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Abstract:

Consider a dynamic decision-making scenario where at every stage the investor has

to choose between investing in one of two projects or gathering more information.

At each stage, the investor may seek counsel from one of several consultants, who,

for a fixed cost, provide partial information about the realized state. We explore

the optimal strategy and its dependence on the belief and the consultation cost.

Our analysis reveals that if one of the consultants discloses the state with a nonzero

probability, this consultant will be used in any optimal strategy, provided the con-

sultation cost is sufficiently small.
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1 Introduction

Decision problems, in which a decision maker (DM) has to select an action when the state

is unknown, are abundant. In many cases, to improve her performance, the DM can use

the services of consultants who, for a certain fee, provide information on the unknown state

of nature. Sometimes, to further improve her performance, the DM can approach a certain

consultant several times, or approach different consultants one after the other. Since different

consultants provide information of different types and qualities, and charge different fees, the

DM’s optimal strategy, which dictates which consultant to approach as a function of information

gained so far and when to make a decision, may be difficult to derive.

In this paper, we study a simple decision problem with a dynamic choice of consultants,

and derive properties of the optimal strategy.

Two setups that fall naturally into our model are investments and medical diagnosis. Before

venture capital funds decide whether to make an investment, they consult various experts about

the future prospects of the company they consider investing in. Similarly, before recommending

a treatment, doctors run various tests, which provide statistical information regarding the

patient’s situation. In both of these examples, the next expert to be consulted (resp., the next

test to be run) may depend on the information provided by earlier experts (resp., tests).

To fix ideas, consider an investor who has two possible investment opportunities, R and L,

whose profitability depends on the state of nature: investment R (resp., L) yields a profit when

the state of nature is r (resp., ℓ), and 0 otherwise. The initial prior that the state of nature is

r is p0. The investor has several consultants at her disposal. For a fixed cost c, a consultant

provides information about the state of nature, and thereby about the profitability of each

of the investment opportunities. This information is given by an experiment à la Blackwell,

whose outcome is conditionally independent of the outcome of past experiments done by the

consultant or by other consultants. At every stage, the investor can approach one of the

consultants, or, if she deems the information the consultants may provide not worth the cost,

she can select one of the investment opportunities.

We study the optimal strategy of the investor and the value of the decision problem as

a function of both the prior belief and the cost of consulting. We prove that if there is a

consultant who, with positive probability, reveals the state of nature, then, provided that the

consultation cost is below a certain threshold, in all optimal strategies this consultant will be

consulted at least once.

Consultants who may reveal the state of nature arise naturally in, e.g., military and com-

petitive intelligence. Suppose the DM is a country (or a firm), that is looking for information
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on future military activities of an enemy country (or on technological developments of a com-

peting firm). The country can employ various intelligence gathering method, such as imagery

intelligence, cyber intelligence, signal intelligence, human intelligence, and covert operations.

Each means of obtaining information can be thought of as a different consultant. Some of these

methods provide only probabilistic information, while others may sometimes provide decisive

information about the enemy’s plans (such as the breaking of the enigma in World War II).

We also prove that under a technical condition on the signaling probabilities of the consul-

tants, the value function is piecewise linear, and, as a function of the initial belief, there is a

finite number of possible optimal strategies. This property facilitates the task of finding the

optimal strategy.

Finally, we study a restricted investment problem where the consultants have two possible

types: revealers and estimators. A consultant is a revealer if with some probability t > 0

it reveals the state, and with the remaining probability 1 − t it provides no information. A

consultant is an estimator if it provides a signal that with probability q matches the state and

with probability 1− q mismatches the state. We show that in a special symmetric case, where

the initial belief is 1
2 and all consultants are revealers and estimators, the optimal strategy

is either (i) to consult no consultant, and immediately select an action, or (ii) to selects one

consultant and repeatedly consult him until making a decision.

Related literature The idea of a sequential test goes back to Dodge and Romig, 1929, who

proposed the idea of a double-sampling inspection procedure. Neyman and Pearson, 1933,

greatly advanced the subject by providing an instrument to determine the effectiveness of

the different tests. Wald, 1945, developed sequential hypothesis testing, which is the basis

for our type of decision problem, collecting information to distinguish between two possible

states. Using the theory of dynamic programming, Bellman, 1956, made the calculation of

optimal solutions possible. Chernoff, 1959, 1972, 1973, and Whittle, 1964, 1965, focused on

asymptotically optimal solutions when the cost goes to zero, as well as results in the related area

of bandit problems. Raiffa, Schlaifer, et al., 1961, applied the methods of sequential hypothesis

testing to the field of statistical decision-making and information acquisition. Hellman and

Cover, 1970, limited the DMs to strategies with finite memory. Most early papers on sequential

hypothesis testing assume that the number of stages is strictly bounded (where the bound is

known or unknown), which we do not.

A recent paper exploring sequential decision problems pertinent to our research is Naghshvar

and Javidi, 2013. While their model whose model is more general than ours, it studies a different
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question, specifically, the bounds on information acquisition rate. Their paper shows that an

upper bound can be obtained via an analysis of two heuristic strategies for a dynamic selection

of actions. One strategy that achieves asymptotic optimality, where the notion of asymptotic

optimality, due to Chernoff, implies that the relative difference between the total cost achieved

by the proposed policy and the optimal total cost approaches zero as the penalty of wrong

investment increases. The second heuristic strategy is shown to achieve asymptotic optimality

only in a limited setting such as the problem of a noisy dynamic search. See also Wilson, 2014,

whose model focuses on a decision maker with finite memory, Boehm et al., 2020, whose model

examines the optimal strategies for investment problems with dynamic reward rates in dynamic

environments, and a decision criterion that changes over the course of the decision process, and

Zhang, 2022, whose model examines dynamic decision-making with a continuous unknown

parameter or state, a methodology focusing on the continuation-value functions created by

feasible continuation strategies.

The structure of the paper In Section 2.1 we introduce the model of a sequential invest-

ment problem. In Section 2.2 we present the fundamental properties of the investment problem.

Section 2.3 provides the results for consultants that reveal the state. Section 2.4 provides a

sufficient condition that ensures the value function is piecewise bilinear in the prior and the

cost. Section 2.5 provides the results for a special family of consultants.

2 The Model and the Main Results

2.1 The Model

There are two state of nature Ω = {r, ℓ} and two actions A = {R,L}; action a ∈ A yields the

gain u(a, ω) in state ω ∈ Ω. Actions are interpreted as investment opportunities. Investment

R (resp., L) yields a profit u(R, r) (resp., u(L, ℓ)) when the state of nature is r (resp., ℓ), and 0

otherwise. We assume w.l.o.g. that the maximum between u(R, r) and u(L, ℓ) is 1. The state

of nature is r with probability p0 (and ℓ with probability 1 − p0). There are m consultants.

Each consultant j is characterized by a function Sj : Ω → ∆(S), where S is some given finite

set of signals, and ∆(S) is the set of probability distributions over S.

At every stage, the investor can either (a) select a consultant j ∈ J := {1, 2, . . . ,m}, pay
a fixed amount c > 0, and obtain a signal that is drawn according to Sj(ω), where ω is the

state of nature, or (b) select one of the actions in A and terminate the investment problem.

The goal of the investor is to maximize her expected total payoff, namely, the expected gain

from choosing the correct action minus the total undiscounted expected payments she made to
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consultants. We assume that c < max{u(R, r), u(L, ℓ)}. If c ≥ max{u(R, r), u(L, ℓ)}, then it is

optimal for the investor to never consult any consultant.

We denote the investment problems by G = (p0, J, c), where p0 is the initial probability of

r, J is the set of consultants, and c is the consultation cost.

A history is a finite sequence of pairs – a consultant and a signal. The history determines,

through Bayes rule, the decision maker’s posterior belief about the state of nature at that

history.

A strategy is a function σ from the set of all finite histories, denoted H, to A ∪ J . Denote

the strategy space by Σ. A strategy is Markovian if the choice at each history depends only

on the posterior belief over Ω. Denote the expected payoff of a strategy σ for G = (p0, J, c)

by γJ(p0, c;σ). Note that the function p0 7→ γJ(p0, c;σ) is linear in both p0 and c. For an

elaboration on this point, see the proof of Lemma 1.

2.2 Fundamental properties of the investment problem

In this section we present fundamental properties of the model: the existence of an optimal

strategy, the linearity of the payoff of a strategy as a function of the prior and the cost, and

the dynamic programming characterization of the value.

Given a finite set J of consultants, the value function VJ : [0, 1]× (0, 1) 7→ L is defined by:

VJ(p0, c) := sup
σ∈Σ

γJ(p0, c;σ).

Definition 1. For each s ∈ S, ω ∈ Ω, and j ∈ J , denote by q(ω|s, j) the conditional probability

of state ω upon receiving the signal s from consultant j, when the prior belief is (1/2, 1/2):

q(ω|s, j) = Sj(s|ω)
Sj(s|ω) + Sj(s|ωc)

,

where ωc is the complementary state to the state ω.

Note that q(ω|s,j)
q(ωc|s,j) =

Sj(s|ω)
Sj(s|ωc) . With this notation, when the prior belief is p0, the posterior

belief after receiving the signal s from consultant j is

post(p0, s, j) :=
p0 · q(r|s, j)

p0 · q(r|s, j) + (1− p0) · q(ℓ|s, j)
(1)

=
1

1 + 1−p0
p0

· q(ℓ|s,j)
q(r|s,j)

=
1

1 + 1−p0
p0

· Sj(s|ℓ)
Sj(s|r)

.

Remark 1. (i) The posterior belief after receiving the signal s1 from consultant j and the

signal s2 from consultant i is 1

1+
1−p0
p0

· q(ℓ|s1,j)
q(r|s1,j)

q(ℓ|s2,i)
q(r|s2,i)

. In particular, the posterior belief af-
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ter receiving the signal s from consultant j for n consecutive stages is 1

1+
1−p0
p0

·( q(ℓ|s1,j)
q(r|s1,j)

)n
=

p0·q(r|s,j)n
p0·q(r|s,j)n+(1−p0)·q(ℓ|s,j)n .

(ii) It is well known that, in terms of the log-likelihood ratio, updating of belief is additive:

ln

(
post(p0, s, j)

1− post(p0, s, j)

)
= ln

(
p0

1− p0

)
+ ln

(
q(r | s, j)

1− q(r | s, j)

)
= ln

(
p0

1− p0

)
+ ln

(
Sj(s|r)
Sj(s|ℓ)

)
.

(2)

The following result lists several simple properties of the value function. The proof is

standard and appears in Appendix A.1.

Lemma 1. For every investment problem, a Markovian optimal strategy exists. Moreover, VJ

is continuous, convex in p0 for every fixed c, convex and monotonically decreasing in c for every

fixed p0, and satisfies the following recursive equation:

VJ(p0, c) = max
j∈J

{
p0u(R, r), (1− p0)u(L, ℓ),

∑
s∈S

Pj(p0, s) · VJ(post(p0, s, j), c)− c

}
. (3)

where Pj(p0, s) = p0Sj(s|ω) + (1− p0)Sj(s|ωc) is the probability that when the prior is p0, the

signal provided by consultant j is s.

For every fixed c, the value function VJ is continuous and convex. This implies that when

p0 is sufficiently high, p0u(R, r) ≥ maxj∈J
{∑

s∈S Pj(p0, s) · VJ(post(p0, s, j), c)− c
}
. Conse-

quently, there is a cutoff point pR < 1 such that every Markovian optimal strategy selects R

when p0 ∈ (pR, 1]. Likewise, there is a threshold 0 < pL such that every Markovian optimal

strategy selects L when p0 is in [0, pL). When p ∈ (pL, pR), an optimal strategy selects one

of the consultants to obtain a signal from. We are unaware of an analytic characterization of

these thresholds, and the only crude bounds we have for them are pL ≥ c and pR ≤ 1 − c.

Note that the posterior belief is a martingale. Thus, as soon as an informative consultant is

used infinitely often, the posteriors converge to 0 or 1. Therefore, when at least one of the

consultants in J provides information, as c goes to 0, pL goes to 0 and pR goes to 1.

Example 1. Consider an investment problem with three signals S = {r, ℓ, ∅}, a consultation

cost of 0.01, and two consultants, whose signaling functions are as follows:

S1(r|r) = S1(ℓ|ℓ) = 800/1000, S1(ℓ|r) = S1(r|ℓ) = 200/1000, S1(∅|r) = S1(∅|ℓ) = 0,
S2(r|r) = S2(ℓ|ℓ) = 625/1000, S2(ℓ|r) = S2(r|ℓ) = 35/1000, S2(∅|r) = S2(∅|ℓ) = 340/1000.
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A strategy is optimal whenever its selection is as follows:

Range Action

p ≤ 0.025 L
0.025 ≤ p ≤ 0.088 consultant 1
0.088 ≤ p ≤ 0.367 consultant 2
0.367 ≤ p ≤ 0.633 consultant 1 or consultant 2
0.633 ≤ p ≤ 0.912 consultant 2
0.912 ≤ p ≤ 0.975 consultant 1

0.975 ≤ p R

Thus, there are a continuum of optimal strategies: at each belief in the interval [0.367, 0.633],

it is optimal to consult either consultant. The value function and optimal strategies are dis-

played in Figure 1; Each color in the graph represents the optimal actions for that belief: red

(respectively, green, blue, black) corresponds to consulting consultant 1 (respectively, consultant

2, either consultant, choosing an investment).

Similarly, for every n ∈ N, there is an investment problem with n consultants, such that

all are used in any optimal strategy, and for each consultant there is an optimal strategy that

chooses it at p0 = 1/2.

Figure 1: The value function related to Example 1 and the ranges in which different consultants

are used.

The following example exhibits two effects of reducing the consultation cost: the value

function increases, and the frequency of consultants’ utilization rises.
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Example 2. Consider an investment problem with three signals S = {r, ℓ, ∅} and two consul-

tants:

S1(r|r) = S1(ℓ|ℓ) = 0.8, S1(ℓ|r) = S1(r|ℓ) = 0.2, S1(∅|r) = S1(∅|ℓ) = 0,
S2(r|r) = S2(ℓ|ℓ) = 0.05, S2(ℓ|r) = S2(r|ℓ) = 0, S2(∅|r) = S2(∅|ℓ) = 0.95.

Receiving a signal from the first consultant enables the investor to update her belief, yet she

remains uncertain about the true state. The second consultant, however, reveals the true state

with a probability of 0.05, while keeping the investor’s belief unchanged with a probability of

0.95.

Figure 2 exhibits the value function for various consultation costs. In this figure, each

colored line represents the value function for a different cost, from c = 0.02 to 0.3. For c = 0.3

(the bottom green line) the investor never consults a consultant. As the cost c diminishes, the

number of different optimal strategies rises, increasing the number of linear segments within the

value function. The expected payoff of each strategy is linear with respect to the prior. Thus,

for any fixed cost, each linear segment in the graph corresponds to a different strategy, and

the intersection between two segments corresponds to a change of the optimal strategy (a black

dot represents a change of strategy). As the intersection between two segments is a change of

strategy, when the prior is in the interior of a segment and the optimal strategy indicates to

select consultant 1, the posterior is in the interior of another segment.

Figure 2: The value function of the investment problem in Example 2.
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2.3 Revealing consultants

In this section, we present the concept of revealing signals and study their role in the optimal

strategy. A consultant is called revealing if with positive probability, the signal that he provides

reveals the state of nature.

Definition 2. Let j ∈ J , s ∈ S, and ω ∈ Ω. The signal s is ω-revealing by consultant j if

Sj(s | ω) > 0 and q(ω | s, j) = 1. Such a signal is called revealing by j. A consultant j who

has an ω-revealing signal, for every ω ∈ Ω, is called revealing.

Note that the signal that reveals the state of nature may depend on the state. Examples of

revealing signals are positive biopsies, intelligence reports from well-placed agents, and striking

oil when searching for oil reservoirs.

Will the DM use revealing consultants in her optimal strategy? The answer seems to depend

on the probability by which the revealing signals are provided. If these signals are provided

with high (resp., low) probability, the revealing consultant will (resp., will not) be used. As

the next result states, the probability by which the revealing signals are provided should be

compared to the consultation cost: if this cost is low, the revealing consultant will be used.

Theorem 1. For every prior p0 ∈ [0, 1], every revealing consultant j∗, and every set of con-

sultants J− that are not revealing, there exists C > 0 such that for every c ≤ C all optimal

strategies in the investment problem G = (p0, J
− ∪ {j∗}, c) consult j∗ at least once.

Proof. Let ε > 0 be a lower bound on the probability that the consultant j∗ sends a revealing

signal. Let σ∗ be the strategy that consults j∗ until it reveals the state of nature, and then

selects the action that matches the state. Since the distribution of the revelation stage is

dominated by a geometric distribution with parameter ε,

γ{j∗}(p0, σ∗, c) ≥ p0u(R, r) + (1− p0)u(L, ℓ)−
c

ε
.

We now provide an upper bound on the expected payoff given by consulting only consultants

in J−. Denote q = maxs∈S,j∈J−,b∈B q(b|s, j) < 1. Let σn be a strategy that n times consults a

consultant from J−, and then selects the more favorable action. The posterior belief (the prob-

ability that the state is r) after stage n lies between p0·qn
p0·qn+(1−p0)·(1−q)n

and p0·(1−q)n

p0·(1−q)n+(1−p0)·qn .

Therefore, for every strategy σ that consults only consultants in J−, γJ(p0, c;σ) cannot be
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higher than

max
n∈N

[
p0u(R, r)

(
p0 · qn

p0 · qn + (1− p0) · (1− q)n

)
−c · n,

(1− p0)u(L, ℓ)

(
1− p0 · (1− q)n

p0 · (1− q)n + (1− p0) · qn

)
− c · n

]
.

Provided c is sufficiently small, this quantity is at most p0u(R, r)+(1−p0)u(L, ℓ)− c
ε , which

implies that strategies that never consult j∗ are worse than σ∗. Hence, all optimal strategies

must consult j∗.

2.4 Consultants with a rational ratio

According to Lemma 1, the value function VJ is convex. As Example 3 below shows, this

function may be strictly convex on [pL, pR]. In this section we show that under some conditions,

VJ is piecewise linear.

Definition 3. A set of consultants J has a rational ratio if there exists a real number Q > 0

such that for each s ∈ S and j ∈ J , the ratio ln
(

Sj(s|ℓ)
Sj(s|r)

)
= ln

(
q(r|s,j)
q(ℓ|s,j)

)
is an integer multiple

of Q.

Remark 2. Recall Eq. (1) and Remark 1. The conditions

ln(q(ℓ|s1, j)/q(r|s1, j)) = m ·Q,

ln(q(ℓ|s2, i)/q(r|s2, i)) = n ·Q,

where m and n are both positive integers (or both negative integers), imply that

p0 · q(r|s1, j)n

p0 · q(r|s1, j)n + (1− p0) · q(ℓ|s1, j)n
=

1

1 + 1−p0
p0

· enmQ
=

p0 · q(r|s2, i)m

p0 · q(r|s2, i)m + (1− p0) · q(ℓ|s2, i)m
.

That is, obtaining n times the signal s1 from consultant j yields the same posterior belief as

obtaining m times the signal s2 from consultant i. Similarly, the conditions

ln(q(ℓ|s1, j)/q(r|s1, j)) = m ·Q,

ln(q(ℓ|s2, i)/q(r|s2, i)) = −n ·Q,

where m and n are positive integers, imply that obtaining n times the signal s1 from consultant

j and then obtaining m times the signal s2 from consultant i yields the posterior belief p0.
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Theorem 2. Let G = (p0, J, c) be an investment problem, and let J be a set of consultants

with a rational ratio. Then (i) there is a finite set P ⊂ [pL, pR] such that for every history,

if the posterior belief at history h is in [pL, pR], then it is in P, and (ii) the value function is

piecewise bilinear in p0.

Proof. Recall Eq. (2), and let Q be the real number in Definition 3. The difference ln
(

qt
1−qt

)
−

ln
(

p0
1−p0

)
, where qt is the posterior belief at stage t, is an integer multiple of Q. Since for every

belief p > 1− pR or p < pL, the optimal strategy at that belief is to choose an investment, part

(i) follows. To establish (ii), let us revisit the optimal strategy’s general structure. Recall that

at any belief p < pL (or p > pR), the optimal strategy entails selecting L (or R). Given this

and from part (i), any history (consisting of past chosen consultants and the random signal

they generated) that did not follow taking L or R as actions, corresponds to one of finitely

many posteriors. Moreover, each such history translates into a discrete movement along the

log-likelihood scale, incrementing or decrementing by integer multiples of Q. This movement

mirrors the adjustments made to beliefs, either towards ℓ or r. Thus, a pure Markovian

strategy can be equivalently defined on the distance, measured in terms of Q, between the

actual posterior and the prior, traced along the log-likelihood scale. Since this distance is

uniformly bounded (for all the priors in the range of [pL, pR]), only a finite number of options

exist for such a pure Markovian strategy. The payoff corresponding to each of these strategies

is linear in p0. Hence, the value function is the maximum among a finite set of linear functions,

resulting in a piecewise linear one.

The following example shows that when the consultants do not have a rational ratio, the

value function may not be piecewise linear.

Example 3. Consider an investment problem with two signals S = {a, b} and one consultant,

whose signaling function is given by:

S1(a|r) = x, S1(b|r) = 1− x, S1(a|ℓ) = y, S1(b|ℓ) = 1− y,

where 0 < y < x < 1. Denote C1 := ln(x/y) and C2 := ln((1 − x)/(1 − y)), and assume that

C1/C2 is an irrational number, so that the consultant does not have a rational ratio. We show

that for c sufficiently small, the value function is strictly convex on [pL, pR].

Since C1/C2 is irrational, the set W := {nC1 −mC2 : n,m ∈ N} is dense in R. Assume c

is small enough so that when obtaining twice the signal a (resp., b) when the prior is pL (resp.,

pR), the posterior is still in (pL, pR). This implies that for every prior p0 ∈ (pL, pR) and every

posterior q ∈ (pL, pR) satisfying ln
(

q
1−q

)
− ln

(
p0

1−p0

)
∈ W , there is a history of signals, h,
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such that the sequence of posteriors along that history remains in (pL, pR), and the posterior

after h is q.

To show that the value function is strictly convex, fix two distinct beliefs p0, q ∈ (pL, pR),

and let σ be a pure Markovian optimal strategy at the prior p0. We will show that σ is not

optimal at the prior q. Indeed, by the discussion above, there is a history of signals h such that

(i) when the prior is p0, the posterior beliefs along h are all in (pL, pR), and (ii) when the prior

is q, the posterior beliefs after h is not in [pL, pR], while the posterior belief after any strict

prefix of h is in (pL, pR). The strategy σ is not optimal given the prior q, because it advises

seeking further information after h. However, since it leads to a posterior beyond the range of

[pL, pR], the optimal response would be to choose one of the investments instead.

2.5 Three-signal investment problem

In this section, we consider a limited set of consultants, which can provide three signals: S =

{r, ℓ, ∅}. The signals r and ℓ are positively correlated with the state of nature, while the signal

∅ provides no information on the state. One example for such consultants is medical tests, such

as the Covid self-test kits, which provide three signals – positive, negative, or inconclusive. We

further assume that the problem is symmetric: the probability of obtaining the signal r when

the state is r is the same as the probability of obtaining the signal ℓ when the state is ℓ, and

the payoffs for investing in R (resp., L) when the state is r (resp., ℓ) is 1 and 0 otherwise.

We will see that when the set of available consultants consists only of such consultants, one

can derive stronger structural properties of the optimal strategy.

For each consultant j, denote by 1 − tj the probability that j provides the signal ∅ in

either state, by qj · tj the probability that j provides the signal that matches the state, and by

(1− qj) · tj the probability that j provides the signal that does not match the state, see Figure

3(A). We will identify a consultant j with the pair (qj , tj).

We assume w.l.o.g. that the signal is positively correlated with the state,1 that is, qj > 0.5.

The assumption that the probability of the signal that matches (resp., does not match) the

state is independent of the state means that the consultant has no bias among the states.

Two extreme types of consultants are the estimator who is never silent, that is, tj = 1, and

provides a probabilistic estimation of the state; and the revealer who gives a revealing signal

or a noninformative signal, that is, qj = 1. The signaling functions of an estimator 1 and a

revealer 2 are, then,

S1(r|r) = S1(ℓ|ℓ) = q1, S1(ℓ|r) = S1(r|ℓ) = 1− q1, S1(∅|r) = S1(∅|ℓ) = 0,
S2(r|r) = S2(ℓ|ℓ) = t2, S2(ℓ|r) = S2(r|ℓ) = 0, S2(∅|r) = S2(∅|ℓ) = 1− t2.

1Otherwise, the investor can invert the meaning of the signal.

11



In Example 1, consultant 1 is an estimator, and in Example 2, consultant 1 is an estimator

and consultant 2 is a revealer.

Remark 3. The parameter tj delays the rate at which consultant j provides information. Since

(i) payoffs are not discounted, (ii) the noninformative signal ∅ does not change the belief on

Ω, and (iii) there is a Markovian optimal strategy, for the purpose of calculating the value

and the optimal strategy, a (qj , tj)-consultant with cost c is equivalent to a (qj , 1)-consultant

with cost c∗ := c
tj
. In particular, to analyze three-signal investment problems, it is w.l.o.g. to

assume that all consultants are estimators or revealers, albeit with a different consultation

cost. Similarly, for an investment problem with consultants with varying consultation costs, an

equivalent investment problem with a common consultation costs can be created by adjusting

the probability of the noninformative signal.

If there were more than one estimator or more than one revealer, an optimal strategy would

use only one of each group: the estimator j with the highest qj and the revealer i with the

highest ti.

The next lemma states that the set of beliefs at which it is optimal to use a revealer is

convex. When consulting a revealer, the belief changes only when the revealer reveals the

state. Note that if it is optimal to consult a reveal j at a certain belief p, then VJ(p, c) = 1− c
tj
.

Lemma 2. Let J be a set of consultants in a three-signal investment problem that includes a

revealer j with parameter tj, and let c ∈ (0, 1). The set of beliefs p where VJ(p, c) = 1 − c
tj

is

convex.

Proof. Suppose that VJ(p∗, c) = 1 − c
tj
. The symmetry of the problem implies that VJ(1 −

p∗, c) = 1 − c
tj
. The convexity of the value function implies that VJ(p, c) ≤ 1 − c

tj
for every

p ∈ (p∗, 1−p∗), while since the strategy that always consults j is available to the DM, VJ(p, c) ≥
1− c

tj
for every p ∈ (p∗, 1− p∗). The claim follows.

As consultants in three-signal investment problems are symmetric, Lemma 1 implies the

following properties of the value function.

Corollary 3. For every fixed cost, as a function of the prior, the value function is convex,

symmetric around 1/2, monotone non-increasing from 0 to 1/2, and monotone non-decreasing

from 1/2 to 1.

Remark 4. If there were more than one estimator or more than one revealer, an optimal

strategy would use only one of each group, that is, the estimator j with the highest qj and the

revealer i with the highest ti.
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As we now show, the monotonicity of the value as a function of the prior implies that in the

presence of a revealer, when the prior belief is close to 1
2 , the optimal strategy consults only

the revealer.

Lemma 3. Let J be a set of consultants in a three-signal investment problem that includes a

revealer j with parameter tj, and let c ∈ (0, 1). If there is a belief p∗ such that VJ(p∗, c) = 1− c
tj
,

then for every p ∈ [p∗, 1 − p∗] there is an optimal strategy that only consults the revealer, and

VJ(p, c) = 1− c
tj
.

Proof. The strategy that consults consultant j until it reveals the state yields the payoff 1− c
tj
.

Since VJ(p∗, c) = 1− c
tj
, the symmetry of the problem implies that VJ(1− p∗, c) = 1− c

tj
. The

convexity of the value function implies that VJ(p∗, c) = 1− c
tj

for every p ∈ [p∗, 1− p∗], and the

second claim follows. The first claim holds since 1 − c
tj

is the payoff that corresponds to the

strategy that always consults the revealer with parameter tj .

When consulting a revealer, the belief changes only when the revealer reveals the state.

Since there is an optimal Markovian strategy, we obtain that when the initial belief is 1/2,

either there is an optimal Markovian strategy that always consults the revealer, or there is an

optimal Markovian strategy that never consults him.

Lemma 3 allows us to strengthen Theorem 1 for three-signal investment problems when the

prior is 1/2 as follows.

Corollary 4. Let G = (1/2, J, c) be a three-signal investment problem, and suppose that one

of the consultants is a revealer. One of the following statements holds:

• There is an optimal strategy that does not consult any consultant.

• There is an optimal strategy that only consults the revealer.

• There is an optimal strategy that never consults the revealer.

Corollary 5. For each prior p0 ∈ [0, 1], each q, and each t, there is a cost C such that for

every c ≤ C the optimal strategy in the investment problem G = (p0, {(q, 1), (1, t)}, c) is to only

consult the revealer.

In three-signal investment problems, even though the set of signals is greatly limited, there

is still no clear ranking between different consultants. If a consultant has a higher q and a

higher probability of providing information t than another consultant, then the investor will

never choose the latter. But if one consultant has higher q and the other provides information
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more often, the identity of the better consultant depends on the prior and the cost, as well

as the other consultants in the investment problem. Therefore, the optimal strategy may use

both consultants. As Example 1 shows, there can be consultants that can both be used under

an optimal strategy in a range of priors. The following example shows that a revealer and

an estimator can provide the same value in a range of priors. In particular, it exhibits two

different investment problems having the same value function, and thus the value function is

not uniquely associated with one investment problem.

Example 4. Let p0 be 1/2. Consider the consultants j1 = (q1 = 0.8, t1 = 1) and j2 = (q2 =

16/17, t2 = 17/50). Define ρt (resp., λt) to be the number of times until stage t in which

the signal is r (resp., ℓ). Let G1 = (1/2, {j1}, c) and c be such that the optimal strategy in

G1 is to consult j1 until |ρt − λt| = 2. The expected number of stages until |ρt − λt| = 2 is

2/(0.82+0.22) = 50/17. When this happens, the posterior belief is 16/17 or 1/17, and therefore

the value is 16/17− c · 50/17.
Consider now the investment problem G2 = (1/2, {j2}, 0.05). The optimal strategy is to

consult j2 until one gets a non-Silent signal once. When this occurs, the posterior belief is

either 16/17 or 1/17, and the expected number of stages to get a (non-Silent) signal is 50/17.

Therefore, the problem G2 has the same value as G1.

In fact, these two investment problems have the same value for a neighborhood of p0 = 1/2

and c = 0.05.
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A Proofs

A.1 Proof of Lemma 1

An optimal strategy exists since payoffs are bounded by 1 and since the payoff is a continuous

function of the strategy in the product topology.

To prove that VJ is convex in p0 for every fixed c, and convex in c for every fixed p0, we

start by showing that γσ(p0, J, c) is bilinear in p0 and c. Indeed, denote by Pr (resp., Pℓ) the

probability that under σ the investor chooses R (resp., L) conditional that the state is r (resp.,

ℓ). Denote by Er (resp., Eℓ) the expected number of stages until termination conditional that

the state is r (resp., ℓ). Note that Pr, Pℓ, Er, and Eℓ are independent of p0 and c. With these

notations,

γJ(p0, c;σ) = u(R, r) · Pr · p0 + u(L, ℓ) · Pℓ · (1− p0)−
(
Er · p0 + Eℓ · (1− p0)

)
· c, (4)

which is bilinear in p0 and c.

The convexity properties of VJ now follow since this function is the maximum of functions

that are bilinear in p0 and c.

Eq. (4) implies that γσ is non-increasing in c for every fixed σ, J , and p0, and hence VJ(p0, ·),
as the maximum of functions that are non-increasing in c, is non-increasing in c.

Eq. (3) follows from Bellman’s equation.

We finally show that VJ is continuous. Indeed, on (0, 1) × (0, 1) continuity of VJ follows

from its convexity. For p0 = 1, continuity follows since VJ(1, c) = u(R, r) and since by Eq. (3)

vJ(p, c) = pu(R, r) whenever p is sufficiently close to 1. Continuity of VJ at p0 = 0 follows
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analogously.
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