,oo))

of (IB) which satisfies the initial condition h(0,r) = h(r) and the decay
property
C oh C
\h(u,r)] < € ‘—(U,T)‘ < 1+e
(I+u+r) or (I1+u+r)
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for some constant C' depending on € only. Moreover, the corresponding
spacetime is future causally geodesically complete. If we further assume € €
(3,1), then the final Bondi mass vanishes.

The paper is organized as follow: In Section 2, we derive the main esti-
mates. In Section 3, we prove the main theorem.

2. MAIN LEMMA

In this section, we derive the estimates on the iteration solution as well as
its partial derivative with respect to r. Denote X the space of C' functions
with the finite norm

|h|lx = sup {(1 4w+ 1) |h(u, )| + (1 4+ u 4 7))t
u>0,7>0

oh
E(U’T)‘} < 00.

As in [3 [§], for h,, € X, let h,1 be the solution of the equation
In — Gn 9n — Gn h

Dnhn+1 - 20 n

hnt1 = — (21)
with the initial data
hn+1(0, ’f’) = h(O, 7"),

where g, and D,, are the metric given by (LG) and the derivative along the
incoming light rays corresponding to h,.

Lemma 2.1. Given the initial data h(0,r) and the nth-iteration solution
ho(u, ) which are C and satisfy

10, ")lx =d,  [|An(u,7)]x = =.
Then the solution of (2] satisfies
Ansillx < Cexp (Ca?)(d+ 23)(2 + 2?) (2.2)

for some constant C' > 0.

Proof: By the assumption, we have

_ 1 T
o (1, 7)| < —/ (b (1, 5)|ds
T Jo

x/r ds
< Z -
“rJo A4+u+s)©

X

== [(T+u+7r)— (1 +u)'] (2.3)
v (I+u+r)—(14+u)=(1+u+r)e
“(1—e)r (I+u+r)e

SU—a0tutn

Using it, we estimate |(hy,, — hy,)(u,7)| in the following.
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(1) For 0 <r <1+ u, using (2.11) in [8], we obtain

= 5ar(1 4+ u)l—e
|(hn - hn)(uﬂ"” < 6(1 — E)(l +u+r)2.

(2) For r > 1 4 u, we have

| (B = T (1) | < [ (0, 7)] + [P (7))

< T n T 1

T (Q+u+r) l—e(l4+u+r)
2r (14+u+r)

T 1l—e(l4u+r)te

dxr

< 1+e”

I—-e(l+u+r)

Let ¢ = ( ok Then, for r > 0,

1—e

% 0<r<1+u
(o = B} () < 4 (L 4T (2.4)

Truinme =it

Thus
- cxr

o — hn)(u,7)| < —— 0 2.5
(B < G 25)
Let k = exp ( M , 0 < k < 1. Since g(u,r) is monotonically increas-

ing with respect to r, we obtain

E_]n(uv T) > gn(uv 0)

00 _ 2
> exp —471/ Mds]
0

o
> e —4rc?a?
=GP /0 1+u+31+25}

[ 27cPa?
> exp (1 A > k.
Claim: Let ¢1 = %. We have
2,.2
0 )2611!E(17” )3, 0<r<1+u,
_ +u) +u+r
(gn - gn)(u7 T) S 2
c1xr'r
r>1+u.

I+uw)*A+u+r)

(2.7)
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Indeed, for 0 < r <1+ u, (27) is a direct consequence of (Z.5]) and (2.14)
in [§]. For r > 1+ u, by using (2.5]) and

% o 47T(hn - Bn)zgn

or r ’
we obtain
ropr
(gn — gn)(u,r) = %/0 g %dsdr'
2rc?x? [T 1 1 ,
= €r / [(1+U+T’)2E_(1+u—|—r)2e} ar
0
2rcta? T T
e [(1+u)26_(1+u+7‘)26]
e (L u+r)? — (L) (L4 utr)
€ (1+u)*(1+u+r)?
cra’r

< 5 .
I4+uw)*“AQ+u+r)
Thus, the claim follows and it also implies that

crz3r

— gn)(uyr) < — 2 2.8
(9n — gn)( ) 1+ u)2€+1 (2.8)
Therefore
Gn — gnﬁ < 1 crz3r T 1
2r M T 2r (14w T l—e(l+utr)
61:E3
S 2e+1 €’
21 —¢e) (1 +u) (1+u+r)
For the characteristic
T(u) = Xn(’LL7 TO)v
we use (2.0) and, e.g. (3.26) in [12], to obtain
k
1+u+r(u) > 5(1—1-@61 +71),
k
1+mry > 5(1+7‘1+u1).
They yield
d 2¢d
[h(0,79)] < < (2.9)

(1+7)e — ke(1+rp)e’

Ul —= 2 o0 2
9n — Jn 1w du 1T

d < . 2.10

/o [ 2r ] Y= /o (14w = 4e (2.10)

IN
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Let ¢g = Wia_e) Integrating (2.1]) along the characteristic, we obtain

(I4uy +71)¢ | (ur, 1)

ul _ 7
srhm,m)rexp{ NG du}
0 r Xn
ul ul 7 — O —
+/ exp{/ [L gn] du’} ‘_gn Ih,
0 “ 2r Yn 2r

<cg exp (02:172) (d + CQx?’) . (2.11)

Next we estimate 8h"+1 . Using (9.16) in [3] and (2.23) in [8], we obtain

hn nhn
p. Oni1  gn = Gn Ot

T g = (2.12)
where
1 82 7n 7 B gn 8Bn
fl _§W(hn+1_hn)_ 2 W’
82§n 2(gn - E_]n) (h B h )
or2 r2 + 72 Gn-

Using ([2.4)) and [2.7)), for 0 <7 <1+ w and r > 1 + u, we obtain

2 c1x?r? A 222 (14 u)?™*
‘c‘ﬁgn PA+u* T +utr)?® 7 (Itu+r)
Or? 2 crz3r 47 2r2r?

- +_
,r.2 (1+u)2e (1—|—u—|—7‘) 7"2 (1+u+,r,)2+2e

respectively. Therefore
0%Gn,

< (2¢1 + 4nc?)a?
or?

TA+w)* T A +utr)

Let c3 = M Using (2.3), 211), (Z3) and (2.8]), we obtain

(2.13)

1 0%gn, hsr — Tl < c3x?(d + x + 23) exp (c27?)
2| Or? il = (1+ u)26+1 (14+u+ 7")14'6 ’
Gn — gn 8}_ln _ (gn - gn)(hn - Bn)

2r  Or 272
< 1 crz3r cxr
cerx®
<

2(14 u)®* T (1 +u+r)te
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Let c4 = c3 + 55+. We obtain

cyw?(d + o + 23) exp (co7?)

Al < A+uw)* ™A +ut+r)tte’ (2.14)
Similar to (29]), we have
1+e
%(0,7‘0) < PR (12+ ui e (2.15)
Let ¢5 = max {202, %1%} Using (2.10), (2-I4) and (2.15]), we obtain
ahg:l (ug,m)| < '%(0,7‘0) eXp{/Oul [@L{n du}
“ “lgn —gn /
+ [Mew { [z }nflnxndu
0 u " Xn
_os(d+ 23)(1 + 22) exp (c52?) ‘ (2.16)
- (14 ug 4 rq)tte
Let C = 2max {c5, c3}. Using (Z.I1)), we have
[Bns1llx < Cexp (Ca?)(d+ z%)(2 + 27).
Thus proof of the lemma is complete. Q.E.D.

3. PROOF OF THE MAIN THEOREM

In this section we prove Theorem [[L4l Denote {h,} the sequence of the
iteration solutions of (ZI). We first show that {h,} converges in function
space

Y = {h € 000, 00) x [O,m)‘\\hﬂy < oo} ,
where

|h|ly = sup {(1+u+r)5\h(u,r)]}.
u>0,7>0

Lemma 3.1. Assume for some n > 0 such that
lhn—1llx <z, ||hn]lx <z
for some constant x > 0. Then there ezists F(z) € (0,3) such that
[ng1 = hnlly < F(2)llhn = hn-1lly-

Proof: From (9.27) in [3], the following equation holds

Dn(hn-l-l - hn) o 9"2_749" (hn+1 - hn) = fa, (31)
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where
gn - gn—l ahn 9n — gn T 7
= - hn - hn_
Fo 2 or 2r ( )
gn _gn — gn—1 +gn—1 T
hyp — hp—1)-
+ 2r ( )

Similar to (2.3]), we have

th _hn—IHY
I—e)(I+u+r)"

Vln - En—l‘ < (

then
2th — hn—luY
T—a)(I+utr)S

‘hn = hn—1— Bn +En—1| < (

Similar to (2.4)), we have
2car (1 +u)t

2 0 S r é 1 +u
‘hn"i_hn—l_ﬁn_ﬁn—l‘g (1+U+T)
2cxr > 1
Adugnie =t
Then (3.2 and (B3) imply that
|(hn_}_ln)2 - (hn—l - ]_7%—1)2|
1—e -
dexr (14+u) ||y izln_lﬂy’ 0<r<l+u
(1—e)(1+u+r)"e
4 n— N
carfhn = h Wﬁz, r>1+u.
l1-—e(I4+ut+r)
Thus,
e - - ds
o= gt <4 [ = B = (e = B[S
< 16mczx||hy, — hn—1]ly
Te(l—e)(1+utr)*
Therefore

- 1 /" 16mex||hp — hn—1]ly
— G| < = —q,_1ldr <
|gn 9n 1| > 7‘/0 |gn 9n 1| TS 6(1—6)(1+u)26
Let ¢ = 58(7{3055). Using (3.6]) and (2.I6]), we have
8mcx||hy — hp—1|ly
(1 —e)(14u)?*
s exp (c52?)(d + 23)(1 + 2?)
(1 + up + 7‘1)1"'6
_ C6 exp (e52®)(d + 2%) (2 + 23) || hyy — Pty
- (1+u)* ™ 1 +u+r)

gn - E_]n—l ahn
2 or

(3.3)

(3.4)
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Using (2.3)) and (2.8]), we have

9n — Gn ;7 T 1 611'27’ th - hn—l”Y
——(h, —h,—1)| <—
2r (hrn n-1) _2T(1+u)26+1(1—6)(1+U+7’)6
12| hn — hn—1|ly

Tl-oQ+w)* T A +u+r)

Let ¢; = 126(7{ < Using 8), B34) and (33), we have

1
2T

(3.8)

—Gn— 1_ gn 1)‘

gn gn 1) dsd""

- 27‘2

— 7 = ds
22 [ il e
2 [T [T B ds
/ / |gn — gn—1[|Pn—1 — hn—1|2—dr/

327T203(1'+1' Mhn — By 1Hy/ / dsdr’

- e(1—e)r? 1—i—u+31+2E

< (@’Jrfc)llh2 — hn— 1HY/ [ 1 o
r 0 L(1+u)* (1+u+r)

L2er(x + 27) | — P iy

Thus, using (2.3) and (2.11]), we obtain
1
27"

—Ogn—1 — (gn_gn—l)‘ ‘hn_ﬁn—l‘

< 2exp (cox?)cier(d + 23) (@ + 23) '
(14w (14 u+r)
Let cs = cg + 12 + 2c3¢7. Using (B7), (3.8) and (339), we obtain
cgexp (csz?)(d + x + 23)(x + 23)||hp, — Pty
(1 _|_u)2e+1 (1 +u+ T)e :
Integrating (B.1]) along the characteristic, and using (2.10]), (B.I0]), we have

< F(@)||hn — hn-ally,

|f2] <

(3.10)

(1 +u; + rl)ﬁ‘(hn—l—l - hn)(U1,7"1)

where

2¢cg exp (2c82?)(d + x + %) (z + 23)
2¢eke ’

F(x) =

Obviously,
F(0)=0, F'(z)>0.
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Thus F(z) is monotonically increasing. Therefore there exists 1 > 0 such
that, for any = € (0, z1),

0< F(x) <

N —

This gives proof of the lemma. Q.E.D.
Next, we show that the sequences {h, } and {%} are uniformly bounded
and equicontinuous.

Lemma 3.2. There ezists & such that for any x € (0,), the sequence {hy}
are uniformly bounded by x and converges in the space Y if

I ex — .Z'2
a(x) = 222 £C7)

TN ) 3
cerm 2t

Moreover, {h,} and {%} are uniformly bounded and equicontinous.

Proof: By Lemma 211 we know that
hns1llx < Cexp (Ca?)(d+ %) (2 + 2?).

Denote

_xexp (—C’x2) 3
*@) = Caray T
Then we have
®(0) =0, &'(0) > 0.

Thus, there exists x¢ such that ®(z) is monotonically increasing on [0, x|
and attains its maximum at the point xy. Let

Z = min{xg, z1, 1},
where z; is given in Lemma B.Il Then for any z € (0, Z),

O(z) =2 d, |halx <2 = [[hnpallx <=

By induction, ||hy| <« for all n € N, i.e., {hy} is uniformly bounded by x.
By the proof of Lemma 2.3 in [§], {%L:} and {%L;} are uniformly bounded.
Thus, {h,} is equicontinuous.

By Lemma B.], we obtain that for any = € (0, ),

1
th—i-l - hnHY < §”hn - hn—luy'
This implies that {h,} converges in space Y.

For any u > 0, 0 < 7y < 19, let xn(u;r1) and xn(u;72) be two character-

istics through w-slice at r = r; and r = ry respectively. Let k' = exp (Cif).
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By (4.29) of [4] and (2.8]), we obtain

dg /
< sup exp / [ } du
s€[r1,r2] { 2 u or xn (u';8) (311)

<K.

Xn(U;72) = Xn(u;71)
ro —T1

For any differentiable function f, denote

B(f)(u) = f(u, xn(u;m1)) = f(u, Xn(u;m2)).
We have

B < sup| L

‘k:/(rg —71).

Now we use the arguments for proving Lemma 2.3 in [8] to prove that {‘%”}
is equicontinuous. Let

_ Ohp _ _ Ohnpa )
v = P ()~ T i) (312)
Differentiate (3.12]), we have
_ 4
e 0 = 3 (3.13)
where
8hn+1 9n — gn
A = r (u, xn (w3 rg))B<T)(u),
1 /0%, _
Ay = §B< 892 (hnt1 — hn+1))(“),
1/ Gn - -
As = §B(W(hn+1 - hn))(u)7
_ agn hn - }_ln
A4___B<8r r )(u)
From (2.13)), we have
8hn+1 (9 gn ’
< | Zmrl _
A < ' or ‘ or? Kirz =)
2Y,.2
< H(rs—m) T (2¢1 + 4mc”)x (3.14)

(1 + u)1+6 (1 +u)26+1 (1 +u+ ’f’)
K (2¢c; + 4mc?)a®
< 3+3e
(14u)
From (2.42) in [8], we know
PG 6(gn —Gn) 167 (hn — hn)’g
ors — p3 B r3 )
87 (P, — hyy)gn O(hyy — hi) N 167%(hy — hn)'yg
72 or 73

(7‘2 — 7‘1).

_|_
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Using (2.4) and (28], we obtain
(6c1 + 327mc?)x? + 1672 cta?

3G (14 u)*H! Osrsltn
3.15
or3 (6c1 + 327mc?)x? + 1672 cta? (3.15)
(1t )2 ’ r=1l+u,

Let cg = 10ce; + 407 + 1672¢5. Then ([2.4)), (B.I5]) imply that
K eo(z? + 2°)

Ayl <

(7’2 — 7’1).

By Lemma Bl we know
hp+1 — hp — 0

uniformly. Then the argument for proving Lemma 2.3 in [8] gives
hpy1 — hy — 0.

By (213)), we have

2e419°Gn 2y, 2
(1+u) 5,2 < (21 + 4me”)x*.
r

Thus,

2, - -
(1+ U)%Ha—fg(hnﬂ —hy) =0

uniformly. Therefore,

€ 82.?]” 7
(1 + u)2 1 87"2 (hn+1 - hn)

is equicontinuous. Hence for 1 > 0, there exists ¢t > 0 such that

2en

n(u;re) — xp(u;r)| <t = |A3| < .
[Xn (s 72) = Xn (u; 1) | As] 3k,2(1+u)2e+1

Taking s = %, we have

T — 11 < 81 = |Xn(u;72) — Xn(usry)| <t

2en
= |A3| < .
A3l = S (1
Similarly,
K (3cer + 2mct)a?
Aul < ST ).
Taking
2en

52 = 3k"3[(2c1 + 4mc? + cg + 3cey + 2met) a3 + cga®]’
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we have
2en

32 (1 +u)*

ro — 11 < 89 == |Ay| + Az + |A4] <

By (2.8)), we have

exp (/Ou1 (gn — g;iizz :fln)(ua Tl))du> < k2.

By Lemma 2.3 in [§], there exists s3 > 0 such that

2TTLS S g, ar

Therefore, integrating (3.13]), we obtain
" (gn = Gn) (U Xn (w57
W(u1) =9(0) exp (/0 (9n = gn) (1, X 1))du)

@(O,Xn(om)) — @(O,Xn(o;rz))‘ < #

Xn (u§ Tl)
4
u1 U1 A .
+/ [exp </ (9n — Gn)(u, Xn(u77’1))du>:| ZAidu.
Let s = min {s1, s2, s3}. Then
8}1 1 8}1 1
e < s = )] < 0 = |28 ) - 25 o) <
r or

Thus, {ahgr“} is equicontinuous with respect to 7.

The equicontinuous of {Ejhg—?ﬂ“} with respect to u can be proved by the
equiboundedness of D, 6h§r“. Thus proof of the lemma is complete. Q.E.D.

Proof of Theorem [1.4 Denote

6 = max {®(x)}.
i (0(2))
For dy < 0, we can find x such that dy < ®(z). This implies that Lemma
21 Lemma B and Lemma B2 hold. Given initial data h(r) with dy < 6,
then there exists a > 0 such that
N TN\E€ |y r\1+e| Oh
- 1+ ‘ ( 147 e .
dy il>110){< —I—a) h(r)—l—( +a> aar(r)}<5
Consider the new initial data
h(0,7) = h(ar).
By using the same argument as these in [3| [§], there exists a unique global

classical solution ﬁ(u, r) with slowly particle-like decaying null infinity sat-
isfying the initial data h(0,r). By scaling group invariance (2.1]) [3], we find

that
o =h(%5)
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is a unique global classical solution of () satisfying the initial data h(r).
Moreover h satisfies

‘h(u)r)’ < L7 _h(u774) < #
(1+U+T)E 8T (1+U+T)1 €
NOW (lﬂl) and (m) lmply that

k<g,g<1

By Lemma 1], h, h, g, § and their partial derivatives are all uniformly
bounded. Thus, using the same argument as [§], we can show that the
corresponding spacetime is future casually geodecsically complete.

Finally, using the same argument as [8], we have

o] _ 1H)\2
1—g(u,r) < 4#/ Mdr'

r

9 o [~ r’ /
<A4rctz /T (1—|—u+r’)2+2fdr
2?2
< —m—
T e(l+u+r)%

Therefore

e (I4+u+r)
We obtain

1

S <e<1= lim f(l—y) —0.
2 r—oo 2

Hence the Bondi-Christodoulou mass is equivalent to Bondi mass
M(u) = Mp(u).

From [3], we have

(h — h)?dr

Q|

M(u) = 2 /0

2wt a? 1
~ 2—1(1 +u)2€_1'

Therefore,

1
§<e<1:>M1: lim M(u) = 0.

U—00

Thus proof of the theorem is complete. Q.E.D.
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