
Temporal Graph ODEs for Irregularly-Sampled Time Series

Alessio Gravina1,∗, Daniele Zambon2, Davide Bacciu1, Cesare Alippi2,3
1University of Pisa, Pisa, Italy

2The Swiss AI Lab IDSIA, Università della Svizzera italiana, Lugano, Switzerland
3Politecnico di Milano, Milan, Italy

alessio.gravina@phd.unipi.it, daniele.zambon@usi.ch, davide.bacciu@unipi.it, cesare.alippi@usi.ch

Abstract
Modern graph representation learning works
mostly under the assumption of dealing with reg-
ularly sampled temporal graph snapshots, which is
far from realistic, e.g., social networks and phys-
ical systems are characterized by continuous dy-
namics and sporadic observations. To address this
limitation, we introduce the Temporal Graph Ordi-
nary Differential Equation (TG-ODE) framework,
which learns both the temporal and spatial dynam-
ics from graph streams where the intervals between
observations are not regularly spaced. We em-
pirically validate the proposed approach on sev-
eral graph benchmarks, showing that TG-ODE can
achieve state-of-the-art performance in irregular
graph stream tasks.

1 Introduction
Representation learning for graphs has been gaining in-
creasing attention over recent years. Such popularity often
builds on the fact that complex phenomena are frequently
understood as systems of interacting entities described as a
graph. For such a reason, learning on graph-structured data
through Deep Graph Networks (DGNs) [Bacciu et al., 2020;
Wu et al., 2021] has been adopted for solving problems in a
variety of fields, such as biology, social science, and sensor
networks [Gilmer et al., 2017; Zitnik et al., 2018; Monti et
al., 2019; Derrow-Pinion et al., 2021; Gravina et al., 2022;
Bacciu et al., 2024].

Graph-based processing methods turned out to be ex-
tremely effective in processing spatio-temporal data too [Li et
al., 2018; Wu et al., 2019b; Bai et al., 2021; Chen et al., 2022;
Zambon and Alippi, 2022; Marisca et al., 2022; Jiang and
Luo, 2022; Errica et al., 2023; Cini et al., 2023a]. Such a
scenario is a setting where the temporal modeling accounts
for functional dependencies – assimilated, in a broad sense,
as spatial relationships – existing among the interacting en-
tities. Real-world complex problems described as temporal
graphs, e.g., those associated with social interactions, call for
novel methods that can move beyond the common assump-
tions found in most of the methods proposed until now. In-

∗Corresponding author.

deed, such problems require dealing with mutable relational
information, irregularly and severely under-sampled data.

Some recent works propose to model input-output data re-
lations as a continuous dynamic described by a learnable or-
dinary differential equation (ODE), instead of discrete se-
quences of layers commonly used in deep learning. Neu-
ral ODE-based approaches have been exploited to model
non-temporal data, including message-passing functions for
learning node-level embeddings [Poli et al., 2019; Chamber-
lain et al., 2021; Eliasof et al., 2021; Rusch et al., 2022;
Gravina et al., 2023]. Notably, relying on ODEs has shown
promising for modeling complex temporal patterns from ir-
regularly and sparsely sampled data [Chen et al., 2018;
Rubanova et al., 2019; Kidger et al., 2020].

In this paper, we formulate Temporal Graph Ordinary
Differential Equation (TG-ODE), a general continuous-time
modeling framework for temporal graphs that encompasses
some methods from the literature as its specific instances, and
demonstrate that TG-ODE can be an effective design choice
to operate with irregularly and sparsely sampled observations.
TG-ODE is designed through the lens of ODEs for effective
learning of irregularly sampled temporal graphs. With TG-
ODE, a differential equation is learned directly from data to
solve a downstream task and predictions are trajectories ob-
tained by numerical integration of the learned ODE.

The key contributions of this work can be summarized as
follows:

(i) we introduce TG-ODE, a general modeling framework
suited for handling irregularly sampled temporal graphs;

(ii) we introduce new benchmarks of synthetic and real-
world scenarios for evaluating forecasting models on irregu-
larly sampled temporal graphs; and

(iii) we conduct extensive experiments to demonstrate the
benefits of our method and show that TG-ODE outperforms
state-of-the-art DGNs on all benchmarks.

Finally, we stress that, other than the outstanding empiri-
cal performance achieved by even simple TG-ODE instances,
the framework allows us to reinterpret many state-of-the-art
DGNs as a discretized solution of an ODE, thus facilitating
their extension to handle graph streams with irregular sam-
pling.

ar
X

iv
:2

40
4.

19
50

8v
1

 [
cs

.L
G

]
 3

0
A

pr
 2

02
4

Figure 1: An example of a non-uniform sampling of a temporal
graph with snapshots over a set of 5 nodes.

2 Problem statement
We consider a dynamical system of interacting entities u ∈ V ,
which we refer to as nodes, that is described by a Cauchy
problem defined on an ODE of the form

dX(t)

dt
= F (X(t),E(t), z(t)), (1)

with initial condition X(0) = X0. System state X(t) =
{xu(t) : u ∈ V(t)} is a function of time t and collects the
node-level states xu(t) ∈ Rdx associated with each node
u ∈ V(t). The node set V(t) is allowed to vary over time.
We denote the dynamic set of edges encoding the node rela-
tions as E(t) ⊆ V(t)×V(t). E(t) = {euv(t) : (u, v) ∈ E} is
a set of edge-level attributes evu(t) ∈ Rde defining the type
or strength of the interaction between nodes u, v ∈ V(t). The
system can also be driven by vector zu(t) ∈ Rc accounting
for exogenous variables relevant to the problem at hand, such
as weather conditions, hour of the day, or day of the week.
Accordingly, for all u ∈ V(t), we write

dxu(t)

dt
= F

(
xu(t), zu(t), {xv(t)}v∈Nu(t), {evu(t)}v∈Nu(t)

)
,

(2)
to emphasize the local dependencies of node state xu(t) at a
time t from its neighboring nodes v ∈ Nu(t) = {v ∈ V(t) :
(v, u) ∈ E(t)} at the corresponding time.

We express any solution of ODE (1) as the temporal graph

G(t) = (V(t), E(t),X(t),E(t)) (3)

defined for t ≥ 0. However, we assume to observe system (1)
only as a (discrete) sequence of snapshot graphs

G = {Gti : i = 0, 1, 2, . . . , T} (4)

that arrive at irregular timestamps, i.e., the sampling is not
uniform and, in general, ti − ti−1 ̸= ti+1 − ti. Each snap-
shot Gt = (Vt, Et,Xt,Et) corresponds to an observation
of the system state at a specific timestamp t ∈ R. Edge
set Et contains the functional relations between the nodes
u, v ∈ Vt at time t (thus, Et can vary over time), while
Xt = {xt,v : v ∈ Vt} gathers the observed node states,
with xt,v the state of node v associated to the observed graph
snapshot at time t. Edge attributes, if present, are denoted as
eu,v ∈ Et. Figure 1 visually summarizes this concept.

In this paper, we address the problem of learning a model
of the differential equation underlying the observed data,
which is subsequently exploited to provide estimates of un-
observed system’s node states and make forecasts. To ease
readability, in the following we drop the time variable t.

3 Temporal Graph Ordinary Differential
Equation

To learn the function F in (2), we consider a family of models
fθ(xu, z, {xv}v∈Nu

, {evu}v∈Nu
) (5)

parameterized by vector θ, and optimized so that the solution
x̂ of the differential equation
dxu

dt
= fθ (xu, zu, {xv}v∈Nu

, {evu}v∈Nu
) , ∀u ∈ V (6)

minimizes the discrepancy with the observed sequence of
graphs in (4). We follow the message-passing paradigm
[Gilmer et al., 2017] and instantiate (6) as

dxu

dt
= ϕU (xu, zu, ρ ({ϕM (xu,xv, evu)}v∈Nu)) , (7)

with message function ϕM , aggregation operator ρ (e.g., the
mean), and update function ϕU . Note that functions ϕU , ϕM ,
and ρ have learnable parameters θ, which are shared across
all nodes and time steps. An example of a message passing
operator is when ϕM (xu,xv, evu) = xv , ρ is the mean, and
ϕU is a dense feed-forward network of its inputs. We refer
to the above framework in (7) as Temporal Graph Ordinary
Differential Equation (TG-ODE).

We observe that, since our framework relies on ODEs, it
can naturally deal with snapshots that arrive at an arbitrary
time. Indeed, the original Cauchy problem can be divided
into multiple sub-problems, one per snapshot in the temporal
graph. Here, the i-th sub-problem is defined for all u ∈ Vt as{

dxu

dt = ϕU (xu, zu, ρ ({ϕM (xu,xv, evu)}v∈Nu)) ,

xu(0) = ψ(xti−1,u, x̂u(ti−1))
(8)

in the time span between the two consecutive timestamps, i.e.,
t ∈ [ti−1, ti], where ψ is a function that combines the i-th ob-
served state of the node u related to the snapshot graph Gti−1

in (4) (i.e., xti−1,u) and the prediction x̂u(ti−1) obtained by
solving (8) at the previous step. When given, we consider the
true – potentially variable – topology E(t) to define the neigh-
borhoods for t ∈ [ti−1, ti], otherwise, we set E(t) ≡ Eti−1 for
every t, i.e., equal to the last observed topology associated
with Gti−1

. Accordingly, we optimize θ in order to minimize
the mean of some loss L,

1

T

T∑
i=1

1

|Vti |
∑

u∈Vti

L(xti,u, x̂u(ti)) (9)

where prediction x̂u(ti) at time ti is obtained by solving (8).
We observe that for most ODEs it is not possible to com-

pute analytical solutions. For such a reason, it is common
practice to resort to numerical approximations that lever-
age discretization strategies (e.g., forward Euler’s method).
In this case, the solution is computed through iterative ap-
plications of the method over a discrete set of points in
the time interval and, as observed in [Chen et al., 2018;
Haber and Ruthotto, 2017], the process can be assimilated
to that of a Recurrent Neural Network (RNN). For simplic-
ity, here we employ the forward Euler’s method according to
which a solution to (8) is obtained by the recursion

xℓ+1
u = xℓ

u+ϵϕU
(
xℓ
u, zu(tℓ), ρ

(
{ϕM (xℓ

u,x
ℓ
v, e

ℓ
vu)}v∈Nu(tℓ)

))
,

(10)

Figure 2: The continuous processing of node u’s state in a discrete-time dynamic graph with irregularly-sampled snapshots over a set of 4
nodes and fixed edge set. At the top, the node-wise ODE function fθ defines the evolution of the states xu(t). At the bottom, the discretized
solution of the node-wise ODE, which corresponds to our framework TG-ODE. The node embedding xℓ

u is computed iteratively over a
discrete set of points by leveraging the temporal neighborhood and self-representation at the previous step.

starting from initial condition x0
u = xu(0) =

ψ(xti−1,u, x̂u(ti−1)) and is reiterated until ϵℓ ≥ ti − ti−1.
In (10), ϵ ≪ ti − ti−i is the step size, while ℓ indicates
the generic iteration step, and tℓ = ti−1 + ϵℓ. Finally, a
solution x̂(t) to (8) in the interval [ti−1, ti] is provided by the
discretization x̂u(ti−1 + ϵℓ) = xℓ

u, for all ℓ, and interpolated
elsewhere. The process is visually summarized at the bottom
of Figure 2.

We acknowledge that not all resulting ODEs allow unique
solutions and yield numerical stable problems. Generally, nu-
merical stability is associated with the ODE to solve rather
than the input data. Thus, a proper design of the considered
family of ODEs in (7) can prevent stability issues. Indeed,
the solution of a Cauchy problem exists and is unique if the
differential equation is uniformly Lipschitz continuous in its
input and continuous in t, as states in the Picard–Lindelöf
theorem [Coddington and Levinson, 1955]. Thus, different
implementations of (7) should address the continuous behav-
ior of the differential equation. We note that this theorem
holds for our model if the underlying neural network has fi-
nite weights and uses Lipshitz non-linearities, e.g., the tanh.

By (10) and the generality of the message passing in (7),
we observe that TG-ODE allows us to cast basically any
standard DGN through the lens of an ODE for temporal
graphs with irregular timestamps. Secondly, we stress that,
even though TG-ODE is solved here by means of the for-
ward Euler’s method, other discretization methods can still
be utilized. To conclude, our framework can be imple-
mented using the aggregation function that is most suitable
for the given task and the discretization method that best fits
the computational resources and problem at hand, such as
[Veličković et al., 2018; Hu et al., 2020; Choi et al., 2023;
Eliasof et al., 2024a]. As a demonstration of this, in Section 5
we explore the neighborhood aggregation scheme proposed
in [Du et al., 2017]. Thus, (7) can be reformulated as

dxu

dt
= σ

 K∑
k=0

∑
v∈Nk

u∪{u}

α(k)
u,v xvθk

 , (11)

where σ is an activation function, K is the number of hops
in the neighborhood, θk is the k-th weight matrix, N k

u is the
k-hop neighborhood of u, and α(k)

u,v is a normalization term.

For instance, α(k)
u,v =

(
d̂
(k)
v d̂

(k)
u

)−1/2

weighs according to

the degrees d̂(k)v and d̂(k)u of nodes v and u in the k-hop graph;
other choices can include edge attributes as well. We note that
θk is a parameter specific to the k-hop neighborhood of node
u. Thus, it allows the model to learn different transformation
patterns at different distances from the considered node u.

4 Related work
Deep Graph Networks for static graphs In the static
graph domain, most DGNs can be generalized by the con-
cepts introduced by MPNN [Gilmer et al., 2017], which is
designed to capture and propagate information between nodes
in a graph through a message-passing mechanism. Thus,
each node updates its state by exchanging information with
its neighboring nodes. MPNN can be formulated as

xℓ
u = ϕU

xℓ−1
u ,

∑
j∈Nu

ϕM
(
xℓ−1
u ,xℓ−1

v , euv
) (12)

where ϕU and ϕM are respectively the update and mes-
sage functions, which are responsible for computing neighbor
states and updating the node’s state accordingly. Most of the
state-of-the-art DGNs can be derived by (12). Indeed, the def-
inition of the message and update function allows implement-
ing DGNs with different properties [Kipf and Welling, 2017;
Veličković et al., 2018; Hamilton et al., 2017; Xu et al., 2019;
Defferrard et al., 2016; Hu et al., 2020; Du et al., 2017].

We can extend the abovementioned DGNs to the domain
of temporal graphs by selecting appropriate operators in (7)
and, in turn, it allows us to tailor the TG-ODE to exploit re-
lational inductive biases and fulfill given application require-
ments. For instance, by considering a graph attentional op-
erator [Veličković et al., 2018] in (7), we can implement an

anisotropic message passing within the temporal graph dur-
ing the update of node states.

Deep Graph Networks for temporal graphs Given the se-
quential structure of temporal graphs, a natural choice for
many methods has been to extend Recurrent Neural Networks
to graph data. Indeed, most of the models presented in the lit-
erature can be summarized as a combination of DGNs and
RNNs.

Some approaches adopt a stacked architecture, where
DGNs and RNNs are used sequentially [Seo et al., 2018;
Pareja et al., 2020], enabling to separately model spatial
and temporal dynamics. Other approaches integrate the
DGN inside the RNN [Li et al., 2019; Chen et al., 2022;
Seo et al., 2018; Li et al., 2018; Zhao et al., 2020; Bai et
al., 2021], allowing to jointly capture the temporal evolution
and the spatial dependencies in the graph. We refer to [Cini
et al., 2023b] and [Gravina and Bacciu, 2024] for a deeper
discussion.

Differently from these approaches, which are intrinsically
designed to deal with regular time series, TG-ODE can nat-
urally handle arbitrary time gaps between observations. This
makes our framework more suitable for realistic scenarios, in
which data are irregular over time.

Continuous Dynamic Models NeuralODE (NODE) [Chen
et al., 2018] has emerged as an effective class of neural net-
work models suitable for learning systems’ continuous dy-
namics, drawing a connection between RNNs and ODEs. De-
spite the similarity with RNNs, such architectures can deal
with irregular time series since the continuously-defined dy-
namics can naturally incorporate data that arrive at arbitrary
times [Chen et al., 2018; Rubanova et al., 2019].

Inspired by the NODE approach, GDE [Poli et al., 2019]
links DGNs for static graphs with ODEs. In the static
graph domain, ODE-based architectures have been proposed
with different aims, such as preserving long-range dependen-
cies [Gravina et al., 2023], reducing the computational com-
plexity of message passing [Wang et al., 2021; Wu et al.,
2019a], and mitigating the over-smoothing phenomena [Elia-
sof et al., 2021; Rusch et al., 2022; Kang et al., 2024].

In the temporal domain, TDE-GNN [Eliasof et al., 2024b]
employs higher-order ODEs to capture the temporal graph
dynamic, while NDCN [Zang and Wang, 2020] extends GDE
to learn continuous-time dynamics on both static and tem-
poral graphs by diffusing input features until the termina-
tion time. MTGODE [Jin et al., 2022] adopts an ODE-
based approach to deduce missing graph topologies from the
time-evolving node features in regularly sampled temporal
graphs. Differently, [Huang et al., 2020] and [Huang et al.,
2021] propose an ODE-based model in the form of a varia-
tional auto-encoder for learning latent dynamics from sam-
pled initial states. To infer missing observations, the methods
consider both past and future neighbors’ information. This
prevents them from being used in an online setting, where
data becomes available in a sequential order. Lastly, STG-
NCDE [Choi et al., 2022] employs a stacked architecture of
two neural controlled differential equations to model tempo-
ral and spatial information, respectively. In the STG-NCDE’s
paper, irregular data are considered, yet they are handled by

making them regular via interpolation.
In contrast to these approaches, in this paper we explicitly

address irregularly-sampled temporal graphs and we propose
a simple model to showcase the effectiveness and efficiency
of the TG-ODE framework in working with such data, elim-
inating the need for additional strategies, such as interpola-
tion. It should be noted that while many of the ODE-based
approaches mentioned earlier can be viewed as instances of
the introduced TG-ODE framework, our model is specifically
designed to demonstrate the benefits of this approach.

5 Experiments
We provide an empirical assessment of our method against
related temporal DGN models from the literature1. First, we
test the efficacy in handling dynamic graphs with irregularly
sampled time series by evaluating the models on several heat
diffusion scenarios (see Section 5.1). Afterward, we assess
and discuss the performance on real graph benchmarks on
traffic forecasting problems (see Section 5.2). We report in
Table 1 the grid of hyper-parameters employed in our experi-
ments by each method. We carried out the experiments on 7
nodes of a cluster with 96 CPUs per node.

Table 1: The grid of hyper-parameters employed during model se-
lection for the heat diffusion tasks (Heat) and graph benchmark tasks
(Bench). The ϵ hyper-parameter is only used by our method (i.e.,
TG-ODE), and embedding dim equal to None means that no encoder
and readout are employed.

Hyper-parameters Values
Heat Bench

Learning rate 10−2, 10−3, 10−4

Weight decay 10−2, 10−3

ψ concat, sum, ψ(x, x̂) = x
Activation fun. tanh, relu, identity
Embedding dim. None, 8 64, 32
ϵ 10−3 1, 0.5, 10−1, 10−2, 10−3

hops 5 1, 2, 5

5.1 Heat diffusion
In this section, we focus on simulating the heat diffusion over
time on a graph. The data is composed of irregularly sam-
pled graph snapshots providing the temperature of the graph’s
nodes at the given timestamp. We address the task of predict-
ing the nodes’ temperature at future (irregular) timestamps.

Datasets
In our experiment, we consider a grid graph consisting of 70
nodes, each of which is characterized by an initial tempera-
ture xu(0) randomly sampled in the range between 0 and 0.2.
We randomly alter the initial temperature profile by generat-
ing hot and cold spikes located at some nodes. A hot spike
is characterized by a temperature between 10 and 15, while a
cold spike is between −15 and −10. Each altered node has

1We release the code implementing our methodology and
reproducing our empirical analysis at https://github.com/gravins/
TG-ODE.

https://github.com/gravins/TG-ODE
https://github.com/gravins/TG-ODE

(a) (b)

Figure 3: (a) A grid graph consisting of 70 nodes in which each node
is characterized by an initial temperature. Darker colors correspond
to colder temperatures, while brighter colors mean warmer temper-
atures. (b) The heat diffusion simulation is computed through 1000
steps forward Euler’s method leveraging −LX(t) as diffusion.

a 40% chance of being associated with a cold spike and 60%
with a hot spike. We considered two different experimental
scenarios depending on the number of altered nodes. In the
first scenario, we alter the temperature of a single node. In
the second one, we alter the temperature of one third of the
graph’s nodes. We will refer to these settings as single-spike
and multi-spikes, respectively.

We collected the ground truth by simulating the heat diffu-
sion equation through the forward Euler’s method with step
size ϵ = 10−3. Figure 3 illustrates two snapshot graphs
from the simulated heat diffusion. The training set consists
of 100 randomly selected timestamps over the 1000 steps
used to simulate the diffusion process. The validation and
test sets are generated from two different simulations sim-
ilar to the one used for building the training set. How-
ever, validation and test sets are obtained through 500-step
simulations, and only 50 of them are kept as validation/test
sets. We simulated seven different diffusion functions, i.e.,
−LX(t), −L2X(t), −L5X(t), − tanh(L)X(t), −5LX(t),
−0.05LX(t), and −(L+N0,1)X(t). Here, N0,1 stands for a
noise sampled from a standard normal distribution, and L is
the normalized graph Laplacian.

TG-ODE and baseline models
We explored the performance of TG-ODE leveraging the ag-
gregation scheme in [Du et al., 2017] and the forward Euler’s
method as discretization procedure, for simplicity. Thus, the
nodes’ states for the entire snapshot are updated as

Xℓ = Xℓ−1 + ϵσ

(
K∑

k=0

LkXℓ−1θk

)
, (13)

where K corresponds to the number of neighborhood hops
and θk is the k-th weight matrix. We recall that other choices
of aggregation and discretization schemes are possible. We
compared our method with six common DGNs for dynamic
graphs: A3TGCN [Bai et al., 2021], DCRNN [Li et al.,
2018], TGCN [Zhao et al., 2020], GCRN-GRU [Seo et al.,
2018], GCRN-LSTM [Seo et al., 2018], and NDCN [Zang
and Wang, 2020]. We note that whenever we used the NDCN
model with embedding dimension set to none (see Table 1),
the resulting model corresponds to DNND [Liu et al., 2023].

Moreover, we considered two additional baselines:
NODE [Chen et al., 2018] and LB-baseline. NODE rep-

resents an instance of our approach that does not take into
account node interactions. Instead, LB-baseline returns the
same node states received as input (i.e., , the prediction of
Xti+1

is X̂(ti+1) = Xti) and provides a lower bound on the
performance we should expect from the learned models.

We designed each model as a combination of three main
components. The first is the encoder which maps the node in-
put features into a latent hidden space; the second is the tem-
poral graph convolution (i.e., TG-ODE or the DGN baselines)
or the NODE baseline; and the third is a readout that maps the
output of the convolution into the output space. The encoder
and the readout are Multi-Layer Perceptrons that share the
same architecture among all models in the experiments.

To allow all considered baseline models to handle irregu-
lar timestamps, we used a similar strategy employed for TG-
ODE. Specifically, we selected the unit of time, τ , and then
we iteratively applied the temporal graph convolution for a
number of steps equal to the ratio between the time differ-
ence between two consecutive timestamps and the time unit,
i.e., #steps = (ti+1 − ti)/τ .

We performed hyper-parameter tuning via grid search, op-
timizing the Mean Absolute Error (MAE). We trained the
models using the Adam optimizer for a maximum of 3000
epochs and early stopping with patience of 100 epochs on the
validation error.

Results
We present the results on the heat diffusion tasks in Table 2
and Table 3, using the log10(MAE) as performance metric in
both the single-spike and multi-spikes scenarios. The first ob-
servation is that TG-ODE has outstanding performance com-
pared to literature models and the baseline. Despite its sim-
pler architecture, our method produces an error that is signifi-
cantly lower than the runner-up in each task. In the single-
spike setting, TG-ODE achieves a log10(MAE) that is on
average 308% to 628% better than the competing models in
each task.

Interestingly, not all DGN-based models are capable of im-
proving the results of the LB-baseline. This situation sug-
gests that such approaches attempt to merely learn the map-
ping function between inputs and outputs rather than learn-
ing the actual latent dynamics of the system. Such behavior
becomes more evident in the more complex multi-spike sce-
nario. Here, our method achieves up to almost 2080% better
log10(MAE) score and more literature models fail in improv-
ing the performance with respect to the LB-baseline. These
results indicate that capturing the latent dynamics is funda-
mental, in particular, when the time intervals between ob-
servations are not regular over time. We conclude that such
methods from the literature might not be suitable for more
realistic settings characterized by continuous dynamics and
sporadic observations.

Finally, we observe that GCRN-GRU and GCRN-LSTM
generate the highest error levels, while DCRNN, NDCN, and
NODE are the best among the baselines. Since literature
models use RNN architectures to learn temporal patterns, it is
reasonable to assume that the poor performance might be due
to the limited capacity of RNNs to handle non-uniform time
gaps between observations. In contrast, ODE-based models

Table 2: Test log10(MAE) score and std in the single-spike heat diffusion experiments, averaged over 5 separate runs.

−LX(t) −L2X(t) −L5X(t) − tanh(L)X −5LX(t) −0.05LX(t) −(L+N0,1)X(t)

LB-baseline -0.557 -0.572 -0.562 -0.538 -0.337 -0.565 -0.837
NODE -2.828±0.063 -2.657±0.053 -2.139±0.005 -2.711±0.136 -2.313±0.016 -3.983±0.003 -2.059±0.005

A3TGCN -0.834±0.145 -0.902±0.093 -0.819±0.036 -0.890±0.035 -1.084±0.004 -0.653±0.001 -0.781±0.094

DCRNN -1.320±0.163 -0.913±0.242 -0.867±0.305 -1.273±0.075 -1.098±0.154 -0.964±0.366 -1.150±0.375

GCRN-GRU -0.474±0.232 -0.633±0.004 -0.464±0.064 -0.621±0.047 -0.695±0.002 -0.640±0.019 -0.490±0.094

GCRN-LSTM -0.430±0.140 -0.323±0.019 -0.405±0.053 -0.351±0.097 -0.511±0.157 -0.428±0.140 -0.367±0.790

NDCN -1.497±0.034 -1.337±0.070 -0.350±0.328 -1.485±0.075 -1.097±0.046 -2.408±0.183 -0.414±0.155

TGCN -0.825±0.108 -0.900±0.143 -0.804±0.074 -0.834±0.149 -1.051±0.020 -0.653±0.001 -0.781±0.094

Ours -4.087±0.171 -3.106±0.181 -2.265±0.053 -4.166±0.140 -2.351±0.036 -4.811±0.198 -2.069±0.001

Table 3: Test log10(MAE) score and std in the multi-spikes heat diffusion experiments, averaged over 5 separate runs.

−LX(t) −L2X(t) −L5X(t) − tanh(L)X(t) −5LX(t) −0.05LX(t) −(L+N0,1)X(t)

LB-baseline 0.490 0.517 0.552 0.523 0.256 0.561 0.666
NODE -1.708±0.016 -1.426±0.021 -1.093±0.004 -1.671±0.006 -1.198±0.016 -2.749±0.016 -0.979±0.047

A3TGCN 0.443±0.087 0.244±0.124 0.174±0.071 0.509±0.058 0.187±0.010 0.628±0.023 0.328±0.060

DCRNN -0.140±0.092 -0.143±0.111 -0.123±0.132 -0.122±0.120 -0.421±0.227 -0.002±0.125 -0.212±0.333

GCRN-GRU 0.586±0.003 0.614±0.004 0.639±0.002 0.610±0.002 0.440±0.003 0.629±0.001 0.719±0.003

GCRN-LSTM 0.584±0.001 0.610±0.002 0.637±0.002 0.612±0.003 0.440±0.005 0.631±0.002 0.705±0.002

NDCN 0.120±0.325 -0.070±0.056 0.315±0.245 -0.128±0.020 0.146±0.107 -1.357±0.053 0.384±0.013

TGCN 0.404±0.236 0.313±0.072 0.113±0.071 0.493±0.056 0.113±0.086 0.615±0.023 0.364±0.134

Ours -4.259±0.037 -3.705±0.143 -1.314±0.249 -3.572±0.010 -2.350±0.083 -4.567±0.109 -1.021±0.002

(NODE, NCDN and ours) demonstrate enhanced learning ca-
pabilities in this scenario. The performance gap between our
model and the considered baselines is an indication that the
diverse spatial patterns learned by different DGN architec-
tures can heavily impact the performance of the performed
tasks.

5.2 Graph Benchmarks
This section introduces a set of graph benchmarks whose ob-
jective is to assess traffic forecasting performance from irreg-
ular time series; similar to the heat diffusion tasks, we predict
the future node values given only the past history.

Datasets
We considered six real-world graph benchmarks for traf-
fic forecasting: MetrLA [Li et al., 2018], Montev-
ideo [Rozemberczki et al., 2021], PeMS03 [Guo et al., 2022],
PeMS04 [Guo et al., 2022], PeMS07 [Guo et al., 2022], and
PeMS08 [Guo et al., 2022]; we report additional details about
the datasets in Table 4. We used a modified version of the
original datasets where we employed irregularly sampled ob-
servations. We will refer to the datasets by using the subscript
“i” – e.g., MetrLAi – to make apparent the difference from
the original versions.

We generated irregular time series by randomly selecting
a third of the original graph snapshots for most of the exper-
iments; ratios from 3% to 94% are studied in Figure 5. We
considered a temporal data splitting in which 80% of the pre-
viously selected snapshots are used as training set, 10% as
validation set, and the remaining as test set.

Table 4: Statistics of the original version of the datasets.

Steps # Nodes # Edges Timespan

MetrLA 34,272 207 1,515 01/03 - 30/06 2012
Montevideo 739 675 690 01/10 - 31/10 2020
PeMS03 26,208 358 442 01/09 - 30/11 2018
PeMS04 16,992 307 209 01/01 - 28/02 2018
PeMS07 28,225 883 790 01/05 - 31/08 2017
PeMS08 17,856 170 137 01/07 - 31/08 2016

TG-ODE and baseline models
For these experiments, we considered the same models, base-
line and architectural choices of the heat diffusion experi-
ments. Since NODE does not take into account interactions
between nodes for its predictions, we choose not to include
it as a baseline in this scenario. Hyper-parameter tuning has
been performed by grid search, optimizing the MAE. Opti-
mizer settings are the same as for the previous experiments.

Results
Table 5 reports the traffic forecasting results in terms of
MAE. Similarly to the heat diffusion scenario, TG-ODE
shows a remarkable performance improvement compared to
literature models, achieving an MAE that is up to 202% better
than the runner-up model. Moreover, as reported in Figure 4,
we observe that TG-ODE is 2× to 13× faster than the other
approaches under test. NDCN is the sole method matching
the speed of our approach. However, it’s noteworthy that
NDCN utilizes only one neighbor hop, thereby simplifying
the final computation.

Table 5: Test MAE score and std in the traffic forecasting setting, averaged over 5 separate runs. † means gradient explosion.

MetrLAi Montevideoi PeMS03i PeMS04i PeMS07i PeMS08i

LB-baseline 58.191 0.442 165.015 211.230 314.710 227.380

A3TGCN 5.731±0.011 0.378±4·10−4 28.897±0.733 32.221±1.355 38.303±0.795 30.652±0.995

DCRNN † 0.332±0.001 18.652±0.136 † † †
GCRN-GRU 8.438±0.004 0.332±0.001 49.360±18.619 53.389±4.728 68.785±5.787 51.787±10.872

GCRN-LSTM 8.440±0.009 0.333±0.002 62.210±0.923 52.427±4.162 151.824±17.654 80.567±24.891

NDCN 8.471±0.022 0.435±0.021 † 127.202±0.334 † 129.667±44.385

TGCN 5.832±0.125 0.380±4·10−4 28.506±0.332 33.059±1.063 38.750±1.429 33.114±1.963

Ours 2.828±0.001 0.327±6·10−5 17.423±0.012 24.739±0.014 26.081±0.004 18.818±0.021

Me
trL

A

Mo
nt

ev
.

Pe
MS

03

Pe
MS

04

Pe
MS

07

Pe
MS

08

Graph size

0

500

1000

1500

2000

Ti
m

e
(s

)

A3TGCN
DCRNN

GCRN-GRU
GCRN-LSTM

NDCN
TGCN

Our

Figure 4: Average time per epoch (measured in seconds) and std
computed using an Intel Xeon Gold 6240R CPU @ 2.40GHz. Each
time is obtained using 5 neighbor hops (when possible) and em-
bedding dimension equal to 64. The graph size is computed as
size = #steps ∗#edges.

We observe that the baseline performs poorly in these
benchmarks, suggesting that such tasks are more complex
than the ones based on heat diffusion. Despite all DGN mod-
els outperforming the LB-baseline, they still produce an error
that is on average double than that of TG-ODE, highlighting
the added value of our approach when dealing with temporal
graphs characterized by irregular sampling.

Finally, we comment that the DCRNN and NDCN suffered
from gradient issues in most of the tasks. We believe this is
due to their inability to learn the latent dynamics of the system
when the models’ outputs are not computed over a regular
time series.

Impact of the sample sparsity
To demonstrate the effectiveness of our approach, we study
the prediction performance under different sparsity levels.
We consider here the PeMS04 dataset. In this analysis,
we systematically decreased the number of considered graph
snapshots in the time series. This reduction makes the result-
ing task more challenging than the original one, as the snap-
shots become more sparse over time – the expected difference
ti+1 − ti gets larger. Additionally, the model has fewer data
to learn the task, thereby amplifying the task complexity. We
generated the irregular time series by randomly selecting 500,
1000, 2000, 4000, 8000, or 16000 graph snapshots from the
original dataset (from 3% to 94% of the original data), result-
ing in varying degrees of sparsity. For each dataset size, we
used an 80/10/10 temporal data split and performed hyper-
parameter tuning, as previously done in this section.

500 2000 4000 8000 16000
Num. of samples

20

40

60

Te
st

 M
AE

TGCN
A3TGCN

GCRN-GRU
GCRN-LSTM

Figure 5: Test MAE scores and std of TG-ODE on PeMS04, aver-
aged over 5 runs, for different sparsity levels.

Figure 5 illustrates the performance of our method, TG-
ODE, at various degrees of data sparsity. As expected, we
observe that as the number of samples increases, the test
MAE decreases. Notably, TG-ODE maintains robust perfor-
mance even with higher degrees of sparsity, with a decrease
in performance by only ∼7 points when reducing the size
from 16000 to 4000 samples. While the prediction error is
indeed relatively large when considering only 3-7% of the
original data, we comment that it is still substantially better
than that of the LB-baseline and comparable to that of the
other DGN’s which used 33% of the data. Overall, the model
exhibits excellent performance even in situations of high to
extreme sparsity (i.e., less than 8000 samples). The observed
outcome supports the effectiveness of TG-ODE, emphasizing
its potential for real-world applications with irregularly sam-
pled temporal graphs.

6 Conclusions
We have presented Temporal Graph Ordinary Differential
Equation (TG-ODE), a new general framework for effectively
learning from irregularly sampled temporal graphs. Thanks to
the connection between ODEs and neural architectures, TG-
ODE can naturally handle arbitrary time gaps between obser-
vations, allowing to address a common limitation of DGNs
for temporal graphs, i.e., the restriction to work solely on reg-
ularly sampled data.

To demonstrate the benefits of our approach, we conducted
extensive experiments on ad-hoc benchmarks that include
several synthetic and real-world scenarios. The results of
our experimental analysis show that our method outperforms
state-of-the-art models for temporal graphs by a large margin.
Furthermore, our method benefits from a faster training, thus
suggesting scalability to large networks.

Despite being appealing for many realistic application se-
tups, we acknowledge that not all resulting ODEs allow
unique solutions and yield numerical stability problems, thus
requiring some additional care from the user.

Looking ahead to future developments, we intend to
broaden the investigation of more sophisticated numerical
methods to solve the learned temporal graph ODE, e.g., us-
ing adaptive multistep schemes [Ascher and Petzold, 1998].
Extending the proposed framework to the problem of recon-
structing missing data is another interesting research direction
to consider.

Acknowledgments
This work has been supported by EU-EIC EMERGE (Grant
No. 101070918), by the EU NextGenerationEU programme
under the funding schemes PNRR-PE-AI (PE00000013)
FAIR - Future Artificial Intelligence Research, and by the
Swiss National Science Foundation project HORD-GNN
(FNS 204061).

References
[Ascher and Petzold, 1998] Uri M. Ascher and Linda R. Pet-

zold. Computer Methods for Ordinary Differential Equa-
tions and Differential-Algebraic Equations. Society for In-
dustrial and Applied Mathematics, USA, 1st edition, 1998.

[Bacciu et al., 2020] Davide Bacciu, Federico Errica,
Alessio Micheli, and Marco Podda. A gentle intro-
duction to deep learning for graphs. Neural Networks,
129:203–221, 2020.

[Bacciu et al., 2024] Davide Bacciu, Federico Errica,
Alessio Gravina, Lorenzo Madeddu, Marco Podda, and
Giovanni Stilo. Deep Graph Networks for Drug Repur-
posing With Multi-Protein Targets. IEEE Transactions on
Emerging Topics in Computing, 12(1):177–189, 2024.

[Bai et al., 2021] Jiandong Bai, Jiawei Zhu, Yujiao Song,
Ling Zhao, Zhixiang Hou, Ronghua Du, and Haifeng Li.
A3T-GCN: Attention Temporal Graph Convolutional Net-
work for Traffic Forecasting. ISPRS International Journal
of Geo-Information, 10(7), 2021.

[Chamberlain et al., 2021] Ben Chamberlain, James Row-
bottom, Maria I Gorinova, Michael Bronstein, Stefan
Webb, and Emanuele Rossi. GRAND: Graph neural diffu-
sion. In International Conference on Machine Learning,
pages 1407–1418. PMLR, 2021.

[Chen et al., 2018] Ricky T. Q. Chen, Yulia Rubanova, Jesse
Bettencourt, and David K Duvenaud. Neural ordinary dif-
ferential equations. In Advances in neural information pro-
cessing systems, 2018.

[Chen et al., 2022] Jinyin Chen, Xueke Wang, and Xuan-
heng Xu. GC-LSTM: graph convolution embedded LSTM
for dynamic network link prediction. Applied Intelligence,
52(7):7513–7528, May 2022.

[Choi et al., 2022] Jeongwhan Choi, Hwangyong Choi, Jee-
hyun Hwang, and Noseong Park. Graph Neural Con-
trolled Differential Equations for Traffic Forecasting. Pro-

ceedings of the AAAI Conference on Artificial Intelligence,
36(6):6367–6374, Jun. 2022.

[Choi et al., 2023] Jeongwhan Choi, Seoyoung Hong,
Noseong Park, and Sung-Bae Cho. GREAD: Graph
Neural Reaction-Diffusion Networks. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett, editors, Proceedings
of the 40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learning
Research, pages 5722–5747. PMLR, 23–29 Jul 2023.

[Cini et al., 2023a] Andrea Cini, Ivan Marisca, Fil-
ippo Maria Bianchi, and Cesare Alippi. Scalable
Spatiotemporal Graph Neural Networks. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
37(6):7218–7226, Jun. 2023.

[Cini et al., 2023b] Andrea Cini, Ivan Marisca, Daniele
Zambon, and Cesare Alippi. Graph Deep Learn-
ing for Time Series Forecasting. arXiv preprint
arXiv:2310.15978, 2023.

[Coddington and Levinson, 1955] Earl A. Coddington and
Norman Levinson. Theory of Ordinary Differential Equa-
tions. TATA McGraw-Hill, USA, 1955.

[Defferrard et al., 2016] Michaël Defferrard, Xavier Bres-
son, and Pierre Vandergheynst. Convolutional Neural Net-
works on Graphs with Fast Localized Spectral Filtering. In
Advances in Neural Information Processing Systems, vol-
ume 29. Curran Associates, Inc., 2016.

[Derrow-Pinion et al., 2021] Austin Derrow-Pinion, Jen-
nifer She, David Wong, Oliver Lange, Todd Hester, Luis
Perez, Marc Nunkesser, Seongjae Lee, Xueying Guo,
Brett Wiltshire, Peter W. Battaglia, Vishal Gupta, Ang Li,
Zhongwen Xu, Alvaro Sanchez-Gonzalez, Yujia Li, and
Petar Velickovic. ETA Prediction with Graph Neural Net-
works in Google Maps. In Proceedings of the 30th ACM
CIKM, page 3767–3776, New York, NY, USA, 2021. As-
sociation for Computing Machinery.

[Du et al., 2017] Jian Du, Shanghang Zhang, Guanhang
Wu, José M. F. Moura, and Soummya Kar. Topology
adaptive graph convolutional networks. arXiv preprint
arXiv:1710.10370, 2017.

[Eliasof et al., 2021] Moshe Eliasof, Eldad Haber, and Eran
Treister. PDE-GCN: Novel Architectures for Graph Neu-
ral Networks Motivated by Partial Differential Equations.
In Advances in neural information processing systems,
2021.

[Eliasof et al., 2024a] Moshe Eliasof, Eldad Haber, and Eran
Treister. Feature Transportation Improves Graph Neural
Networks. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 38(11):11874–11882, Mar. 2024.

[Eliasof et al., 2024b] Moshe Eliasof, Eldad Haber, Eran
Treister, and Carola-Bibiane B Schönlieb. On the temporal
domain of differential equation inspired graph neural net-
works. In Sanjoy Dasgupta, Stephan Mandt, and Yingzhen
Li, editors, Proceedings of The 27th International Con-
ference on Artificial Intelligence and Statistics, volume

238 of Proceedings of Machine Learning Research, pages
1792–1800. PMLR, 02–04 May 2024.

[Errica et al., 2023] Federico Errica, Alessio Gravina, Da-
vide Bacciu, and Alessio Micheli. Hidden Markov Models
for Temporal Graph Representation Learning. In Proceed-
ings of the 31st European Symposium on Artificial Neu-
ral Networks, Computational Intelligence and Machine
Learning (ESANN), 2023.

[Gilmer et al., 2017] Justin Gilmer, Samuel S. Schoenholz,
Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
Message Passing for Quantum Chemistry. In Proceedings
of the 34th International Conference on Machine Learn-
ing, volume 70, page 1263–1272. JMLR.org, 2017.

[Gravina and Bacciu, 2024] Alessio Gravina and Davide
Bacciu. Deep Learning for Dynamic Graphs: Models and
Benchmarks. IEEE Transactions on Neural Networks and
Learning Systems, pages 1–14, 2024.

[Gravina et al., 2022] Alessio Gravina, Jennifer L. Wilson,
Davide Bacciu, Kevin J. Grimes, and Corrado Priami.
Controlling astrocyte-mediated synaptic pruning signals
for schizophrenia drug repurposing with deep graph net-
works. PLOS Computational Biology, 18(5):1–19, 05
2022.

[Gravina et al., 2023] Alessio Gravina, Davide Bacciu, and
Claudio Gallicchio. Anti-Symmetric DGN: a stable archi-
tecture for Deep Graph Networks. In International confer-
ence on learning representations (ICLR), 2023.

[Guo et al., 2022] Shengnan Guo, Youfang Lin, Huaiyu
Wan, Xiucheng Li, and Gao Cong. Learning Dynam-
ics and Heterogeneity of Spatial-Temporal Graph Data for
Traffic Forecasting. IEEE Transactions on Knowledge and
Data Engineering, 34(11):5415–5428, 2022.

[Haber and Ruthotto, 2017] Eldad Haber and Lars Ruthotto.
Stable Architectures for Deep Neural Networks. Inverse
problems, 34(1):014004, 2017.

[Hamilton et al., 2017] William L. Hamilton, Rex Ying, and
Jure Leskovec. Inductive Representation Learning on
Large Graphs. In Advances in neural information process-
ing systems, 2017.

[Hu et al., 2020] Weihua Hu, Bowen Liu, Joseph Gomes,
Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for Pre-training Graph Neural Net-
works. In International conference on learning represen-
tations (ICLR), 2020.

[Huang et al., 2020] Zijie Huang, Yizhou Sun, and Wei
Wang. Learning Continuous System Dynamics from
Irregularly-Sampled Partial Observations. In Advances in
neural information processing systems, volume 33, pages
16177–16187. Curran Associates, Inc., 2020.

[Huang et al., 2021] Zijie Huang, Yizhou Sun, and Wei
Wang. Coupled graph ode for learning interacting system
dynamics. In Proceedings of the 27th ACM SIGKDD Con-
ference on Knowledge Discovery & Data Mining, page
705–715, New York, NY, USA, 2021. Association for
Computing Machinery.

[Jiang and Luo, 2022] Weiwei Jiang and Jiayun Luo. Graph
neural network for traffic forecasting: A survey. Expert
Systems with Applications, 207:117921, 2022.

[Jin et al., 2022] Ming Jin, Yu Zheng, Yuan-Fang Li, Siheng
Chen, Bin Yang, and Shirui Pan. Multivariate time series
forecasting with dynamic graph neural odes. IEEE Trans-
actions on Knowledge and Data Engineering, 2022.

[Kang et al., 2024] Qiyu Kang, Kai Zhao, Qinxu Ding, Feng
Ji, Xuhao Li, Wenfei Liang, Yang Song, and Wee Peng
Tay. Unleashing the Potential of Fractional Calculus in
Graph Neural Networks with FROND. In The Twelfth
International Conference on Learning Representations,
2024.

[Kidger et al., 2020] Patrick Kidger, James Morrill, James
Foster, and Terry Lyons. Neural Controlled Differential
Equations for Irregular Time Series. In Advances in neu-
ral information processing systems, 2020.

[Kipf and Welling, 2017] Thomas N. Kipf and Max Welling.
Semi-Supervised Classification with Graph Convolutional
Networks. In International conference on learning repre-
sentations (ICLR), 2017.

[Li et al., 2018] Yaguang Li, Rose Yu, Cyrus Shahabi, and
Yan Liu. Diffusion Convolutional Recurrent Neural Net-
work: Data-Driven Traffic Forecasting. In International
conference on learning representations (ICLR), 2018.

[Li et al., 2019] Jia Li, Zhichao Han, Hong Cheng, Jiao Su,
Pengyun Wang, Jianfeng Zhang, and Lujia Pan. Predict-
ing Path Failure In Time-Evolving Graphs. In Proceedings
of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, page 1279–1289,
New York, NY, USA, 2019. Association for Computing
Machinery.

[Liu et al., 2023] Bing Liu, Wei Luo, Gang Li, Jing Huang,
and Bo Yang. Do we need an encoder-decoder to model
dynamical systems on networks? In Edith Elkind, editor,
Proceedings of the Thirty-Second International Joint Con-
ference on Artificial Intelligence, IJCAI-23, pages 2178–
2186. International Joint Conferences on Artificial Intelli-
gence Organization, 8 2023. Main Track.

[Marisca et al., 2022] Ivan Marisca, Andrea Cini, and Ce-
sare Alippi. Learning to Reconstruct Missing Data from
Spatiotemporal Graphs with Sparse Observations. In Ad-
vances in neural information processing systems, pages 1–
17, 2022.

[Monti et al., 2019] Federico Monti, Fabrizio Frasca, Da-
vide Eynard, Damon Mannion, and Michael M. Bronstein.
Fake News Detection on Social Media using Geometric
Deep Learning. arXiv preprint arXiv:1902.06673, 2019.

[Pareja et al., 2020] Aldo Pareja, Giacomo Domeniconi, Jie
Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kaneza-
shi, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson.
EvolveGCN: Evolving Graph Convolutional Networks for
Dynamic Graphs. In Proceedings of the 34th AAAI Con-
ference on Artificial Intelligence, 2020.

[Poli et al., 2019] Michael Poli, Stefano Massaroli, Jun-
young Park, Atsushi Yamashita, Hajime Asama, and
Jinkyoo Park. Graph neural ordinary differential equa-
tions. arXiv preprint arXiv:1911.07532, 2019.

[Rozemberczki et al., 2021] Benedek Rozemberczki, Paul
Scherer, Yixuan He, George Panagopoulos, Alexander
Riedel, Maria Astefanoaei, Oliver Kiss, Ferenc Beres,
Guzman Lopez, Nicolas Collignon, and Rik Sarkar. Py-
Torch Geometric Temporal: Spatiotemporal Signal Pro-
cessing with Neural Machine Learning Models. In Pro-
ceedings of the 30th ACM International Conference on In-
formation and Knowledge Management, page 4564–4573,
2021.

[Rubanova et al., 2019] Yulia Rubanova, Ricky T. Q. Chen,
and David K Duvenaud. Latent Ordinary Differential
Equations for Irregularly-Sampled Time Series. In Ad-
vances in neural information processing systems, vol-
ume 32. Curran Associates, Inc., 2019.

[Rusch et al., 2022] T Konstantin Rusch, Ben Chamberlain,
James Rowbottom, Siddhartha Mishra, and Michael Bron-
stein. Graph-coupled oscillator networks. In International
Conference on Machine Learning, pages 18888–18909.
PMLR, 2022.

[Seo et al., 2018] Youngjoo Seo, Michaël Defferrard, Pierre
Vandergheynst, and Xavier Bresson. Structured Sequence
Modeling with Graph Convolutional Recurrent Networks.
In Neural Information Processing, pages 362–373, Cham,
2018. Springer International Publishing.

[Veličković et al., 2018] Petar Veličković, Guillem Cucurull,
Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph Attention Networks. International
conference on learning representations (ICLR), 2018.

[Wang et al., 2021] Yifei Wang, Yisen Wang, Jiansheng
Yang, and Zhouchen Lin. Dissecting the Diffusion Process
in Linear Graph Convolutional Networks. In Advances in
Neural Information Processing Systems, volume 34, pages
5758–5769. Curran Associates, Inc., 2021.

[Wu et al., 2019a] Felix Wu, Amauri Souza, Tianyi Zhang,
Christopher Fifty, Tao Yu, and Kilian Weinberger. Simpli-
fying Graph Convolutional Networks. In Proceedings of
the 36th International Conference on Machine Learning,
volume 97, pages 6861–6871. PMLR, 09–15 Jun 2019.

[Wu et al., 2019b] Z Wu, S Pan, G Long, J Jiang, and
C Zhang. Graph WaveNet for Deep Spatial-Temporal
Graph Modeling. In The 28th IJCAI. International Joint
Conferences on Artificial Intelligence Organization, 2019.

[Wu et al., 2021] Zonghan Wu, Shirui Pan, Fengwen Chen,
Guodong Long, Chengqi Zhang, and Philip S. Yu. A
Comprehensive Survey on Graph Neural Networks. IEEE
Transactions on Neural Networks and Learning Systems,
32(1):4–24, 2021.

[Xu et al., 2019] Keyulu Xu, Weihua Hu, Jure Leskovec, and
Stefanie Jegelka. How Powerful are Graph Neural Net-
works? In International conference on learning represen-
tations (ICLR), 2019.

[Zambon and Alippi, 2022] Daniele Zambon and Cesare
Alippi. AZ-whiteness test: A test for signal uncorrela-
tion on spatio-temporal graphs. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, edi-
tors, Advances in Neural Information Processing Systems,
volume 35, pages 11975–11986. Curran Associates, Inc.,
2022.

[Zang and Wang, 2020] Chengxi Zang and Fei Wang. Neu-
ral Dynamics on Complex Networks. In Proceedings
of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, page 892–902,
New York, NY, USA, 2020. Association for Computing
Machinery.

[Zhao et al., 2020] Ling Zhao, Yujiao Song, Chao Zhang,
Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li.
T-GCN: A Temporal Graph Convolutional Network for
Traffic Prediction. IEEE Transactions on Intelligent Trans-
portation Systems, 21(9):3848–3858, 2020.

[Zitnik et al., 2018] Marinka Zitnik, Monica Agrawal, and
Jure Leskovec. Modeling polypharmacy side effects
with graph convolutional networks. Bioinformatics,
34(13):i457–i466, 06 2018.

	Introduction
	Problem statement
	Temporal Graph Ordinary Differential Equation
	Related work
	Experiments
	Heat diffusion
	Datasets
	TG-ODE and baseline models
	Results

	Graph Benchmarks
	Datasets
	TG-ODE and baseline models
	Results
	Impact of the sample sparsity

	Conclusions

