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Abstract. We propose TRAC, a tool for the specification and verifica-
tion of coordinated multiparty distributed systems. Relying on finite-
state machines (FSMs) where transition labels look like Hoare triples,
TRAC can specify the coordination of the participants of a distributed
protocol for instance an execution model akin blockchain smart contracts
(SCs). In fact, the transitions of our FSMs yield guards, and assignments
over data variables, and with participants binders. The latter allow us
to model scenarios with an unbounded number of participants which
can vary at run-time. We introduce a notion of well-formedness to rule
out meaningless or problematic specifications. This notion is verified with
TRAC and demonstrated on several case studies borrowed from the smart
contracts domain. Then, we evaluate the performance of TRAC using a
set of randomised examples, studying the correlations between the fea-
tures supported and the time taken to decide well-formedness.

1 Introduction

We propose TRAC, a tool to support the coordination of distributed applications.
The design of TRAC is inspired by the Azure initiative of Microsoft [29] which
advocates the use of finite-state machines (FMSs) to specify the coordination
of smart contract (SC for short). This idea is not formalised; in fact, Azure’s
FSMs are informal sketches aiming to capture the “correct” executions of SCs.
For instance, the FSM for the simple market place (SMP) scenario borrowed
from [30] (the textual description is ours):

The sketch declares the roles (Owner and Buyer) played by
participants.
In the initial state Item Available the buyer is allowed to
make an offer, moving the protocol to the Offer Placed
state where two options are possible: the owner either ac-
cepts the offer (making the protocol reache the success
state Accept) or rejects the offer (moving back the proto-
col to Item Available).
The labels of the transitions specify which role executes
with operations to make the protocol progress.
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The FSM informally specifies a protocol coordinating the participants enact-
ing the roles owner and buyer, from a global standpoint; we call coordination
protocol such specification. A coordination protocol can be regarded as global
view –in the sense of choreographies [21,24]– where the state of the protocol
determines which operations are enabled. This resembles the execution model
of monitors [23]. In fact, as in monitors, coordination protocols encapsulate a
state that –through an API– concurrent processes can have exclusive access to.
The API is basically a set of operations guarded by conditions set to main-
tain an invariant on the encapsulated state (in the SMP scenario the operations
are MakeOffer, AcceptOffer, and Reject). The key differences between coor-
dination protocols and monitors [23] is that in the former (i) participants are
distributed and do not share memory, (ii) the invocation of an operation whose
guards is not valid in the current state is simply ignored without preempting the
caller, and therefore (iii) processes do not have to be awaken.

We aim to refine the approach of Azure so to enable algorithmic verification
of relevant properties of data-aware coordination of protocols. In fact, as for mon-
itors, the interplay among the operations that modify the state and the guards
in the API can lead to unexpected behaviours when informal specifications are
used. We illustrate this problem with some examples on the SMP example.

1. The sketch of SMP does not clarify if a participant can play more roles
simultaneously; for instance, it is not clear if an owner must be a different
instance than buyers.

2. The labels distinguish roles and instances (AR and AIR): in fact, it is assumed
that there can be many instances of a same role. Scope and quantification
of roles is not clear; for instance, a requirement specified in [30] reads “The
transitions between the Item Available and the Offer Placed states can
continue until the owner is satisfied with the offer made.” This sentence does
not clarify if, after a rejection, the new offer can be made by a new buyer or
it must be the original one;

3. The sketch specify neither the conditions enabling operations in a given state
nor how operations change the state of the contract’s variables; should the
price of the item remain unchanged when the owner invokes the Reject?

Contributions & Structure Section 2 introduces data-aware FSMs (DAF-
SMs) to formalise coordination protocols. Roughly, DAFSMs allow specifica-
tions (i) to express conditions on how operations affect the state of the protocol
and (ii) to explicitly declare the capabilities of participants. We propose well-
formedness condition on DAFSMs to rule out erroneous coordination protocols.

The definition of DAFSMs is instrumental to our main contribution which is
TRAC, a tool realising our model described in Section 3. We build on an initial
proposal developed in [1].

The applicability of TRAC is demonstrated by showing how its features can
specify and verify the SCs in [29]. Moreover, we discuss the performances of the
TRAC with an experimental evaluation (cf. Section 4). The source code of TRAC
and our experimental data is available at https://github.com/loctet/TRAC.

Related work and conclusions are given respectively in Sections 5 and 6.

https://github.com/loctet/TRAC
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2 Data-aware FSMs

In our model, protocols’ participants cooperate through a coordinator according
to their role. We let p, p′ , . . . denote participant variables, R,R′ , . . . denote roles,
and c, c′ , . . . denote C coordinator names. Each coordinator name c has:

– A finite set Vc of data variables; we let c.x, c.y, . . . range over Vc and write
x, y, . . . when the coordinator name is clear from the context. Each variables
has an associated data type, e.g., Int, Bool, . . .; we also allow usual structured
data types like arrays.

– A set of function names, ranged over by c.f, c.f ′ , . . .. Function parameters,
ranged over by x, y, . . ., can be either data or participants variables; we allow
function calls with different parameters to a same function.

An assignment takes the form c.x := e, where e is an expression;4 the set B of
assignments is ranged over by β while B,B′, . . . range over finite subsets of β
where each variable can be assigned at most once; moreover, we assume that
all assignments in B are executed simultaneously. In an assignment c.x := e
data variables occurring in e must have the old qualifier to refer to the value
of c.x before the assignment. The set of guards G, ranged over by g, g′ , . . .,
consists of constraints (i.e., boolean expressions) over data variables and function
parameters. Parameter declarations are written as x : T or p : R to respectively
assign data type T to x and role R to p; we let D be the set of all declarations
and d to range over D. Lists of declarations are denoted by d with the implicit
assumption that the parameters in d are pairwise distinct.

The set P of qualified participants consists of the terms generated by

π ::= ν p : R
∣∣ any p : R

∣∣ p

where both ν and @ are binders. Intuitively, ν p : R specifies that variable p
represents a fresh participant with role R while any p : R qualifies p as an existing
participant with role R. With p we refer to a participant in the scope of a binder.

Before its formal definition (cf. Definition 1), we give an intuitive account of
our model. We use FSMs as coordination protocols with a single coordinator c.
The transitions of an FSM represent the call to functions exposed by the coor-
dinator c performed by participants. Such calls may update the current control
state (by means of state transitions) and the state of data variables (by mean
of assignments). Access to functions can be restricted to some participants (us-
ing participants variables and modifiers), and the availability of a function may
depend on the current control or data states (using guards). A protocol starts
in the initial state of the FSM specifying where the initial state of variables is
set by the creator of the coordinator; intuitively, the creator may be thought of
as an object in object-oriented programming created by invoking a constructor.

4 We borrow from Z3 a substantial subset of expressions over variables and parameters
(barred participants parameters) whose syntax is standard and therefore omitted.
We assume that expressions do not have side effects.
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Definition 1. Let 2Bfin be the set of all finite subsets of B and L = G ×P ×F ×
D×2B

fin be the set of labels, ranged over by ℓ. A data-aware finite state machine
(DAFSM for short) is a tuple S = (S, q0, −→ ,F, c, ν p : R,d0, B0) where:

– (S, q0, −→ ,F) is an FSM over L (namely, S is finite set of states, q0 ∈ S is
the initial state, −→⊆ S× L× S, and F ⊆ S is the set of accepting states);

– c ∈ C is the coordinator name;
– for each transition label (g, π, f,d, B), if c.x := e ∈ B then every data pa-

rameter occurring in e occurs in d, e is well typed, and the data variables
occurring in the guards of any of the transitions of S belong to Vc ;

– ν p : R binds p to the participant creating the coordinator;
– d0 ⊆ D is the parameters list of the coordinator;
– B0 ⊆fin B is a set of assignments (setting the initial values of the state

variables).

A path is a finite sequence of transitions s0
ℓ1−→ s1 · · · sn

ℓn−→ sn+1 with s0 = q0.

The next example introduces a convenient graphical notation for DAFSMs
in which guards on transitions are in curly brackets for readability; this notation
is reminiscent of Hoare triples (guards are not to be confused with sets).

Example 1. Let ℓnew = {offer > 0} ν b : B ▷ c.makeOffer(Int : offer) {c.offer :=
offer} and ℓext = {offer > 0} @ b : B ▷ c.makeOffer(Int : offer) {c.offer := offer}.
The DAFSMs below represents the SMP protocol of Section 1.

q0

q1q′1 q2

ν o : O ▷ start(c, Int : price)
{c.price := price}

ℓnew

o ▷ c.acceptOffer()o ▷ c.rejectOffer()

ℓext

ℓnew

The initial state is q0 and it is graphically represented by the source-less arrow
entering it. The label5 of this arrow represents the invocation from a new par-
ticipant o with the owner’s role O to the constructor for a coordinator c with a
parameter price of type Int. The set of assignments is the singleton initialising
the coordinator’s variable c.price to price.

In q0, the only enabled function is c.makeOffer(Int : offer); the first buyer b
invoking this function with a parameter offer satisfying the guard offer > 0 moves
the protocol to state q1 while recording the new offer in the coordinator state
with the assignment c.offer := offer. Contextually, the state of the coordinator
records that the caller b plays role B.

From state q1 only the owner o can make the protocol progress by either
accepting or rejecting the offer. In the former case, the protocol reaches the

5 We may omit writing guards when they are True and assignments when they are
empty as in the transitions from q1.
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accepting state q2 (graphically denoted with a doubly-circled node); in the latter
case, the protocol reaches state q′

1 where either an existing buyer or a new one
can make further offers. ⋄

Notably, the DAFSM of Example 1 refines the informal one in Section 1 by
more precisely specifying that offers can arrive either from previous buyers or
new ones (cf. item 2 in Section 1).

2.1 Well-formedness of DAFSM

The restrictions in Definition 1 concern single transitions; however, DAFSMs
can model meaningless and wrong behaviours, due to conditions spanning several
transitions, e.g., free occurrences of participant variables, lack of participants of a
role or inconsistent guards. Below we spell-out those constraints after motivating
them with simple examples.

A first issue is the presence of free occurrences of participants names.

Example 2. The DAFSM s0 s1
ν o : O ▷ start(c) p ▷ c.f()

is syn-
tactically erroneous since the participant variable p is not bound. ⋄

In our model qualified participants of the form ν p : R and any p : R, and
parameter declarations of the form p : R act as binders. In a DAFSM all occur-
rences of participant variable should be in the scope of a binder to be meaningful.
Formally, we say that a transition (s1, g, π, c.f,d, β, s2) binds p iff:

∃R : π = ν p : R ∨ π = any p : R ∨ p : R ∈ d

The occurrence of p in a path σ = σ1(s1, g, p, c.f,d, β, s2)σ2 is bound in σ if there
is a transition in σ1 binding p and it is bound in a DAFSM S if all the paths of
S including the occurrence binding it. Finally, S is closed if all occurrences of
participant variables are bound in S.

Another problem arises when the role of a qualified participant is empty.

Example 3. If we bind the occurrence of p in the DAFSM of Example 2 with
the binder @, we obtain the closed DAFSM

S2 = s0 s1
ν o : O ▷ start(c) any p : R ▷ c.f()

However, we argue that S2 is ill-formed since R is necessarily empty in s0. Hence
no action is possible, and the execution gets stuck in the initial state. ⋄

We now propose a simple syntactical check that avoids the problem of empty
roles. Notice that a sound and complete procedure for empty roles detection
subsumes reachability, which may be undecidable depending on the chosen ex-
pressivity of constraints and expressions.



6 Authors Suppressed Due to Excessive Length

A binder expands role R if it is a qualified participant of the form ν p : R or
a parameter declaration of the form p : R. A role R is expanded in a path σ iff:

σ = σ1(s1, g,@ p : R, c.f,d, β, s2)σ2 =⇒ ∃t ∈ σ1 : t expands R

A DAFSM S expands a role R if every path of S expands R. Finally, S is
(strongly) empty-role free if S expands every role in S.

Despite the quantification over the possibly infinite set of all paths, empty-
role freedom can be decided by considering only acyclic paths, that is paths
which contain at most one occurrence of each state. Clearly, there are only
finitely many acyclic paths. Notice that S2 above is not empty-role free.

Finally, progress can be jeopardised if assignments falsify all the guards of
the subsequent transitions.

Example 4. The DAFSM S3 below is both closed and empty-role free, as the
caller of c.f is o which is bound by the constructor, and there are no @ modifiers.

S3 = s0 s1
ν o : O ▷ start(c) {c.x := 0} {c.x > 0} o ▷ c.f()

Crucially, c.x > 0 will never be satisfied at run-time because c.x is initialised to
0 and never changed. So again every execution gets stuck in state s0. ⋄

Similarly to empty roles, detecting inconsistencies is undecidable at least for
expressive enough constraints and expressions. We therefore devise a syntactic
technique amenable of algorithmic verification. The idea is to check that every
transition t, regardless of the “history” of the current execution, leads to a
state which is either accepting or it has at least a transition enabled. This is
intuitively accomplished by checking that the guard of t, after being updated
according to the assignments of t, implies the disjunction of the guards of the
outgoing transitions from the target state of t. Before formally introduce our
notion of consistency, we need a few auxiliary definitions.

Definition 2. For all states s, we define the progress constraint gs as True when
s is accepting, and as the disjunction of guards of the outgoing transitions of s.
Let c.x ̸∈ B mean that for all c.y := e ∈ B, c.y and c.x differ and the expression
e is not c.x. The progress constraint of an assignment B is

gB =
∧

(c.x:=e)∈B

c.x = e ∧
∧

c.x ̸∈B

c.x = old c.x

We define dataParams(d) as the list of data parameter names occurring in d.

We can now define our notion of consistency.

Definition 3. Let g{y/x} be the guard obtained from g after the simultane-
ous substitution of variables x with y. A transition t = (s, g, π, c.f,d, β, s′) is
consistent if:

∀c.x, old c.x : ∃dataParams(d) : (g{old c.x/c.x} ∧ gB) =⇒ gs′

A DAFSM S is consistent if so is every transition of S.
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Example 5. The DAFSM S4 below shows the importance of renaming variable
with old. The AConsistency formula of S4 for the transition from s0 to s1 is
∀c.x : True & c.x = c.x + 1 => True. The latter formula is evaluated as
False =⇒ True which is True. We don’t want this inconsistency case, there-
fore, by replacement, the AConsistency formula of S4 becomes ∀c.x, c.xold :
True & c.x = c.xold + 1 => True.

S4 = s0 s1 s2
ν o : O ▷ start(c) {True} o ▷ c.f1(){c.x := c.x + 1} {True} o ▷ c.f2()

⋄

Non-determinism could be useful for some applications, most of the time deter-
minism is a desirable property (e.g., SCs are usually required to be determin-
istic [7]). Before the formal definition, we give a few examples illustrating how
non-determinism may arise in DAFSMs.

Example 6. The DAFSM S = s0s1 s2

ν o : O ▷ start(c)

ℓ1

o ▷ c.g()

ℓ2

is deter-

ministic or not, depending on the labels ℓ1 and ℓ2. Let us consider some cases.

ℓ1 = ℓ2 = o ▷ c.g() S is non-deterministic because a call to function c.f by o can
lead either to s1 or to s2.

ℓ1 = ν p : R ▷ c.g() and ℓ2 = @ p : R ▷ c.g() S is deterministic intuitively because
the next state is unambiguously determined by the caller of c.g: the protocol
moves to s1 or s2 depending whether the call is performed by an existing or
a new participant.

ℓ1 = {x ≤ 10} o ▷ c.g(x : Int) and ℓ2 = {x > 10} o ▷ c.g(x : Int) S is determin-
istic because guard x ≤ 10 leading to s1 and guard x > 10 leading to s2
are disjoint; therefore the next state is determined by the value of the pa-
rameter x, and every value enables at most one transition.

Also, taking ℓ1 as in the latter case and ℓ2 = {x ≥ 10} o▷c.g(x : Int) would make
S non-deterministic because the guards of ℓ1 and of ℓ2 are not disjoint therefore
the next state is not determined by the caller of c.g. ⋄

We now define a notion of strong determinism, which is decidable and can be
efficiently established. To this aim, we first define the binary relation # ⊆ P×P
as the least symmetric relation satisfying:

ν p : R # p′, ν p : R # @ p′ : O, and R ̸= O =⇒ @ p : R # @ p′ : O

Intuitively, if π1 # π2, then the callers in π1 and π2 differ. Indeed, the first two
item just say that a new participant is necessarily different from an existing
one. The third item says that two participant with different roles are necessarily
different (since we require that every participant can have at most one role).

We now define strong determinism.



8 Authors Suppressed Due to Excessive Length

⟲

TXT GraphGen

Validator
CallerCheck

Z3Model Z3Runner

DetCheck FBuilderTrGrinder

AConsistency

Analizer Verdict

V-FSM

1

1

2

3

Fig. 1: The architecture of TRAC

Definition 4. A DAFSM S is (strongly) deterministic if, for all transitions
t1 ̸= t2 in S such that t1 and t2 have the same source state and the same function
then:

(g1 ∧ g2 =⇒ False) ∨ π1#π2

where, for i ∈ {1, 2}, gi is the guard of ti and πi is the qualified participant of ti.

A DAFSM is well-formed when empty-role free, consistent, and deterministic.

3 The Tool

We implement our model in TRAC. Specifically, TRAC renders DAFSMs in terms
of a DSL to specify DAFSMs and verify the well-formedness condition defined
in Section 2 relying on the SMT solver Z3. We present the architecture of TRAC
in Section 3.1 and some implementation details in Section 3.2.

3.1 Architecture

Fig. 1 represents the architecture of TRAC which, for convenience, is compart-
mentalised into two principal modules: DAFSM parsing and visualisation (yel-
low box) and TRAC’s core (orange box). The latter module implements well-
formedness check (green box). Solid arrows represent calls between components
while dashed arrows data IO.

The flow starts Validator performing basic syntactic checks on a textual
representation6 of DAFSMs and transforming the input in a format that simpli-
fies the analysis of the following phases. Specifically, the output of Validator
can be passed (i) to GraphGen, a component yielding a visual representation
of DAFSMs (V-FSM output) and (ii) to the “transitions Grinder” TrGrinder

component (orange box) for well-formedness checking.
The component TrGrinder relays each transition of the DAFSM in input to

the components in the green box that perform the verification of well-formedness
according to Section 2; more precisely:

6 Our DSL is immaterial here; it is described in the accompanying artefact submission.
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– CallerCheck (arrow 1 ) that returns a boolean which is true if, and only if,
the DAFSM is closed and strongly empty-role free;

– DetCheck (arrow 2 ) that builds a Z3 formula which is true if, and only if,
the state is strongly deterministic;

– AConsistency (arrow 3 ) to generate a Z3 formula which holds if, and only
if, the transtion is consistent.

The component FBuilder computes the conjunction of the output of the
components above, yelding a Z3Model, which is then executed by the Z3Runner.

The verification process ends with the Analizer component that diagnoses
the output of Z3 and produces a Verdict which reports (if any) the violations
of well-formedness of the DAFSM in input.

3.2 Implementation

We now give some implementation details on the main features of TRAC; we
first consider each component of TRAC’s architecture.

The Validator processes the input which essentially lists transitions of a
DAFSM expressed in the format of our DSL. For instance, the transition to
make offers of Example 1 is rendered in our DSL as

S0 {_offer > 0} b:B > c.makeOffer(int _offer) {offer := _offer} S1

Basically, Validator reads each transition in the file and extract participants,
actions, states, preconditions, assignments and input parameters of the action.
To inspect the DAFSM in input TRAC relies on GraphGen7 which creates a visual
representation of graphs.

Component TrGrinder transforms the DAFSM obtained by Validator in
an internal format suitable for the analysis. Next, TrGrinder iterates on the
transitions, invokes different checker component by supplying them with the
necessary data.

The first component invoked by TrGrinder is CallerCheck which takes in
input a transition t and the (internal representation of the) DAFSM. If the caller
of t is of the form p or any p : R, CallerCheck retrieves all acyclic paths8 that,
from the initial state, lead to t’s source state, and then checks that every such
path contains ν p : R or any p : R for some R (if the caller was p), or contains
ν p : R (if the caller was any p : R). As soon as a path violates that condition,
CallerCheck halts returning False otherwise True is returned. To avoid checking
again a same path, the formula is saved and just retrieved when transitions with
same same source and caller as t are considered.

The component DetCheck takes as inputs a transition t and the list of tran-
sitions with source the target t. The list is partitioned by grouping transitions

7 GraphGen is a wrap component that uses GraphStream [32] to generate the visual
FSM (V-FSM).

8 Crucially, the internal format produced by TrGrinder is instrumental for extracting
acyclic paths using the networkx library [22].
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with the same function name and callers not related by # (cf. Section 2). For
non-singleton partitions, DetCheck builds a Z3 formula which is true if, and only
if, whenever the guard of a transition is true the others are false. Let T be the
set of all transitions and F be the partition of T as described above. The formula
returned by DetCheck is the Z3 correspondent of ΦDetCheck =

∧
F∈F Φ(F ) where,

assuming that gt is the guard of a transition t, we set

Φ(F ) =
∧
t∈F

(
gt =⇒

∧
t′∈F, t′ ̸=t

¬gt′
)

Double checking is avoided by keeping track of checked states.

Component AConsistency implements Definition 3. Using the formula of
the formal definition “as is” however would be inefficient, because of the pres-
ence of universal quantification and many unnecessary variables and equations
(those of the form c.x = old c.x). Universal quantification, as usual with SMT
solvers, is dealt with by just removing quantifiers and negating the formula.
The result of the checker will be negated again at the end. Unnecessary equa-
tions are removed as follows. Given a transition t and a list of outgoing tran-
sitions from its source, AConsistency scrutinises the pre-conditions and post-
conditions for shared state variables. When a variable is used in both conditions,
AConsistency rename the occurrences of the variable in the pre-conditions by
adding the old suffix. Likewise, the suffix old is added to state variables x
occurring in the right-hand side of an assignment of the post-condition if x
is assigned in the post-conditions. Subsequently, the assignments in the post-
conditions are transformed in a conjunction of equations representing the state
update. Finally, AConsistency constructs a Z3 formula which ensures that given
the pre-conditions and post-conditions bounded by input variables, at least one
precondition of the outgoing transitions should be met.

From the outputs of each of the above components, FBuilder generates a
single formula composed of the conjunction of all the formulae for each transition.
After going through all transitions, FBuilder compiles all the generated Z3
formulas to build the Z3Model. After processing all transitions, FBuilder outputs
a Python file containing the set of Z3 formulae, referred in Fig. 1 as the Z3Model.
This model includes all the necessary libraries, variable declarations, and solver
configurations to run the model and determine its satisfiability.

The component Z3Runner takes this Python file, executes it, and forwards
the results to the Analizer. If the Z3Model is found to be satisfiable, it indicates
that the DAFSM is well-formed; otherwise, it is deemed non-well-formed. This
final output is the Verdict.

Finally, we remark that TRAC operates in two modes: a non-stop mode,
which builds and evaluates the entire model (used for our experimental eval-
uation) and a stop mode, which halts immediately as soon as a violation of
well-formedness if found.
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Table 1: Features in the Azure benchmark
ICI BI PP RR MPR

Hello Blockchain ⊖ ✓ ⊖ ⊖ ⊖
Bazaar x ✓ ⊖ ⊖ ⊖
Ping Pong x ✓ ⊖ ⊖ ⊖
Defective Component Counter ⊖ ✓ ✓ ⊖ ⊖
Frequent Flyer Rewards Calculator ⊖ ✓ ✓ ⊖ ⊖
Room Thermostat ⊖ ⊖ ✓ ⊖ ⊖
Simple Marketplace ⊖ ✓ ⊖

✓

⊖
Asset Transfer ⊖ ✓ ✓

✓

⊖
Basic Provenance ⊖ ✓ ✓

✓

⊖
Refrigerated Transport ⊖ ✓ ✓

✓ ✓

Digital Locker ⊖ ✓ ✓

✓ ✓

Legend

✓ : feature present in the example and TRAC successfully handles it
x : feature present but not supported by TRAC
⊖ : feature not present int to the example✓

: feature present and TRAC supports it with some workarounds

4 Evaluation

We evaluate DAFSMs expressiveness and TRAC performance using two bench-
marks. The first consists of the examples from the Azure BC workbench [29],
showing how the DAFSMs (and the current version of TRAC) deals with sim-
ple, yet realistic, SCs also used in related work (e.g., [20]); the second contains
randomly generated large examples to stress-test TRAC.

These examples exhibit a variety of features that are essential for the rep-
resentation of SCs. We consider a significant range of features in our analy-
sis, including inter-contracts interactions (ICI), joining of new participants by-
invocation (BI) or by participant passing (PP), role revocation (RR), and the
possibility for a participant to assume multiple roles (MPR). Our aim is to assess
to what degree TRAC can model these features, present in illustrative expressive
examples in the literature on SCs. Our findings are outlined in Table 1.9 No-
tably, TRAC covers most of the features and the only limitation is that TRAC
does not support yet inter-contracts interactions (ICI column). Notably, we could
approximately model the examples with RR and MPR using some workarounds.
In particular, in all the examples featuring RR revocation was performed on sin-
gleton roles, that is roles that can be played by at most one participant at a
time. Moreover, every revocation is followed by a re-assignment of the role to
a participant. We therefore modelled this situation using a participant variable
for the role. So, ν p : R simultaneously assigns role to p, and revokes R from the
previous participant holding it. This has the drawback that the role cannot be
reassigned to a participant formerly holding it. For MPR, in the examples con-

9 Commonplace features such as multiple participants and multiple roles are present
in all the examples and supported by TRAC.
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sidered the participant with multiple roles was at most one. We could therefore
add explicit moves for that participant only to emulate it having two roles.

We now turn our attention to the performance of TRAC, using a benchmark of
randomly generated DAFSMs. More precisely, we evaluated TRAC using a data
set of 135 DAFSMs 10 randomly generated according to the following process.11

Let rand(i, j) be a random number between number i and j ≥ i (we let rand(i) =
rand(1, i)). We fix a maximal number of participants p ∈ rand(2, 10), of functions
f ∈ rand(10, 20), and of data variables v ∈ rand(50). For each s ∈ {10, 20, 30}
and for each s ≤ t ≤ 3s such that t mod 5 = 0 we generate five DAFSMs, each
having s states, by iterating the following steps until all nodes are connected
and t transitions have been generated:

– create rand(2, 5) transitions with source the current state and randomly se-
lected target nodes not connected yet (if any, otherwise the targets are se-
lected randomly on the whole set of nodes);12

– for each of the transitions a qualified participants and an operation with a
number of parameters are randomly selected according to rand(p), rand(0, f),
and rand(0, v).

We measured the performance of DetCheck, AConsistency, and CallerCheck
by averaging the running time over ten executions of each generated DAFSM.
The experiments were conducted on a Dell XPS 8960, 13th Gen Intel Core (9-
13900K) with 32 cores and 32GB RAM running Linux 6.5.0-17-generic (Ubuntu
23.10, 64bit). The results are reported in the following plots that we now discuss.

Fig. 2: CallerCheck time against of number paths (left) and transitions (right,
y-axis in logaritmic scale)

10 Number fixed to obtain graphs with a few dozens states but increasing number of
transitions and qualified participants.

11 The parameters (fixable as script inputs) were set in order to obtain sufficiently large
DAFSMs (covering cases with millions of paths) while maintaining the execution
time below one hour.

12 We do not spell out the details of the random generation of guards and assignments –
they are immaterial for the performance of DetCheck, AConsistency, and FBuilder.
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Fig. 3: DetCheck (left) AConsistency (right) time against number of transitions

The evaluation results presented in Fig. 2 shows the time taken for CallerCheck
against the number of paths in the model: as the number of paths increases with
the number of transitions of the FSM, the outcome confirms that times to check
closedness and empty-role freeness is exponential in the number of transitions.
Interestingly, even in the cases with more that 106 paths, CallerCheck termi-
nates the analysis in less that 6 seconds.13

Fig. 3 shows the results of our analysis for DetCheck and AConsistency. The
left plot in Fig. 3 hints that the execution time of DetCheck linearly grows with
the number of transitions. Fig. 3 right shows that the time to run AConsistency

is too low to allow any conclusion. Further analysis is require to correlated num-
ber of transitions and time.

These plots result from initial investigations of the performances of the main
components of TRAC.14 The complexity of checking well-formedness is domi-
nated by CallerCheck, which is exponential in the number of transitions since
CallerCheck has to check a path property. However that TRAC shows good
performances even for experiments with high number of paths (cf. Fig. 2).

5 Related works

The literature on models of coordination is vast. We restrict our comparison to
tool-supported approaches within three categories: FSM-based models, formal
language models, and domain-specific languages for SCs. We compare DAFSMs
with other coordination models as well as with approaches specific to SCs.

Coordination models of distributed systems based on extensions of FSMs
with (fragments) of first-order logic have appeared in the literature. Notably

13 To improve the readability of the left plot of Fig. 2 we did not include two DAFSMs
whose number of paths was higher more than a factor of 20 that other instances.
This is not necessary for plot on the right, which in fact includes all the generated
DAFSMs, since there we use a logarithmic scale.

14 Further, more systematic, experiments are needed to lead to broader conclusions.
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data-aware version of BIP and REO have been studied in [15,34]. As in DAF-
SMs, data that can be accessed and modified as part of an interaction in both
BIP and REO. A difference with our model is that interactions can involve
more participants and updates are local to the participants of interactions. This
also applies to recent models based on asserted communicating finite-state ma-
chines [33,35].

Choreography automata [2] and their extension with assertions [18] are global
specifications for communicating systems behind Corinne [31] and CAScr [19].
Both these tools are designed to check well-formedness conditions different than
ours (resp. those in [2] and in [18]) and neither of them supports multiple in-
stances of roles. Assertions in CAScr are not guards; they express rely-guarantee
conditions between the sender and the receiver of interactions. In the same vein,
CAT [4] is an automata-based tool for the verification of communication proto-
cols. Based on contract automata [3,5,6], CAT is not data-aware and its contracts
purely regard the communication interface of participants (which are also fixed).

Protocol languages that advocates a programming style based on FSMs to
specify SCs are FSolidM framework [27,28] and SmartScribble [16]. The former
relies on model checking CTL formulae to verify safety and liveness properties
(including deadlock-freedom). The automata have a global state, represented by
contract, input, and output variables, and transitions are guarded by boolean
conditions on these variables. The tool has been extended to feature code gen-
eration and interaction verification between multiple SCs [25]. This progress
marked a substantial improvement in detecting common vulnerabilities such as
re-entrancy attacks and fallback errors.

The interaction patterns that can be programmed with SmartScribble [16]
correspond to FSMs. The tool extracts Plutus code15 from valid protocol de-
scriptions, leaving to the developer the task to fill in the application logic. The
automatic generation of code (a feature we aim to) greatly accelerates devel-
oping time, and guarantee correct-by-construction code (in what concerns the
interaction patterns).

Participants are first-class citizens in DAFSMs while FSolidM encodes them
with variables and SmartScribble identifies participants with roles which are
fixed statically. Also, SmartScribble does not support assertions.

An application of Event-B to SCs generating automatically Solidity code ap-
peared in [36]. There is no report on the validation of the tool with benchmarks.

A parallel line of research explores the use of BC technology to audit chore-
ographic programs [10,11]. Roughly, the idea is to generate Solidity contracts
from models expressed as BPMN [21], so that the contracts’ trace the execution
of their choreography. Notably, [12] is an extension of [11] which allows multiple
participants to play the same role. This line of work has fairly different goals
than ours: its aim is to exploit BC immutability to record the execution in a
secure way. Our approach instead concerns modelling and verifying distributed
applications coordinated by a FSM, possibly implemented as an SC.

15 Plutus is the programming language to develop SCs to the Cardano BC.

https://github.com/anmavrid/smart-contracts
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The previous tools take a “top-down approach” – propose an abstraction to
(rigorously) define formal models of computations. In several cases, SCs code is
automatically generated from (correct) specifications. The next proposals, Obsid-
ian [9] and Stipula [13,14,26], embed the definition of the FSM in the contracts’
programming language. Both are inspired by typestates [37] and their use in
programming languages [17]: states are explicit entities with a defined API; in-
vocations to an operation of the API of a state possibly update of the variables of
the program and yield to (possibly) another state. In this respect, the execution
model of both languages is quite similar to DAFSMs.

Obsidian uses typestates and linear types [38] to control “assets” (critical
resources of SCs). Safe, yet flexible, aliasing is ensured with an ownership type
system [8]. Two case studies established the usability of the language in “real-
world” scenarios.

Stipula focuses on legal contracts and provides a strict discipline to guarantee
liquidity : no asset remains frozen forever.

The Azure repository has been used as a benchmark in [20] where solidity
code is annotated with assertions. There the Contractor toolkit extracts from
the annotate code data-aware abstractions (akin to FSMs). Such abstraction
can then be validate with respect to user-defined properties. The main strength
of Contractor is the possibility to automatically construct sound models, while
its main drawback is that it does not directly support multi object protocols.

6 Conclusions & Future works

This paper proposes DAFSMs, a data-aware coordination model for orchestrated
computation applicable to the description of multiparty protocols. The key nov-
elties are: 1. the support for multiple participants, organised by roles, which
can dynamically join a protocol; 2. the use of assertions to describe a protocol
state and control how (parametrised) actions change it (in a style akin to Hoare
triples); 3. a notion of well-formed models and a checking algorithm; 4. a tool
for describing systems with DAFSMs, visualising them as FSMs, and checking
their well-formedness.

In scope of future work is to define a model-checking approach to support
safety and liveness property analysis. We also plan generalisations of the model
to allow role revocation and code generation. An interesting line of work ex-
tract DAFSMs from actual SC programs. A deeper analysis of the performances
should also be conducted on more case studies and possibly refining the random
generation of DAFSMs.
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