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Gradient descent algorithms on Rieman-
nian manifolds have been used recently for
the optimization of quantum channels. In
this contribution, we investigate the influ-
ence of various regularization terms added
to the cost function of these gradient de-
scent approaches. Motivated by Lasso reg-
ularization, we apply penalties for large
ranks of the quantum channel, favoring so-
lutions that can be represented by as few
Kraus operators as possible. We apply the
method to quantum process tomography
and a quantum machine learning problem.
Suitably regularized models show faster
convergence of the optimization as well as
better fidelities in the case of process to-
mography. Applied to quantum classifi-
cation scenarios, the regularization terms
can simplify the classifying quantum chan-
nel without degrading the accuracy of the
classification, thereby revealing the min-
imum channel rank needed for the given
input data.

1 Introduction

Quantum channels or completely positive and
trace preserving (CPT) maps describe all phys-
ically valid transformations of an arbitrary input
quantum state to a corresponding output quan-
tum state. In this sense, quantum channels are
the most general framework of how information
can be processed. Quantum computers, for exam-
ple, implement specifically tailored state trans-
formations to make use of quantum effects for
the efficient processing of classical data encoded

in the input state. Noise influences the overall
channel in a way which is usually detrimental for
useful information processing. Similar problems
arise in quantum communication schemes, where
the transferred message is directly affected by
imperfections of the transmission channel. Cur-
rently, many research efforts focus on the ques-
tion of how to cope with this noise and how to
make applications more resistant against it [1–
6]. In order to do so, it is often instrumen-
tal to identify the influence of the noise, that
is, to analyze how the channel which transforms
the quantum can be characterized [7–9]. Such a
task is usually called quantum channel or pro-
cess tomography and aims at finding a numeri-
cal representation of a channel that reproduces
the experimentally obtained data [10–12]. Vari-
ous methods have been proposed, ranging from
linear inversion and maximum-likelihood meth-
ods [13–17] over convex optimization [18] and
projection techniques [19, 20] to machine learn-
ing approaches [21, 22]. Experimentally, pro-
cess tomography has been implemented, for ex-
ample, in superconducting qubits [23–28], opti-
cal setups [29, 30], trapped ions [31], and nuclear
spins [32].

Recently, a method based on Riemannian gra-
dient descent has been proposed for quantum pro-
cess tomography [33]. This approach makes use
of the fact that Kraus representations of quan-
tum channels form a Stiefel manifold for which
efficient optimization techniques exist [34, 35].
The parametrization in terms of Kraus operators
leads to a valid quantum channel by construction,
thereby circumventing problems arising in other
tomography methods, where the resulting maps
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have to be projected to the closest valid quantum
state transformation after the optimization [33].

In general, a full-rank representation of a quan-
tum channel scales exponentially with system
size. However, often quantum channels can be
well approximated by low-rank channels, espe-
cially if the channel emerges from a quantum cir-
cuit with limited connectivity and depth. Meth-
ods based on matrix product state representa-
tions of the Choi matrix [22] or compression ap-
proaches [36–39] can be used in such a case, to en-
able tomography of higher-dimensional systems.
For parametrization on the Stiefel manifold, the
maximal rank of the channel can easily be con-
strained by limiting the number of Kraus oper-
ators in the representation. However, if the ac-
tual target channel has a rank smaller than the
number of Kraus operators, the gradient descent
method does not necessarily converge to a solu-
tion with a minimal number of nonzero Kraus
operators, due to the non-uniqueness of Kraus
representations.

In this paper, we investigate the influence of
various regularization terms added to the cost
function of the Riemannian optimization with the
aim of lowering the number of relevant Kraus op-
erators in the representation. More specifically,
we analyze the performance of three different reg-
ularization schemes based on the Hilbert-Schmidt
norm of the involved Kraus operators, the pu-
rity of the Choi matrix of the channel, and an
L1-norm of the Stiefel vector that represents the
Kraus decomposition, respectively. The first two
terms are directly motivated by the fact that they
penalize channels with high rank and large num-
bers of nontrivial Kraus operators, respectively.
The L1-norm regularization has been considered
before in Ref. [33]. In that paper, however, it
appeared only as a side remark without detailed
motivation and examination of its influence, so
we include it here for comparison. We will see
that all three terms – to different extent – support
a convergence of the optimization toward simple
representations of the channel under tomography.

Quantum process tomography is certainly the

prime example for numerical channel optimiza-
tion. However, the framework is applicable to
more general settings that do not necessarily re-
quire learning the full representation of a quan-
tum channel [40, 41]. Quantum machine learning
(QML) problems can be of this form, and we will
consider them as a second test example for regu-
larized Riemannian gradient descent algorithms.

Assume we have a classification problem where
classical input data is to be discriminated into
various classes. Today, such a problem is typi-
cally solved by classical algorithms. However, it
has been shown that quantum circuits can also be
utilized for classification tasks [42]. There, the in-
put information is encoded in a quantum state,
which is then mapped by a quantum transforma-
tion to an output state that can be measured to
determine the class the input data belongs to.
The task is then to optimize the mapping such
that it correctly classifies the input data.

It is an ongoing debate under which conditions
quantum machine learning approaches can actu-
ally provide an advantage over classical meth-
ods. Theoretical improvements have been re-
ported [43–45]. Still, it is often questioned
whether QML will eventually have a practical im-
pact [46, 47]. Note that the quest for a quan-
tum advantage is not our concern here. Instead,
we show how the regularized Riemannian opti-
mization can yield insight into the properties of
a quantum classification problem. In particular,
the regularization terms considered here can help
to understand which effective channel rank is nec-
essary to classify a certain data set.

The paper is organized as follows. We start
with a detailed description of the general setting.
We then give a brief overview of Riemannian op-
timization on the Stiefel manifold and introduce
the regularization terms we are going to inves-
tigate. In Sec. 5 and Sec. 6 we apply the op-
timization with regularization to quantum pro-
cess tomography and a quantum machine learn-
ing problem, showing the influence of the terms
in illustrative examples. In Sec. 7, we conclude.
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2 Setting

We consider the following general optimization
scenario for a quantum channel or CPT map.
The aim is to optimize a channel T that maps
an input state ρα to a state T [ρα]. A subsequent
measurement by a positive operator valued mea-
sure (POVM) with elements {Mβ} would yield
outcome β with probability

pT (β|α) = tr[MβT [ρα]], (1)

conditioned on the choice of input state ρα. The
probability distribution pT (β|α) will be subject
to a cost function Lp which specifies the desired
properties for the channel. Lp depends on T

through Eq. (1). The channel T is then optimized
to minimize the cost.

The choice of suitable input states ρα and mea-
surements Mβ , as well as the specific form of the
cost function L, depend on the problem to be
solved.

3 Riemannian optimization of Kraus
maps

In order to numerically optimize the channel T ,
it needs to be represented in a suitable form. In
this paper, we use Kraus decompositions. Kraus
channels with a fixed number of Kraus operators
form a Stiefel manifold, and the optimization of
the channel can be done by Riemannian gradi-
ent descent on that manifold [40]. We will re-
view the framework in the following. More exten-
sive presentations on that matter can be found in
Refs. [34, 48].

Consider a channel T on a d-dimensional quan-
tum system. The channel is represented by m

Kraus operators κk that satisfy the condition
m∑

k=1
κ†

kκk = 1d. (2)

We can introduce the matrix K = [κ1, ..., κm]T ∈
Cmd×d, created by stacking the Kraus operators.
This allows us to formulate Eq. (2) as

K†K = 1d, (3)

which is the defining equation of the Stiefel man-
ifold

St(md, d) = {K ∈ Cmd×d : K†K = 1d}. (4)

We can now use a method from optimization
on smooth manifolds, namely Riemannian gra-
dient descent (RGD), to optimize a smooth cost
function L(K) [40]. A normal gradient descent
method on the matrix K would in general lead
out of the manifold defined by Eq. (4). There-
fore, RGD makes use of a retraction RK, a map-
ping from the manifold’s tangent bundle to the
manifold, to bring K back to the manifold after
a usual gradient descent step:

K′ = RK(−ϵ grad L(K)). (5)

Here, ϵ is the step size, also known as the learning
rate. For a given manifold, multiple retractions
might exist, which can be chosen from freely [34].
We use the Cayley transform together with the
Sherman-Morrison-Woodbury formula leading to
the update rule [48]

K′ = K− ϵU

(
1+ ϵ

2V
†U

)−1
V †K, (6)

where

U = [G̃,K], V = [K,−G̃],

G̃ = G

||G||
, Gi,j =

(
∂L
∂Ki,j

)∗

. (7)

Here, [·, ·] represents the row vector of two matri-
ces leading to a matrix of size (md, 2d) and || · ||
the Frobenius norm. We use ϵ = 1 throughout.

4 Regularization

In optimization procedures, regularization terms
are included in the cost function to favor or penal-
ize solutions with certain properties. These terms
are often used to create simpler or unique solu-
tions. The parametrization of the channel T by
Kraus operators leads to an ambiguous solution.
In fact, any channel has infinitely many different
Kraus representations. We can use the idea of
regularization to obtain a solution with a specific
form.
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For example, let us assume that we have in-
cluded m Kraus operators in the Stiefel vector
K, but the optimal solution to the problem is a
channel of rank r < m. In this case, our model is
over-parametrized because the channel could also
be represented by only r different Kraus opera-
tors. If we do not know the rank of the optimal
solution, we cannot simply reduce the number of
Kraus operators m in the Stiefel vector K. How-
ever, we can try to penalize models with a large
number of finite Kraus operators in K and favor
those solutions where at least some Kraus opera-
tors are close to zero and therefore almost irrele-
vant for the channel.

The regularization amounts to an additional
term R in the cost function. This term can de-
pend on the representation K of the channel, in
contrast to the cost term Lp, which only depends
on the channel T but is otherwise ignorant about
its specific Kraus decomposition. The complete
cost function then reads

L = Lp(T ) + γR(K) (8)

where γ is a hyperparameter controlling the reg-
ularization strength.

4.1 Hilbert-Schmidt norm

The first regularization term we consider is given
by the average Hilbert-Schmidt norm of all Kraus
operators in the representation,

RHS = 1
m

m∑
k=1

√
trκ†

kκk (9)

This term favors representations with fewer
nonzero Kraus operators. Indirectly, this also re-
duces the rank of the channel.

4.2 Logarithmic Choi state purity

As a second regularization term, we consider the
logarithmic purity of the channel’s Choi state.
For a channel given by the Kraus operators κk,
the Choi state reads

χ =
∑

k

(κk ⊗ 1)|Φ+⟩⟨Φ+|(κ†
k ⊗ 1), (10)

with the maximally entangled state

|Φ+⟩ = 1√
d

d−1∑
j=0

|j⟩ ⊗ |j⟩ . (11)

The regularization term is then defined as the
negative logarithmic purity of the Choi state χ,

RC = − ln trχ2. (12)

This term does not explicitly depend on the
Kraus representation K, since it only involves the
unique Choi state of the channel. However, the
purity term favors Choi states of low rank and
therefore also Kraus representations with only a
few independent Kraus operators.

4.3 L1-norm

As a third term, we look at the L1-norm of the
Kraus vector.

RL = |K|1 = max
j

∑
i

|Kij | (13)

This term is inspired by classical Lasso regular-
ization [49] and has been used in Ref. [33] in a
quantum process tomography context. However,
there, the authors neither give a profound moti-
vation for the term nor do they analyze its influ-
ence on the performance. We therefore include
it here to fill this gap. The term can indeed im-
prove the performance, it is however in general
outperformed by the two previous choices.

5 Quantum process tomography

As a first example, let us apply the regularized
Riemannian optimization to quantum process to-
mography (QPT), which is a special case of the
general channel optimization setting outlined in
Sec. 2. The aim of such a procedure is to model a
quantum channel T which reproduces the experi-
mentally obtained data for an unknown quantum
channel E . To do so, the input states ρα, used
in the experiment, form a set of states that span
the whole state space. The measurement {Mβ},
performed after the application of the channel,
is informationally complete [50]. This guarantees
that there is a unique channel T whose statistics
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(see Eq. (1)) reproduces the one of the experimen-
tal channel E . It is assumed here that the input
states ρα and the POVM elements Mβ are per-
fectly known. Strictly speaking, this is never the
case in a real experiment. However, this problem
is independent of the question we are investigat-
ing in this paper.

Crucially, the probability distribution pm(β|α)
measured in the experiment is in general only an
estimate of the true distribution due to the lim-
ited amount of measurement data. It has been
shown that QPT methods nevertheless work in
this regime, especially if the channel is not of full
rank [22, 33]. However, gradient descent opti-
mization techniques on sparse data are prone to
overfitting. We will show that the regularization
terms can help to reduce this behavior to a cer-
tain extent. In order to distinguish this effect
from the regularization of the number of relevant
Kraus operators in the Stiefel vector K, we will
first look into the case of perfect infinite mea-
surement data (see Sec. 5.1), and only later turn
toward the experimentally more relevant case of
limited measurement data.

In order to optimize the channel T with the
Riemannian gradient descent method, we need a
suitable cost function. A standard cost function
for the discrepancy between the measured prob-
ability distribution pm and the modelled one pT

is given by the Kullback-Leibler divergence,

Lp =
∑

α

p0(α)
∑

β

pm(β|α) ln pm(β|α)
pT (β|α) , (14)

which we will use throughout this section. Here,
p0(α) is the prior distribution over the input
states ρα, which we will assume to be uniform.

We want to investigate the influence of the reg-
ularization terms R introduced in Sec. 4. These
terms are motivated by the idea to minimize the
number of relevant Kraus operators in the chan-
nel representation K. It can therefore be ex-
pected that the regularization works in particular
for non-full-rank channels. A realistic quantum
channel always has full rank. However, in many
cases of practical relevance, only a few Kraus op-
erators with significant magnitude are needed to

well approximate the channel. This will in partic-
ular be true for channels that emerge from quan-
tum circuits with limited depth and connectivity
as they appear, e.g., in gate-based quantum com-
puters. Therefore, in the following investigations,
we will mainly focus on channels with intermedi-
ate rank and analyze how the performance of the
regularization depends on the rank.

The overall procedure is as follows. We
randomly sample n-qubit channels E of fixed
rank and calculate the probability distribution
pm(β|α) that would be measured in an experi-
ment. See App. A for details on the sampling of
the channels. As input states ρα, we choose all
combinations of eigenstates of the Pauli opera-
tors, i.e., each input state is of the form

ρα = Πi1 ⊗ . . .⊗ Πin , (15)

where Πij is one of the six eigenstates of the Pauli
operators σx, σy, σz on the jth qubit. Up to a
normalizing prefactor, these states also form an
informationally complete POVM which defines
our measurement operators Mβ .

We then initialize T in a random channel and
use the Riemannian gradient descent method to
fit T to the true channel E . The figure of merit
will in general be the infidelity

1 − F (χT , χE) = 1 − tr
√√

χTχE
√
χT (16)

between the Choi states of the estimated channel
T and the target channel E .

5.1 Infinite shots

We start with the ideal case of infinite measure-
ment data. Here, the experimentally measured
probability distribution pm(β|α) matches exactly
the true statistics of the unknown target channel
E . The more realistic case of limited measure-
ment data follows below.

We consider the tomography of quantum pro-
cesses for n = 2 qubits. Without prior knowledge
of the target quantum channels E , m = 4n = 16
Kraus operators have to be included in the Stiefel
vector K to be able to cover two-qubit channels
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up to the maximum rank. In Fig. 1, we plot the
impact of the various regularization terms R and
strengths γ for randomly sampled target channels
with different ranks r. We see that for a suitably
chosen regularization strength γ = 10−3, the term
RHS leads to significant advantages up to a rank
r = 9. The term RC is advantageous even up
to rank r = 14 for γ = 10−4. The regularization
term RL, based on the L1-norm of the Stiefel vec-
tor K, is of no help in the infinite shot regime and
the unregularized case performs better on average
for all channel ranks.

10 4

1
−
F

RHS

10 4

1
−
F

RC

2 4 6 8 10 12 14 16
Channel Rank r

10 4

1
−
F

RL

γ= 0

γ= 10−1

γ= 10−2

γ= 10−3

γ= 10−4

Figure 1: We plot the mean infidelity as a function of
the rank of the target channel E , trained with the reg-
ularization terms R after 105 epochs of training. For
each rank, we sample 300 channels. In the infinite shot
case considered here, both RHS and RC provide an im-
provement over the unregularized case for many target
channel ranks and choices of γ. Thus, these terms can
enhance the convergence properties of the optimization.
By contrast, the term RL leads to a disadvantage for
any finite regularization strength γ.

The advantage of the regularization disappears
when the true rank of the channel is known. In
that case, one can set the number of Kraus op-
erators m to the channel rank r and the con-
vergence of the model to the target channel is
much faster. This is illustrated in Fig. 2, where
we plot the average training histories of channels
with true rank r = 5. The regularization term
leads to a lower infidelity on optimization models
with m = 16 Kraus operators in K. However,
these models are outperformed by models where
one sets m = r = 5.

0 50000 100000 150000 200000
Epoch

10 8

10 6

10 4

10 2

100

1
−
F

γ= 0

γ= 10−2

γ= 10−3

r= 5

Figure 2: We plot the mean infidelity of 300 randomly
sampled target channels with rank r = 5 in the infinite
shot regime. The channel T is initialized as a random
full-rank channel. Using the regularization term RHS, we
compare multiple values of γ. Both non-zero values of γ
lead to faster convergence compared to the unregularized
case γ = 0. However, if the rank of the target channel
E is known and the model T is constraint to it, the
convergence is even better (black dashed line).

5.2 Finite shots

We now turn to the case of finite measurements,
where each input state ρα is prepared s times and
the evolved state is measured using the POVM
{Mβ}. The measurement process is simulated by
drawing s times from a multinomial distribution
with probability pE(β|α) = tr[MβE [ρα]] for each
input state ρα.

We start the finite shot case by examining the
effect of the Hilbert-Schmidt regularization term
RHS on channels of true rank r = 4. Such chan-
nels might arise from a four-qubit unitary process
after tracing out two of the four qubits. In the
infinite shot case, we had seen that the optimiza-
tion converges much faster and to a tighter value,
if the true rank of the target channel is known
and the number of Kraus operators in K are cho-
sen accordingly (cf. black dashed line in Fig. 2).
As for the convergence speed, this also applies to
the case of finite shots. However, as shown in
Fig. 3, with a suitable regularization strength γ,
the optimization of a full rank model (m = 16
Kraus operators in K) can reach the same mean
infidelity 1 − F . Crucially, the unregularized op-
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timization converges to a much higher value. The
figure also shows that stronger regularization can
lead to faster convergence, but this comes at the
cost of poorer average infidelity.

0 5000 10000 15000 20000
Epoch

10 3

10 2

10 1

1
−
F

γ= 0

γ= 10−1

γ= 10−2

r= 4

Figure 3: We plot the mean infidelity of 300 target chan-
nels with rank r = 4 for various values of γ using RHS.
The larger value γ = 10−1 leads to faster convergence
but does not reach the minimum infidelity. The optimal
value γ = 10−2 requires more epochs to converge but
reaches the minimum that would also be obtained by a
model with m = r = 4 Kraus operators (black dashed
line). Here, s = 104 measurements are sampled for each
input state ρα.

The optimal γ with the best mean infidelity in
Fig. 3 has been found by a simple grid search over
five values of γ ∈ {10−1, 10−2, 10−3, 10−4, 10−5}.
We perform the same search for the other two
terms RC and RL, and plot the infidelities for
the respective best γ (with the lowest mean in-
fidelity after 105 epochs) as a function of the
training epoch in Fig. 4. Again, for comparison,
we also plot the mean infidelity of a model with
m = r = 4 Kraus operators in K. Interestingly,
in contrast to the infinite shot case, now also the
term RL, based on the L1-norm, provides an ad-
vantage over the unregularized case. However,
this term as well as the Choi term RC cannot
compete with the Hilbert-Schmidt term RHS in
the long run. On the other hand, for a small num-
ber of epochs (up to 8000 for the given example)
the term RC leads to the best results as it causes
the fastest drop of infidelity in the beginning of
the optimization.

The example shows that suitably chosen regu-

larization terms in the cost function can be ad-
vantageous for Riemannian gradient descent ap-
proaches to quantum process tomography. How-
ever, the specific choice of a term may depend on
whether the aim is to achieve rapid convergence
of the algorithm or the highest possible fidelity
with the target channel.

0 20000 40000 60000 80000 100000
Epoch

10 3

10 2

10 1

1
−
F

γ= 0.0

RC

RHS

RL

r= 4

Figure 4: We plot the mean infidelity of models trained
with different regularization terms R. For each curve,
200 target channels are sampled. We perform a grid
search over five values of γ, plotting the value with min-
imum mean infidelity for each regularization term after
105 epochs. The performance of models trained with
the correct target channel rank r = 4 is plotted in black
for comparison. In the finite shot case with number of
shots s = 104 , all regularization terms reach a signif-
icantly lower infidelity for some choice of γ than the
unregularized case γ = 0. However, only RHS reaches
the mean infidelity of models where the target channel
rank is known in advance.

5.3 Optimization of the hyperparameter γ

Up until now, we have compared the impact of
the regularization terms by examining the mean
infidelity of the estimated channels T and target
channels E . In particular, the optimal γ for a
specific term was determined from a minimization
of the mean infidelity.

In an experimental setting, the infidelity is,
however, not available as the target channel E is
unknown. We thus need a different method to op-
timize the hyperparameter γ. Following Ref. [22],
an often-used technique in machine learning to
optimize hyperparameters splits the data set into
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a training and a test set. The machine learning
model is trained on the training data and its per-
formance is tested on the unseen data in the test
set. Similarly, we can split our measurement re-
sults into a training and test set to compare the
performance of models with different values of γ.
We use an 80/20 train/test split throughout all
models trained in this paper. To that end, we in-
dependently draw the training and test set from
a multinomial distribution p(β|α) for each input
state ρα, splitting the number of shots s per input
state.

In order to examine the performance of the
regularization terms in an experimental setting
where the infidelity is inaccessible, we perform a
grid search over various values of γ as follows.
We choose a list of 10 values (see App. C) for the
regularization hyperparameter γ. For each γ, the
models are trained on the training set. Then we
choose the optimal γ∗ by choosing the value with
the lowest cost L on the test set. As we assume
no knowledge of the target channels, we use full
rank models to approximate the targets, setting
m = d2.

To benchmark this method, we then look at the
difference ∆F = Fγ∗ − F0 between the fidelity of
models with regularization strength γ∗ and mod-
els with no regularization term. We plot the re-
sults for varying target channel rank in Fig. 5. For
target channel ranks smaller than twelve, the grid
search optimization of the regularization strength
γ yields better results on average than training
channels without such a term. This is in agree-
ment with the fact that the regularization mainly
works in scenarios where it can be assumed that
the target channel is not of full rank. For the two-
qubit case d = 4, the method performs particu-
larly well for channels of ranks around r = 5. The
largest advantages are obtained with the Hilbert-
Schmidt term RHS. However, for ranks beyond
r = 12 the Choi term RC performs better. We
stress that this possibility to optimize the hyper-
parameter γ based on experimentally accessible
data makes the regularization a useful improve-
ment of the Riemannian gradient descent method
for quantum process tomography.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Channel Rank r

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

∆
F

RHS

RC

RL

Figure 5: We plot the mean difference ∆F = Fγ∗ −
F0 between the fidelity with optimized regularization
strength γ∗ and the fidelity of unregularized models. We
consider this the experimentally relevant case where the
fidelity is unknown and thus cannot be used to find the
optimal γ. Instead, γ∗ is optimized using a grid search
over various γ, choosing the value with the lowest test
set cost L. All regularization terms provide an improve-
ment over the unregularized case for some target chan-
nel ranks. Each model is trained for 105 epochs with
s = 105.

The examples in this section show how reg-
ularization terms can improve the performance
of Riemannian approaches to quantum process
tomography. The method works best for rank-
deficient channels. Note that a generic channel
is of full rank. However, in many practically rel-
evant settings such as quantum computers, the
process is close to a low-rank channel. In this
case, the regularization helps to suppress insignif-
icant Kraus operators without fixing the rank of
the optimized channel beforehand.

6 Quantum classification

Let us turn toward another example that fits into
the framework of quantum channel optimization.
A typical problem in quantum machine learning
is the classification of classical data by means
of a quantum mapping. Such a task is simi-
lar to the quantum process tomography setting
we examined above. Instead of learning a chan-
nel T that reproduces a probability distribution
pm(β|α) given by measurement results of a to-
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mography experiment, the aim here is to optimize
a quantum transformation such that it learns a
function y = f(x) from a finite data set. This set
{(xi, yi)} includes inputs xi sampled from some
distribution p(x) as well as their corresponding
classes labelled by yi. In order to demonstrate
the impact of regularization terms added to the
cost function of such a classification problem, we
consider two different toy problems. Firstly, we
use the Iris data set [51, 52] which comprises mea-
surements of three species of the iris plant. Ad-
ditionally, we consider the Wine data set [53], re-
sulting from chemical analysis of different Italian
wines. Both data sets have three target classes.

Each classical data vector x ∈ RN is encoded
into a quantum state |ψx⟩. The choice of a suit-
able encoding is often crucial for the performance
of a quantum machine learning task, both quali-
tatively and quantitatively [54, 55]. However, as
we are not so much interested in the overall per-
formance of the classification here but merely in
the impact of the regularization, we do not opti-
mize the encoding step in this paper. Instead, we
choose a simple dense angle encoding which can
consistently encode the data of both data sets.
The classical data x is represented by an ⌈N/2⌉-
qubit pure quantum state of the form [56]

|ψx⟩ =
⌈N/2⌉⊗

i=1
cos π2x2i−1 |0⟩ + ei2πx2i sin π2x2i−1 |1⟩ ,

(17)

where N is the total number of classical features.
The encoded data is mapped by the channel T
and subsequently measured. Contrary to the pro-
cess tomography case, the POVM {Mβ} is given
by projectors {|β⟩⟨β|} onto the computational
basis. Thus, the measured data amounts to a
probability distribution p(β|x). The desired la-
bel y of the class is then given by the outcome β
with the largest probability, i.e.,

y = fT (x) = arg max
β

p(β|x)

= arg max
β

⟨β|T [|ψx⟩⟨ψx|] |β⟩ . (18)

We can then use the Riemannian gradient de-
scent method in order to optimize T such that

its statistics yield a good approximation of the
desired function, i.e., fT (x) ≈ f(x).

The channel T determines the conditional prob-
ability p(β|xi) for each input sample. A typical
cost function for our problem is then given by the
cross entropy

L = −
∑

i

ln p(β = yi|xi) + γR, (19)

where R is again one of the three regularization
terms defined in Sec. 4, and yi is the correct
classification of input xi as given by the train-
ing data set. γ is a hyperparameter controlling
the strength of the regularization.

We split the data into a training and a test set,
optimize the channel T with the Riemannian gra-
dient descent method on the training data, and
apply the result to the test data in order to see
how the classifier performs. The Iris data set con-
sists of 150 data points withN = 4 features which
are encoded in a two-qubit input state. The data
belongs to three different classes, i.e., after apply-
ing the channel T to the input states, only three of
the four projectors |β⟩⟨β| are considered to deter-
mine the classification outcome in Eq. (18). The
objects in the Wine data set have 13 features. In
a classical pre-processing, we reduce this number
to N = 8 and encode them in a three-qubit input
state (see App. B). The total number of 178 data
points in this set belong to three different classes.

Unlike in process tomography, the input states
|ψx⟩ generally do not span the whole state space,
nor is the measurement informationally complete.
Thus, in general, the optimal channel T will not
be unique. In particular, optimal T can differ in
rank. We expect the regularization terms to steer
the optimization toward a channel which solves
the problem with as few Kraus operators as pos-
sible. Importantly, this regularization must not
degrade the accuracy of the classification itself.

In order to see that this is indeed the case, we
first plot the accuracy of the classification as a
function of the regularization strength in Fig. 6.
For both example data sets, we see that for suffi-
ciently small regularization strength γ, the accu-
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Figure 6: We plot the average accuracy of the classi-
fication on training and test data as a function of the
regularization strength γ. For small γ, the accuracy is
independent of the regularization, thus the additional
term R in the cost function does not compromise the
accuracy of the classification. For comparison, we plot
the unregularized case (dashed line). The dotted lines
correspond to a unitary model m = 1, which performs
significantly worse than the general model with m = 16
Kraus operators. All plotted values are averages over
100 random splits of training and test data after 1500
(Iris data set) or 750 (Wine data set) epochs of training.
Each optimization is initialized in a randomly sampled
unitary channel.

racy both on the training and on the test set is in-
dependent of the regularization. For comparison,
we plot the accuracy of the unregularized case
γ = 0 (dashed lines). We also plot the accuracy
that can be reached by a unitary model (m = 1
Kraus operator, dotted lines), which is signifi-
cantly worse than the general case of a model with
m = 16 Kraus operators. This shows that for a
fixed dimension of the quantum system, a non-
unitary transformation can in general be a better
classifier than a unitary circuit. Clearly, accord-
ing to Stinespring’s dilation theorem, the same
result could be obtained unitarily if sufficiently
many ancilla qubits were added [57]. However,
as we will see shortly, the regularized quantum
channel model allows us to determine the mini-
mal rank needed to accurately classify the data
encoded in a quantum system of given dimension.
This information can yield insight into the ques-
tion of what complexity in a quantum circuit is
actually needed to classify certain data sets.
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Figure 7: We plot the sum over the i largest eigenval-
ues of the channel’s Choi state χ, averaged over 100
random training/test splits and initializations. The reg-
ularization terms RC and RHS reduce the rank of the
optimized channel T , particularly visible for the Wine
data set. The unregularized case (black dashed line)
converges to channels of rank six. For the regularized
models, already the first three eigenvalues sum to unity,
i.e., the channel can be represented by only three Kraus
operators. For the Iris data set, the terms RHS and RC

reduce the rank from three to two. The term RL shows
the opposite behavior and is therefore not helpful. For
the regularization with RHS we use γ = 0.22, for RC

and RL we have γ = 0.02. These values lie in the
plateau regions of Fig. 6. Thus, they are chosen so as
not to compromise the accuracy of the classification.

For our toy problems, we find that the chan-
nel does not need to be full-rank. Instead, the
Iris data can be classified by a channel of rank
r = 2, while rank r = 3 is necessary for the Wine
data set. This becomes visible in Fig. 7, where
we plot the average sum of the i first eigenvalues
of the channels Choi state χ. An optimization
without regularization converges on average to a
channel of rank r = 3 for the Iris data set and to
a channel of rank r = 6 for the Wine toy problem,
i.e., only the three (six) largest eigenvalues have
a significant magnitude. However, with the regu-
larization terms RC and RHS, only two nonzero
eigenvalues remain in the Iris case and three in
the Wine case. The regularization strength γ was
chosen to be in the saturated regions of Fig. 6.
Thus, this regularization decreases the rank of
the channel without compromising its classifica-
tion accuracy. The third regularization term RL
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is of no help in this scenario, as it tends to in-
crease the rank of the channel T . This is consis-
tent with the findings for the infinite shot case of
quantum process tomography in Sec. 5.1.

The examples discussed here highlight the sig-
nificant role a regularization term can play for
the numerical optimization of classifying quan-
tum channels. Remarkably, the classification ac-
curacy is invariant for a wide range of the regu-
larization strength γ, as seen in Fig. 6. This can
be attributed to the fact that the optimal channel
for the classification problem is not unique, un-
like in a quantum process tomography task. The
regularization terms used here lift this ambiguity
and favor a low-rank solution. The formalism is
flexible and could in the same way include terms
for other desired features of the channel, for ex-
ample a particularly large overlap with a prede-
fined channel that is easy to implement experi-
mentally. Additionally, the regularization could
include terms that bias the solution according to
some classical knowledge we might have about
the input data.

7 Conclusion

In this paper, we analyze the influence of different
regularization terms on the performance of Rie-
mannian optimization of quantum channels. We
find that the use of such terms can be advanta-
geous, especially in situations where the optimal
solution of the problem is a channel that is not of
full rank.

In quantum process tomography, the method
leads to improvements for the accuracy of the
optimization of channels of unknown rank. The
regularization term in the cost function favors
solutions with fewer non-zero Kraus operators
in the Stiefel vector K and supports the con-
vergence of the algorithm in particular for low-
rank channels. Of the three terms considered,
the Hilbert-Schmidt term RHS performs best in
most cases. This becomes particularly visible for
experimentally relevant scenarios of finite mea-
surement data.

The method sensitively depends on the chosen
regularization strength γ. We discuss how this
hyperparameter can be optimized when the tar-
get channel is not known in advance, as is the
case for quantum process tomography. By split-
ting the measured data into training and test sets,
suitable values of γ can be determined, that out-
perform the unregularized case γ = 0 for most
ranks r of the target channel. It has to be empha-
sized, though, that when the target channel rank
is known, the regularization terms fail to provide
an advantage. In this case, one can choose the
number of Kraus operators in the Stiefel vector
K to equal the target channel rank, eliminating
the need for regularization.

As a second field of application of regularized
Riemannian gradient descent, we investigate a
simple quantum classification setting. Instead of
classifying data by parametrized unitary circuits,
we use a model of full-rank channels. Clearly,
the implementation and in particular the training
of a quantum channel is in general difficult com-
pared to the parametrized unitary case. Thus,
the method should not be seen as a tool to achieve
practical quantum advantages. Instead, it can
provide insight in the structure of a quantum cir-
cuit needed for the classification of specific data.
In particular, the rank-decreasing form of the reg-
ularization terms can help to understand which
minimum rank is needed to solve a certain clas-
sification problem for input data encoded in a
quantum system of fixed dimension.

For both quantum process tomography and
quantum machine learning, the computational
costs for the method scale exponentially in the
dimension of the involved quantum system, ren-
dering the approach infeasible for many exper-
imentally interesting scenarios. Extending the
proof of concept presented in this paper to larger
quantum systems is an important subject of on-
going research. Recently, channel representations
in the form of matrix product states have been
proposed to overcome the exponential scaling for
process tomography [22]. The use of such com-
pression techniques in the Riemannian gradient
descent method will be a powerful tool for vari-
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ous applications of channel optimization such as
those presented here.
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A Channel initialization

To initialize the optimization algorithm and to
sample random quantum channels, we follow the
method outlined in Ref. [58], which is based on
the QR decomposition. This allows us to gener-
ate full-rank quantum channels on a given Stiefel
manifold. In Sec. 6, we initialize the parameters
K0 of the optimization algorithm as a unitary
channel, regardless of the number of Kraus opera-
tors in the optimization manifold St(nk ·d, d). To
that end, we draw nk real numbers xi ∼ U(0, 1)
as well as a unitary u ∈ U(d) drawn from the
Haar measure [58]. The initial parameters are
then given by

K0 = [
√
x1u, ...,

√
xnk

u]T /
√

Σnk
i=1xi. (20)

B QML Data preprocessing

Both data sets are accessed through
scikit-learn [59].

We encode classical data vectors x ∈ RN using⌈
N
2

⌉
qubits and employ dense angle encoding as

explained in the main text. Before the encoding,
the classical data is transformed as

x′ = x− xmin
xmax − xmin

, (21)

where xmax, xmin are the element-wise maximum
or minimum respectively. They are calculated on
the training set only.

The Iris data set consists of four-dimensional
classical data. No further preprocessing is
needed, and the data can be encoded using two
qubits and dense angle encoding.

The Wine data set however has 13 features.
Here, we reduce the dimensionality of the classifi-
cation problem by performing a principal compo-
nent analysis on the training data [60]. We choose
only the six most important principal compo-
nents. This preprocessed data set can now be
encoded using three qubits and dense angle en-
coding.

C Grid search values

In Sec. 5.3, the grid search is performed over
the values [0.0, 0.0001, 0.000215, 0.000464, 0.001,
0.002154, 0.004642, 0.01, 0.021544, 0.046416,
0.1], where the best value of γ minimizes the test
set Kullback-Leibler divergence.
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