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Abstract

Bayes’ rule describes how to infer posterior beliefs about latent variables given obser-
vations, and inference is a critical step in learning algorithms for latent variable models
(LVMs). Although there are exact algorithms for inference and learning for certain LVMs
such as linear Gaussian models and mixture models, researchers must typically develop
approximate inference and learning algorithms when applying novel LVMs. In this paper
we study the line that separates LVMs that rely on approximation schemes from those that
do not, and develop a general theory of exponential family, latent variable models for which
inference and learning may be implemented exactly. Firstly, under mild assumptions about
the exponential family form of a given LVM, we derive necessary and sufficient conditions
under which the LVM prior is in the same exponential family as its posterior, such that the
prior is conjugate to the posterior. We show that all models that satisfy these conditions
are constrained forms of a particular class of exponential family graphical model. We
then derive general inference and learning algorithms, and demonstrate them on a variety
of example models. Finally, we show how to compose our models into graphical models
that retain tractable inference and learning. In addition to our theoretical work, we have
implemented our algorithms in a collection of libraries with which we provide numerous
demonstrations of our theory, and with which researchers may apply our theory in novel
statistical settings.

Keywords: Bayesian Inference, Bayesian Smoothing, Expectation-Maximization, Expo-
nential Families

1 Introduction

Latent variable models (LVMs) describe data in terms of observable random variables that
we measure directly, and latent random variables that we do not measure, but that help
explain our observations. The probabilistic formulation of LVMs affords general strategies
for two fundamental operations when applying them: (i) Bayes’ rule describes how to
infer posterior beliefs about latent variables given prior beliefs and observations; and (ii)
the principle of maximum likelihood — or equivalently minimal cross-entropy — reduces
learning to minimizing the cross-entropy of the LVM parameters given the data (Roweis
and Ghahramani, 1999). Because LVMs can often be scaled to achieve arbitrary model
complexity, the central limitation of LVMs is rarely whether they are sufficiently powerful
to model a given dataset, but rather whether inference and learning for a given LVM are
computationally tractable.
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There are numerous techniques for approximate inference and learning with LVMs.
Variational methods are arguably the most general framework (Neal and Hinton, 1998;
Wainwright and Jordan, 2008; Kingma and Welling, 2013), and approaches outside of the
classic variational framework include contrastive divergence (Hinton, 2002) and generative
adversarial networks (Goodfellow et al., 2014; Radford et al., 2015). These techniques have
been used to develop powerful models of hierarchical (Hinton et al., 2006; Salakhutdinov and
Hinton, 2012; Vértes and Sahani, 2018) and dynamic latent structure (Taylor et al., 2011;
Boulanger-Lewandowski et al., 2012; Durstewitz, 2017), which have in turn been applied to
modelling biological neural circuits (Beck et al., 2012), cognitive modelling (Salakhutdinov
et al., 2013; Lake et al., 2015), and image synthesis (Ho et al., 2020).

Nevertheless, there are well-known LVMs for which inference and learning can be
implemented exactly — by exact inference and learning we mean, more or less, that there
is a closed-form expression for the posterior over the latent variables, and that we may
minimize the cross-entropy of the model parameters directly, rather than via a lower-bound
that can introduce approximation errors (Shekhovtsov et al., 2021). For example, there are
closed-form expressions for the posteriors of mixture models and linear Gaussian models
(which includes principle component analysis and factor analysis as special cases), and exact
implementations of expectation-maximization (EM) for training them (see Bishop, 2006).

In this paper we study the boundary that separates models that require approximation
techniques for inference and learning from those that do not, and derive a general theory of
exact learning and inference for a broad class of exponential family LVMs. We begin our
approach by analyzing the conditions under which priors and posteriors over latent variables
share the same exponential family form. In general, priors are known as conjugate priors
when they have the same parametric form as the posterior (Diaconis and Ylvisaker, 1979;
Arnold et al., 1993), and conjugate priors are widely-applied to inferring posteriors over
the parameters of exponential family models. In this study we generalize this notion of
conjugacy to LVMs with priors and posteriors over arbitrary latent variables.

We show that if the likelihood of the observations given the latent variables is exponential
family distributed, then the latent variable prior and posterior are conjugate if and only if
(i) the LVM has a particular exponential-family form, and (ii) the LVM parameters satisfy a
constraint. The exponential-family form in question has a long history (Besag, 1974; Arnold
and Press, 1989; Arnold et al., 2001; Yang et al., 2015; Tansey et al., 2015), and models with
this form have been variously referred to as conditionally specified distributions (Arnold
and Press, 1989), vector space Markov random fields (Tansey et al., 2015), and exponential
family harmoniums (Smolensky, 1986; Welling et al., 2005) — in this paper we refer to
them simply as harmoniums. We then show that for harmoniums, the prior is conjugate
to the posterior if and only if the likelihood satisfies an equation on its exponential family
parameters. We refer to harmoniums that satisfy this equation as conjugated harmoniums.

We show that both mixture models and linear Gaussian models are forms of conjugated
harmonium. Outside of these well-known cases, we also study harmoniums defined variously
in terms of von Mises distributions, products of Poisson distributions, and Boltzmann
machines, and show that they are conjugated under certain conditions. Finally, we show
how to use our theory to construct graphical models out of harmonium components that
retain tractable inference and learning.
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Inference and learning algorithms for LVMs are often developed on a case-by-case basis,
yet we show that many algorithms are special cases of a set of general algorithms for inference
and learning with conjugated harmoniums. This not only facilitates theoretical unification,
but also simplifies the implementation of learning and inference algorithms, as it allows
programmers to implement one set of algorithms for a wide variety of cases. Indeed, we have
developed a collection of Haskell libraries for numerical optimization based on our theory,
and all the models that we demonstrate in this paper were implemented with these libraries
(https://github.com/alex404/goal).

2 Background

In this section we present the necessary background for our theory of exponential family,
latent variable models. We begin with a brief introduction to exponential families, followed
by a review of the theory of exponential family harmoniums, and conclude with how to extend
harmoniums with graphical model structure. We rely on several notational conventions to
help convey our theory, and although we introduce this notation over the course of the text,
we summarize the key features here.

In general, we use Latin letters (e.g. x or z) for observations and latent states, and Greek
letters (e.g. θ or η) for model parameters. We use lowercase letters (e.g. x or θ) to denote
scalars, bold, lowercase letters (e.g. x or θ) to denote vectors, and bold, capital letters
(e.g. X or Θ) to denote matrices and multilinear transformations — when the form of the
variable (e.g. scalar or vector) is not specified, we default to non-bold, lowercase letters. We
use capital, italic letters (e.g. X and Z) to denote random variables, regardless if they are
scalars, vectors, or matrices. Finally, we use calligraphic letters in the latter part of the
Latin alphabet (e.g. X or Z) to denote the sample space of a random variable, and capital
Greek letters (e.g. Θ or H) to denote parameter spaces. Some exceptions to these patterns
include, that we use P and p to denote probability distributions and densities of random
variables, respectively, Q and q to denote model distributions and densities, respectively,
M to denote statistical models. We may denote functions by either Latin or Greek letters
depending on their role.

To indicate that a mathematical object is related to a particular random variable or
sample space, we subscript it with capital, italic letters. For example, PX and pX denote
the probability distribution and density of X, respectively. Similarly, MX is a model on the
sample space X of some random variable X of interest, parameterized e.g. by the space ΘX ,
with contains elements θX ∈ ΘX . We denote the ith element of a vector θ by θi, or e.g. of
the vector θX by θX,i. We denote the ith row or jth column of Θ by θi or θj , respectively,
and always state whether we are considering a row or column of the given matrix. When
referring to the jth element of a vector θi indexed by i, we write θij . Finally, when indexing
data points from a sample/dataset, or parameters that are tied to particular observations,

we use parenthesized, superscript letters, e.g. x(i), or θ
(i)
X .

2.1 Exponential Families

For a thorough development of exponential family theory see Amari and Nagaoka (2007),
and Wainwright and Jordan (2008).
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Consider a random variable X on the sample space X with unknown distribution PX ,
and suppose X(1), . . . , X(n) is an independent and identically distributed sample from
PX . One strategy for modelling PX based on the sample is to first define a “sufficient”
statistic sX : X → HX that captures features of interest about X. We then look for a
probability distribution QX whose expectation of the sufficient statistic EQ[sX(X)] matches
the average of the sufficient statistic over the data 1

n

∑n
i=1 sX(X

(i)), where the expected
value of f(X) under QX is defined by EQ[f(X)] =

∫
X fdQX . To further constrain the space

of possible distributions we also assume that QX maximizes the entropy EQ[− log qX ], where
qX = dQX/dµX is the density function (Radon-Nikodym derivative) of QX with respect to
some base measure µX . Based on these assumptions, it can be shown that qX must have
the exponential family form

log qX(x) = sX(x) · θX − ψX(θX), (1)

where θX are the natural parameters, and ψX(θX) = log
∫
X e

sX(x)·θXdµX(x) is the log-
partition function. We also refer to ηX = EQ[sX(X)] as the mean parameters of qX .

In general, ∂θX
ψX(θX) = EQ[sX(X)] = ηX , so that we may easily identify the mean

parameters ηX of qX given its natural parameters θX . However, the natural parameters θX
for a given density qX might not be unique, in the sense that different natural parameters
might yield the same density function as defined by Equation 1. To address this we may
further assume that the sufficient statistic sX is minimal, in the sense that the component
functions {sX,i}dXi=1 are non-constant and linearly independent, where dX is the dimension
of HX . If the sufficient statistic sX is minimal, then each θX determines a unique density
qX , and ∂θX

ψX is invertible.

A dX -dimensional exponential family MX is thus a manifold of probability densities
defined by a sufficient statistic sX and a base measure µX . The densities in MX can be
identified by their mean parameters ηX or natural parameters θX , and we denote the space
of all mean and natural parameters by HX and ΘX respectively. A minimal exponential
family MX is an exponential family with a minimal sufficient statistic sX , and the parameter
spaces ΘX and HX of a minimal exponential family are isomorphic. In this case, the
transition functions between the two parameter spaces, known as the forward mapping
τX : ΘX → HX and the backward mapping τ−1

X : HX → ΘX , are given by the gradient
τX(θX) = ∂θX

ψX(θX) and its inverse, respectively.

2.2 Exponential Family Harmoniums

An exponential family harmonium is a kind of product exponential family which includes
various LVMs as special cases (Smolensky, 1986; Welling et al., 2005). Given two exponential
families MX and MZ that model the distributions of X and Z, respectively, a harmonium
HXZ is an exponential family that models the joint distribution of X and Z. Where MX

and MZ have base measures µX and µZ , and sufficient statistics sX and sZ , respectively, the
base measure of HXZ is µXZ = µX · µZ , and its sufficient statistic is given by sXZ(x, z) =
(sX(x), sZ(z), sX(x)⊗ sZ(z)), where ⊗ is the outer product operator. In words, sXZ is the
concatenation of all the component functions of sX , sZ , and sX ⊗ sZ . We also note that
HXZ is minimal if both MX and MZ are minimal. More intuitively, HXZ is the exponential
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family that comprises all densities qXZ with the form

log qXZ(x, z) = sX(x) · θX + sZ(z) · θZ + sX(x) ·ΘXZ · sZ(z)− ψXZ(θX ,θZ ,ΘXZ), (2)

where θXZ = (θX ,θZ ,ΘXZ) are the natural parameters of qXZ , and ψXZ is the log-partition
function of HXZ . We refer to the parameters θX and θZ as biases, and ΘXZ as interactions.

Although harmoniums can certainly model the joint distribution of two observable
variables, we focus on the setting where one of the variables is latent, and so it will prove
helpful to begin developing the language of LVMs. From here on out we will assume that
the variables X and Z denote observable and latent random variables, respectively, and we
refer to e.g. sX and sZ as the observable and latent sufficient statistics, and θX and θZ as
the observable and latent biases, respectively.

Harmonium densities have a simple log-linear structure, but their marginal densities do
not. In particular, for qXZ ∈ HXZ with natural parameters θX , θZ , and ΘXZ , it is easy to
show that the observable density is given by

log qX(x) = sX(x) · θX + ψZ(θZ + sX(x) ·ΘXZ)− ψXZ(θX ,θZ ,ΘXZ), (3)

and similarly the prior is given by

log qZ(z) = sZ(z) · θZ + ψX(θX +ΘXZ · sZ(z))− ψXZ(θX ,θZ ,ΘXZ). (4)

In contrast, the conditional densities of a harmonium do inherit a linear structure, and
have the form of generalized linear models (Bishop, 2006; Yang et al., 2012). In particular,
where the likelihood and posterior are defined by qX|Z = qXZ

qZ
and qZ|X = qXZ

qX
, respectively,

we may combine Equations 2, 3, and 4, to conclude that

log qX|Z(x | z) = sX(x) · (θX +ΘXZ · sZ(z))− ψX(θX +ΘXZ · sZ(z)), (5)

and similarly that

log qZ|X(z | x) = sZ(z) · (θZ + sX(x) ·ΘXZ)− ψZ(θZ + sX(x) ·ΘXZ). (6)

When discussing conditional densities we denote e.g. the likelihood qX|Z at z by qX|Z=z, so
that qX|Z=z ∈ MX is the exponential family density with natural parameters θX|Z(z) =
θX +ΘXZ · sZ(z). We also write e.g. qX|Z ∈ MX as short hand for qX|Z=z ∈ MX ,∀z ∈ Z,
to express that qX|Z is always a member of MX for any z.

We defined harmoniums constructively as a product of component exponential families,
but we may also define them intrinsically, as the most general families of densities with
likelihoods and posteriors in pre-specified exponential families.

Theorem 1 Suppose that HXZ is the harmonium defined by the minimal exponential
families MX and MZ , and that qXZ is an arbitrary joint density over the sample space
X×Z with respect to the product measure µXZ = µX ·µZ . Then qX|Z ∈ MX and qZ|X ∈ MZ

if and only if qXZ ∈ HXZ .
Proof See Arnold et al. (2001), Theorem 3.
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The leftward implication ⇐= of this theorem is a trivial consequence of Equations 5
and 6, but the rightward implication =⇒ is rather profound. We effectively suppose
that qXZ has a likelihood and a posterior with exponential family forms qX|Z(x | z) ∝
esX(x)·θX|Z(z) and qZ|X(z | x) ∝ esZ(z)·θZ|X(x) for arbitrary functions θX|Z : Z → ΘX and
θZ|X : X → ΘZ , respectively. Therefore, according to Theorem 1, the mere assumption
that qXZ exists is enough to ensure that θX|Z and θZ|X must have the linear expressions
θX|Z(z) = θX +ΘXZ · sZ(z) and θZ|X(x) = θZ +ΘXZ · sX(x), respectively.

When developing an LVM for a particular statistical problem, there is often an intuitive
choice of exponential family structure for the posterior and likelihood. For example, if we
wish to cluster count data, it is natural to assume that the likelihood should be Poisson
distributed, and the posterior should be a categorically distributed. Based on Theorem 1,
this simple set of assumptions is sufficient to ensure that the proposed LVM is a harmonium.

2.3 Harmonium Graphical Models

More recent work has shown how to generalize the intrinsic characterization of harmoniums to
Markov Random Fields (MRFs), which model multiple random variables with dependencies
represented by a graph (Yang et al., 2015; Tansey et al., 2015). For now we forego the
distinction between observable and latent variables, and consider the collection of random
variables X = X1, . . . , Xn with sample spaces X1, . . . ,Xn, respectively. An MRF represents
the dependencies between X1, . . . , Xn with a graph G = (V,E), where the vertices V =
{1, . . . , n} index the random variables, and the edges E represent local dependencies between
variables. A clique is a set of vertices in which every pair of vertices is connected by an edge,
and the joint density qX of an MRF can be factorized over its cliques so that

qX(x) ∝
∏

C∈C(G)

fC(xC), (7)

where xC = {xi : i ∈ C} is the set of variables indexed by the clique C, fC are the clique
potentials, and C(G) is the set of all cliques on the graph G.1

For each clique C, let ci ∈ C denote the ith index in C in ascending order. Given a
set of exponential families MX1 , . . . ,MXn on the sample spaces X1, . . . ,Xn, we define a
harmonium graphical model (HGM) over X1, . . . , Xn as the exponential family HG

X with

base measure µX = µXi · · ·µXn and sufficient statistic sGX = (
⊗|C|

i=1 sXci
)
C∈C(G)

— in words,

the flattened outer product between every random variable indexed by the given clique,
concatenated over all cliques. More intuitively, HG

X contains all densities of the form

log qX(x) ∝
∏

C∈C(G)

e
ΘC

X

((
sXci

(xci )
)|C|

i=1

)
, (8)

where each ΘC
X : HXc1

× · · · ×HXc|C|
→ R is a multilinear function of the sufficient statistics

sXci
for every ci ∈ C, that represents the interactions between the random variables

XC = {Xi : i ∈ C} indexed by C. We refer to ΘC
X as the clique-wise interaction map, and

note that it is proportional to the logarithm of the clique potential fC .

1. Note that we specifically assume that C(G) includes all cliques, not only the maximal ones.
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To express the conditional densities of an HGM HG
X , we first note that the conditional

density of any Xi depends only on its neighbours, namely the random variables indexed by
N(i) = {j ∈ V : {i, j} ∈ E}. The local structure of these dependencies is determined by
the cliques that contain i, which we denote by Ci(G) = {C ∈ C(G) : i ∈ C}. Given these
definitions, we may express the conditional density of each Xi as

qXi|XN(i)
(xi | xN(i)) ∝

∏
C∈Ci(G)

e
ΘC

X

((
sXcj

(xcj )
)|C|

j=1,cj ̸=i

)
. (9)

In this equation observe that we apply ΘC
X to the sufficient statistics of every xcj indexed

by C except for xi. The omission of sXi(xi) from the arguments of ΘC
X ensures that the

return value of ΘC
X

((
sXcj

(xcj )
)|C|
j=1,cj ̸=i

)
is a vector in the parameter space ΘXi .

With the definitions of the joint and conditional densities of an HGM in place, we may
now express its intrinsic definition.

Theorem 2 Suppose HG
X is the HGM defined by the graph G and the minimal exponential

families MX1 , . . . ,MXn, and that qX is an arbitrary joint density over the sample space
X1 × · · · ×Xn with respect to the product measure µX = µX1 · · · · ·µXn . Then the conditional
densities qXi|XN(i)

∈ MXi for all i if and only if qX ∈ HG
X .

Proof See Tansey et al. (2015), Theorem 1.

Figure 1: Graphical models

To help us disambiguate HGMs from the “standard”
harmonium we developed in Section 2.2, we refer to fam-
ilies of densities of the form Equation 2 as bivariate har-
moniums when necessary, and note that the observable
and latent variables may nevertheless be vector-valued.

Bivariate harmoniums can be formulated as special
cases of HGM. In particular, we may derive Equation 2
from Equation 8 by representing a bivariate harmonium
HG
XZ with the graph G = ({1, 2}, {{1, 2}}) that contains

two vertices and a single edge between them (Fig. 1a).
The clique set of G is then C(G) = {{1}, {2}, {1, 2}},
so that the parameters of a given density qXZ ∈ HG

XZ

are Θ
{1}
X , Θ

{2}
Z , and Θ

{1,2}
XZ , which correspond to the

observable biases, the latent biases, and the interaction
matrix, respectively. In Figure 1b we depict an example
HGM with 3rd-order interactions. In Section 3.4.2 we will
explore, conversely, how to interpret HGMs as forms of
bivariate harmonium over observable and latent variables.

3 Results

Having reviewed the mathematical foundations, we now present our unified theory of exact
inference and learning in exponential family, latent variable models. We first develop the
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fundamental theorems of conjugated harmoniums. We then review several established models
that can be formulated as conjugated harmoniums, and continue by showing how to fit
conjugated harmoniums to data using of variety of algorithms. Finally, we extend our theory
to models with graphical model structure, and show how to compose conjugated harmoniums
into graphical models that retain tractable inference and learning.

3.1 Conjugated Harmoniums and Conjugating Likelihoods

The likelihood qX|Z and posterior qZ|X of a harmonium density qXZ have simple linear
structures, and are always in the exponential families MX and MZ , respectively. In
general, however, the observable density qX and prior qZ are not members of MX and
MZ , respectively. This is both a blessing and a curse, as on one hand, this allows the set
of all observable densities to represent more complex distributions than the simpler set
MX . On the other hand, because the prior may not be computationally tractable, various
computations with harmoniums, such as sampling, learning, and inference, may also prove
intractable.

3.1.1 Conjugated Harmoniums

Ideally, the set of observable densities would be more complex than MX to ensure maximum
representational power, while the priors would remain in MZ to facilitate tractability.
Perhaps surprisingly, some classes of harmoniums do indeed have this structure. In general,
a prior and posterior are said to be conjugate if they have the same form. In the context of
a harmonium density qXZ , since the harmonium posterior qZ|X ∈ MZ by construction, the
harmonium prior and posterior are conjugate if qZ ∈ MZ .

Definition 3 (Conjugated Harmonium) Where HXZ is a harmonium defined by MX

and MZ , a harmonium density qXZ ∈ HXZ is conjugated if qZ ∈ MZ , and the harmonium
HXZ is conjugated if every qXZ ∈ HXZ is conjugated.

Trivially, any qXZ ∈ HXZ with parameters θX , θZ , and ΘXZ is conjugated if the
interactions ΘXZ = 0. This follows directly from Equation 4, and corresponds to the case
where qX and qZ are independent — unfortunately, by the same logic, qX ∈ MX and so
such a model offers no additional representational power. With the following lemma — the
Conjugation Lemma — we present a necessary and sufficient condition on the parameters of
qXZ that ensures conjugation, yet which allows for qX not to be in MX .

Lemma 4 (The Conjugation Lemma) Suppose that HXZ is a harmonium defined by
the exponential families MX and MZ , and that qXZ ∈ HXZ has parameters (θX ,θZ ,ΘXZ).
Then qXZ ∈ HXZ is conjugated if and only if there exists a vector ρ and a scalar χ such that

ψX(θX +ΘXZ · sZ(z)) = sZ(z) · ρ+ χ, (10)

for any z ∈ Z.
Proof On one hand, if we assume that qZ ∈ MZ with parameters θ∗

Z , then

qZ(z) ∝ eθZ ·sZ(x)+ψX(θX+ΘXZ ·sZ(z)) ∝ eθ
∗
Z ·sZ(z)

=⇒ θZ · sZ(z) + ψX(θX +ΘXZ · sZ(z)) = θ∗
Z · sZ(z) + χ

=⇒ ψX(θX +ΘXZ · sZ(z)) = sZ(z) · ρ+ χ.

8
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for some χ, and ρ = θ∗
Z − θZ .

On the other hand, if we first assume that Eq. 10 holds, then qZ is given by

qZ(z) ∝ eθZ ·sZ(z)+ψX(θX+ΘXZ ·sZ(z)) ∝ e(θZ+ρ)·sZ(z), (11)

which implies that qZ ∈ MZ with parameters θZ + ρ.

Most of the computations and algorithm in our theory of conjugation involve operations
on the parameters ρ and χ, and we refer to them as the conjugation parameters. We
introduce two of these simpler computations with the following corollaries.

Corollary 5 Suppose that HXZ is a harmonium defined by the exponential families MX and
MZ , and that qXZ ∈ HXZ with parameters (θX ,θZ ,ΘXZ) is conjugated with conjugation
parameters ρ and χ. Then the parameters θ∗

Z of qZ ∈ MZ are given by

θ∗
Z = θZ + ρ. (12)

Proof This follows from the second part of the proof of Lemma 4.

This corollary shows that given the conjugation parameters, marginalizing the observable
variables out of a conjugated harmonium density qXZ reduces to vector addition. Assuming
we can sample from densities in MX and MZ , Corollary 5 also shows us that we may sample
any conjugated qXZ ∈ HXZ by first sampling from qZ ∈ MZ , and then qX|Z ∈ MX .

Corollary 6 Suppose that HXZ is a harmonium defined by the exponential families MX

and MZ , that qXZ ∈ HXZ with parameters (θX ,θZ ,ΘXZ) is conjugated with conjugation
parameters ρ and χ, and that qZ ∈ MZ has parameters θ∗

Z . Then the log-partition function
ψXZ satisfies

ψXZ(θX ,θZ ,ΘXZ) = ψZ(θ
∗
Z) + χ, (13)

where ψZ is the log-partition function of MZ .

Proof Suppose qXZ ∈ HXZ is conjugated with conjugation parameters ρ and χ. Then by
substituting Equation 10 into Equation 4, qZ(z) = eθZ ·sZ(z)+ρ·sZ(z)+χ−ψXZ(θX ,θZ ,ΘXZ), and
by Corollary 5 we know that qZ(z) = eθ

∗
Z ·sZ(z)−ψZ(θ∗

Z), where θ∗
Z = θZ + ρ. Therefore

qZ(z) = eθ
∗
Z ·sZ(z)−ψZ(θ∗

Z)

= eθZ ·sZ(z)+ρ·sZ(z)+χ−ψXZ(θX ,θZ ,ΘXZ)

⇐⇒ ψXZ(θX ,θZ ,ΘXZ) = (θZ + ρ− θ∗
Z) · sZ(z) + ψZ(θ

∗
Z) + χ

= ψZ(θ
∗
Z) + χ.

9
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The log-partition function ψZ of MZ will often be tractable, which means that various
computations that rely on ψXZ , such as evaluating the observable density qX (Eq. 3), are
also tractable. In particular, given the conjugated harmonium density qXZ ∈ HXZ with
natural parameters θX , θZ , and ΘXZ , and conjugation parameters ρ and χ, we may combine
Equations 3 and 13 to conclude that

log qX(x) = sX(x) · θX + ψZ(θZ + sX(x) ·ΘXZ)− ψZ(θZ + ρ)− χ. (14)

We may use Equation 13 to finesse the problem we laid out at the beginning of the section:
on one hand, the observable density qX of a conjugated harmonium density (Eq. 14) is not
generally in MX , and yet on the other hand it is computable up to the computability of ψZ .

3.1.2 Conjugating Likelihoods

The left hand side of Equation 10 is simply the log-partition function of the likelihood qX|Z
(Eq. 5) of a harmonium density qXZ , and it can be more natural to interpret conjugation as
a property of the likelihood qX|Z rather than the complete joint density qXZ . Indeed, we
may generalize the Conjugation Lemma by first considering an exponential family likelihood
function fX|Z : Z → MX that does not presuppose a probabilistic structure over Z. We
then choose a family of priors MZ , so that given a particular prior qZ ∈ MZ , we define the
posterior qZ|X using Bayes’ rule as

qZ|X(z | x) ∝ fX|Z(x | z)qZ(z). (15)

From this perspective we may consider families of conjugate priors for a fixed likelihood.

Definition 7 (Conjugate Prior Family) The exponential family MZ is a conjugate prior
family for the likelihood fX|Z : Z → MX if the posterior qZ|X ∈ MZ for any prior qZ ∈ MZ ,
where the posterior is defined by Bayes’ rule (Eq. 15).

We may then generalize the conditions of the Conjugation Lemma to arrive at what we
refer to as the Conjugation Theorem.

Theorem 8 (The Conjugation Theorem) Suppose that MX and MZ are exponential
families with minimal sufficient statistics sX and sZ , respectively, and that fX|Z : Z → MX ,
where Z is the sample space of MZ . Then MZ is a conjugate prior family for the likelihood
fX|Z if and only if fX|Z has the form

fX|Z(x | z) = esX(x)·(θX+ΘXZ ·sZ(z))−sZ(z)·ρ−χ, (16)

for some conjugation parameters χ and ρ.

Proof For =⇒ , suppose MZ is a conjugate prior family for fX|Z . Where qXZ = fX|Z · qZ
for some qZ ∈ MZ , the likelihood of qXZ is fX|Z , and its posterior qZ|X is given by Bayes’
rule (Eq. 15). Since fX|Z ∈ MX and qZ|X ∈ MZ by assumption, Theorem 1 implies that
qXZ is in the harmonium HXZ defined by MX and MZ , which implies that fX|Z has the
form of Equation 5. Finally, since qZ ∈ MZ , Equation 10 holds according to the Conjugation
Lemma (Lm. 4), and Equation 16 follows directly by combining Equations 5 and 10.

10
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For ⇐= , if Equation 16 holds, then for any qZ ∈ MZ with parameters θ∗
Z ,

qZ|X(z | x) ∝ fX|Z(x | z)qZ(z)

= esX(x)·θX+sX(x)·ΘXZ ·sZ(z)−sZ(z)·ρ−χesZ(z)·θ∗
Z

∝ esZ(z)·(θ∗
Z−ρ+sX(x)·ΘXZ),

which implies qZ|X ∈ MZ .

For the Conjugation Lemma we assume that the joint density qXZ in question has the
exponential family structure of a harmonium density. For the Conjugation Theorem, on
the other hand, we merely assume that the likelihood in question fX|Z is exponential family
distributed, and from that it follows that fX|Z must have the form of Equation 16 to support
conjugate priors. Likelihoods with this form are important enough to earn a name.

Definition 9 (Conjugating Likelihood) Where MX is an exponential family and Z is a
sample space, fX|Z : Z → MX is a conjugating likelihood if its has the form of Equation 16.

We may intuitively interpret Bayes’ rule as a function defined by the likelihood, where
the prior is the input and the posterior is the output. If the prior is conjugate to the
posterior, then Bayes’ rule can be reapplied using the posterior as a new input, and this
pattern will allow us to develop recursive algorithms for Bayesian inference (Sec. 3.4.1).
Given a conjugating likelihood and a density from a conjugate prior family, the posterior
has a simple expression.

Corollary 10 Suppose that fX|Z is a conjugating likelihood with natural parameters θX
and ΘXZ and conjugation parameters ρ and χ, that MZ is a conjugate prior family for
fX|Z , and that the prior qZ ∈ MZ has parameters θ∗

Z . Then the posterior qZ|X=x ∈ MZ

has parameters
θZ|X(x) = θ∗

Z + sX(x) ·ΘXZ − ρ. (17)

Proof See the proof of Theorem 8.

Our last corollary for this section details exactly how the parameters of a conjugated
harmonium relate to those of a conjugating likelihood.

Corollary 11 Let HXZ be the harmonium defined by MX and MZ . Then qXZ ∈ HXZ is
a conjugated harmonium density with natural parameters θX , θZ , and ΘXZ and conjugation
parameters ρ and χ, if and only if qX|Z is a conjugating likelihood with natural parameters
θX and ΘXZ and conjugation parameters ρ and χ, and the prior qZ ∈ MZ with parameters
θ∗
Z = θZ + ρ.

Proof For =⇒ we apply Equation 10 to the harmonium likelihood (Eq. 5).
For ⇐= we multiply the definitions of the conjugating likelihood and prior and see that

qX|Z(x | z) · p(z) ∝ esX(x)·θX+sX(x)·ΘXZ ·sZ(z)−sZ(z)·ρ+sZ(z)·(θZ+ρ) ∝ qXZ(x, z).

11



Sokoloski

3.2 A Collection of Conjugated Harmoniums

In this section we review a variety of well-known models, show how they can be expressed
as harmoniums, and derive the conditions under which they are conjugated. In particular,
mixture models and linear Gaussian models are two classes of LVM for which inference
and learning are broadly solvable in closed-form. We show that both of these LVMs are
forms of conjugated harmonium, and how to generalize them in novel ways. We next
develop a theory of conjugation for LVMs with likelihoods based on products of Poisson
distributions, that generalizes previous results on probabilistic computation in biological
neural circuits (Ma et al., 2006; Beck et al., 2011). We conclude by showing how Bayesian
estimation of exponential family parameters is a special case of our inference framework.

3.2.1 Mixture Models

A mixture model describes the statistics of observations with a weighted sum of component
models. We can interpret this sum as the observable density qX of the LVM qXK = qX|K ·qX ,
by equating the likelihood qX|K=k at each k with one of the mixture components, and
the prior qK with the weights. The posterior qK|X=x of qXK is then a set of weights that
provides a soft classification of the observation x.

The dK-dimensional categorical exponential family MK contains all densities over indices
from 0 to dK . It is defined by the base measure µK(k) = 1, and the sufficient statistic given
by a “one-hot” vector, where sK(0) = 0, and for k > 0, sK,i(k) = 1 if i = k, and 0 otherwise.
Because the posterior of a mixture model qK|X is a density over indices, it must be in MK .
If then we assume that the likelihood qX|K ∈ MX for a chosen exponential family MX over
X, then qXK is an element of the harmonium HXK defined by MX and the categorical
family MK (Thm. 1). Moreover, the harmonium HXK is conjugated.

Theorem 12 Let HXK be the harmonium defined by MX and MK , where MK is the
categorical family of dimension dK . Then HXK is conjugated, and the conjugation parameters
of any qXK ∈ HXK are given by

ρi = ψX(θX + θXK,i)− ψX(θX),

χ = ψX(θX), (18)

where (θX ,θK ,ΘXK) are the parameters of qXK , and θXK,i is the ith column of ΘXK .

Proof We must show that for any k ∈ K, Equation 10 is satisfied for some χ and ρK . For
k = 0,

ψX(θX +ΘXK · sK(k)) = sK(k) · ρK + χ

⇐⇒ χ = ψX(θX).

For k > 0,

ψX(θX +ΘXK · sK(k)) = sK(k) · ρK + χ

⇐⇒ ψX(θX + θXK,i) = ρK,i + χ

⇐⇒ ρK,i = ψX(θX + θXK,i)− χ.

12
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Figure 2: A mixture of normal densities. a: The three component densities qX|K=0 (red
line), qX|K=1 (blue line), and qX|K=2 (green line) of a mixture of normal densities
qXK . b: The mixture density qX of qXK (brown line), and three observations
x(1), (circle) x(2) (square), and x(3) (diamond). c: The exponential family MK

(simplex) of categorical densities over 3 states (coloured points), and the weights
(0.5, 0.2, 0.3) of qK (brown dot). d: The weights (dot colour) of the posterior
densities qK|X=x(1) (circle), qK|X=x(2) (square), and qK|X=x(3) (diamond).

The conjugation parameters defined by Equations 18 thus satisfy the Conjugation Equation
(Eq. 10) for any k ∈ K.

In Figure 2 we demonstrate a simple mixture of normal densities qXK . Although such a
mixture model is far from novel, it exemplifies key features of conjugated harmoniums that
we will generalize to more complex models. In particular, the likelihood qX|K ∈ MX for
each k ∈ {0, 1, 2} (Fig. 2a), yet the observable density qX is not in MX (Fig. 2b). On the
other hand, both the prior (Fig. 2c) and the posterior (Fig. 2d) are in MK . In Section 3.4.4
we use a mixture model as a component of a graphical model.

3.2.2 Linear (Gaussian) Models

A linear Gaussian model (LGM) GXZ is a set of n +m dimensional multivariate normal
densities over observable and latent variables X and Z. Where MX and MZ are the n and
m dimensional multivariate normal families, respectively, the analytic properties of normal
densities ensures that for any qXZ ∈ GXZ , both the likelihood qX|Z and observable density
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qX are in MX , and the posterior qZ|X and prior qZ are in MZ (Bishop, 2006). Because
qX ∈ MX , the GXZ has no additional representational power over MX , and so we typically
assume additional constraints on the parameters of GXZ . For example, Factor analysis (FA)
and principal component analysis (PCA) are forms of LGM that assume that MX is the
family of multivariate normals with diagonal or isotropic covariance matrices, respectively —
consequently, the observable densities for FA and PCA may have non-diagonal covariance
matrices and lay outside of MX . These assumptions allow FA and PCA to effectively model
high dimensional observations X, where an unconstrained multivariate normal model would
suffer from the curse of dimensionality.

The exponential family of n-dimensional multivariate normal densities MX is defined
by the base measure µX(x) = (2π)−

n
2 and sufficient statistic sX(x) = (x, low(x ⊗ x)),

where low(A) is the lower triangular part of the given matrix A (this construction ensures
the minimality of sX). We can partition the natural parameters θX of any qX ∈ MX

into θX = (θmX ,θ
σ
X), such that θmX and θσX weight the statistics x and low(x ⊗ x) in the

exponential family form of qX (Eq. 1). We can also define the so-called precision matrix
Θσ
X such that θX · sX(x) = x · θmX + x ·Θσ

X · x by converting θσX into a lower triangular
matrix ΘL

X , and letting Θσ
X = 1

2(Θ
L
X +ΘU

X), where ΘU
X is the transpose of ΘL

X .

For any qXZ ∈ GXZ , both qX|Z ∈ MX and qZ|X ∈ MZ , and LGMs are therefore subsets
of the harmonium HXZ defined by MX and MZ (Thm. 1). However, the harmonium
HXZ also contains densities with interactions between the second-order statistics of X
and Z, whereas the likelihoods and posteriors of a linear Gaussian model GXZ model only
homoscedastic (first-order) interactions. GXZ is thus the subset of HXZ for which all
second-order interactions θXZ,ij are 0. Moreover, the densities in this subset are conjugated.

Theorem 13 Let HXZ be a harmonium defined by the exponential families MX and MZ ,
where MX is the multivariate normal family, and the sufficient statistic of MZ is given by
sZ(z) = (z, low(z⊗ z)). Then qXZ ∈ HXZ is conjugated if

ΘXZ =

(
Θm
XZ 0
0 0

)
, (19)

with conjugation parameters χ, ,ρmZ , and Pσ
Z given by

χ = −1

4
θmX ·Θσ

X
−1 · θmX − 1

2
log | − 2Θσ

X |,

ρmZ = −1

2
Θm
ZX ·Θσ

X
−1 · θmX ,

Pσ
Z = −1

4
Θm
ZX ·Θσ

X
−1 ·Θm

XZ , (20)

where Θm
ZX is the transpose of Θm

XZ , and ρmZ Pσ
Z are the conjugation parameters of the

precision-weighted means θmX and precision matrix Θσ
Z , respectively.

Proof The log-partition function of a multivariate normal family MX is given by

ψX(θ
m
X ,Θ

σ
X) = −1

4
θmX ·Θσ

X
−1 · θmX − 1

2
log | − 2Θσ

X |.
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Assuming Equation 19 holds, we may express the LHS of Equation 10 as

ψX(θX +ΘXZ · sZ(z)) = ψX(θ
m
X +Θm

XZ · z,Θσ
X)

= −1

4
(θmX +Θm

XZ · z) ·Θσ
X

−1 · (θmX +Θm
XZ · z)− 1

2
log | − 2Θσ

X |,

and the RHS as
sZ(z) · ρ+ χ = z · ρmZ + z ·Pσ

Z · z+ χ,

so that

z · ρmZ + z ·Pσ
Z · z+ χ =− 1

2
z ·Θm,⊤

XZ ·Θσ
X

−1 · θmX

− 1

4
z ·Θm,⊤

XZ ·Θσ
X

−1 ·Θm
XZ · z

− 1

4
θmX ·Θσ

X
−1 · θmX − 1

2
log | − 2Θσ

X |,

which is clearly solved by Equations 20.

Theorem 13 also be applies in cases where MZ is not a multivariate normal family, as long
as its sufficient statistic is given by sZ(z) = (z, low(z⊗ z)). One example of such families are
Boltzmann machines (Ackley et al., 1985), which model the second-order statistics between
binary random variables, typically called binary neurons. Gaussian-Boltzmann machines
have been previously explored for modelling the joint density of continuous stimuli and
neural recordings (Gerwinn et al., 2009), and here we demonstrate how they can serve as
tractable latent variable models (Fig. 3).

We consider a Gaussian-Boltzmann harmonium HXZ defined by the bivariate normal
family MX and the family of Boltzmann distributions MZ with 6 neurons. We learn
qXZ ∈ HXZ by fitting the model to a synthetic dataset generated from two, noisy concentric
circles (Fig. 3a). Analogous to a mixture model, we consider a set of “component” densities
by evaluating the likelihood qX|Z=z(i) at the one-hot vectors z(i) for each neuron i, such that

z
(i)
j = 1 if i = j, and 0 otherwise (Fig. 3a). Although each qX|Z=z(i) has the same bivariate
normal shape, the observable density qX is not in the family of bivariate normals, and
successfully captures the concentric circle structure (Fig. 3b). The correlation matrix of the
prior qZ ∈ MZ reveals how the population of neurons encodes the concentric circles (Fig. 3c).
Similarly, the moment matrices EQ[Z ⊗ Z | X = x(i)] of the posterior qZ|X=x(i) ∈ MZ at 4

example observations x(i) demonstrates how qXZ encodes each point within the concentric
circles by activating and correlating certain subsets of neurons, which mixes and distorts the
components qX|Z=z(i) (Fig. 3d). We cover how we trained this model in Section 3.3.

3.2.3 Probabilistic Population Codes

Neuroscientists often model the spiking activity of populations of neurons as random vectors
of counts N = (N1, . . . , NdN ), where each Ni is the spike count of a single neuron. These
spike counts may also depend on a stimulus or environmental variable Z, and theories of
probabilistic population coding use the framework of Bayesian inference to explain how the
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Figure 3: A Gaussian-Boltzmann model. a: Training data (blue dots) used to learn a
Gaussian-Boltzmann density qXZ , and confidence ellipses (coloured circles) of the
likelihoods qX|Z=z(i) given one-hot vectors z(i) (neuron index indicated by “N. i”).

b: Observable density qZ , and example observations x(1), . . . ,x(4) (green shapes).
c: Correlation matrix of the prior qZ . d: Moment matrices EQ[Z ⊗ Z | X = x(i)]
of the posteriors for each example observation (labelled by green shape).

neural activity N encodes and processes information about Z. In particular, researchers have
found that, under certain conditions, stimulus-dependent models with Poisson-distributed
spike counts can support optimal Bayesian inference (Ma et al., 2006; Beck et al., 2011). As
we next show, these conditions are special cases of the Conjugation Lemma (Thm. 4).

The family of Poisson distributions PNi is defined by the sufficient statistic sNi(n) = n
and base measure µNi(n) =

1
n! . By extension, the family of independent Poisson product

distributions MN is defined by the sufficient statistic sN (n) = n and base measure µN (n) =(∏dN
i=1 ni!

)−1
. Every density qN ∈ MN can be factored into qN = qN1 · · · qNdN

where each
qNi ∈ PNi is a Poisson distribution. In the context of neuroscience we define a population
code for a stimulus Z as a joint density qNZ . We refer to the mean spike-count EQ[Ni]
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of Ni under Q as the firing rate, and its stimulus dependent firing-rate EQ[Ni | Z] as its
tuning curve. Population codes are typically specified so that the likelihood qN |Z of a
population code is in the Poisson product family MN , and the posterior qZ|N is in some
chosen exponential family MZ over the stimulus. Such a population code qXZ is thus an
element of the harmonium HNZ defined by MN and MZ (Thm. 1). Moreover, under certain
conditions on the sum of tuning curves, such population codes are approximately conjugated.

Theorem 14 Let HNZ be a harmonium defined by MN and MZ , where MN is the Poisson
product family. Then qNZ ∈ HNZ is conjugated with conjugation parameters ρ and χ if it
satisfies

dN∑
i=1

EQ[Ni | Z = z] = ρ · sZ(z) + χ. (21)

Proof Firstly, note that the log-partition function of a Poisson exponential family MNi is
given by ψNi(θNi) = eθNi , which implies ψNi(θNi) = ∂θNi

ψNi(θNi) = EQ[Ni]. Moreover, the

mutual independence of the random counts Ni implies that ψN (θN ) =
∑dN

i=1 ψNi(θN,i), and

therefore that ψN (θN ) =
∑dN

i=1 EQ[Ni].
Now, suppose qNZ ∈ HNZ has natural parameters (θN ,θZ ,ΘNZ). Then the likelihood

qN |Z=z ∈ MN has natural parameters θN +ΘNZ · sZ(z), so that ψN (θN +ΘNZ · sZ(z)) =∑dN
i=1 EP [Ni | Z = z]. Therefore, if Equation 21 holds,

ρN · sN (n) + χ =

dN∑
i=1

EP [Ni | Z = z] = ψN (θN +ΘNZ · sZ(z)),

and therefore by the Conjugation Lemma (Thm. 4), qNZ is conjugated with conjugation
parameters ρ and χ.

The canonical neural population code that supports exact Bayesian inference has Gaussian
tuning curves that sum to a constant (Ma et al., 2006), and Equation 10 generalizes this
constraint by allowing the sum to depend on the sufficient statistics of z. Unlike Theorems 12
and 13, the result of Theorem 14 does not specify a manifold of probability densities that
exactly satisfy Equation 10. Nevertheless, depending on the choice of MZ , tuning curves
often have simple (e.g. von Mises or Gaussian) shapes, and serve well as basis functions, so
that ensuring that the sum of the tuning curves is an affine function of sZ(z) can be easily
achieved with a sufficient numbers of model neurons.

We demonstrate conjugated population codes with a model of how the spike counts
N1, . . . , N8 of 8 neurons can encode the location of an oriented stimulus (Fig. 4). We model
the joint density of N and Z with the harmonium MNZ defined by the Poisson product
family MN with dN = 8 Poisson neurons, and the von Mises family MZ , which is defined
by the sufficient statistic sZ = (cos z, sin z), and base measure µZ(z) =

1
2π . We choose a

population code qNZ ∈ HNZ , and demonstrate that it is approximately conjugated by fitting
a function of the form ρ1 cos z + ρ2 sin z + χ to the sum of its tuning curves (Fig. 4a). We
also find that the observable density qN is not an element of MN , and rather describes a
regular pattern of correlations between the neurons (Fig. 4b). Nevertheless, the prior qZ is
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Figure 4: Conjugation with population codes. The population code qNZ is a density over 8
spike counts Ni and an oriented stimulus Z. a: Tuning curves EQ[Ni | Z] (black
lines), their sum (light green line), and fit of the conjugation parameters (dashed
green line) to the sum. b: Correlation matrix of qN , with neuron identified by
tuning curve peak (preferred stimulus). c: Population code prior qZ (black line),
and two example stimuli z(1) and z(2) (red and blue lines). d: Example spike
count vectors N (i) ∼ qN |Z=z(i) (red and blue line-dots), and posteriors qZ|N=N(i)

(red and blue lines).

in MZ (Fig. 4c). Finally, given spike counts generated in response to a stimulus, we use
the posterior qZ|N to decode accurate von Mises densities over stimulus orientation, while
accounting for prior beliefs about stimulus orientation (Fig. 4d).

3.2.4 Bayesian Parameter Estimation

The final harmonium we consider returns us to the conceptual origins of conjugate priors, in
which we infer posteriors over the parameters of exponential family models. In particular,
we show how such models are special cases of conjugated harmonium, and thereby clarify
the relationship between our theory and the well-established theory of Bayesian parameter
estimation.

Bayesian inference over exponential family natural parameters begins by simply treating
the parameters of an exponential family as a latent random variable Z (Diaconis and
Ylvisaker, 1979; Arnold et al., 1993). A classic result in Bayesian parameter estimation is
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that any exponential family MX has a conjugate prior family MZ with sufficient statistic
sZ(z) = (z, ψX(z)), where ψX is the log-partition function of MX .

Theorem 15 Suppose MX is a dX-dimensional exponential family, and let MZ be the
dX + 1-dimensional exponential family with sample space Z = ΘX , and sufficient statistic
given by sZ(z) = (z, ψX(z)) for any z ∈ ΘX . Then qXZ ∈ HXZ is conjugated if θX = 0,
and

ΘXZ =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 (22)

Proof Suppose θX = 0 and ΘXZ is given by Eq. 22. Then

ψX(θX +ΘXZ · sZ(z)) = ψX(z) = sZ(z) · ρ+ χ,

where ρ = (0, 0, . . . , 0, 1) and χ = 0. Therefore qXZ is conjugated by Lemma 4.

Although this provides a general solution to Bayesian parameter estimation, in practice
the resulting exponential families are often intractable, and many exponential families have
alternative conjugate priors with more tractable forms. We explore one example of such a
conjugate prior in Section 3.4.1.

3.3 Training Harmoniums

Harmoniums affords simple, yet general expressions for LVM training algorithms within the
framework of log-likelihood maximization, or equivalently, cross-entropy minimization — in
this paper we favour the terminology of cross-entropy minimization to avoid any confusion
of our training objective with the likelihood qX|Z of an LVM density qXZ . In general, where
qX is a parametric density over observable variable X with parameters θ, the cross-entropy
objective is

1

n

n∑
i=1

L(X(i),θ) = − 1

n

n∑
i=1

log qX(X
(i)), (23)

where X(1), . . . , X(n) is a sample from PX , and L(X(i),θ) = − log qX(X
(i)) is the pointwise

cross-entropy.

When qX is an element of some exponential family MX with parameters θX , then
L(X(i),θ) = −sX(X

(i)) · θX + ψX(θX). Moreover, 1
n

∑n
i=1 LX is a convex function on the

natural parameter space ΘX of MX , and its optimum is given by τ−1
X (− 1

n

∑n
i=1 sX(X

(i))),
where τ−1

X is the backward mapping of MX (Wainwright and Jordan, 2008). However, for
a harmonium density qXZ ∈ HXZ , the observable density qX is not generally in MX , and
accounting for the latent variable Z in the optimization necessitates additional analysis.
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3.3.1 Expectation-Maximization

EM is arguably the standard algorithm for minimizing the cross-entropy of an LVM. For an
arbitrary exponential family MXZ over a X and Z, defined by the sufficient statistic sXZ
and base measure µXZ , the E-Step of EM is to calculate the conditional sufficient statistics

η
(i)
XZ = EQ[sXZ(X,Z) | X = X(i)], (24)

for a given qXZ ∈ MXZ (Wainwright and Jordan, 2008). If the exponential family is a
harmonium HXZ defined by MX and MZ , and qXZ ∈ HXZ with parameters θX , θZ , and

ΘXZ , then the conditional sufficient statistics η
(i)
XZ = (η

(i)
X ,η

(i)
Z ,H

(i)
XZ), are given by

η
(i)
X = sX(X

(i)),

η
(i)
Z = τZ(θZ + sX(X

(i)) ·ΘXZ),

H
(i)
XZ = sX(X

(i))⊗ η
(i)
Z , (25)

for every i, where τZ is the forward mapping of MZ .

The objective of the M-Step of EM for an exponential family LVM is to minimize the
cross-entropy loss (Eq. 23) of the joint density qXZ , where we use the conditional sufficient
statistics of Equation 24 to fill in the missing data. The M-Step objective function is thus

1

n

n∑
i=1

L(η(i)
XZ ,θXZ) = − 1

n

n∑
i=1

η
(i)
XZ · θXZ − ψXZ(θXZ). (26)

This is again a convex optimization problem, and its solution is given by the backward
mapping, so that

argmin
θXZ

1

n

n∑
i=1

L(η(i)
XZ ,θXZ) = τ−1

XZ(
1

n

n∑
i=1

η
(i)
XZ), (27)

where τ−1
XZ is the backward mapping of MXZ (or HXZ in the harmonium case). The EM

algorithm thus minimizes the cross-entropy by iteratively updating the model parameters
with Equations 24 and 27. As such, we can implement exact EM for a harmonium HXZ as
long as we can evaluate τZ and τ−1

XZ . This is in fact the case for mixture models and linear
Gaussian models, but certainly not in general, and so we must derive additional approaches
for when the harmonium is less analytically tractable.

3.3.2 Gradient Descent

The tractability of exact EM for a harmonium HXZ reduces to the tractability of the forward
mapping τZ and the backward mapping τ−1

XZ , and it is often the case that while τZ is
tractable, τ−1

XZ is not. An alternative training algorithm that avoids computing τ−1
XZ is

cross-entropy gradient descent (CE-GD). To implement CE-GD for qXZ ∈ HXZ with natural
parameters (θX ,θZ ,ΘXZ), we first compute the conditional expectations (Eq. 25), and then
the model expectations (ηX ,ηZ ,HXZ) = τXZ(θX ,θZ ,ΘXZ) using the forward mapping
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Algorithm EM CE-GD EM-GD CE-MCGD EM-MCGD

Condition τZ , τ
−1
XZ τZ , τXZ τZ , τXZ Z ∼ qZ , X ∼ qX|Z Z ∼ qZ , X ∼ qX|Z

Table 1: Necessary computations for proposed algorithms

τXZ . The gradients of L(X(i),θXZ) with respect to the natural parameters of qXZ are then
given by

∂θX
L(X(i)

XZ ,θXZ) = ηX − η
(i)
X ,

∂θZ
L(X(i)

XZ ,θXZ) = ηZ − η
(i)
Z ,

∂ΘXZ
L(X(i)

XZ ,θXZ) = HXZ −H
(i)
XZ . (28)

Using these gradients we may then iteratively update the natural parameters of θX , θZ ,
and ΘXZ , using any standard gradient pursuit algorithm such as Adam (Kingma and Ba,
2014), and by following the average gradient over using a batch strategy.

Both EM and CE-GD rely on Equations 24, and differ in either solving the M-Step
with the backward mapping (Eq. 27) or following the cross-entropy gradients (Eq. 28). Yet
the M-Step is a convex optimization problem, and we could also approximate its solution
with gradient descent. We thus define expectation-maximization gradient descent (EM-GD)
as the algorithm that approximates the M-Step by pursuing the cross-entropy gradients

in Equations 28 and recomputing ηXZ at every step, while holding η
(i)
XZ fixed. After

convergence to the M-Step optimum, we recompute η
(i)
XZ and begin another iteration of

EM-GD. In Table 1 we summarize the requisite computations for the algorithms we propose.

Both CE-GD and EM-GD can effectively train LVMs while avoiding the evaluation of the
backward mapping τ−1

XZ . On one hand, CE-GD descends the cross-entropy objective directly,
and avoids excessive computations that might arise for EM-GD while near the optimum of

an M-Step. On the other hand, EM-GD can reuse the conditional expectations η
(i)
XZ over

multiple gradient steps, which may be desirable if they are computationally expensive to
evaluate. In addition, EM and EM-GD solve a sequence of convex optimization problems,
rather than solving a single non-linear optimization problem like CE-GD, which can in
practice improve the stability of the learning algorithm.

3.3.3 Monte Carlo Estimation

For cases where we cannot compute the conditional or model expectations of the sufficient
statistics analytically, we can often estimate them through sampling and Monte Carlo
methods. For many LVMs, Markov chain algorithms like Gibbs sampling can generate
approximate samples that we can then use to estimate the necessary expectations. Gibbs
sampling, however, can be prohibitively slow, and algorithms such as contrastive diver-
gence (Hinton, 2002; Welling et al., 2005) were developed to approximate the cross-entropy
gradient while avoiding full Gibbs sampling. Nevertheless, even contrastive divergence can
still necessitate large numbers of sampling cycles, and its convergence properties can be
difficult to characterize (Bengio and Delalleau, 2009; Sutskever and Tieleman, 2010).
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Figure 5: Training strategies for mixtures of von Mises densities. b: True cross-entropy
of a sample (black line) and model cross-entropies (coloured lines) over training
epochs. b: Sample (black dots, n = 100) and precision ellipses (black lines) from
the ground-truth von Mises mixture, and learned precision ellipses (coloured lines)
for models trained with CE-GD (red), EM-GD (green), CE-MCGD (yellow), and
EM-MCGD (blue).

In contrast, we can directly generate exact samples from conjugated harmoniums. Con-
sider a harmonium HXZ defined by MX and MZ , and suppose that there are efficient
algorithms for sampling from the densities in MX and MZ . If qXZ ∈ HXZ is a conju-
gated harmonium density, then its prior qZ ∈ MZ , and we can generate an exact sample
point (X,Z) ∼ qXZ by sampling Z ∼ qZ followed by X ∼ qX|Z=Z . We thus propose
cross-entropy Monte Carlo gradient descent (CE-MCGD) and EM Monte Carlo gradient
descent (EM-MCGD), which estimates the gradients in Equations 28 by using the sample
estimators η̃XZ =

∑m
j=1 sXZ(X

(j), Z(j)) with m exact model samples (X(j), Z(j)) ∼ qXZ ,

and estimating the conditional expectations η
(i)
XZ =

∑l
j=1 sXZ(X

(i), Z(j)) over l conditional

samples Z(j) ∼ qZ|X=X(i) for every X(i).

We demonstrate the CE-GD, EM-GD, CE-MCGD, and EM-MCGD algorithms by
training them on 100 sample points from a ground-truth mixture of 2D von Mises densities,
where each component is a product of two von Mises distributions (Fig. 5). For CE-GD and
EM-GD we compute the average gradient over the entire sample, so that each gradient step
corresponds to one epoch. For CE-MCGD and EM-MCGD, we generated m = 10 model
samples, and l = 1 conditional samples per training point X(i), and we use a batch size of 10
so that 10 gradient steps corresponds to one epoch. Finally, for the EM-based algorithms, we

hold the conditional sufficient statistics η
(i)
XZ fixed for 100 epochs before recomputing them.

We find that, overall, all algorithms can perform well, and the learned density converges to
a good approximation of the ground-truth model.
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Figure 6: A factor analysis analogue for count-data. a: Cross-entropy descent of a CoM-
based mixture model trained on synthetic multivariate count data. b-c: Means
(b) and covariances (c) learned by the model compared to the sample estimators.

3.3.4 Linear Subspaces

We highlight one final algorithmic trick for training a harmonium while restricting the
solution to a linear subspace. Consider the harmonium HXZ defined by the exponential
families MX and MZ , and suppose H′

XZ is the harmonium defined by the sufficient statistic
s′XZ = A · sXZ for some matrix A — to ensure that HXZ is minimal, A should have full
rank and at least as many columns as rows. In this case if q′XZ ∈ H′

XZ with parameters θ′
XZ ,

then q′XZ ∈ MXZ with parameters θ′
XZ ·A. We can thus compute the mean parameters

η′
XZ of q′XZ by first evaluating (or estimating) ηXZ = τ(θ′

XZ · A), and then using the
linearity of expectations to compute η′

XZ = τ′XZ(θ
′
XZ) = A · ηXZ , where τXZ and τ′XZ

are the forward mappings of HXZ and H′
XZ , respectively. Consequently, for any algorithm

in Table 1 except EM, if we can use it to train HXZ , we can use it to train H′
XZ . This

technique is obviously not relevant when we can compute the expectations in the subspace
directly — for example, the expectations of FA can be computed much more efficiently than
the expectations of LGMs. Yet we could use this technique to train a Boltzmann machine
while restricting the interactions to e.g. neighbouring neurons in a lattice.

Another example for this technique is the so called CoM-based mixture model for
modelling multivariate count-data (Sokoloski et al., 2021). A Conway-Maxwell (CoM)
Poisson distribution is an exponential family count distribution with distinct location and
shape parameters (Shmueli et al., 2005; Stevenson, 2016), and CoM-based mixture models
mix products of CoM-Poisson distributions. The parameters of the model are restricted in
a manner similar to FA, so that the latent category K only modulated the location, and
not the shape of the CoM-Poisson distributions. In contrast with FA, there is no efficient
method for computing the expectations on this restricted parameter space, and so they are
instead computed in the unrestricted parameter space. Here we train a CoM-based mixture
model on synthetic multivariate count data using the EM-GD algorithm (Fig. 6a), and show
that it captures the sample means (Fig. 6b) and covariances (Fig. 6c) of the count data.
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3.4 Conjugation and Harmonium Graphical Models

Figure 7: Prototype graphs

In this section we extend the theory of conjugated
harmonium to harmonium graphical models. We
begin with the simple case of multiple independent
observations of a latent variable (Fig. 7a), and derive
a general algorithm for recursive Bayesian inference
with conjugating likelihoods. We then extend the
Conjugation Lemma (Thm. 4) to account for condi-
tional independences between variables of an HGM
(Fig. 7b), and derive a general training algorithm for
appropriately conjugated HGMs. We conclude with
two examples of HGMs with a hierarchical structure.

3.4.1 Conjugation and Recursive Inference

Consider a sequence of observable variables
X1, . . . , Xn that are conditionally independent given
the latent variable Z, such that the conditional den-
sity of the observable variables given the latent vari-
able is pX1,...,Xn|Z =

∏n
i=1 pXi|Z . Then pX1,...,Xn|Z can be expressed in the recursive form

pZ|X1,...,Xn
(z | x1, . . . , xn) ∝ pXn|Z(xn | z)pZ|X1,...,Xn−1

(z | x1, . . . , xn−1), (29)

where for the base-case n = 1, we define pZ|X1,...,Xn−1
as the prior pZ . Observe that this

recursive relation is a single application of Bayes’ rule (Eq. 15) given the prior pZ|X1,...,Xn−1
,

so that Equation 29 reduce sequential inference to iterative applications of Bayes’ rule.

In general, however, each application of Bayes’ rule may increase the complexity of the
beliefs, and ultimately produce an intractable posterior. We may avoid this by assuming
assume that there is a single exponential family MZ that is a conjugate prior family for each
likelihood pXi|Z , which ultimately ensures that the posterior over Z given all the observations
is also an element of MZ .

Theorem 16 Suppose that the sequence of observable variables X1, . . . , Xn are conditionally
independent given the latent variable Z, and that each pXi|Z ∈ MX is a conjugating likelihood
in the exponential family MX with natural parameters θXi and ΘXiZ , and conjugation
parameters ρi and χi. Moreover, suppose MZ is a conjugate prior family or each pXi|Z ,
and that pZ ∈ MZ with parameters θ∗

Z . Then the parameters θZ|X1,...,Xn
of the posterior

pZ|X1,...,Xn
∈ MZ are given by

θZ|X1,...,Xn
(x1, . . . , xn) = θ∗

Z +
n∑
i=1

sXi(xi) ·ΘXiZ − ρi. (30)

Proof For n = 1, the prior is pZ and its parameters are θ∗
Z . Given the likelihood pX1|Z

with parameters θX1 and ΘX1Z , Corollary 10 implies that the parameters of pZ|X1
(x1) are

θZ|X1
= θ∗

Z + sX1(x1) ·ΘX1Z − ρ1.
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Figure 8: Inference over a categorical distribution. a: The true weights of a categorical
distribution (black dot) and the Dirichlet prior density (contours). b-d: The true
weights of a categorical distribution (black dot) and the Dirichlet posterior density
(contours) after 10 (b), 20 (c), and 30 (d) observations, as well as the centre of
mass of each set of 10 observations (red dots).

For n assume that the parameters θZ|X1,...,Xn
of pZ|X1,...,Xn

are given by Equation 30.
Where the likelihood pXn+1|Z has parameters θXn+1 and ΘXn+1Z , Corollary 10 implies that
the parameters of pZ|X1,...,Xn+1

(x1, . . . , xn+1) are

θZ|X1,...,Xn+1
= θZ|X1,...,Xn

(x1, . . . , xn) + sXn+1(xn+1) ·ΘXn+1Z − ρn+1

= θ∗
Z +

n+1∑
i=1

sXi(xi) ·ΘXiZ − ρi.

Therefore, by induction, Equation 30 holds for any n.

By combining Theorems 15 and 16 we may conclude that the posterior for Bayesian
parameter estimation has parameters θZ|X1,...,Xn

(x1, . . . , xn) = θZ+
∑n

i=1(sXi(xi), 1), which
is indeed the formula for the parameters of a conjugate exponential family posterior (Murphy,
2023). As a more practical example, suppose that HXZ is the harmonium defined by the
categorical family MX and the Dirichlet family MZ . It is easy to check that qXZ ∈ HXZ is
conjugated if θX = 0 and

ΘXZ =

−1 1 · · · 0
...

...
. . .

...
−1 0 · · · 1

 (31)

with conjugation parameters ρ = (−1, 0, . . . , 0) and χ = 0. By implementing this model, we
find that the posterior Dirichlet density concentrates around the true weights of categorical
distribution given an increasingly large sequence of observations (Fig. 8).

3.4.2 Conjugation at the Latent Variable Boundary

In this section we extend the theory of conjugated harmoniums to HGMs. Our strategy is
to reformulate them as bivariate harmoniums over observable and latent variables, so that
we can directly apply our theorems from Section 3.1. Extending the theory of conjugated
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harmoniums will then prove straightforward, but reformulating HGMs as bivariate harmoni-
ums without losing the graphical model structure necessitates redeveloping some notation
and definitions.

Figure 9: HGM subgraphs

To begin, consider the HGM HG
Y on the random

variables Y1, . . . , Yn+m defined by the exponential
familiesMY1 , . . . ,MYn+m , and suppose its graphG =
((V,W ), E) has vertices (V,W ) such that |V | = n and
|W | = m. Let us refer to the variables index by V and
W as the observable variables and latent variables,
and denote them by Xv = Yv and Zw = Yw for any
v ∈ V and w ∈ W , respectively (Fig. 9). Moreover,
let

B = {v ∈ V : w ∈W and {v, w} ∈ E}
∪ {w ∈W : v ∈ V and {v, w} ∈ E} (32)

denote all vertices in the boundary between X and Z.
Finally, where G[A] = (A, {{v, w} ∈ E : v, w ∈ A})
indicates the subgraph of G induced by A, let GX =
G[V ], GZ = G[W ], and GB = G[B] be the subgraphs
of G induced by V , W , and B, respectively.

We next define, for every clique C ∈ C(G), the
clique-wise sufficient statistics of the observable vari-
ables sCX = (

⊗
v∈(C∩V ) sXv) and the latent variables

sCZ = (
⊗

w∈(C∩W ) sZw), and assume that v and w are

always drawn in ascending order. We define sGX = (sCX)C∈C(GX) and sGZ = (sCZ )C∈C(GZ) as
the graph-wide sufficient statistics of the observable and latent variables, respectively, and
assume that cliques C are drawn in lexicographic order. Given these definitions we may
re-express any HGM density qY ∈ HG

Y as a latent variable HGM density

qXZ(x, z) ∝ e
θG
X ·sGX(x)+θG

Z ·sGZ (z)+
∑

C∈C(GB) s
C
X(xC)·ΘC

XZ ·sCZ (zC)
, (33)

where xC and zC are the visible and latent variables indexed by clique C, respectively, θGX
and θGZ are the observable and latent biases, respectively, and each ΘC

XZ is a clique-wise
interaction matrix. We have thus reorganized all the multilinear interactions in the definition
of the HGM density (Eq. 8) into vectors and matrices.

We may then express the likelihood of qXZ by

qX|Z(x | z) = qX|ZB
(x | zB) ∝ e

sGX(x)·(θG
X+

∑
C∈C(GB) I

C
X ·ΘC

XZ ·sCZ (zC))
, (34)

and its posterior by

qZ|X(z | x) = qZ|XB
(z | xB) ∝ e

sGZ (z)·(θG
Z+

∑
C∈C(GB) s

C
X(xC)·ΘC

XZ ·ICZ )
, (35)

where xB and zB are the observable and latent variables indexed by the boundary B, and ICX
and ICZ are wide and tall binary matrices that realign the indices of the natural parameters
ΘC
XZ · sCZ (z) and sCX(x) ·ΘC

XZ with their corresponding elements in θGX and θGZ , respectively.
With these definitions in place, let us formally define a latent variable HGM.
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Definition 17 (Latent Variable HGM) Let G be a graph with vertices (V,W ) that in-
dexes the observable and latent variables X = (X1, . . . , Xn) and Z = (Z1, . . . , Zm), and
suppose HG

X and HG
Z are HGMs over X and Z defined by the sufficient statistics sGX and sGZ ,

respectively. Then the latent variable HGM HG
XZ defined by HG

X and HG
Z is the set of all

densities with the form of Equation 33.

Observe that we can also define the bivariate harmonium HXZ with component ex-
ponential families HG

X and HG
Z , that models all interactions ΘXZ between sGX and sGZ .

The latent variable HGM HG
XZ is therefore a submanifold of HXZ , where the complete

interaction matrix is decomposed into a sum of clique-wise interaction matrices, such that
ΘXZ =

∑
C∈C(GB) I

C
X ·ΘC

XZ · ICZ . Through this equivalence between bivariate harmoniums
and latent variable HGMs, we may now extend the Conjugation Lemma (Thm. 4).

Theorem 18 Suppose that HG
XZ is a latent variable HGM defined by the graph G, and the

minimal HGMs MG
X and MG

Z . Then the density qXZ ∈ HG
XZ with parameters θGX , θGZ , and

(ΘC
XZ)C∈C(GB) is conjugated if and only if there exists vectors {ρC}C∈C(GBZ) and a scalar χ

such that

ψX(θ
G
X +

∑
C∈C(GB)

ICX ·ΘC
XZ · sCZ (zC)) = χ+

∑
C∈C(GBZ)

sCZ (zC) · ρC , (36)

for any z ∈ Z, where GBZ = G[B ∩W ] is the subgraph of G induced by the latent variables
on the boundary (Fig. 9).
Proof Firstly, let qXZ ∈ HG

XZ , and suppose HXZ is the harmonium defined by HG
X and

HG
Z . Then qXZ ∈ HXZ with parameters θGX , θ

G
Z , and ΘXZ =

∑
C∈C(GB) I

C
X ·ΘC

XZ · ICZ . By

the Conjugation Lemma (Thm. 4), qXZ is conjugated if an only if there exists ρG such that

ψX(θ
G
X +ΘXZ · sGZ (z)) = χ+ sGZ (z) · ρG. (37)

By substitution we can rewrite the LHS of this equation as

ψX(θ
G
X +ΘXZ · sGZ (z)) = ψX(θ

G
X +

∑
C∈C(GB)

ICX ·ΘC
XZ · sCZ (zC)). (38)

On the other hand, we can rewrite the dot product on the RHS of Equation 37 as

sGZ (z) ·ρG =
∑

C∈C(GZ)

sCZ (zC) ·ρC =
∑

C∈C(GBZ)

sCZ (zC) ·ρC+
∑

C∈(C(GZ)\C(GBZ))

sCZ (zC) ·ρC . (39)

Now, if C ̸∈ C(GBZ), then C ̸∈ C(GB), and sCZ does not appear on the RHS of Equation 38.
Therefore sCZ · ρC is constant, and ρC = 0 due to the minimality of sCZ . Since it only sums
over C ̸∈ C(GB), the second term on the RHS of Equation 39 is 0. Therefore by substituting

sGZ (z) · ρG =
∑

C∈C(GBZ)

sCZ (zC) · ρC , (40)

and the RHS of Equation 38 into Equation 37, we obtain Equation 36.
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The key feature of this theorem is that conjugation depends only on the latent variables
that border the observable variables. In practice this means that we can combine conjugating
likelihoods with hierarchical priors of arbitrary depth. In particular, sequences of conjugating
likelihoods can be composed into complex, latent variable HGMs as long as they locally
satisfy Theorem 18.

3.4.3 Hierarchical Conjugated Harmoniums

In this section we develop recursive algorithms for latent variable HGMs with hierarchical
structure. For conceptual and notational simplicity we develop our theory for a prototypical,
three-level hierarchical model with observable variables X, and latent variables Y and Z,
such that qXY Z = qX|Y · qY |Z · qZ (Fig. 7b). Nevertheless, the results we develop here can
be trivially extended to deeper hierarchical models.

Let us first develop a coarse-grained representation of a hierarchical HGM. Consider
the observable variables X = (X1, . . . , Xn), and the latent variables Y = (Y1, . . . , Ym) and
Z = (Z1, . . . , Zl). Suppose G = ((U, V,W ), E) is a graph with vertices (U, V,W ) such that
|U | = n, |V | = m, and |W | = l. Let GX = G[U ], GY = G[V ], and GZ = G[W ] denote the
subgraphs of G induced by the vertices U , V , and W , respectively, and let BXY , BXZ , and
BY Z denote the boundaries between X and Y , X and Z, and Y and Z, respectively (Eq. 32).
Let HG

Y Z be the HGM defined by HG
Y and HG

Z , and let HG
XY Z = HG

X(Y Z) be the HGM

defined by HG
X and HG

Y Z . We say that HG
XY Z is a hierarchical HGM if BXZ = ∅. Where we

suppress the notation indicating the graph G, we can express any density qXY Z ∈ HG
XY Z by

qXY Z(x,y, z) ∝ eθX ·sX(x)+θY ·sY (y)+θZ ·sZ(z)+sX(x)·ΘXY ·sY (y)+sY (y)·ΘY Z ·sZ(z), (41)

where sX , sY , and sZ are the sufficient statistics of HG
X , HG

Y , and HG
Z , respectively; θX ∈ HG

X ,
θY ∈ HG

Y , and θZ ∈ HG
Z are the biases over the subgraphs GX , GY , and GZ , respectively;

and where ΘXY =
∑

C∈C(BXY ) I
C
X ·ΘC

XY · ICY and ΘY Z =
∑

C∈C(BY Z) I
C
Y ·ΘC

Y Z · ICZ are the
interaction matrices across the boundaries BXY and BY Z , respectively.

Now let us assume that qXY Z ∈ HG
XY Z is conjugated such that qY Z is in the latent

variable HGM MG
Y Z defined by MG

Y and MG
Z . Then by Theorem 18, there exists conjugation

parameters ρY and χY such that ψX(θX +ΘXY · sY (y)) = χY + sY (y) ·ρY . We can put this
equation in the form of the Conjugation Lemma (Thm. 4) by simply padding ρY with zeroes,
such that sY (y) · ρY = sY Z(y, z) · (ρY ,0). The simple equation is the key to extending the
results in Section 3.1 to hierarchical HGMs.

Corollary 19 Suppose HG
XY Z is a hierarchical HGM defined by the graph G and HGMs

HG
X , HG

Y , and HG
Z , and that qXY Z ∈ HG

XY Z with parameters (θX ,θY ,θZ ,ΘXY ,ΘY Z) is
conjugated with conjugation parameters ρY and χY . Then the parameters of qY Z ∈ MG

Y Z

are given by
θ∗
Y Z = (θY + ρY ,ΘY Z ,θZ). (42)

Marginalizing out the observable variables from qXY Z can thus be reduced to translating
the biases θY of the low-level latent variables Y of the hierarchical prior qY Z . Of course, this
does not ensure the tractability of hierarchical HGMs, because qY Z may itself be intractable.
However, when qY Z is also conjugated such that qZ ∈ HG

Z , we can derive recursive algorithms
for sampling, density evaluation, and learning for hierarchical HGMs.
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Definition 20 (Iteratively Conjugated Harmonium) The density qXY Z ∈ HG
XY Z is

iteratively conjugated if qY Z ∈ HG
Y Z and qZ ∈ HG

Z . The hierarchical HGM HG
XY Z is

iteratively conjugated if every qXY Z ∈ HG
XY Z is iteratively conjugated.

Firstly, with regards to sampling, suppose qXY Z ∈ HG
XY Z is iteratively conjugated such

that ρY and χY are the conjugation parameters of qXY Z , and χ
∗
Z and ρ∗

Z are the conjugation
parameters of qY Z ∈ HG

Y Z . Then according to Corollary 5, qZ has parameters θ∗
Z = θZ +ρ∗

Z .
Therefore, as long as we can tractably sample from HG

X , HG
Y , and HG

Z , we may sample
(X(i), Y (i), Z(i)) from qXY Z by sampling Z(i) ∼ qZ , Y

(i) ∼ qY |Z=Z(i) , and X(i) ∼ qX|Y=Y (i) .

To express the observable density qX at x of a harmonium density qXY Z in terms of
conjugation parameters, we must assume that both the prior qY Z ∈ HG

Y Z and posterior
qY Z|X ∈ HG

Y Z are conjugated harmonium densities. In this case, by extending the latent
variable Z in Equation 14 to the hierarchical variables (Y,Z), and re-expressing the log-
partition function ψY Z with Corollary 6, we may express the observable density qX by

log qX(x) = sX(x) · θX + ψZ(θZ + ρZ(x))− ψZ(θZ + ρ∗
Z) + χZ(x)− χ∗

Z − χY , (43)

where χZ and ρZ(x) are the conjugation parameters of qY Z|X=x. Finally, assuming we can
sample from both qXY Z and qY Z|X , we can fit an iteratively conjugated harmonium to data
by applying either the CE-MCGD or EM-MCGD training algorithms (Tbl. 1). We may thus
implement tractable sampling, density evaluation, and learning in iteratively conjugated
harmoniums as long as the component harmoniums HG

XY and HG
Y Z are conjugated.

3.4.4 Examples of Hierarchical Harmoniums

We conclude with two examples of hierarchical HGM. In the first we demonstrate how to
cluster high-dimensional data, and in the second we demonstrate how to embed and learn
low-dimensional subspaces, or “neural manifolds”, in high dimensional neural activity.

Many clustering algorithms, such as mixtures of Gaussians, suffer from the so-called
“curse of dimensionality”, and exhibit limited performance when classifying high-dimensional
data (Beyer et al., 1999; Assent, 2012). A common approach for addressing this is to first
apply dimensionality reduction techniques such as PCA or FA to project the data into a lower
dimensional space, and then cluster the projected data. Such two-stage algorithms are widely
applied in domains ranging from image processing (Houdard et al., 2018; Hertrich et al.,
2022), to neuroscience (Lewicki, 1998; Baden et al., 2016), and to bioinformatics (Witten
and Tibshirani, 2010; Duò et al., 2020). Nevertheless, suboptimal clusterings can arise when
the dimensionality-reduction is implemented only as a preprocessing step. If we consider
PCA as our dimensionality reduction technique, for example, the directions in the data that
best separate the clusters might not be the directions of maximum variance that define the
PCA projection (Chang, 1983; McLachlan et al., 2019).

Let us develop a hierarchical HGM for high-dimensional clustering that jointly defines the
dimensionality-reduction and clustering models. In particular, consider a hierarchical HGM
HXY Z defined by the graph G = ({1}, {2}, {3}, {{1, 2}, {2, 3}}) (Fig. 7b), and the HGMs
HG
X , HG

Y , and HG
K , where HG

X is the family of n-variate multivariate-normals with diagonal
covariance matrices, HG

Y is the family of m-variate normals with full covariance matrices, and
HG
K is the categorical family of dimension dK (Fig. 10). This is in fact a hierarchical form of
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Figure 10: A hierarchical mixture of Gaussian distributions. a: Contours (black lines) of
a ground-truth observable density pX , a sample (blue dots) from pX , and the
direction of maximum variance (red arrow) of the sample. b: Cross-entropy (blue
line) of the model density qX over epochs. c: Contours of pX (black lines) and the
initial model density qX . d: Ground-truth latent density pY (black line) and the
latent density qY of the initial model. e: Contours of the ground-truth observable
density pX (black lines) and the learned qX (red lines). f: Ground-truth latent
density pY (black line) and the latent density qY of the learned model.

a mixture of factor analyzers (Ghahramani and Hinton, 1996; McNicholas and Murphy, 2008;
Baek et al., 2010), where the latent space Y is shared across the factor analysis components.

Let us consider a toy example for which n = 2, m = 1, and dk = 1 (Fig. 10). We
choose a ground-truth density pXYK ∈ HXYK so that the direction of maximum variance is
orthogonal to the direction along which class membership changes, and sample from the
observable density pX (Fig .10a). By applying EM we minimize the cross-entropy (Fig. 10b)
of an initial density qXYK with observable density qX (Fig. 10c), and a mixture density in
the latent space qY that does not match the ground-truth mixture density pY (Fig. 10d).
After training we find that we recover both the ground-truth observable density (Fig. 10e)
and latent mixture density (Fig. 10f).

In neuroscience, low-dimensional subspaces within high-dimensional neural activity are
referred to as neural manifolds, and latent variables ranging from head-direction to spatial
location have been found encoded as neural manifolds in recordings of key brain areas from
various animals (Churchland et al., 2012; Cunningham and Yu, 2014; Langdon et al., 2023).
Let us develop a model of neural population activity that encodes regions of interest in
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Figure 11: A probabilistic population code with a Gaussian-Boltzmann machine prior. a:
Preferred stimuli (red dots) and the sum of the tuning curves (filled contour) of
a 2D Gaussian-tuned Poisson population. b: Residuals of the linear regression of
the conjugation parameters of the Poisson population. c: Sample Y (1), . . . , Y (1000)

(black dots) from noisy concentric circles, with three points highlighted (red, green,
and blue dots). d: Spike response (coloured points) of the Poisson population
to the example points in (c). e: Cross-entropy (blue line) of the model density
qN given sample N (1), . . . , N (1000) over training epochs. f: Filled contours of the
learned stimulus density qY .

a 2-dimensional continuous space. In particular, consider the hierarchical HGM HG
XY Z

specified by the prototypical hierarchical graph G (Fig. 7b), where HG
X is a product 28× 28

Poisson neurons, and HG
Y Z is a Gaussian-Boltzmann over a 2D surface with 6 hidden neurons

(as depicted in Fig. 3). We choose qN |Y so that preferred stimuli of the tuning curves of the
Poisson neurons tile tile a 2D surface, and thereby ensure that the sum of tuning curves
over a square region is approximately constant (Fig. 11a). To verify that Equation 21 is
approximately satisfied, we fit conjugation parameters to

∑dN
i=1 EQ[Ni | Y = y] with linear

regression, and find that the residuals are nearly zero over the region (Fig. 11b).

To demonstrate how to encode a particular submanifold in the neural activity, we
generate a noisy sample Y (1), . . . , Y (1000) from two concentric rings in the stimulus space
(Fig. 11c), and use those points to generate spiking observations N (i) ∼ qN |Y=Y (i) in the
28× 28 dimensional space of spike counts N (Fig. 11d). We then used EM-GD to minimize
the cross-entropy of qN given N (1), . . . , N (1000) while keeping the parameters of qN |Y (i.e.
the tuning curve parameters) fixed (Fig. 11e), and found that the model learns an accurate
latent representation of the concentric circles (Fig. 11f).
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4 Discussion

Bayesian inference is the most theoretically well-founded approach to inferring information
about unknown quantities given observations (Jaynes, 2003). Similarly, learning a model
through the method of maximum likelihood is grounded in an axiomatic characterization of
how to minimize the divergence of a model from a target (i.e. empirical) distribution (Shore
and Johnson, 1980). In this paper we developed a theory of exponential family latent
variable models we call conjugated harmoniums, that afford both exact Bayesian inference
and general algorithms for maximum-likelihood learning. In the best case we can implement
learning with exact EM, yet even in the “worst” case we can generate exact model samples
from conjugated harmoniums, and thereby maximize the likelihood of the model parameters
with an estimation error that can be made arbitrary small.

Our theory thus illuminates the class of models that allow researchers to stay close to the
theoretical foundations of LVMs. Moreover, the intrinsic, exponential family characterization
of this class allows researchers to easily identify whether a model of interest lies within it. Yet
in spite of our goal of avoiding approximation schemes, we see this work as complementary
to methods for approximate inference and learning. Variational autoencoders, for example,
typically approximate the intractable posterior with an exponential family (Shekhovtsov
et al., 2021), and this exponential family need not be the Gaussian or categorical families,
as is often assumed (Vahdat et al., 2020). Our theory thus provides numerous candidate
models with sufficient tractability to model the latent space of a variational autoencoder.

LVMs also play a large role in computational neuroscience, where they are used to model
how behavioural and environmental variables are encoded in low-dimensional submanifolds
of neural activity (Cunningham and Yu, 2014; Schneidman, 2016; Langdon et al., 2023).
Boltzmann machines and products of Poisson distributions are both examples of exponential
families that are widely applied to modelling neural activity, and we showed how they both
serve as effective components of conjugated harmoniums. Moreover, we showed how to
assemble them into a hierarchical model for identifying neural manifolds. Yet the example
we provided can be extended in numerous ways: (i) by restricting the correlation structure
between the Boltzmann neurons to capture specific forms of neural manifold; (ii) by learning
the likelihood of the model rather than tiling the stimulus with model neurons; and (iii) by
replacing Gaussian tuning curves with von Mises tuning curves to capture periodic structure
(Kutschireiter et al., 2023). We hope to explore these extensions in future work.

Our theory could also help answer a fundamental question in computational neuroscience:
do neural circuits implement approximate inference and learning, or is neural connectivity
constrained so that exact inference and learning are possible (Shivkumar et al., 2018; Lange
et al., 2023)? By expanding the scope of neural models that exhibit exact inference and
learning, we should be better able to isolate those neural circuits that can indeed avoid
approximation schemes.

Another topic we aim to explore is the relationship between the framework of conjugated
harmoniums and sequential data models such as Hidden Markov Models (HMMs) and
linear state space models (LSSMs). Both HMMs and LSSMs afford exact inference and
learning (Särkkä, 2013). Moreover, the component distributions that define HMMs and
LSSMs are defined in terms of categorical and normal distributions respectively, both of which
are core families for constructing conjugated harmoniums. In future work we therefore aim
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to subsume inference and learning algorithms for HMMs and LSSMs within the framework
of conjugated harmoniums, and explore how best to approximate nonlinear dynamics within
this framework (Sokoloski, 2017).
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the Deutsche Forschungsgesellschaft (DFG) Sonderforschungsbereich (SFB) 1233, “Robust
Vision: Inference Principles and Neural Mechanisms”, Teilprojekt (TP) 13, project number:
276693517; and the DFG Cluster of Excellence “Machine Learning — New Perspectives for
Science”, EXC 2064.

References

D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for Boltzmann
machines. Cognitive science, 9(1):147–169, 1985.

S.-i. Amari and H. Nagaoka. Methods of Information Geometry, volume 191. American
Mathematical Soc., 2007.

B. C. Arnold and S. J. Press. Compatible conditional distributions. Journal of the American
Statistical Association, 84(405):152–156, 1989.

B. C. Arnold, E. Castillo, and J. M. Sarabia. Conjugate Exponential Family Priors For
Exponential Family Likelihoods. Statistics, 25(1):71–77, Jan. 1993. ISSN 0233-1888. doi:
10.1080/02331889308802432.

B. C. Arnold, E. Castillo, and J. M. Sarabia. Conditionally Specified Distributions: An
Introduction (with comments and a rejoinder by the authors). Statistical Science, 16(3):
249–274, Aug. 2001. ISSN 0883-4237, 2168-8745. doi: 10.1214/ss/1009213728.

I. Assent. Clustering high dimensional data. WIREs Data Mining and Knowledge Discovery,
2(4):340–350, 2012. ISSN 1942-4795. doi: 10.1002/widm.1062.

T. Baden, P. Berens, K. Franke, M. Román Rosón, M. Bethge, and T. Euler. The functional
diversity of retinal ganglion cells in the mouse. Nature, 529(7586):345–350, Jan. 2016.
ISSN 1476-4687. doi: 10.1038/nature16468.

J. Baek, G. J. McLachlan, and L. K. Flack. Mixtures of Factor Analyzers with Common
Factor Loadings: Applications to the Clustering and Visualization of High-Dimensional
Data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(7):1298–1309,
July 2010. ISSN 1939-3539. doi: 10.1109/TPAMI.2009.149.

J. Beck, P. Latham, and A. Pouget. Marginalization in Neural Circuits with Divisive
Normalization. The Journal of Neuroscience, 31(43):15310–15319, 2011.

33



Sokoloski

J. Beck, A. Pouget, and K. A. Heller. Complex Inference in Neural Circuits with Probabilistic
Population Codes and Topic Models. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages
3059–3067. Curran Associates, Inc., 2012.

Y. Bengio and O. Delalleau. Justifying and generalizing contrastive divergence. Neural
Computation, 21(6):1601–1621, 2009.

J. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems. Journal of the
Royal Statistical Society. Series B (Methodological), 36(2):192–236, 1974. ISSN 0035-9246.

K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When Is “Nearest Neighbor”
Meaningful? In C. Beeri and P. Buneman, editors, Database Theory — ICDT’99, Lecture
Notes in Computer Science, pages 217–235, Berlin, Heidelberg, 1999. Springer. ISBN
978-3-540-49257-3. doi: 10.1007/3-540-49257-7 15.

C. M. Bishop. Pattern Recognition and Machine Learning. Information Science and Statistics.
Springer, New York, 2006. ISBN 978-0-387-31073-2.

N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. Modeling Temporal Dependen-
cies in High-dimensional Sequences: Application to Polyphonic Music Generation and
Transcription. In Proceedings of the 29th International Coference on International Con-
ference on Machine Learning, ICML’12, pages 1881–1888, USA, 2012. Omnipress. ISBN
978-1-4503-1285-1.

W.-C. Chang. On Using Principal Components before Separating a Mixture of Two
Multivariate Normal Distributions. Journal of the Royal Statistical Society: Series C
(Applied Statistics), 32(3):267–275, 1983. ISSN 1467-9876. doi: 10.2307/2347949.

M. M. Churchland, J. P. Cunningham, M. T. Kaufman, J. D. Foster, P. Nuyujukian, S. I.
Ryu, and K. V. Shenoy. Neural population dynamics during reaching. Nature, 487(7405):
51–56, July 2012. ISSN 1476-4687. doi: 10.1038/nature11129.

J. P. Cunningham and B. M. Yu. Dimensionality reduction for large-scale neural recordings.
Nature Neuroscience, 17(11):1500–1509, Nov. 2014. ISSN 1097-6256, 1546-1726. doi:
10.1038/nn.3776.

P. Diaconis and D. Ylvisaker. Conjugate Priors for Exponential Families. The Annals of
Statistics, 7(2):269–281, 1979. ISSN 0090-5364.
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