
SEArch: an execution infrastructure for
service-based software systems⋆

Carlos G. Lopez Pombo ⋆⋆1,2[0000−0002−0248−5019], Pablo Montepagano3, and
Emilio Tuosto4[0000−0002−7032−3281]

1 Centro Interdisciplinario de Telecomunicaciones, Electrónica, Computación y
Ciencia Aplicada - CITECCA, Universidad Nacional de Ŕıo Negro - Sede Andina.

2 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas - CONICET.
cglopezpombo@unrn.edu.ar

3 Departamento de Computación, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires.
pmontepagano@dc.uba.ar

4 Gran Sasso Science Institute
emilio.tuosto@gssi.it

Abstract. The shift from monolithic applications to composition of dis-
tributed software initiated in the early twentieth, is based on the vision
of software-as-service. This vision, found in many technologies such as
RESTful APIs, advocates globally available services cooperating through
an infrastructure providing (access to) distributed computational re-
sources. Choreographies can support this vision by abstracting away local
computation and rendering interoperability with message-passing: coop-
eration is achieved by sending and receiving messages. Following this
choreographic paradigm, we develop SEArch, after Service Execution
Architecture, a language-independent execution infrastructure capable
of performing transparent dynamic reconfiguration of software artefacts.
Choreographic mechanisms are used in SEArch to specify interoperabil-
ity contracts, thus providing the support needed for automatic discovery
and binding of services at runtime.

1 Introduction

In the past two decades the paradigm generally known as Service-Oriented Com-
puting (SOC) has become predominant in software development. This paradigm
comprises many variants such as —among others— cloud computing, fog and
edge computing, and many forms of distributed computing associated with what
is know as the Internet of Things.5 Key to service-oriented computing is the pos-

⋆ The authors want to thank Ignacio Vissani for his indispensable contributions to the
design of SEArch.

⋆⋆ On leave from Instituto de Ciencias de la computación CONICET–UBA and Depar-
tamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad
de Buenos Aires.

5 Although the terminology has evolved, SOC is still widely used to denote these
software systems.

ar
X

iv
:2

40
4.

19
63

3v
1 

 [
cs

.S
E

] 
 3

0 
A

pr
 2

02
4

https://orcid.org/0000-0002-0248-5019
https://orcid.org/0000-0002-7032-3281


2 Carlos G. Lopez Pombo, Pablo Montepagano, Emilio Tuosto

sibility of dynamically search and combine distributed computational resources
exposed as services interacting over an existing communication infrastructure.
This vision of software systems can be found in applied technologies, such as
RESTful APIs, and has put forward what is commonly know as the API Econ-
omy. In this context many aspects of software development are facilitated, but
service integration becomes non-trivial. A common interaction mechanism in
SOC is (some form of remote) procedure call (for instance using JSON-RPC or
via the HTTP protocol) since it resembles the typical function or procedure call
of programming languages.

Choreographic approaches [1] propose an alternative interaction mechanism
by conceptually separating the local computations of the components from their
communication aspects. Under this approach, interoperability is understood at
a more abstract level decoupled from any computational aspect. Within chore-
ographic approaches we found the subclass of message-passing systems, a type
of system where cooperation is achieved by the simple actions of sending and
receiving messages through existing communication channels.

Asynchronous Relational Networks (ARNs) [2] yield a formalisation of the
elements of an interface theory for service-oriented software architectures. More
precisely, ARNs are a formal orchestration model based on hypergraphs whose
hyperedges are interpreted either as processes or as communication channels.
The nodes (or points) that are only adjacent to process hyperedges are called
provides-points, while those adjacent only to communication hyperedges are
called requires-points: the former constitute the interface through which a ser-
vice exports its functionality while the latter yields the interface through which
an activity expects certain service to provide a functionality. In the operational
semantics of ARNs given in [3] actions performed by a component can dynami-
cally trigger an automatic and transparent process of discovery and binding of a
compliant service. The composition of ARNs (i.e., how binding is viewed from a
formal perspective) is obtained by “fusing” provides-points and requires-points,
subject to a certain compliance check between the contract associated to them.
Later, [4] used communicating finite state machines (CFSM) [5] as a formal
language for determining service interoperability automatically.

More recently, [6] has proposed data-aware CFSMs, an extension of CFSMs
with assertions, namely first-order formulae associated to the communication
actions. Besides, [6] has introduced a bisimulation relation for data-aware CFSMs
and implemented an algorithm for checking bisimilarity of data-aware CFSMs. In
this setting, given participants A and B, and a first order formula α(x), where x is
a free variable, an action AB!y⟨v⟩ | α(x) is interpreted as: participant A sends to
participant B a message of type y with value v guaranteeing that α(v) holds.
Dually, AB?y⟨v⟩ | α(x) is interpreted as participant A receives from participant B
a message of type y with value v assuming that α(v) holds. The rationale behind
data-aware CFSMs is that assertions act as functional contracts predicating over
the data exchanged by the components that participate in the communication.

In this work we introduce the language-independent execution infrastructure
SEArch, after Service Execution Architecture, based on the operational seman-



SEArch: an execution infrastructure for service-based software systems 3

tics given to ARNs and the interoperability and functional compliance crite-
rion supported by data-aware CFSMs. In particular, we give the architecture of
SEArch (Section 2) and its main implementation details (Section 3). Also, we
showcase SEArch on an on-line business cart (Section 4). In 5 we draw some
conclusions and discuss further lanes of research.

2 A conceptual view of SEArch

There is a wide range of service-oriented architectures (SOAs) dictating design
principles for SOC, each one with its own idiosyncrasy [7,8,9,10]. We embrace
those that hinge on three main concepts: a service provider, a service client, and
a service broker. The latter handles a service repository, a catalogue of service
descriptions searched for in order to discover services required at runtime. In
fact, the service broker is instrumental to the discovery of services according
to a contract and of their binding, the composition mechanism that permits to
“glue” services together at runtime as advocated by some SOAs.

To support SOC, SEArch offers a mechanism for populating registries and
composing service-based application. Registering a service is, in principle, very
simple: the service provider sends the service broker a request for registering
a service attaching a (signed) package containing the contract and the unique
resource identifier (URI) of the provided service.

The execution process of a service-based system in SEArch is significantly
more complex. Figure 1 depicts the workflow. When launched, a component
registers their communication channels to its middleware, each of which has
its corresponding contract formalised as a set of data-aware CFSMs, one for
each requires-point. This is required because the middleware has to mediate the
communication with other components. In fact, when the component a running
application, say C, tries to interact with another component, the middleware
C, say M , captures the attempt and checks whether the communication session
for that communication channel has been created. If no such session exists, the
dynamic reconfiguration process triggers as follows:

1. M sends the service broker the contract of the communication channel;
2. for each data-aware CFSM R in the contract, the service broker queries the

service repository for candidates;
3. the service repository returns a list candidates in the form of ⟨Pr, u⟩, where

Pr is a data-aware CFSM and u is the URI of the service6;
4. the service broker checks whether the provision contract Pr is bisimilar to

the requirement contract R;
5. once the service broker has found services satisfying all the requirement

contracts, it returns the set of URIs to M ;

6 SEArch is parametric in the implementation of the service repository so we assume
it is not capable of checking compliance using behavioural contracts. We only relay
on its capability of returning a list of candidates, obtained by using potentially more
efficient and less precise criteria, for example, an ontology.



4 Carlos G. Lopez Pombo, Pablo Montepagano, Emilio Tuosto

Service Broker

Service Repository

Service Provider

Middleware

Service Client

Middleware

Contracts Verification

R`Pr

R

Service 
Identifier

Pr
URI

Services’ Location 
Service (DNS)

Services’ 
Execution 

Engine

Service 
Identifier

Pr
URI

Service 
Identifier

Pr
URI

R

Query (R)

Fig. 1. Service execution procedure in SEArch

6. M opens a communication with the service middleware of each service re-
turned by the provider requiring the execution of an instance of the corre-
sponding service.

Then, M sends to or receives from the service middleware of the partner com-
ponent the actual message; and the execution process proceeds. Notice that the
execution of the service might also have its own requirements putting it as the
originator a new dynamic reconfiguration.

The schematic view discussed before establish several requisites over the im-
plementation of middleware and the service broker. We organise the discussion
by considering these elements and their role in the execution architecture:

The middleware provides a private and a public interfaces. The former im-
plements functionalities accessible by service clients and service providers. The
public interface implements the capabilities needed for interacting with service
brokers and other service middlewares.

The private interface consists of:

– RegisterApp to register a service and expose it in the execution infras-
tructure. This functionality opens a bidirectional (low level) communication
channel with the service middleware that will remain open in order to sup-
port the (high level) communication with other services.

– RegisterChannel to register communication channels expressing require-
ments. This functionality provides the middleware with the relevant infor-
mation for triggering the reconfiguration of the system and managing the



SEArch: an execution infrastructure for service-based software systems 5

communications. The functionality can be used by any software artefact
running in the host, regardless if it a service or client application.

– AppSend / AppRecv to communicate with partner components

– CloseChannel to close a communication channel.

The reader should note the asymmetry between the existence of a function for
explicitly closing a communication sessions, and the lack of one for opening it.
The reason for this asymmetry resides in that, on the one hand, transparency in
the dynamic reconfiguration of the system is a key feature of SEArch but, on the
other hand, it is in general not possible to determine whether a communication
session will be used in the future.

The public interface consists of:

– InitChannel to accept the initiation of a point-to-point (low-level) com-
munication channel. This operation allows the service broker to initiate the
communication infrastructure that will connect the service executing behind
the service middleware to the other participants in a communication session
being setup.

– StartChannel to receive notification about point-to-point communication
channels. This operation formally notifies the service middleware that the
brokerage of participants according to a communication channel description
was successful and the communication session has been properly setup.

– MessageExchange to exchange messages between service middlewares.

Figure 2 shows the application infrastructure and how buffers are used to
provide point-to-point communication with external services. Within the infras-
tructure, it is possible to identify the structural design of the middleware.

Service Client's infrastructure

Service Client

Middleware

Channel

Service Provider's infrastructure

Service Provider

Middleware

Channel

Middleware's private 
interface stub (gRPC client)

Private interface 
(gRPC server)

Public interface 
(gRPC server)

Outbox buffer 
(participant X)

Inbox buffer 
(participant Y)

AppSend
MessageExchange

Sender (participant X)

AppRecv

Middleware's public interface 
stub (gRPC client)

Middleware's private 
interface stub (gRPC client)

Private interface 
(gRPC server)

Public interface 
(gRPC server)

Outbox buffer 
(participant Y)

Inbox buffer 
(participant X)

AppSend
MessageExchange

Sender (participant Y)

AppRecv

Middleware's public interface 
stub (gRPC client)

Fig. 2. Structural design of the point-to-point communication between a service client
and a service provider.



6 Carlos G. Lopez Pombo, Pablo Montepagano, Emilio Tuosto

The service broker exposes only two functionalities in a public interface:

– BrokerChannel to issue requests for brokerage. This operation allows a ser-
vice middleware to request for the brokerage of communication channel, and
the subsequent creation of a communication session over which the chosen
services will communicate.

– RegisterProvider to issue requests for the registration of a service provider.
This operation if the external counterpart of the functionality RegisterApp

through which the service middleware provides the service providers the pos-
sibility of being offered as services available in the execution infrastructure.

Figure 3 show the sequence diagrams offering a high level view of the pro-
cesses of registration of service to the service broker.

Fig. 3. Sequence diagram of the process of registration of a service.

Figure 4 shows the process of brokerage of a communication channel given
the interfaces of the middleware and the service broker, detailed above in this
section.

The process of brokering a communication channel for building a session (cf.
Fig. 4) is significantly more complex. The service client uses the communication
channel in the message AppSend (step 3 ). Concurrently, the service middle-
ware begins the brokerage process by sending the contract to the service broker
(step 4 ) and queues the message while acknowledging the service client with
a message of type AppSendRespond (step 5 ). If the service client has to re-
ceive a message (AppRecv), the middleware captures the attempt triggering the
brokerage and going through the same process for initiating the communication
session. In this case, the service client will remain blocked until the expected
message arrives.

The service broker, upon receiving the contract, queries the service repository
for candidates and executes the compliance checks. Each compliance check can



SEArch: an execution infrastructure for service-based software systems 7

Fig. 4. Sequence diagram of the process of brokerage of a communication channel.

be too costly so the service broker implements a cache for storing precomputed
positive results.

After choosing concrete providers for the participants in the contract, the
service broker performs two successive rounds of messages with the chosen service
provider. In the first round, a message of type InitChannelRequest is sent (step
7 ) to tell the service middlewares that a communication session involving its
service provider is being initiated; the message also contains the URIs of all



8 Carlos G. Lopez Pombo, Pablo Montepagano, Emilio Tuosto

the other participants in the communication session. At the same time, this
message allows the service broker to verify that the provider is indeed online.
Upon reception of this message, a service middleware must accept incoming
messages for this channel and queue them for the eventual reception by the
service provider. If all the service providers respond successfully with a message
of type InitChannelResponse (step 8 ), then the service broker performs a
second round with a messages of type StartChannelRequest (step 9 ), to
confirm that the communication session has been initiated.

After receiving both initialization messages, the service middleware sends the
service provider a message of type RegisterAppResponse (step 11 ) containing
the UUID of the new communication session. Then, each service provider can
start communicating over this session according to their contracts. Once a ses-
sion is initiated, the service middlewares establish unidirectional streams with
each other to send messages. In Fig. 4 the service middleware of the service
client opens a stream with the other service middleware by sending a message
of type MessageExchange (step 13 ). After the service provider has received
the message (steps 14 - 15 ), it sends a message (steps 16 - 17 ) forcing the
service middleware of the service provider to establishes a stream in the opposite
direction (step 18 ).

Finally, the service client can close the channel by sending a message of type
CloseChannelRequest (step 20 ) to its service middleware, closing the stream
used to communicate with the service middleware of the service provider.

3 Implementation

The main objective of SEArch7 is to provide transparent integration of services
offering abstractions for the interoperability of heterogeneous software artefacts.
This is mainly achieved by the middleware featured by SEArch, which medi-
ates all the interactions between software components. To this end, we imple-
mented the lower layer of the communication infrastructure over gRPC8, Pro-
tocol Buffers9. The former is a high-performance RPC framework offering an
easy and scalable solution to the problem of microservices integration; the latter
is a typed and structured data packet serialisation format, used as an interface
description language, which provide a high-level solution for system level com-
munication.10 Both gRPC and Protocol Buffers aim to provide a general, yet
easy to use, tool for developing communication infrastructure between systems.
For this reason, there are compilers that interpret message and service defini-
tions from Protocol Buffer .proto files, and generate code in a wide variety of

7 Available at https://github.com/pmontepagano/search.
8 Available at https://grpc.io.
9 Available at https://protobuf.dev/.

10 Although widely used, HTTP is not an ideal option for SEArch due to two severe
limitations: HTTP supports request-response and it has no native support for typed
messages (schemas).

https://github.com/pmontepagano/search
https://grpc.io
https://protobuf.dev/


SEArch: an execution infrastructure for service-based software systems 9

programming languages for manipulating those messages with native classes and
types.11

We implemented SEArch in Go [11], a language with native support for
channel-based concurrency (goroutines) and gRPC. Such flexibility is of partic-
ular relevance to us as it provides a high degree of portability, specially in order
to cope with the heterogeneity of the computational resources available, that
could be integrated to the SEArch ecosystem.

As said, we adopt CFSMs to model contracts for interoperability; more specif-
ically, we use an implementation in Go of CFSMs12 which we extended with a
bisimilarity test. Test for bisimilarity is used by SEArch service brokers as inter-
operability compliance criterion when selecting service providers. There exists
extensions of the CFSMs enabling their use for describing functional aspects of
participants [6] and quality-of-service non-functional aspect [12], but they were
not yet been added to nickng/cfsm so, for the sake of this presentation, the
compliance check will only reflect interoperability. Choosing Go as a program-
ming language was key for building a solution satisfying the most important
hypothesis of the computational model; the order of messages is preserved. This
hypothesis is vital to the correctness of a message-passing communicating sys-
tems, thus it becomes an important constraint of the implementation. Channels
in Go are similar to Unix pipes, being thread-safe FIFO queues. This, together
with the use of an RPC of type stream, allowed for the implementation of in-
box and outbox buffers for each participant, together with a sender routine in
charge of processing the Outbox; also providing a simple implementation for
MessageExchange and AppRecv which essentially act as enqueue and dequeue
operations, respectively.

In general, testing bisimilarity of CFSMs is computationally costly, resulting
in a bottleneck. To tackle this problem the service broker features a cache asso-
ciating lists of compliant services to requirement contract. The implementation
consists of a very simple schema shown in Fig. 5 done as an object-relational
mapping (ORM) in ent13, a simple and powerful entity framework specifically
designed for Go. Whenever a requirement contract produces a miss in the cache
table, or when the service repository returns candidates that have not been
checked, the compliance checks are performed concurrently by launching sep-
arate goroutines14. For the moment, the concurrent execution of compliance
checks only profits from parallelism locally (multi-core and multi-CPU servers)
but it provides no support for multi-server architectures like clusters, cloud com-
puting, etc.

11 Until July of 2023 gRPC and Protocol Buffers officially supports C# / .NET, C++,
Dart, Go, Java, Kotlin, Node, Objective-C, PHP, Python and Ruby among others;
https://grpc.io/docs/languages/.

12 Available ar https://github.com/nickng/cfsm.
13 Available at https://entgo.io.
14 The library conc (available at https://github.com/sourcegraph/conc) was used

to prevent leaks (routines that execute indefinitely).

https://grpc.io/docs/languages/
https://github.com/nickng/cfsm
https://entgo.io
https://github.com/sourcegraph/conc


10 Carlos G. Lopez Pombo, Pablo Montepagano, Emilio Tuosto

Fig. 5. ORM schema definition for the cache.

4 An online credit card payment service

This section shows a case study where an online shop relies on a third party
payment service. The application involves three participants: a client (devel-
oped in Java), the seller (a backend server developed in Python), and a pay-
ment service (developed in Go). Figure 6 shows an abstract view of the three
components where contracts are represented by the gray boxes (The source
code of these components can be found at https://github.com/pmontepagano/
search/examples/credit-card-payments). The rotated V-shape box repre-

ClientApp

Srv

PPS

Client
Application

Srv’ Server

PPS’ Payment
Service

ClientApp

Srv

PPS

Client
Application

Srv’ Server

PPS’ Payment
Service

ClientApp

Srv

PPS

Client
Application

Srv’ Server

PPS’ Payment
Service

Fig. 6. A view of Client (left), seller (top right), and payment service (bottom right)

sents the client’s communication channel specified by the contracts ClientApp,
Srv, and PPS, where the latter two are to be interpreted as requirements to be
fulfilled by other participants. The contracts of seller and payment service are
to be interpreted as provisions by the corresponding services.

We now detail each component.

4.1 Client application

As said, the client component is implemented in Java. We focus on how channel
registration and communication is rendered in the client.

https://github.com/pmontepagano/search/examples/credit-card-payments
https://github.com/pmontepagano/search/examples/credit-card-payments


SEArch: an execution infrastructure for service-based software systems 11

The communication channel of the client consists of the CFSMs in Fig. 7.
This specification dictates that ClientApp starts by sending a PurchaseRequest

Fig. 7. Communication channel specification

to the seller (Srv) and, after receiving the TotalAmount from the seller, the client
sends CardDetailsWithTotalAmount to the payment server (PPS); then the pur-
chase is completed as shown in Fig. 7. The other CFSMs behave accordingly.

Below we report the snippet for the creation of the communication channel
between the client application and its middleware’s private interface by resorting
the Java stubs generated by Protocol Buffer.



12 Carlos G. Lopez Pombo, Pablo Montepagano, Emilio Tuosto

Relying on the snippet above, the next one shows how the client registers
the communication channel to the middleware: The object contract, passed
to the function SetRequirementsContract, is an instance of the Java class
GlobalContract (automatically generated from Protocol Buffer type), built
from the specification in Fig. 7.

The snippet shown below, exhibits the client application invoking the middle-
ware’s operation AppSendRequest for sending a message PurchaseRequest (see
line 3 of Fig. 7), to participant Srv, over the channel identified by channelId

(the channel identifier is received at the moment of the registration of commu-
nication channel, see line 6 of channel registration snippet). Analogously, the

snippet below shows the client application invoking the middleware’s operation
AppRecvRequest for receiving a message TotalAmount (see line 4 of Fig. 7), from
participant Srv, also over the channel identified by channelId.



SEArch: an execution infrastructure for service-based software systems 13

,

4.2 Required services

The seller’s server application was developed in Python; the snippet shown below
exhibits the procedure for registering the backend server through a gRPC channel
received as parameter.

The process starts on line 4 by opening a communication channel through the
middleware’s private interface, by resorting the Python stubs generated by Pro-
tocol Buffer. Then, the middleware’s operation RegisterAppRequest is invoked
with a local contract (i.e., a CFSM described as a single finite state machine like
the ones shown Fig. 7). The result of the process depends on whether the service
has been already registered or not; if the service has been properly registered by
the broker, the latter will return an application identifier for the middleware to
be able to refer to the service in its local host. Line 18 shows the asynchronous
invocation to the function session which implements the server.

We omit the details of the Go implementation of the payment service because
they are analogous to the seller implementation.

5 Conclusions and future work

In this work we combined well established languages and tools from the fields of
service-oriented architectures, language semantics, and behavioural types to de-
velop SEArch. The execution infrastructure of SEArch hinges as ARNs and has
a complete operational semantics that enables analysis based on LTL formulae
(see [3, Sec 4]). Behavioural types, more specifically CFSMs, were used as in-
teroperability contracts that can be automatically analysed, thus providing the



14 Carlos G. Lopez Pombo, Pablo Montepagano, Emilio Tuosto

means for checking service compliance with respect to a requirement contract.
This last feature provides an answer to the problem of automatic service discov-
ery at runtime. A careful selection of tools allowed us to implement a middle-
ware and a service broker that jointly provide transparent creation and deletion
of communication sessions, according to high-level behavioural contracts. This
yields a general dynamic reconfiguration mechanism for this type of service-based
software artefacts.

The infrastructure of SEArch is in a functional prototype stage and, con-
sequently, the implementation left space for many extensions. Some of them
are related to different aspects of scalability, for example, the current imple-
mentation features a service repository coupled to the implementation of the
service broker. An alternative, and more scalable, design might implement the
repository as a separate agent, allowing horizontal scaling of the role and sepa-
rating the registration process from the broker service. This might also enable
the broker to access multiple repositories. Another hurdle for scalability resides
the centralised implementation of the compliance check in the service broker;
separating the analysis of contracts as a service used by the broker might al-
low implementation over clusters of computers that might even perform off-line
checks for precomputing the content of the cache we proposed, and implemented,
to make the brokering more efficient.

From Fig. 1 it is easy to observe that choosing a service relies on abstract
notions of provision and requirement contract. As we mentioned in Section 1,
CFSMs has been extended with both, functional information and quality-of-
service non-functional information making QoS-enriched Data-aware CFSMs a
type of contract fit for describing many aspects relevant for both, service com-
pliance and service selection. We plan to implement both extensions, and their
associated verification algorithms, within ChorGram [13,14].

The compliance mechanism featured by SEArch relies on bisimilarity of CF-
SMs. An interesting line of work is to embed in SEArch other compliance mech-
anisms based on different types of contracts, and their associated tools. Some
options are tools like CAT [15] which is based on contract automata [16,17,18]
or contract-oriented middlewares like the one in [19,20] which supports timed
behavioural types or the one in [21].

Recently tools for inferring behavioural specifications from code have been
proposed. For instance, KmcLib [22] extracts CFSMs from Ocaml code, the tool
in [23] infers behavioural types from Java code, and ChorEr [24] extracts chore-
ography automata [25] from Erlang code, Contractor15 is a tool that extracts
automata models from C programs. Composing these tools with SEArch opens
the possibility of smoothly integrate services to our infrastructure.

Lastly, the correct execution of software system in SEArch requires that
the implementation of service providers honours the contract they expose. This
may not hold for incorrect implementations or in adversarial settings where
malicious providers could be present. In this work we adopted an approach in
which the act of invoking the middleware’s operation RegisterAppRequest,

15 Available at http://lafhis.dc.uba.ar/dependex/contractor/Welcome.html.

http://lafhis.dc.uba.ar/dependex/contractor/Welcome.html


SEArch: an execution infrastructure for service-based software systems 15

and consequently triggering the invocation of the service broker’s operation
RegisterProviderRequest makes the provider fully responsible for any incon-
sistency that might occur during execution. However, SEArch does not provide
any mechanism for assigning the blame. Detecting these types of violations can
be attained statically (e.g., with approaches like the one in [26,27] or using
behavioural contracts to synthesise a program skeletons which, after the imple-
mentation, could be statically analysed by tools akin to Dafny [28]. However,
runtime verification is required when code cannot be analysed (e.g., third-party
components). In particular, one can use monitors capable of auditing the commu-
nication session, according to the global contract specifying the communication
channel. Under this view, it is paramount to provide analysis tools for the devel-
opment of services in order to ensure compliance between the implementation
and the provision contract. Extending SEArch for runtime verification is scope
for future work.

References

1. World Wide Web Consortium: Web services description language (wsdl) version
2.0 part 1: Core language. On-line Available at https://www.w3.org/TR/wsdl20/.

2. Fiadeiro, J.L., Lopes, A.: An interface theory for service-oriented design. Theoret-
ical Computer Science 503 (2013) 1–30

3. Vissani, I., Lopez Pombo, C.G., Ţuţu, I., Fiadeiro, J.L.: A full operational seman-
tics for asynchronous relational networks. In Diaconescu, R., Codescu, M., Ţuţu,
I., eds.: Proceedings of 22st International Workshop on Algebraic Development
Techniques (WADT 2014). Volume 9463 of Lecture Notes in Computer Science.,
Sinaia, Romania, Springer-Verlag (September 2015) 131–150

4. Vissani, I., Lopez Pombo, C.G., Tuosto, E.: Communicating machines as a dynamic
binding mechanism of services. In Gay, D., Alglave, J., eds.: Proceedings of 8th In-
ternational Workshop on Programming Language Approaches to Concurrency- and
Communication-cEntric Software, PLACES. Volume 203 of Electronic Proceedings
in Theoretical Computer Science. (April 2016) 85–98

5. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the
ACM 30(2) (1983) 323–342

6. Anabia, D.N.S.: Bisimulación de data-aware communicating finite state machines
con propiedades en las acciones. Master’s thesis, Departamento de Computación,
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (November
2023) Advisors: Carlos G. Lopez Pombo and Hernán C. Melgratti.

7. MuleSoft: 8 principles of service-oriented architecture. On-line at https://blogs.
mulesoft.com/digital-transformation/soa-principles/ (2022)

8. IBM: What is service-oriented architecture (soa)? On-line at https://www.ibm.

com/topics/soa (2024)

9. Microsoft: Service-oriented architecture. On-line at
https://learn.microsoft.com/en-gb/dotnet/architecture/

microservices/architect-microservice-container-applications/

service-oriented-architecture (2022)

10. Oracle: Oracle soa suite. On-line at https://www.oracle.com/middleware/

technologies/soasuite.html (2024)

https://www.w3.org/TR/wsdl20/
https://blogs.mulesoft.com/digital-transformation/soa-principles/
https://blogs.mulesoft.com/digital-transformation/soa-principles/
https://www.ibm.com/topics/soa
https://www.ibm.com/topics/soa
https://learn.microsoft.com/en-gb/dotnet/architecture/microservices/architect-microservice-container-applications/service-oriented-architecture
https://learn.microsoft.com/en-gb/dotnet/architecture/microservices/architect-microservice-container-applications/service-oriented-architecture
https://learn.microsoft.com/en-gb/dotnet/architecture/microservices/architect-microservice-container-applications/service-oriented-architecture
https://www.oracle.com/middleware/technologies/soasuite.html
https://www.oracle.com/middleware/technologies/soasuite.html


16 Carlos G. Lopez Pombo, Pablo Montepagano, Emilio Tuosto

11. Donovan, A.A., Kernighan, B.W.: The Go Programming Language. Addison-
Wesley Professional Computing Series. Addison–Wesley Publishing Co., Inc. (2015)

12. Lopez Pombo, C.G., Martinez Suñé, A.E., Tuosto, E.: A dynamic temporal logic
for quality of service in choreographic models. In Ábrahám, E., Dubslaff, C., Tarifa,
S.L.T., eds.: Proceedings of 20th International Colloquium on Theoretical Aspects
of Computing - ICTAC 2023. Volume 14446 of Lecture Notes in Computer Science.,
Lima, Perú, Springer-Verlag (December 2023) 119–138

13. Lange, J., Tuosto, E., Yoshida, N. River Publishers Series in Automation, Control
and Robotics. In: A Tool for Choreography-Based Analysis of Message-Passing
Software. River Publisher (2017) 125–146

14. Coto, A., Guanciale, R., Lange, J., Tuosto, E.: ChorGram: tool support for chore-
ographic development. Available at https://bitbucket.org/eMgssi/chorgram/

src/master/ (2015)
15. Basile, D., Degano, P., Ferrari, G., Tuosto, E.: Playing with our CAT and

communication-centric applications. In Albert, E., Lanese, I., eds.: Formal Tech-
niques for Distributed Objects, Components, and Systems - 36th IFIP WG 6.1
International Conference, FORTE 2016, Held as Part of the 11th International
Federated Conference on Distributed Computing Techniques, DisCoTec 2016, Her-
aklion, Crete, Greece, June 6-9, 2016, Proceedings. Volume 9688 of Lecture Notes
in Computer Science., Springer (2016) 62–73

16. Basile, D., ter Beek, M.: Contract automata library. Sci. Comput. Program. 221
(2022) 102841

17. Basile, D., ter Beek, M.H., Pugliese, R.: Synthesis of orchestrations and choreogra-
phies: Bridging the gap between supervisory control and coordination of services.
Logical Methods in Computer Science 16(2) (2020)

18. Basile, D., ter Beek, M.: A runtime environment for contract automata. In Chechik,
M., Katoen, J., Leucker, M., eds.: Formal Methods - 25th International Symposium,
FM 2023, Lübeck, Germany, March 6-10, 2023, Proceedings. Volume 14000 of
Lecture Notes in Computer Science., Springer-Verlag (2023) 550–567

19. Bartoletti, M., Cimoli, T., Murgia, M., Podda, A., Pompianu, L.: Contract-
Oriented Programming with Timed Session Types. In Gay, S., Ravara, A., eds.:
Behavioural Types: from Theory to Tools. River (2017) 27–48

20. Bartoletti, M., Cimoli, T., Murgia, M., Podda, A., Pompianu, L.: A contract-
oriented middleware. In Braga, C., Ölveczky, P., eds.: Formal Aspects of Compo-
nent Software - 12th International Conference, FACS 2015, Niterói, Brazil, October
14-16, 2015, Revised Selected Papers. Volume 9539 of Lecture Notes in Computer
Science., Springer-Verlag (2015) 86–104

21. Atzei, N., Bartoletti, M., Murgia, M., Tuosto, E., Zunino, R.: Contract-Oriented
Design of Distributed Applications: a Tutorial. In Gay, S., Ravara, A., eds.: Be-
havioural Types: from Theory to Tools. Automation, Control and Robotics. River
(2017) 1–26

22. Imai, K., Lange, J., Neykova, R.: Kmclib: Automated Inference and Verification
of Session Types from OCaml Programs. In Fisman, D., Rosu, G., eds.: Tools
and Algorithms for the Construction and Analysis of Systems. Lecture Notes in
Computer Science, Cham, Springer International Publishing (2022) 379–386

23. Vasconcelos, C., Ravara, A.: From object-oriented code with assertions to be-
havioural types. In Seffah, A., Penzenstadler, B., Alves, C., Peng, X., eds.: Proceed-
ings of the Symposium on Applied Computing, SAC 2017, Marrakech, Morocco,
April 3-7, 2017, ACM (2017) 1492–1497

24. Genovese, G.: ChorEr: un analizzatore statico per generare Automi Coreografici
da codice sorgente Erlang. Master’s thesis, University of Bologna (2023)

https://bitbucket.org/eMgssi/chorgram/src/master/
https://bitbucket.org/eMgssi/chorgram/src/master/


SEArch: an execution infrastructure for service-based software systems 17

25. Barbanera, F., Lanese, I., Tuosto, E.: Choreography automata. In Bliudze, S., Boc-
chi, L., eds.: Coordination Models and Languages - 22nd IFIPWG 6.1 International
Conference, COORDINATION 2020, Held as Part of the 15th International Feder-
ated Conference on Distributed Computing Techniques, DisCoTec 2020, Valletta,
Malta, June 15-19, 2020, Proceedings. Volume 12134 of Lecture Notes in Computer
Science., Springer-Verlag (2020) 86–106

26. Bartoletti, M., Scalas, A., Tuosto, E., Zunino, R.: Honesty by typing. Logical
Methods in Computer Science 12(4) (2016)

27. Bartoletti, M., Scalas, A., Tuosto, E., Zunino, R.: Honesty by typing. In Beyer, D.,
Boreale, M., eds.: Formal Techniques for Distributed Systems - Joint IFIP WG 6.1
International Conference, FMOODS/FORTE 2013, Held as Part of the 8th Inter-
national Federated Conference on Distributed Computing Techniques, DisCoTec
2013, Florence, Italy, June 3-5, 2013. Proceedings. Volume 7892 of Lecture Notes
in Computer Science., Springer-Verlag (2013) 305–320

28. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In Clarke, E.M., Voronkov, A., eds.: Logic for Programming, Artificial Intelligence,
and Reasoning - 16th International Conference, LPAR-16, Dakar, Senegal, April 25-
May 1, 2010, Revised Selected Papers. Volume 6355 of Lecture Notes in Computer
Science., Springer (2010) 348–370


	 SEArch: an execution infrastructure for service-based software systems 

