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Abstract
The non-vanishing neutrino mass strongly hints the existence of right-handed neutrinos (RHNs),

singlets of the standard model (SM). However, they are highly decoupled from the SM and difficult

to probe. In this work, we consider the Majorana RHNs from the type-I seesaw mechanism may

well mix with the heavy neutral lepton dwelling in certain vector-like lepton (VLL), thus acquiring

a sizable electroweak charge. Such a simple scenario yields many interesting consequences, and the

imprint on oblique corrections, well expected from the mass splitting between components of VLL

by virtue of VLL-RHN mixing, is our focus here. We analytically calculate the Peskin-Takeuchi

parameters S, T and U with full details, carefully treating the Majorana loop to obtain the self

consistent expressions free of divergence. Then, we constrain on the VLL-RHN system which only

gives a sizable T parameter using the PDG-2021 data and CDF-II data, separately, by imposing

T ≲ O(0.1). It is found that for the RHN and VLL below the TeV scale, with a properly large

mixing, stands in the frontier of the electroweak precision test such as W -boson mass.
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I. INTRODUCTION

Although there is a lot of evidence for new physics that goes beyond the standard model
of particle physics (BSM), the tiny but non-vanishing neutrino mass is undoubtedly the
most convincing one. And the most convincing particle physics model to explain its origin
is the seesaw mechanism [1]. However, how to test the minimal seesaw model, type-I seesaw
with at least two right handed neutrinos (RHNs), is somewhat awkward [2], as the RHNs
and SM usually are highly decoupled at low energies: they are either very heavy or very
weakly coupled to the SM. Considering that the fermionic RHNs may be charged under
new gauge interactions, such as B − L, opens a way to hunt for them. In this case, the
RHNs generically have new gauge and Yukawa interactions, which may help to enhance the
production of RHNs at colliders [2–10].

Is there any other way? A simple idea is to well mix the sterile neutrinos with addi-
tional active heavy neutral leptons so that the sterile RHNs gain sizable couplings with the
weak currents, turning to be the weakly interacting neutral leptons. Surprisingly, to our
knowledge, this possibility has not been seriously explored yet. As is well known, vector-
like leptons (VLL) are BSM objects widely motivated in different contexts and extensively
studied. The introduction of VLLs may not have a direct relationship with the seesaw mech-
anism, but even if limited to this framework, there is still sufficient motivation to consider
VLL. A good case in point is the family dependent B − L models [11, 12] where VLLs are
built-in block, playing the role of flavon field to generate full neutrino mixings. In either case,
it is of strong interest to investigate the interplay between VLL and the seesaw mechanism.

In this work, we examine the simplest and also the most interesting VLLs, denoted as
(LL, LR), which resemble the SM lepton doublet ℓi. The interplay can be encoded in the
Yukawa portal with the Higgs doublet λnL̄LHNR, which has the advantage of not affecting
the structure of SM charged lepton flavors. Then, a sizable λn may lead to a significant
interplay between the VLL and RHNs, provided that both of their mass terms are not much
larger than the weak scale. In the following, we show several potential consequences in the
interplay region:

• The neutral and charged components of VLL gain a large mass splitting due to the
mixing with RHN. Then, these states may leave imprints in the oblique corrections.

• The strong mixing between RHNs and the neutral VLL components, which carry full
EW charges, results in deep involvement of RHN in electroweak interactions, which
has a deep implication to the collider probe on the seesaw mechanism.

• The portal coupling may lead to Higgs invisible decay, given that the RHN is consid-
erably lighter than the weak scale.

• The additional Majorana fermions, significantly coupled to the electron via the charged
current, may generate a sizable amplitude for 0νββ-decay, which can be tested by
nuclear experiment.

The goal of this work is to anatomize the first point, investigating the allowed region
for the VLL-RHN system, which is a necessary preliminary study before exploring other
consequences. We make a detailed calculation of the Peskin-Takeuchi oblique parameters
S, T and U for this system. Although related works, studying the oblique corrections for
VLLs along with singlet fermions, can be found [13–17], the full details of calculation have
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not been given yet and even inconsistency are found. For the Majorana singlet [18–21], its
peculiar nature brings a subtle difference, and therefore it is of importance to recalculate
them, providing reliable expressions for precise electroweak tests.

With these expressions, we are able to impose constraints on them by the PDG-2021 data
and as well the recent CDF-II data [22]. The latter hints a significant deviation to the SM
prediction of the W -boson mass, but differs significantly from other measurements such as
the new ATLAS result [23, 24]. We may still need to wait to prove or deny this intriguing
anomaly, but anyway, it can be accommodated in a wide range of the VLL-RHN system
with T ∼ O(0.1), especially for a weak scale RHN. Maybe, a more conservative view is to
take those range as the forefront of precise testing of sensitivity to VLL-RHN.

The work is organized as the following: In Section II we setup the minimal model for VLL
extended type-I seesaw mechanism. In Section III we present the S, T, U calculations. In the
subsequent section numerical result is presented. The final section includes the conclusions
and discussions.

II. VECTOR-LIKE LEPTON DOUBLET WITH A SEESAW PORTAL

Viewing from the non-vanishing neutrino masses, the BSM extending the SM by the
type-I seesaw mechanism (SMν,I) is one of the most promising one. But RHNs are sterile
and difficult to probe. Our goal is to take SMν,I as the basic model (the discussions can
be directly generalized to the scenarios of Dirac neutrino), further including VLLs with
various motivations that can couple to the seesaw sector. As stated in the introduction, it
may deeply alter the profile of RHNs. This section is to set the working model and then
present the charged and neutral currents necessary for the subsequent calculations of oblique
parameters.

A. The model setup for SMν,I plus VLLs

There are many ways to introduce vector-like fermions with proper electroweak charges
and make them become VLLs via certain couplings to the SM leptons. We are not aiming at
exhausting the full list of VLLs that contain a neutral component and potentially mix with
RHNs, and we focus on the simplest case, a pair of VLL and its charge conjugated states

LL/R =

(
L0
L/R

L−
L/R

)
, LCL/R =

(
(L−

L/R)
C

(L0
L/R)

C

)
, (2.1)

which like the SM lepton doublet. This option obviously allows for the direct couplings
between the VLLs and RHNs. In the following, we will first write down the most general
effective model without imposing any symmetry and then a UV model based on the flavorful
gauge group (B − L) is given.

1. The effective model with simplifications

For simplicity, we here consider only one family of RHN and lepton, and the generalization
to the case with multiple families is straightforward. Then, the most general Lagrangian
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reads

−L ⊃
(
yeℓ̄LHeR + yN ℓ̄LH̃NR + h.c.

)
+
MN

2

(
NC
RNR +NRN

C
R

)
(2.2)

+mLL̄LLR +mℓℓ̄LLR + λnL̄LH̃NR + λ′nL
C
RHNR + λeL̄LHeR + h.c.,

where H̃ = iσ2H
∗, and the representations of various fields under the electroweak gauge

group SU(2)L × U(1)Y can be found in Table. I. Following the convention widely adopt
in the neutrino literature 1, we define the charge conjugate of the chiral Weyl spinor as

ψCL/R ≡ (ψL/R)
C = CψL/R

T
and hence ψCL/R = −ψTL/RC−1 with C the charge conjugation

operator. There are useful identities about the bilinear terms holding for the anticommuting

spinor fields, for instance, ψRψL = ψCLψ
C
R , ψ

C
RχR = χCRψR, and so on, which are useful to

deal with the mixed Dirac-Majorana system. The phase of the Majorana field is chosen to
make MN real and positive.

In Eq. (2.2), the terms in the first line belong to the seesaw mechanism, and in particular,
in the limit MN → 0, we obtain the Dirac neutrino scenario. The second line gives heavy
VLL with a Dirac mass term mL (generically made real and positive by rephasing the LR),
and as well as possible ways that VLL could interact with the seesaw mechanism other
than the gauge interactions. VLL interacting with the seesaw model via the RHN portal
does not significantly alter the lepton flavor structure of the SM. On the contrary, if LL is
indistinguishable from ℓi, then their sizable mixings will give rise to large LFVs, which have
been strongly excluded by the current data. To that end, we set mℓ → 0, λe → 0. Moreover,
for the low scale seesaw, mixing between RHN and SM neutrinos are highly suppressed, and
therefore we can safely ignore yN

2.
In the above simplified setup, we are considering a sector containing VLL and RHNs only,

and then the resulting mass mixing matrix of neutral fermions takes the form of

Lν mass = −1

2
ΩC
RMΩR + h.c., M =

 0 mL mD

mL 0 m′
D

mD m′
D MN

 , ΩR =

(L0
L)
C

L0
R

NR

 . (2.3)

where mD = λn
v√
2
and m′

D = λ′n
v√
2
. These two Dirac mass mixing terms mD and m′

D mix

the neutral component of Dirac VLL with the Majorana RHN, splitting the neutral and
charged components. In particular, although the λ′n term is allowed in the effective model
setup, it is may be forbidden in the UV-completion model where NR is not a Majorana
spinor but a Weyl spinor carrying charge; we will give such an example soon later.

Using Takagi decomposition one can diagonalize the above complex symmetric mass
mixing matrix M , via the unitary congruence transformation V , i.e., V TMV = M̂ , and
then the mass terms become

Lν mass = −1

2
ωCRM̂ωR + h.c., (2.4)

1 This is in contrast to the convention in supersymmetry [25], which describes the right-handed Majorana

spinor in terms of the four component spinor NR ≡ PRND with the upper two components of ND

irrelevant, and the charge conjugated NC
R ≡ PRN

C
D = (NL)

C and NC
L ≡ PLN

C
D = (NR)

C .
2 In such a simplified limit, it actually reproduces the well-known bino-Higgsino system in the minimal

supersymmetric standard models (MSSM), where the bino is the Majorana fermion and Higgsinos the

VLL, but their mixing is limited by the EW gauge coupling. However, this may be changed in the next-

to MSSM, where the singlino is a Majorana fermion and the term λSHuHd allows a larger mixing for

λ ∼ O(1) favored by enhancing Higgs boson mass.
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where ωRi
are three massive right-handed Weyl states in the mass basis, and they are related

to ΩRi as the following

ΩC
R =

 L0
L

(L0
R)

C

NC
R

 = V ∗ωCR , ΩR =

(L0
L)
C

L0
R

NR

 = V ωR, (2.5)

where the neutral mass spectrum are arranged as M̂ = diag(M1,M2,M3) with Mi real and
positive, ordered from light to heavy.

To switch to the 4-component notation, we embed ωR into the 4-component Majorana
fields as N ≡ ωCR + ωR, which obviously satisfies the self-conjugate constraint N = NC ;
moreover, one has NR = PRN and NL = PLN ≡ NC

R with PL,R = (1 ∓ γ5)/2. Then, the
mass terms in Eq. (2.4) can be combined into a single term, Lν mass = −1

2
MiNiNi.

The large mixings between VLLs and RHNs may affect the active neutrino phenome-
ologies in the seesaw mechanism, since the mixings bring the two neutral VLLs to the
neutrino mass mixing matrix. This leads to the modified seesaw sector containing two more
heavy Majorana fermions which form the light-heavy Dirac mass terms (yeffN )aiℓ̄aH̃Ni with

(yeffN )ai = (yN)a1V3i + (yN)a2V4i, where the flavor indices in (yN)a1,2 refer to ℓa and (NR)1,2
in a realistic model, and V3,4i come from (NR)1,2 = V3,4iNi. Then, the resulting effective
mass mixing matrix for the active neutrinos is

(meff
ν )ab = −v2(yeffN )aiM

−1
i (yeffN )ib. (2.6)

Hence, the type of Majorana and Dirac mixing does not relax the requirement that at least
two RHNs are needed to produce two non-vanishing active neutrino masses.

2. A UV completion in the local (B − L)ij model

The structure of the previous effective model is naturally realized in the flavorful local
B − L extension to the SM. It is well-known that the fermions within the SM are subject
to anomaly cancellation, while beyond the SM, the appearance of RHNs can be elegantly
ascribed to the gauged (B − L). Minimally, we only need two RHNs, corresponding to the
local (B − L)ij for the i, j-th generations of fermions [11, 12]; for concreteness, we here
consider (B − L)13 and other options are similar 3 .

Although successfully explaining the neutrino masses, the minimal (B−L)13 models can
not fully account for the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [26, 27], owing
to the flavorful B−L. To realize the PMNS mixings, we minimally introduce a pair of vector-
like lepton doublet LL,R and as well as a flavon Fℓ, required to develop a non-vanishing VEV
via a proper scalar potential; their quantum numbers in the new gauge group can be found
in Table. I. Given the above field content and symmetries, the most general Lagrangian of
the leptonic sector reads

−LL = Y e
22ℓ̄2HeR,1 + Y e

ij ℓ̄iHeRj + Y N
ij ℓ̄iH̃NRj + Y e

i LLHeRi + Y N
i LLH̃NRi (2.7)

+ λℓ2ℓ̄2LRF∗
ℓ +M ℓ

i ℓ̄iLR +mLLLLR +
λNij
2
ΦNC

RiNRj + h.c.,

3 Ref. [11, 12] studied (B−L)23 in order to get a light gauge boson ZB−L phobic to electron, and therefore

ZB−L is able to enhance (g − 2)µ, avoiding the exclusions from many low energy experiments.
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with the Latin indices i/j = 1, 3 and a/b = 1, 2, 3, the mixing coupling λn in the effective
model is replaced with Y N

i here. Φ is a Higgs field to spontaneously break (B − L)13 and

give large Majorana mass to NRi. Note that the term λ′nL
C
RHNR present in the effective

model is not present here, due to the (B − L)13 selection rule.

ℓe, ℓµ, ℓτ eR, µR, τR NeR, NτR H Φ LL/R LCL/R Fℓ
SM (2,-1) (1,-2) (1,0) (2,1) (1,0) (2,-1) (2,1) (1,0)

B − L -1,0,-1 -1,0,-1 -1,-1 0 2 -1 1 -1

TABLE I: Field content and quantum numbers in the SM (first) and in the (B − L)13
extension (second); the first generation of fermions are neutral under this new gauge

group. LL, LR and Fℓ are new particles for realizing active neutrino mixings.

B. Charged/neutral current couplings

The main task of this article is to investigate the hints of VLL in the scenario of seesaw
extension of SM in the oblique parameters, which are calculated from the EW currents. Let
us combine the two chirality LL and LR into the single Dirac field LT = (L0, L−), and then
in the interacting basis, the charged current is written as

LCC =
g√
2
W+
µ

((
ν̄a L0

)
γµPR

(
0aa 0

0 1

)(
ea
L−

)
+
(
ν̄a L0

)
γµPL

(
Iaa 0

0 1

)(
ea
L−

))
+ h.c.,

(2.8)

where we have introduced the block matrices to label the extended generation structure in the
left- and right-handed currents. Although the SM leptons (with family indices a = 1, 2, 3)
are irrelevant to our present discussion, they are still included, for our subsequent study
elsewhere. Moreover, without loss of generality, we work in the basis that the SM leptonic
Yukawa couplings are in the flavor diagonal basis. The neutral current reads

LNC ⊃ g

2c
Zµ

(
ν̄a L0

)
γµPR

(
0aa 0

0 1

)(
νa
L0

)
+

g

2c
Zµ

(
ν̄a L0

)
γµPL

(
Iaa 0

0 1

)(
νa
L0

)
+

g

2c
(s2 − c2)Zµ

(
ēa L−

)
γµPL

(
ea
L−

)
+

g

2c
Zµ

(
ēa L−

)
γµPR

(
2s2 0

0 s2 − c2

)(
ea
L−

)
, (2.9)

where s2 ≡ sin2 θ with θ the weak mixing angle.
Now, let us rotate the states into the basis defined in the previous subsection, via the

unitary transformation Eq. (2.5). Then, the charged current becomes

LCC =
g√
2
W+
µ

(
ν̄a N1 N2 N3

)
γµ (PRVR + PLVL)

(
ℓa
e4

)
+ h.c., (2.10)
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where we have used NC
Ri = PLNi to eliminate the notation of charge-conjugated fields. The

neutral states are decomposed into first three SM active neutrinos νa plus three heavy Ni,
and the charged states consist of three SM charged leptons ℓa plus one heavy e4. In the
second term of the first line, we have used NC

Ri = PLNi. Correspondingly, we introduce the
following 6-to-4 flavor mixing matrix VL,R

VL =


I3×3 03×1

03×3 V T

1

0

0


 , (VR)n4 = V ∗

2(n−3), n = 4, 5, 6, (2.11)

with other elements of VR being zero. We have not considered the light-heavy mixing that
leads to the SM neutrino masses yet, so no PMNS mixings appear. The neutral current
couplings take the form

LNC =
g

2c
Zµ

(
N1 N2 N2

)
γµPRW1

N1

N2

N3

+
(
N1 N2 N3

)
γµPLW2

N1

N2

N3


+

g

2c
Zµν̄aγ

µPLνa +
g

2c
(s2 − c2)Zµ

(
ℓ̄a ē4

)
γµPL

(
ℓa
e4

)
+
g

c
s2Zµ

(
ℓ̄a ē4

)
γµPR

(
ℓa
e4

)
+

g

2c
Zµ

(
ℓ̄a ē4

)
γµPRW

(
ℓa
e4

)
. (2.12)

To write the flavor-changing-neutral-current (FCNC) couplings in a compact form, we have
introduced three flavor mixing matrices W , W1 and W2 as the following

W1 = V †

0 0 0

0 1 0

0 0 0

V, W2 = V T

1 0 0

0 0 0

0 0 0

V ∗, W = U †
R

(
03×3 03×1

01×3 −1

)
UR, (2.13)

where UR is the 4 × 4 unitary transformation matrix acting on the right-handed charged
leptons, and here we do not consider the heavy-light mixing and thus the only non-vanishing
element of W is W44 = −|UR(4, 4)|2 = −1.

Actually, in calculating the obliques parameters S, T and U , the relevant current cou-
plings involve only the heavy states, and we list them below:

LCC ⊃ g√
2
W+
µ Naγ

µ (PRV
∗
2a + PLV1a) e4 + h.c., (2.14)

LNC ⊃ g

2c
ZµNaγ

µ (V1aV
∗
1bPL + V ∗

2aV2bPR)Nb +
g

2c
(s2 − c2)Zµē4γ

µe4. (2.15)

However, the above expression does not reflect the fact that Na are Majorana spinor fields.
To implement it, one can transpose the corresponding Lagrangian terms and use the Majo-
rana constraint NC

a = Na [13, 18–20, 25, 28], to write the neutral current couplings as (for
more details please see Appendix. VIB)

LNC ⊃g
c
ZµNaγ

µ ((gL)abPL + (gR)abPR)Nb +
g

2c
(s2 − c2)Zµē4γ

µe4, (2.16)
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with the new couplings encoding the Majorana nature

(gL)ab =
V1aV

∗
1b − V ∗

2bV2a
4

, (gR)ab =
V ∗
2aV2b − V1bV

∗
1a

4
. (2.17)

Note that in Eq. (2.15), both numerical coefficients for the Majorana fermions and Dirac
fermions are 1

2
, denoting for the T3 charge. But in Eq. (2.17), the former is multiplied by an

additional 1
2
factor for the sake of satisfying the Majorana condition and becomes 1

4
.

When calculating the S parameter, involving the neutral current couplings only, it is
more convenient to work in the interacting basis for the gauge bosons - W 3 and B:

LNC ⊃ gW 3
µ

(
Naγ

µ ((gL)abPL + (gR)abPR)Nb −
1

2
ē4γ

µe4

)
−g′Bµ

(
Naγ

µ ((gL)abPL + (gR)abPR)Nb +
1

2
ē4γ

µe4

)
.

(2.18)

which is readily obtained from the quantum number of the fields. More details about the
currents and their relations in different basis or conventions can be found in Appendix. VIA.

III. CALCULATION OF THE PESKIN-TAKEUCHI PARAMETERS

The electroweak precise observables (EWPOs) provide a promising way to search for clues
to new physics, in particular for the heavier new resonances that can not be abundantly
produced at the colliders with distinguishable signatures. In this framework, one expresses
the theoretical prediction of an EWPO O as the SM prediction OSM plus oblique corrections,
which are some linear combinations of the self energies of the EW gauge bosons contributed
by new physics and expected to slightly shiftOSM. Then, O = OSM (1 + oblique corrections).
In the linear approximation, it is sufficient to parameterize the oblique corrections in terms
of three Peskin-Takeuchi oblique parameters S, T and U [29, 30]. In the following, we will
first briefly review them and clear the conventions for their calculations. Then, we present
our results specific to the VLL-RHN model.

A. Defination and convention

The new physics information can be encoded in the oblique corrections to the electroweak
propagators, namely the vacuum polarization amplitude between two vector bosons, Σµν

V V ′ ≡
⟨JµV JνV ′⟩; V and V ′ denote the gauge bosons of the electroweak sector, and they can either be
W±, Z, γ or 1(2), 3, Y (Q), depending on the basis, with details cast in the Appendix. VIA.
The Fourier form Σµν

V V ′(q2) is simply obtained by multiplying −i to the amplitude of the
corresponding loop diagram. Only the transverse part is involved, ΣT

V V ′(q2) = 1
3
PµνΣ

µν
V V ′(q2)

with the projector Pµν = gµν − qµqν/q
2. The superscript “T” will be dropped hereafter. For

the low energy experiments with a low q2 such as q2 =M2
Z , it is proper to expand ΣV V ′(q2)

around q2 = 0 and take the linear approximation,

ΣV V ′(q2) ≃ ΣV V ′(q2 = 0) + q2Σ′
V V ′(q2 = 0). (3.1)

8



Peskin and Takeuchi found that it is sufficient to parameterize the oblique corrections in
terms of three parameters S, T and U [29, 30]

S ≡ 16π[Σ′
33(0)− Σ′

3Q(0)],

T ≡ 4π

M2
Zs

2c2
[2Σ11(0)− Σ33(0)],

U ≡ 16π[2Σ′
11(0)− Σ′

33(0)],

(3.2)

where the expanding point q2 = 0 will be implied. For S, it is more convenient to calculate
in the basis before EWSB, which takes the form of

S = −16πΣ′
3Y , (3.3)

where the relations in Appendix. VIA have been used.
Usually, the value of the U parameter is very close to zero and not sensitive to new physics.

The T parameter is the only one receiving leading order contribution and dominates in the
oblique corrections to EWPOs. T parameter is equivalent to the ρ parameter, T = (ρ−1)/α,
and hence it is sensitive to the violation of custodial symmetry, e.g., due to mass splitting
between the isospin multiplets. In the absence of such violations, the S parameter will take
over. In convention, the oblique parameters are defined to be zero within the SM. Therefore
the SM is just a reference point and these three oblique parameters are indications for BSM,
i.e., O = O|NP −O|SM with O = S, T, U .

The BSM contribution to the vacuum polarization amplitude Σnew
V V ′(q2) is shown in Fig. 1.

The calculation is based on the couplings between the neutral or/and charged currents
and gauge bosons, which are generically denoted as JḡV with ḡ = g̃(aPL + bPR). In this
convention, we extract out the gauge couplings g̃ = g, g′, e of gauge groups SU(2)L, U(1)Y
and U(1)em, respectively, which enables us to write the oblique corrections in the form of
Eq. (3.2) and Eq. (3.3). The concrete expressions of a and b in our model can be read from
Eq. (2.14), Eq. (2.16) and Eq. (2.18).

ḡ ḡ′
V V ′

ℓ

ℓ′

FIG. 1: Vacuum polarization amplitudes for the electroweak vector bosons V/V ′; ℓ and ℓ′

denote the BSM fermions like e4 and the heavy neutral leptons.

We first deal with the leading part in the linear approximation, Σnew
V V ′(q2 = 0), which is

simply denoted as a scalar function Σ(a, b,m,M) with a, b the couplings and m,M masses
of the loop particles; the subscripts V V ′ correspond one-to-one with (a, b), so they can be
omitted in this notation. For the case with V = V ′, Σ can be written as

Σ =(|a|2 + |b|2)ΣV+A + 2Re(ab∗)ΣV−A. (3.4)
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While for the case with V ̸= V ′ such as γ-Z, 3-B and 3-Q, it takes the form of

Σ =(a1a
∗
2 + b1b

∗
2)ΣV+A + (a1b

∗
2 + b1a

∗
2)ΣV−A, (3.5)

with “1” and “2” denoting for V and V ′. In this notation, ΣV±A are just functions of loop
masses. For the derivatives part Σ′(q2 = 0), one has similar expressions.

For the vector couplings to the vector bosons, one has a = b, and then it is convenient to
introduce Σ̃ = ΣV+A + ΣV−A, so we have

Σ = 2|a|2Σ̃ = 2|b|2Σ̃. (3.6)

In our model, it is the case for the neutral current couplings of e4.
Now, we give the concrete expressions for the one-loop functions introduced in the above

equations,

ΣV−A(m,M) =
1

8π2
mM

(
log

mM

µ2
+

(m2 +M2)

2(m2 −M2)
log

m2

M2
− 1

)
, (3.7)

ΣV+A(m,M) =− 1

8π2

(
m4 +M4

4(m2 −M2)
log

m2

M2
+
m2 +M2

2
log

mM

µ2
− m2 +M2

4

)
. (3.8)

For the derivatives part, the loop functions are given by

Σ′
V−A(m,M) =− 1

8π2
mM

 m2 +M2

2 (m2 −M2)2
+

(m2M2) log
(
M2

m2

)
(m2 −M2)3

 , (3.9)

Σ′
V+A(m,M) =− 1

8π2

[
1

3
log

(
µ2

mM

)
+
m4 − 8m2M2 +M4

9 (m2 −M2)2

+
(m2 +M2) (m4 − 4m2M2 +M4) log

(
M2

m2

)
6 (m2 −M2)3

 . (3.10)

We adopt dimensional regularization to regulate the UV-divergence, with µ the renormal-
ization scale set at µ =MZ . But due to zeroth naturalness relation, the oblique parameters
are free of divergence and therefore the choosing of scale µ is irrelevant. As a matter of
fact, this feature provides a good way to check if the result is correct, which is important in
particular for the models involving a couple of loop particles with mixing.

For the above loop functions, there are two special cases that need to be handled with
care during numerical processing. First is the degenerate case with m =M , then

ΣV+A = − 1

8π2
m2ln

m2

µ2
, ΣV−A=

1

8π2
m2ln

m2

µ2
, (3.11)

Σ′
V+A = − 1

8π2

(
1

3
log

(
µ2

m2

)
− 1

6

)
, Σ′

V−A=− 1

8π2

1

6
. (3.12)

This case naturally occurs for the scalar functions of neutral vector bosons, ΣZZ and Σ3Y ;
it also arises for ΣWW when it receives contribution from the degenerate components of a
SU(2)L multiplet. The second is the case with one massless particle, namely M > m = 0,

ΣV+A =− 1

32π2
M2

(
2ln

M2

µ2
− 1

)
, ΣV−A = 0, (3.13)

Σ′
V+A =− 1

8π2

1

9

(
1 + 3 log

µ2

M2

)
, Σ′

V−A=0. (3.14)
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All of them are obtained by taking smooth limits of the general expressions 4.

B. Oblique parameters in the VLL-RHN model

In this subsection, we present the expressions of S, T and U specific to our simplified
VLL-RHN model. We find a similar model setup in Ref. [14], which considers a doublet
VLL mixing with a Dirac singlet fermion and presented the analytical results. Especially,
Ref. [16], which we only learned about in the final completion stage of this work, also studied
doublet VLL mixing with Majorana fermions in the dark matter scenario. However, it is
still of importance to make an independent calculation for cross check. But Ref. [16] adopt
a different calculation procedure and make the direct comparison via expression difficult. In
the numerical analysis, we will comment on this at the right place.

With the loop functions ΣV±A and Σ′
V±A, and as well the current couplings, it is straight-

forward to obtain the total scalar functions like Σ and Σ′ by summing over the loop diagrams.
Then substitute them into Eq. (3.2), we eventually get the oblique parameters

S =− 16π

[
1

2
Σ̃′(mL,mL)− 4

2,3∑
a,b=1,(

|(gL)ab|2 + |(gR)ab|2

2
Σ′
V+A(Ma,Mb) + Re((gL)ab(gR)

∗
ab)Σ

′
V−A(Ma,Mb)

)]
, (3.15)

where the first and second term denote the contribution from the neutral currents of e4 (with
Dirac mass mL) and neutral leptons (with Majorana masses Ma), respectively. In contrast,
T and U receive contributions from charged currents,

T =
4π

M2
Zs

2c2

[
a=1,2,3∑
m=mL

(
V 2
1a + V 2

2a

2
ΣV+A(m,Ma) + Re(V1aV2a)ΣV−A(m,Ma)

)
− 1

2
Σ̃(mL,mL)

−4

2,3∑
a,b=1,

(
|(gL)ab|2 + |(gR)ab|2

2
ΣV+A(Ma,Mb) + Re((gL)ab(gR)

∗
ab)ΣV−A(Ma,Mb)

)]
, (3.16)

and

U = 16π

[
a=1,2,3∑
m=mL

(
V 2
1a + V 2

2a

2
Σ′
V+A(m,Ma) + Re(V1aV2a)Σ

′
V−A(m,Ma)

)
− 1

2
Σ̃(mL,mL)

−4

2,3∑
a,b=1,

(
|(gL)ab|2 + |(gR)ab|2

2
ΣV+A(Ma,Mb) + Re((gL)ab(gR)

∗
ab)ΣV−A(Ma,Mb)

)]
. (3.17)

The above expressions can be easily generalized to the situation with more RHNs.
We end up this section with a comment on the subtlity in calculating the contribution

from a Majorana loop, and the above parameters are numerically finite only this subtlity is
properly handled. For such a loop, in addition to the symmetry factor 1

2
, there is another

1
2
from the Majorana nature in the couplings Eq. (2.17), which is cancelled by the factor 2

from the Feymann rule corresponding to the vertex Eq. (2.16) [31]. From the example in
Appendix. VIC, one can track the difference between a Majorana and Dirac loop.

4 The third case has both massless fermions, M = m = 0, then ΣV±A vanish, but Σ′
V±A are intermediate

and require further treatment of the expression of parameters S, T and U . But this case is not our

concern.

11



IV. CONSTRAINTS ON THE WELL-MIXED VLL-RHN SYSTEM

In this section, we make the numerical study on the VLLs assisted with the seesaw (or,
more generally, the fermionic singlet-doublet model), taking advantage of the constraints
from S and T before and after the CDF-II result. The key features of this model are
captured by the VLL-RHN mass matrix. As a simplification, we will work in the minimal
model with one family of RHN and VLL, which will contain three real parameters, mL,
MN and mD if m′

D is turned off. They are sufficient to investigate the general feature; the
quantitative effect after including m′

D in particular with a phase will be discussed separately.

A. EWPO w/o CDF-II results

To make precise predictions of EWPOs in new physics models, one follows the procedure
of EW precision tests. In this procedure, the fine structure constant, Fermi constant and Z
boson pole mass are three most precisely measured EW quantities, and therefore are taken
as fiducial quantities:

α̂(0) ≈ 1/137.04, ĜF ≈ 1.164× 10−5 GeV−2, M̂Z ≈ 91.1876 GeV. (4.1)

As a first step, three Lagrangian parameters e,mZ and sin2 θw ≡ s2, which are used in
calculating EWPOs both at tree and loop level, should be expressed in terms of the fiducial
quantities (and the self-energy functions Σ). Then, the values of EWPOs, both OSM and
the oblique parameters are functions of the fiducial quantities. For instance, the W boson
pole mass takes the form of

M2
W =M2

Zc
2[1− c2

c2 − s2
δΠZZ(M

2
Z)

M2
Z

+
δΠWW (M2

W )

M2
W

+
s2

c2 − s2
(δΠ′

γγ(0) +
δΠWW (0)

M2
W

)]

=M2
W (α̂, ĜF , M̂Z)

[
1 +

α̂

ĉ2 − ŝ2

(
−1

2
S + ĉ2T +

ĉ2 − ŝ2

4ŝ2
U

)]
. (4.2)

with ŝ2 ≈ 0.234. The corresponding SM prediction M2
W (α̂, ĜF , M̂Z) ≈ 80.3564 GeV.

TheW boson mass is an attractive EWPO to probe new physics, since it is not sensitive to
the strong interaction and has amazingly small uncertainty in the SM theoretical prediction.
This value is obtained from indirect determination by global fit with uncertainty ∼ 0.01%
(corresponding to δMW ≲ 10 MeV); see the improved predictions with respect to different
colliders in the last column of Tab. II. Therefore, as long as the accuracy of directly measuring
W boson mass can reach this level, we can look for possible new physical hints from this
EWPO 5, and the third column of Tab. II shows the current situation.

We are already probing the new physics domain. Of great interest is the CDF Collabo-
ration at Fermilab, who published the most precise measurement of MW , analyzing the full
dataset of the Tevatron collider. They reported a value of 80434 MeV and an uncertainty
of 9 MeV, which differs significantly from the SM prediction, but also differs significantly
from the other experimental results. In a new preliminary result released by the ATLAS
Collaboration, with an improved re-analysis of its initial MW measurement, they found MW

5 In contrast, the indirect determination of Higgs and top masses suffer a relatively large theoretical uncer-

tainty, which hinders them from becoming EWPOs sensitive to new physics.
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to be 80360 MeV, with an uncertainty of just 16 MeV, still in agreement with the SM. Our
strategy in the face of such chaotic measurement results is to prepare with both hands, using
global fit with/without CDF-II data. This was already carried out in Ref. [32], and we quote
their results for our analysis. In our model, both S and U will be found to be small, and we
only need to consider the constraint from T , at 2σ confidence level, which gives

PDG− 2021 : −0.010 819 ≤ T ≤ 0.116 374, CDF− II : 0.122 222 ≤ T ≤ 0.192 398. (4.3)

In any case, the current sensitivity to T is ∼ O(0.1). For the latter, the W -boson mass
anomaly solely determines T ≃ 0.1.

Colliders experiments results SM Prediction

LEP
LEP 80440± 43(stat.) MeV [33] 80373± 23 MeV [34]

LEP combination [35] 80376± 33 MeV 80385± 15 MeV

Tavetron
D0 (Run 2) [37] 80375± 23 MeV 80399± 23 MeV [38]

CDF (Run 2) [22] 80433.5± 9.4 MeV 80357± 6 MeV

LHC

LHCb 2022 [39] 80354± 23(stat.) MeV 80379± 12 MeV [40]

ATLAS 2017 [41] 80370± 19 MeV 80385± 15 MeV [42]

ATLAS 2023 [23] 80360± 16 MeV 80377± 12 MeV [43]

ATLAS 2024 [24] 80366.5± 15.9 MeV 80355± 6 MeV [44]

TABLE II: Overview of W boson mass.

B. The minimal VLL-RHN system with m′
D → 0

This minimal case with one one RHN and moreover m′
D → 0 corresponds to the gauged

(B − L)ij model with one decoupled RHN. We will see that, the VLL can only leave a
significant imprint in the T parameter, in the well-mixed region of VLL-RHN that leads
to a large custodial symmetry breaking. We have a vanishingly small U as usual, and S is
also suppressed. Actually, although not related to custodial symmetry breaking, like T , S
also vanishes in the limit of vanishing doublet-singlet mixing (similar observation is made
in other models [45]), since it recovers SU(2)L . Hence, the mass mixing parameter mD or
λn is a key to enhance the oblique parameters.

To explore the overall features of the three dimensional parameter space, we fix MN at
three typical scales, a sub weak scale 10 GeV, weak scale 100 GeV and the TeV scale, and
then plot the oblique parameters on the λn −mL plane. The VLL mass lies in the region
100 GeV < mL < 2000 GeV, where the lower bound is due to constraint on the charged
heavy lepton mass, from the robust LEP-II bound [46], and the precise lower bound does
not matter much in our discussion. Moreover, we limit 0 < λn < 3, with the upper bound
imposed simply by hand to avoid hitting the Landau pole at a fairly low scale. The region
with −3 < λn < 0 is symmetric with the previous one thus not considered. We present some
plots and make some observations:

1. The S parameter is shown in the top panels of Fig. 2, and we see that its value always
keeps very small, ≲ O(0.01). Such small values lie far below the sensitivity of the
current experiments, ≳ 0.1. The value of U parameter is even much smaller and not
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displayed. But the T parameter can be sizable, except for a quite heavy RHN of
several TeV; see the bottom panels of Fig. 2.

FIG. 2: The analyse the order of magnitude of parameters between parameters S (top) and
T (bottom). set three typical reference points at MN = 103 GeV, MN = 102 GeV and
MN = 10 GeV. In the bottom plots, we also show the allowed-region of T by PDG-2021
(yellow shadowed) and CDF-II (orange shadowed), respectively.

2. It is well expected that for a fairly light RHN with MN ≪ mL, the model reduces to
a two parameters case (it explains why we do not consider the even lighter MN case),
and this is in accordance with the strong similarity between plots for the MN = 100
GeV and MN = 10 GeV cases, in particular in the heavy mL region.

3. Increasing the RHN mass causes the oblique parameters quickly go beyond the current
sensitivity, because the VLL approximately decouples with RHN thus the restoration
of custodial symmetry, except that the splitting is compensated by a very large λn.
The decoupling behavior of new particles is reflected in the fact that, for a given λn,
both S and T monotonically decrease with the increasing mL, except for certain subtle
regions where the strong mixing effect may break the simple decoupling behavior.

4. For T , across certain line, sign flipping may occur. It is found that in our choice
of MN , we meet this flipping only in the case with MN = 1 TeV. This is related
to the presence of Majorana particles, which, contrary to the Dirac fermions, have
non-diagonal couplings with Z and thus contribute negatively to its self energy.

Actually, a negative T is not rare in the parameter space. To show this, let us instead
display the plots of S and T in the MN −mL plane with fixed λn, see Fig. 3. They
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clearly show that there is a (almost) straight line along which one meets the accidental
cancelation leading to T = 0, below which T < 0.

It is of interest to use this to constrain on the mixed doublet-singlet system. The cor-
responding regions are shown in the bottom panels of Fig. 2, shadowed with yellow and
orange colors, respectively; they do not have overlap. In the following we will take the
CDF-II region as a smoking gun for the coming hint of the VLL-RHN system in the oblique
parameter. For the relatively light mN , the CDF-II region can be accommodated with a
moderately large λn ∼ 1 even for a TeV scale mL. But for mN = 1 TeV, a fairly large
λn ≈ 3 is needed. In other words, with current sensitivity, our proposal is hopeful only for
the sub-TeV scale RHN.

FIG. 3: Distributions of S (red-dashed) and T (black-dotted) in the MN − mL plane for
λn = 0.5 (left), 1 (middle), 2 (right).

C. Phase effect after including m′
D

We end up this section with a comment on the possible phase effect which arises beyond
the minimal case, namely turning on both mD and m′

D
6. Now, the mass matrix contains

four complex elementsMN , mL, m
′
D andmD, eight real degrees of freedom. But their phases

can be absorbed via re-defination of fields, leaving only one physical phase θ. We explicitly
show this manipulation via the phase rotation P = Diag(e−i(β−θ1+α/2), e−i(θ1−α/2), e−iα/2):

Mψ =

 0 mLe
iβ mDe

iθ2

mLe
iβ 0 eiθ1m′

D

mDe
iθ2 eiθ1m′

D MNe
iα

 → P TMψP =

 0 mL mDe
iθ

mL 0 m′
D

mDe
iθ m′

D MN

 . (4.4)

where θ = θ1 + θ2 − α− β.
Following Eq. (2.14), it is clear that the effect of these phases exhibit itself via the chiral

mixing terms in the charged current, such as

g√
2
(V ∗

2aPL + V1aPR) →
g2

2
re (V2aV1a) . (4.5)

6 If mD = ±m′
D, T vanishes as observed in Ref. [16]. Our numerical results confirmed this. But we are not

sure if this is related to the usual custodial symmetry.
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In Fig. 4, we show the numerical result of phase effect on T for two a light and heavy mN ,
to find that it is tiny in both case.

FIG. 4: The left and right panels show the function T (θ)/T (θ = 0) with λ′n = 1, based on
different parameter space points MN = 103 GeV,mL = 200 GeV and MN = 103 GeV,mL =
800 GeV. The parameter T (θ) are values of T with λn (or mD) pick up a phase θ = π/8,
π/4, 3π/8 and π/2 labeled as red-dotted, green-hatted and blue-circle, black-plus.

V. CONCLUSION AND DISCUSSION

Hopefully, the SMν,I , the type-I seesaw mechanism extension to SM, is going to be the next
SM. Nevertheless, testing the prediction of this model is hampered by the highly decoupling
between the Majorana RHNs and SM. In this work, we consider a simple scenario where
VLLs, which are introduced in different contexts, enter the SMν,I via the RHN portal. In
the well-mixed VLL-RHN region, there are many interesting features which help to discover
such a system.

As a preliminary study, in this work we analytically calculate the Peskin-Takeuchi pa-
rameters. The calculation is routine, but the Majorana loop should be treated carefully in a
system with complicated mixings, otherwise it is impossible to obtain a correct result. We
checked our expressions by examining several points, such as free of divergence, vanishing
numerically in special limits which are related to symmetry recovery. The VLL-RHN system
only gives a sizable T parameter, and the current sensitivity is T ≲ O(0.1), which probes
RHNs and VLLs below the TeV scale, with a properly large mixing. In particular, the W
boson mass reported by the CDF-II Collaboration can be readily accommodated, but we
need more time to see this if this anomaly survives.

After this work, we will continuously to study the other aspects of the well-mixed VLL-
RHN system. The region related to the CDF-II result is of special interest, since it points
to new electroweak fermions not far from the TeV scale, which are within the LHC reach.
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VI. APPENDIX

A. Scalar functions in different basis

For the electroweak part of SM, the gauge interactions before electroweak spontaneously
breaking take the forms of

LEW =g(W µ
1 J

1
µ +W µ

2 J
2
µ) + gW 3

µJ
3
µ + g′BµJ

Y
µ , (6.1)

with the currents defined as

J1,2,3
µ =

∑
i

ψ̄LiT
1,2,3γµψLi, JYµ =

∑
i

(ψ̄Li
Y

2
γµψLi + ψ̄Ri

Y

2
γµψRi). (6.2)

where T 1,2,3 are three generators of SU(2)L, Y is the hypercharge of U(1)Y . Contributions
to the currents from new particles can be easily incorporated. In the basis after electroweak
spontaneously breaking, it take the forms of

LEW =
g√
2
(W+µJ+

µ +W−µJ−
µ ) + gZµJZµ + eAµJAµ . (6.3)

The notations JAµ = JEMµ = e JQµ also appear in some literatures. The above currents are
the linear combinations of those currents in Eq. (6.2)

J±
µ = J1

µ ± iJ2
µ =

∑
i

ℓ̄LiT
±γµℓLi,

JZµ =
1

cW
(J3
µ − s2WJ

EM
µ ) =

∑
i

1

cW
ψ̄i(T

3PL − s2WQ)γµψi,

JEMµ =
∑
i

Qi(ψ̄LiγµψLi + ψ̄RiγµψRi),

(6.4)

with the charge Q = T 3 + Y
2
. As authors’ preferences in the original reference [47], JZµ is

expressed in terms of J3
µ and JEMµ . This will lead to the appearance of scalar functions in

the basis before EWSB, such as ΣQQ,3Q in Eq. (6.8).
The vacuum polarization amplitude between two vector boson V and V ′, ΣV V ′ are written

in the momentum space as

Σµν(q2) =

∫
d4x exp(−iqx)⟨Jµ(x)Jν(0)⟩, (6.5)

which can be decomposed into the transverse and longitudinal parts

iΣµν
V V ′(q

2) = P µνiΣT
V V ′(q2) + LµνiΣL

V V ′(q2), (6.6)

with the transverse and longitude projection operators defined as

P µν = gµν −
qµqν
q2

, Lµν =
qµqν
q2

, P µν + Lµν = gµν ,

PµνP
µν = 3, LµνP

µν = 0, PµνL
µν = 0, LµνL

µν = 1.
(6.7)
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The scalar function for the transverse part is obtained ΣT
V V ′(q2) = 1

3
PµνΣ

µν
V V ′(q2). It corre-

sponds to −i times the loop diagram by Peskin’s convention. One can use the above notation
to rewrite the expression of the scalar function for W , Z, and γ as

Σγγ = e2ΣQQ,

ΣZZ =
g2

c2W
Σ33,

ΣZA =
g

cW
e(Σ3Q − s2ΣQQ),

ΣWW = g2Σ11 + g2Σ22 = 2g2Σ11 = 2g2Σ22.

(6.8)

It’s self-evident that these different expressions of oblique parameters are equivalent.
If the energy scale of the new physics is heavy enough, then the derivative in the oblique

parameters can be written as

Σ′
33(0) =

Σ33(M
2
Z)− Σ33(0)

M2
Z

, Σ′
33(0) =

Σ33(M
2
W )− Σ33(0)

c2M2
Z

,

Σ′
3Q(0) =

Σ3Q(M
2
Z)− Σ33(0)

M2
Z

, Σ′
3Y (0) =

Σ3Y (M
2
Z)− Σ3Y (0)

M2
Z

.

(6.9)

Here we ignored ΣQQ since it is trivial, and in some special-chosen models, Σ′
V V ′ and Σ′′

V V ′

would be needed too.

B. FCNCs of Majorana fields

In this appendix, we give the details of how to rewrite the neutral current couplings
involving four-component Majorana fields with flavor changing (i.e., FCNC) in the form
of Eq. (2.16). First, note that the Majorana bilinear terms satisfy the charge conjugate

relations χCγµηC = −η̄γµχ or ξCγµPLζ
C = −ζ̄γµPRξ. So, for the original FCNC couplings

in Eq. (2.15) we have

L ⊃ g

2c
Zµ(N̄aγ

µV1aV
∗
1bNb +NC

aγ
µV ∗

2aV2bN
C
b )

=− g

2c
Zµ(N̄aγ

µV2aV
∗
2bNb +NC

aγ
µV ∗

1aV1bN
C
b )

=
g

4c
Zµ[N̄aγ

µ(V1aV
∗
1b − V2aV

∗
2b)Nb +NC

aγ
µ(V ∗

2aV2b − V ∗
1aV1b)N

C
b ]. (6.10)

Using PL + PR = 1, the above equation can be rewritten as

g

4c
Zµ[N̄aγ

µV1aV
∗
1bNb − N̄aγ

µV2aV
∗
2bNb −NC

aγ
µV ∗

1aV1bN
C
b +NC

aγ
µV ∗

2aV2bN
C
b ]

=
g

4c
ZµN̄aγ

µPL(V1aV
∗
1b − V2aV

∗
2b)Nb −

g

4c
ZµNaγ

µPR(V
∗
1aV1b − V ∗

2aV2b)Nb. (6.11)

The coupling of left-handed and right-handed are interrelated through gZL = (gZR)
∗, and this

interrelation makes one additional factor 1
2
appear.

We would like to comment that, FCNC is very small within the SMν,I, but it can be
enhanced after introducing VLLs like in our setup. Then, the non-diagonal coupling between
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N1 and N2 source the negative contribution to parameter T . However, this negative sign
is not tied to the Majorana property. For instance, if the mixing is between two charged
components in the doublets with different hypercharge T 3, one can also obtain a negative
T .

C. A demo calculation

In this appendix, we elucidate the complete process of calculating oblique paraemters
through a demo of parameter T .

The W 3 contribution to parameter T has two types of Feynman diagrams: the neutral
fermion loop Σ(Ma,Mb) and charged fermion loop Σ(mL,mL). However, the neutral fermion
is Majorana one here, and the Feynman rules differ from the Dirac fermion.

Na Nb

W 3

2g(gL)abPL + 2g(gR)abPR

e4 e4

W 3

g/2

FIG. 5: The corresponding Feynman rules of W 3 vertex: The Majorana-induced 1
2
factor

(the left) is compensated by two possible contractions compared with the right one. However
one more 1

2
appear subsequently as a symmetry factor at the expense of Majorana.

TheW 3 gauge interaction contributes to parameter T through Σ33 which can be computed
by Eq. (2.18), Eq. (3.2), Eq. (3.4) and Eq. (3.6). The corresponding the mass variables are
Ma,Mb = mL, and the coupling variables are a = b = 1

2
7. Thus loop contribution from e4

gives [(
1

2

)2

+

(
1

2

)2
]
ΣV+A(mL,mL) + 2 · Re

(
1

2
· 1
2

)
ΣV−A(mL,mL)

=
1

2
[ΣV+A(mL,mL) + ΣV−A(mL,mL)] =

1

2
Σ̃,

(6.12)

The loop contribution from Na/b can also be computed as Eq. (3.4) with

1

2
×
[
((2gL)ab)

2 + ((2gR)ab)
2]ΣV+A(Ma,Mb) = 2

(
|(gL)ab|2 + |(gR)ab|2

)
ΣV+A(Ma,Mb),

1

2
×2 Re ((2gL)ab(2gR)

∗
ab) ΣV−A(Ma,Mb) = 4Re((gL)ab(gR)

∗
ab)ΣV−A(Ma,Mb). (6.13)

We can use the same method to compute the contribution from charged current, with

the coupling replaced by V1a√
2
PL,

V ∗
2a√
2
PR, and the mass variables mL, Ma, then the result will

7 Follow the convention, g and g′ don’t appear in Eq. (3.2). For Majorana loop,The vertex double its

coupling-(gL/R)ab → 2(gL/R)ab and loop symmetry adds an additional 1
2 factor. Here the index label a

or b are 1, 2, 3.
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be [(
V1a√
2

)2

+

(
V ∗
2a√
2

)2
]
ΣV+A(m,Ma) =

V 2
1a + V 2

2a

2
ΣV+A(m,Ma),

2 Re

[
V1a√
2
·
(
V ∗
2a√
2

)∗]
ΣV−A(m,Ma) = Re(V1aV2a)ΣV−A(m,Ma).

(6.14)
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