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Abstract

We present a model in which the Gauss-Bonnet invariant holds the
quintessence at a fixed point, respecting an initial Z2 symmetry in the
radiation-dominated era. This results in an early dark energy, which
becomes significant around the matter-radiation equality era. However,
due to Z2 symmetry breaking, scalarization occurs, leading to a rapid
reduction in the early dark energy density. The model then quickly
behaves like the ΛCDM model. This scenario alleviates the Hubble
tension and aligns with the assumption that the gravitational wave
speed is infinitesimally close to the speed of light.

1 Introduction

Introducing a cosmological constant (Λ), into the Einstein equation pro-
vides a straightforward explanation for the observed acceleration in the
later stages of our universe [1–6]. Although the Λ Cold Dark Matter model
(ΛCDM) yields promising results, it encounters issues such as the cosmolog-
ical constant problem [7], the coincidence problem [8–11], and the Hubble
tension – the disparity between the Hubble parameter calculated by inverse
distance ladder and low redshift measurements [12–15]. Consequently, one
may consider alternative dark energy candidates, such as a slowly varying
scalar field [16–27], to elucidate this late-time acceleration. A nearly constant
scalar field with a potential V (φ) replicates the role of the cosmological con-
stant in the background evolution, with energy density ρΛ = V (φ). However,
the energy density of a component whose equation of state (EoS) parameter
satisfies w < −1

3 dilutes more slowly than matter and radiation. Therefore,
in the present era where matter and dark energy densities have comparable
magnitudes, the relative dark energy density should have been negligible
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in the early Universe unless another mechanism, beyond the usual redshift,
diminished the significant early dark energy density.

Early dark energy (EDE), which transiently becomes significant around
matter-radiation equality, has recently been utilized to address the Hubble
tension [28–37]. Models incorporating a dynamical scalar field as EDE have
also been proposed to resolve the Hubble tension, as seen in [29–31]. EDE
reduces the sound horizon rs, leading to a larger present Hubble parame-
ter value calculated as H0 ∼ θ∗

rs
, where θ∗ is the angular size on the last

scattering surface determined from the first cosmic microwave background
peak. An EDE, lowering the sound horizon by ∼ 7%, may alleviate the
Hubble tension [33, 38–40]. Despite EDE garnering significant attention in
recent years, the exploration of EDE predates the emergence of the Hubble
tension problem, as evidenced by studies such as [41–46]. An EDE model
with an equation of state (EoS) parameter w = −1 was employed in [44] to
investigate the absorption of Cosmic Microwave Background (CMB) pho-
tons by the 21cm hyperfine transition of neutral hydrogen, a phenomenon
reported by the Experiment to Detect the Global Epoch of Reionization
Signature (EDGES) collaboration. EDE can lead to an earlier decoupling of
gas temperature from radiation temperature. In [45], using a phenomenolog-
ical parametrization of dark energy density across different eras, an upper
bound for relative EDE density was suggested, with Ωd < 0.06. In another
study [46], employing a parameterized energy model, the authors found an
upper limit of Ωd < 2.6% during the radiation-dominated era and Ωd < 1.5%
within the redshift range z ∈ (100, 1000). It is essential to note that these pa-
pers distinguish between EDE and late dark energy based on a phenomeno-
logical parameterized approach, with both contributing separately to the
total density.

An alternative approach to discussing cosmic positive acceleration in-
volves modifying Einstein’s theory of gravity by introducing geometric terms,
such as the Gauss-Bonnet (GB) invariant, into the action. In four dimen-
sions, the GB invariant only contributes a surface term and does not al-
ter the Einstein equation. However, when coupled with exotic fields like
quintessence, it induces significant and intriguing effects on cosmic evolu-
tion, particularly late-time acceleration and super-acceleration [47–56]. Re-
cently, constraints placed on the gravitational wave speed have raised doubts
about the direct influence of the GB model on cosmic evolution at low red-
shifts [57–62]. The scalarization of black holes and neutron stars, within the
context of the scalar-GB model, has also garnered considerable attention. In
a scalar-tensor model comprising a scalar field coupled to the GB invariant,
neutron stars and black holes could exhibit scalar fields and behave differ-
ently compared to standard general relativity (GR). The scalarized solution
may be triggered by a tachyonic instability [63–66].

By relating the three seemingly unrelated aforementioned topics, i.e.
EDE, scalarization and the gravitational wave speed, this paper presents a
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model where the quintessence-GB coupling establishes conditions for an ini-
tial stable fixed-point solution, representing an EDE. The relative density of
this EDE becomes significant around the matter-radiation equality era and
then rapidly decreases to align with the usual ΛCDM model. This reduc-
tion is attributed to a tachyonic instability induced by radiation and mat-
ter dilution, triggering quintessence evolution and its emergence through a
scalarization-like mechanism. We demonstrate that constraints on the gravi-
tational wave speed associated with the GB coupling align with this scenario.
Note that in our study, we assume that the gravitational wave speed is very
close to the light speed and lays in the domain reported in [60].

The paper is structured as follows: Section 2 provides a detailed presen-
tation of the model, emphasizing how the dilution of matter and radiation
density initiates quintessence evolution through its coupling with the GB
term, resulting in the aforementioned scenario. We explore stability con-
ditions and investigate the impact of gravitational wave speed constraints
on quintessence activation. To illustrate the possibility of the scenario, we
present a specific example showing how the model works while fitting the
observational data. In Section 3, we provide concluding remarks.

We use units ~ = c = 1.

2 Early dark energy and scalarization in Z2 sym-

metric Gauss-Bonnet model

We consider the following action describing a quintessence field φ coupled
to the GB term [53]:

S =

∫

d4x
√
−g

(

M2
PR

2
− 1

2
gµν∂µφ∂νφ− V − 1

2
fG

)

+ Sm. (1)

MP = 2.4 × 1018GeV is the reduced Planck mass. The quintessence, φ, is
coupled to the GB term through an even coupling function f := f(φ2). The
even quintessence potential is V := V (φ2). Therefore the action has a Z2

symmetry. The GB invariant is given by

G = RµνρσR
µνρσ − 4RµνR

µν +R2. (2)

We consider a spatially flat Friedmann-Lemâıtre-Robertson-Walker (FLRW)
space-time,

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2), (3)

filled with the quintessence, cold dark matter, baryonic matter, and radia-
tion. Friedmann equations read

3M2
PH

2 = ρd + ρr + ρm

2M2
P Ḣ = −ρd − Pd − ρm − 4

3
ρr. (4)
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H is the Hubble parameter, which in terms of the scale factor a, is given
by H = ȧ

a
. ρm and ρr are the sum of baryonic and cold dark matter, and

radiation energy densities respectively. Theses barotropic fluids satisfy the
continuity equations

˙ρm + 3Hρm = 0

ρ̇r +
4

3
ρr = 0. (5)

The effective dark energy density, and pressure are given by

ρd =
1

2
φ̇2 + V + 12H3ḟ , (6)

and

Pd =
1

2
φ̇2 − V − 8H3ḟ − 4H2f̈ − 8HḢḟ, (7)

respectively. For the effective dark energy we have the following continuity
equation:

ρ̇d + 3H(Pd + ρd) = 0, (8)

which is equivalent to the following equation of motion

φ̈+ 3Hφ̇+ V eff.
,φ = 0, (9)

where we have defined [67]

V eff.
,φ := V,φ + 12H2(H2 + Ḣ)f,φ. (10)

The subscript , φ denotes derivatives with respect to φ. It is evident from
(9) that the quintessence evolution is influenced by the GB invariant. We
use this to introduce a scalarization scenario in which the system acquires
a nontrivial quintessence solution through a tachyonic instability: We con-
struct the model such that, during early eras, the GB invariant provides a
stable fixed point solution :φ = 0 respecting the Z2 symmetry of the action.
As V,φ(0) = f,φ(0) = 0, φ = 0 is a trivial solution to (9). From (4), we
find out that for this solution the Friedmann equations reduce to ordinary
(non-modified) ones

3M2
PH

2 = V (0) + ρr + ρm

2M2
P Ḣ = −ρm − 4

3
ρr. (11)

In this epoch dark energy density is given by ρd = V (0), playing the role of

a cosmological constant. As V eff.
,φ (0) = 0, this solution is stable (unstable)

when V eff.
,φφ (0) > 0(< 0), corresponding to the minimum (maximum) of the
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effective potential. Hence the quintessence stability at φ = 0, depends on
the sign of V eff.

,φφ (0) given by

M2
eff. ≡ V eff.

,φφ (0) = − 2

3M4
P

(ρr + ρm − 2V (0))(ρr + ρm + V (0))f,φφ(0)

+ V,φφ(0).

(12)

We define the critical scale factor, denoted as ac, by M2
eff.(ac) = 0 and

dM2

eff.

da
(ac) < 0. For φ = 0 to be a stable solution before ac, it is necessary to

have V eff.
,φφ (0) > 0 for a < ac, implying f,φφ(0) < 0. M2

eff. can be considered
as the effective mass squared of small fluctuations around φ = 0 for a ≤ ac.
Additionally we aim to violate the stability throughout the evolution of the
Universe to obtain a non trivial quintessence solution. This can be achieved
by choosing V,φφ(0) < 0, such that for a ≥ ac, the quintessence becomes
tachyonic: M2

eff. ≤ 0. In this situation φ = 0 becomes an unstable point
at the local maximum of the effective potential. Through a small fluctu-
ation, the quintessence rolls down it effective potential, and its evolution
begins and the system gets a non-trivial solution that no longer respects the
Z2 symmetry. The emergence of the scalar field also modifies the standard
Friedmann equations from (11) to (4), where the GB term directly influences
the expansion of the Universe. Note that to determine the behavior of the
scalar field for a > ac, we have to solve one of the Friedmann equations (4),
and the equations of motions (5), (9).

As we have assumed V,φφ(0) < 0, the quintessence evolution along the
effective potential decreases V , leading to a reduction in early dark energy
(EDE) density. In general, describing this reduction through a process other
than redshift, as we will explicitly show, is crucial for a model that considers
non-negligible EDE: Using the relation

1− Ωd
Ωd

ρd
ρd0

=

(

1− Ωd0
Ωd0

)(

Ωm0a
−3 +Ωr0a

−4

Ωm0 +Ωr0

)

, (13)

where Ωi =
ρi

3M2

P
H2

represents the relative density, and the subscript ”0”

denotes the present time specified by a = 1. According to [68], we can set
Ωm0 ≃ 0.32,Ωr0 ≃ 8.4 × 10−5. For the early universe, where a ≪ 1, (13)
implies 1−Ωd

Ωd

ρd
ρd0

≫ 1. For example by taking a . 10−4 (before matter radi-

ation equality), we obtain 1−Ωd

Ωd

ρd
ρd0

∼ 5× 1010. If the dark energy were only
a cosmological constant, i.e., ρd = ρd0, its contribution in the total energy
at a would be Ωd ≃ 10−11, which is negligibly small. Even for a dark energy
with an effective EoS parameter wefd < −1

3 we would have Ωd . 3 × 10−4.
Therefore, restricting dark energy dilution to the redshift results in a neg-
ligible EDE. Hence, to reconcile non-negligible EDE and late Dark energy,
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an additional mechanism, beyond the redshift, is required to reduce the sig-
nificant EDE density by several orders of magnitude. In our scenario, this
reduction is achieved through the activation of the quintessence via the dis-
cussed scalarization. For this purpose, we choose the potential as a decreasing

function of φ2. Unlike models where quintessence activation drives cosmic
acceleration, in our case, its activation leads to a reduction in dark energy
density. Such a formalism is necessary in models which alleviate the Hubble
tension by using a temporarily significant EDE around the matter-radiation
equality.

It is important to note that, owing to the presence of the friction term,
the evolution of the scalar field does not begin immediately after a = ac.
Therefore, for the desired scenario of having significant dark energy and its
subsequent reduction around the matter-radiation equality era, as sought
in alleviating the Hubble tension through EDE, the critical scale factor ac
must be within the radiation-dominated era. The critical scale factor, ac, is
obtained by solving the equation

V,φφ(0) =
2

3M4
P

(ρr0a
−4
c + ρm0a

−3
c − 2V (0))(ρr0a

−4
c + ρm0a

−3
c

+V (0))f,φφ(0), (14)

where ρi0 is the energy density at the present time (a0 = 1). As evident from
(14), smaller values of ac result in tinier values of f,φφ, which, as will see, is
in favor of the GWS constraint. By considering the perturbed space time

ds2 = −dt2 + a2(t)(tij + δij)dx
idxj , (15)

one can obtain a second-order action for divergenceless and traceless tij,
and obtain GWS. For the model (1) which is a special case of Horndeski’s
theories, the gravitational wave speed (GWS) is obtained as [69,70]

c2T =
4f,φφφ̇

2 + 4f,φφ̈−M2
P

4Hf,φφ̇−M2
P

=
4f̈ −M2

P

4Hḟ −M2
P

. (16)

According to [60], this speed is constrained at the late time for the redshift
z < 0.009 as:

−3× 10−15 ≤ cT
c

− 1 ≤ 7× 10−16, (17)

where c is the light speed. To satisfy (17), generally we must take 4Hḟ ≪M2
P

and f̈ ≪ M2
P , which implies that a nearly constant φ with infinitesimal

couplings to the GB term are required. For a quadratic f a tiny coupling
favours that ac is in the radiation era. A nearly constant quintessence at
the late time is realized if the potential becomes nearly flat: V (φ) ≃ Λ,
V 2
,φ ≪ H2V , V,φφ ≪ H2. In such a situation the quintessence slowly rolls

1
2 φ̇

2 ≪ V (φ). Note that 4Hḟ ≪ M2
P and f̈ ≪ M2

P results in that the GB
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term has no direct influence in cosmic evolution in the late time. This can
be seen from the Friedmann equations, rewritten as [71]

3(M2
P − 4Hḟ)H2 =

1

2
φ̇2 + V + ρr + ρm

2(M2
P − 4Hḟ)Ḣ = −φ̇2 − (M2

P − 4Hḟ)(c2T − 1)

−ρm − 4

3
ρr. (18)

Smallness of the quintessence-GB coupling also helps to the stability
of the model, against ghost and Laplacian instabilities caused by scalar and
tensor perturbations, which requires that the following inequalities hold [71]:

qT :=M2
P − 4f,φφ̇H > 0

qs := 2(qT + 24H4f2,φ) > 0

c2s =
2qT − 16H4f2,φ(2 + 6w + c2T )

qs
> 0. (19)

w = −1− 2
3
Ḣ
H2 is the Universe effective equation of state.

A recent motivation to consider the EDE is to alleviate the Hubble ten-
sion. This can done by an EDE component which becomes significant around
the matter-radiation equality era and then decreases quickly through a mech-
anism other than the redshift, similar to what happens in our proposal. This
decreases the sound horizon and results in a larger value for the present Hub-
ble parameter through the relation H0 =

θ∗
rs
, where θ∗ is the angular size on

the last scattering surface determined from the first cosmic microwave back-
ground peak. At the last scattering, the comoving sound horizon denoted
rs, is derived as [46], [31]

rs =

∫

∞

z∗

cs(z)

H(z)
dz =

∫

∞

z∗

c(z)
√

1
3M2

P

∑

i ρi
dz

=
1

H0

∫

∞

z∗

dz
c(z)

√

Ωr0(1 + z)4 +Ωm0(1 + z)3 + ρd
3M2

P
H2

0

, (20)

Ωm = Ωdm0 +Ωb0, where Ωb0 and Ωdm0 are relative densities of dark matter
and baryonic matter at a = 1, respectively. z∗ is the redshift of the last
scattering, and cs(z) is the sound speed in the baryon-photon fluid, given
by [72]:

cs(z) =
1√
3

(

3

4

Ωb0
Ωr0

1

1 + z
+ 1

)

−
1

2

(21)

Adding an EDE, increases H(z), and consequently decreases rs. This ame-
liorates the Hubble tension [38]. If the EDE density increases effectively the
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energy density as
∑

ρ → (1 + γ)2
∑

ρ in (20), then H → (1 + γ)H, and rs
decreases by 100γ

1+γ%, e.g for γ = 0.075, rs decreases by ≃ 7% [38].
We continue our study with a specific example to illustrate how the

model works. We choose the potential:

V = V0 exp(−
1

2
µ2φ2) + Λ, (22)

which is a decreasing function of φ2, consisting of a constant Λ playing the
role of a cosmological constant energy density at the late time, and a steep
part which decreases rapidly for µ2φ2 & 1. We adopt a quadratic coupling:

f = −1

2
α2φ2. (23)

We employ dimensionless parameters

Ĥ =
H

H∗
, t̂ = H∗t, µ̂ =MPµ, α̂ = H∗α, ρ̂ =

ρ

M2
PH

∗2
,

V̂0 =
V0

M2
PH

∗2
, Λ̂ =

Λ

M2
PH

∗2
(24)

where H∗ is a mass scale. We set the initial conditions in the radiation
dominated epoch at a = 1/37500 as

φ̂ = 0, φ̂′ = 10−16, ρ̂m = 1013, ρ̂r = 1014 (25)

a prime denotes derivative with respect to the dimensionless time t̂. We
select the following parameters

α̂ = 10−7, µ̂ = 30, Λ̂ = 0.04, V̂0 = 4× 108 (26)

We have selected the parameters and initial conditions such that initially the
relative EDE is insignificant Ωd ≃ 10−6, where we have denoted the relative
density by Ωi ≡ ρi

3M2

P
H2 . Note that the parameters and initial conditions

satisfy (14). (14) implies that ac has to be taken in the radiation dominated
era to have a very small α̂. Note that the small value of α̂ along with the
slowness of the quintessence rolling at the late time which is a consequence
of the chosen potential, ensures compliance with the GWS constraint. Λ̂ is
chosen such that the model gives the correct dark energy density at our
present era.

Using the Friedmann equation (4), the continuity equations (5), and
the equation of motion (9), we can depict numerically the behavior of the
system. We specify by a = 1, (z = 0), our present time. The parameters are
adjusted by confronting the results at a = 1 with [68]. The evolution of the
quintessence is depicted in Fig.(1)
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(a) Beginning of the evolution (b) Late time evolution

Figure 1: Quintessence evolution versus the scale factor

Initially, we set φ to be equal to zero. This represents a trivial solu-
tion for the quintessence equation of motion. During the radiation era, the
quintessence becomes tachyonic, but its evolution and emergence actually
commence around the time of matter-radiation equality, thanks to the fric-
tion term. At the stable point φ = 0, we have V (0) = V0 + Λ, which serves
as an early cosmological constant energy density. When µ2φ2 ≫ ln(V0Λ ), the
potential becomes nearly flat: V (φ) ≃ Λ, and it takes on the role of the
actual cosmological constant. It is only between these two stages that the
GB term may directly impact the Friedmann equations.

The relative density of dark energy is depicted in Fig.(2), showing that
the EDE is negligible for large redshifts in the radiation era. It increases
until the quintessence becomes dynamic due to the tachyonic instability,
and then due to the steep potential decreases quickly and behaves as the
cosmological constant in ΛCDM model. In this figure we have Ωd(a = 1) =
0.68, which is compatible with the value reported in [68], on the base of
ΛCDM model from Planck CMB power spectra in combination with CMB
lensing (TT,TE,EE+lowE+lensing 68% limit), as Ωd = 0.6847 ± 0.0073.

(a) Early universe (b) Late time

Figure 2: Relative dark energy density versus the scale factor

The deceleration parameter, q = −1− Ḣ
H2 is depicted in Fig.(3), showing

that, the Universe entered the positive acceleration phase at z ≃ 0.6. In
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the present era, q(a = 1) = −0.521 which corresponds to an effective EoS
parameter w(a = 1) = −0.6807 for the Universe. This is compatible with
[68], where dark energy EoS parameter is reported as wd = −1.03 ± 0.03
(note that in our era w ≃ Ωdwd).

Figure 3: Deceleration parameter in terms of the scale factor

To obtain an estimation of the sound horizon one can numerically solve
the set of equations (4),(5),(9) along with the additional equation

dψ

dt
=

1√
3a

1
√

3ρb
4ρr

+ 1
, (27)

which is the same as dψ
dz

= − cs(z)
H(z) , where cs is given by (21). In this man-

ner one obtains ψ(z), from which the sound horizon is derived as rs =
ψ(∞) − ψ(z∗). Repeating the same computation while ignoring EDE one
obtains rΛCDMs . Taking the last scattering redshift at z∗ = 1100, for the

above example we obtain rΛCDM
s −rs
rΛCDM
s

≃ 0.06. This is compatible with the

results reported by SHOES team H0 = 72.1 ± 2.0km/s/MPC, and re-
ported in [68] (TT,TE,EE+lowE+lensing+BAO 68% limit ) H0 = 67.66 ±
0.42km/s/MPC.

q̂s :=
qs
M2

P

, and q̂T := qT
M2

P

are depicted in Fig.(4), showing the model is

free from ghosts: q̂s > 0, and q̂T > 0.
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(a) qs versus the scale factor (b) qT versus the scale factor

Figure 4: qT and qs versus the scale factor

We have also depicted c2s > 0 as shown in Fig.(5), and also c2T > 0 which
imply that the model have no Laplacian instability.

(a) c2
s
in terms of the scale factor (b) c2

T
in terms of the scale factor

Figure 5: c2T and c2s versus the scale factor

These figures demonstrate that the parameters closely align with their
ΛCDM counterparts, q̂T = 1, q̂s = 2, ĉ2s = ĉ2T = 1, except for a brief interval
where the EDE becomes significant. However, as they remain positive, this
deviation does not result in instability. Finally 1− cT is depicted in Fig.(6),
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Figure 6: 1− cT in terms of the scale factor

which shows that the model respects the constraint (17) at low redshifts.

3 Conclusion

We introduced a scalar-tensor model consisting of a quintessence, φ, with an
even potential V (φ2) coupled to the Gauss-Bonnet (GB) invariant through
an even function f(φ2). We showed provided that f,φφ(0) < 0, the quintessence
is trapped in the stable fixed point φ = 0 for scale factors less than a criti-
cal value a < ac resulting in a standard cosmological model with an initial
cosmological constant. As the universe expands the relative dark energy den-
sity increases, and the quintessence effective mass squared, which depends on
density, decreases. Provided that V,φφ(0) < 0, at a = ac the quintessence be-
comes tachyonic and gains a non trivial solution, causing a rapid (for a steep
potential) decrease in relative initial dark energy density. This is somehow
similar to the scalarization where the scalar field gains a nontrivial solu-
tion when becomes tachyonic, and by its emergence the cosmological model
deviates from the standard one derived from general relativity (GR). The
GWS constraint quoted in [59], favors a vanishingly small GB-quintessence
coupling f,φφ(0) which for a quadratic coupling is satisfied by taking ac
in the radiation dominated era. The constraint also favors a very slowly
rolling quintessence at the late time, therefore we have chosen a potential
which becomes eventually flat. In this way the constructed model describes
a dynamical dark energy component which becomes significant in matter
radiation equality era and then decreases rapidly and behaves as a late time
cosmological constant, which is much less than the initial cosmological con-
stant. This model suggests a mechanism by which the dark energy could
have a higher early value than what is obtained from the redshift calcula-
tion alone, but decreases rapidly after the matter radiation equality era and
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so may also alleviate the Hubble tension problem.
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