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Abstract

Recent popular decoder-only text-to-speech models are known
for their ability of generating natural-sounding speech. How-
ever, such models sometimes suffer from word skipping and
repeating due to the lack of explicit monotonic alignment con-
straints. In this paper, we notice from the attention maps that
some particular attention heads of the decoder-only model in-
dicate the alignments between speech and text. We call the
attention maps of those heads Alignment-Emerged Attention
Maps (AEAMs). Based on this discovery, we propose a novel
inference method without altering the training process, named
Attention-Constrained Inference (ACI), to facilitate monotonic
synthesis. It first identifies AEAMs using the Attention Sweep-
ing algorithm and then applies constraining masks on AEAMs.
Our experimental results on decoder-only TTS model VALL-
E show that the WER of synthesized speech is reduced by up
to 20.5% relatively with ACI while the naturalness and speaker
similarity are comparable.

Index Terms: Decoder-only Text-to-Speech, Self-Attention
Mechanisms, Training-Free Optimization

1. Introduction

In the field of text-to-speech (TTS), numerous breakthroughs
have been achieved based on deep neural networks [1, 2, 3].
TTS is a sequence-to-sequence task, where the text and speech
possess a monotonic aligned nature, and the audio frame se-
quence is usually much longer than the text sequence. Prior
methods typically integrate an explicit duration module to fill
this modality gap. These models obtain the target durations via
conducting traditional alignment algorithms either externally
[2, 4, 5] or internally [6, 7], and feed them as model input for
training. At the training stage, using the target durations, the en-
coded text sequence is expanded to the length of speech frames
and then serves as the decoder inputs. Meanwhile, the dura-
tion module is trained to predict the target durations. At the
inference stage, the predicted durations are employed to expand
the encoded text sequence for further decoding. In summary,
monotonic alignment constraints are explicitly involved in this
framework to avoid robustness issues like word skipping, re-
peating, or mispronouncing.

With the widespread use of discrete audio tokens [8, 9, 10],
the research paradigm in language models [11, 12] has shown a
profound impact on speech modeling and synthesis [13, 14].
Motivated by recent advancements in auto-regressive (AR)
models employing decoder-only architectures for text genera-
tion [12, 15], several studies, such as VALL-E [3] and BASE
TTS [16] apply similar architectures to TTS task. These stud-
ies demonstrate the remarkable capacity of decoder-only archi-
tectures in producing natural-sounding speech. Unfortunately,

robustness is a challenging issue for such models, due to the
lack of explicit monotonic alignment constraints and the gap
between teacher-forced training and AR inference [17]. To mit-
igate this, VALL-T [18] proposes a decoder-only transducer
for imposing monotonic alignment constraints. However, this
method requires training a new model under a different crite-
rion. Drawing from experience with prior TTS systems, we
believe that existing decoder-only TTS models should also im-
plicitly learn some form of alignment via the internal attention
black box during training. If we can identify the internal repre-
sentation of alignment within the model and apply forced align-
ment constraints during inference, then building a lightweight
method to enhance model robustness becomes feasible. A key
insight is that in the neural TTS model Tacotron [1, 19] with
an encoder-decoder architecture, researchers discovered diag-
onal speech-text alignments within its sole attention module’s
attention map. This suggests that alignments in decoder-only
models might also manifest within their attention maps. How-
ever, in decoder-only TTS models that employ massive atten-
tions across various layers and heads [3, 20], different attention
maps are responsible for different functionalities and are not al-
ways diagonal. This complicates both awareness and control of
the alignment from the attention maps.

In our initial experiments on the popular decoder-only TTS
model VALL-E, we observed from the attention maps that cer-
tain attention heads within a specific layer exhibit diagonal pat-
terns, indicating the alignment between speech and text. The
attention maps here specifically represent the attention from
speech to text, where speech tokens function as queries while
text tokens act as keys. We call the attention maps of those
heads Alignment-Emerged Attention Maps (AEAMs, cf. Fig.
la). In the circumstances of repeating and skip generation,
the alignments on AEAMs also exhibit corresponding patterns
(cf. Fig. 1c and 1d). Based on this discovery, we introduce a
novel inference method named Attention-Constrained Inference
(ACI), which facilitates monotonic synthesis without changing
the model structure and the training process. It first identifies all
AEAMs among the attention maps of all layers and heads using
the Attention Sweeping algorithm and then applies constraining
masks (CMasks) on AEAMs to guide the monotonic generation
process. The main contributions of our work are listed below:
1. We discover that among the massive self-attention modules

in the whole decoder, some particular heads in a particular
early layer are responsible for emerging alignments in their
attention maps (i.e., AEAMs).

2. We propose a training-free method, Attention-Constrained

Inference (ACI), which seamlessly works on top of existing
decoder-only TTS models, to detect AEAMs of a model and
apply CMasks on AEAMs at the inference stage to guide the
alignment to be monotonic and realize robust synthesis.
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(a) AEAM values for paired data.

(b) Viterbi-produced alignment.

(c) AEAM in a repeat generation.  (d) AEAM in a skipping generation.

Figure 1: lllustration of real attention alignments. (a), (c) and (d) are attention heatmaps from the same AEAM of the same model, with
different inputs. (a) is for a text-speech pair directly picked from the test set. With the same inputs, (b) shows the reference alignment
produced by the Viterbi algorithm. (c) and (d) illustrate the AEAM when some text tokens are repeated or skipped in synthesis.

3. The word error rate (WER) of synthesized speech is reduced
by up to 20.5% relatively with ACI on VALL-E models of
various configurations, while the naturalness and speaker
similarity are comparable.

2. Attention-Constrained Inference

In this section, we introduce our Attention-Constrained Infer-
ence (ACI) for robust decoder-only TTS, using the Attention
Sweeping algorithm to pinpoint AEAMs among all attention
maps, and the attention constraining strategies to apply CMasks
to AEAMs, helping the model to synthesize monotonically
without changing or retraining the model.

2.1. Notations

We denote the discrete tokens of a speech utterance as y =
{y1,y2,...,yr} and the transcription text sequence (usually
phonemes) as @ = {x1,x2,...,2r}. Let the number of lay-
ers and heads of VALL-E AR decoder be Ni, and Nug. The
AR decoder essentially receives a speech sequence and a text
sequence to predict the next speech token. We further define
E(a,b,t) = 1371 (a;—bi)”, where the numerical sequences
a and b have equal lengths 7" and 7" > ¢.

2.2. Attention Sweeping

We introduce the Attention Sweeping algorithm designed to
identify the heads responsible for the emergence of alignments.
This method is initiated by subjecting the AR decoder to con-
duct a forward pass with several ground-truth text-speech pairs
as inputs, aiming to obtain attention maps for every head within
all layers. We then analyze these maps to identify AEAMs and
record the corresponding heads for subsequent inference.

An AEAM is expected to manifest the following patterns:
(1) the attention values of all rows (speech tokens) are concen-
trated on very few columns (text tokens), and (2) as speech to-
kens are generated, focused text tokens shift towards the sen-
tence end, with the focus positions strongly correlated with the
real alignment. We respectively design the entropy cost and the
alignment cost to quantify the extent of conformity an attention
map has with the two patterns mentioned above. Note that cal-
culating the alignment cost requires a reference alignment of
the input ground-truth utterance, obtainable via a forced align-
ment algorithm such as Viterbi. However, such reference align-
ments are solely requisite for the Attention Sweeping stage and
are unnecessary for subsequent inference employing attention
constraining. Additionally, before calculating the costs, all at-
tention maps should be normalized such that each row sums up
to 1. The normalized attention map is denoted as M7 <L

Entropy Cost. Since the sum of each row in the normal-
ized matrix M equals 1, we directly use an entropy-like cost to
measure the concentration of attention weights in rows of M:

T L
1
Co(M) = =7 > > My log M. (1)

t=1 £=1

Based on the properties of entropy, the more concentrated the
attention values are in each row, the lower the entropy cost.

Alignment Cost. To further verify whether an attention
map conforms to the alignment, we first calculate the average
attention position for each row m; = 25:1 I+ M. Next, we
aim to find a sequence a that closely matches m and satisfies
the alignment properties: a = argmin,,€(m,a’,T), where
a’ is a monotonic integer sequence such that 0 < aj,, —a; < 1
fort =1,2,...,7 — 1, and all its elements fall in range [1, L]
(specifically, af = 1 and a% = L). We utilize a dynamic
programming (DP) algorithm to determine the sequence a that
minimizes the cost £(m, a, T'). Each potential value for every
element of a’ is treated as a distinct state, so the DP state space
contains 7" X L states. We denote d;  as the minimum total
cost up to the first ¢ positions (i.e., £(m, a’,t)) when at state
a; = £. When t, [ > 2, state a; = £ can only be inherited from
two prior states: a;_; = £ ora;_, = £ — 1, so we reach the DP
equations (when t > 2):

{dtl,l -+ (mt — 1)2 /=1

di¢ = ’
e min{d;_1,¢,di—1,0-1} + (me — £)* 1> 2.

’

@)
Initial conditions are set at the first row: d; ¢ equals to (m; —1)>
if £ = 1, otherwise co. Using Eq. 2 and calculating d; ¢ in the
orderof t := 1 — T, ¢ := 1 — L, we can obtain the final
minimum total cost mings £(m,a’,T) = dr,1, and the state
transition sequence for dr,, is the value assignments for sought
sequence a. Then, we compute the distance between a and
the reference alignment b, obtained by a forced alignment algo-
rithm like Viterbi. To enhance the tolerance of the detection, we
allow a global deviation of a constant ¢ positions between the
two, so the cost becomes min. £(a + ¢, b, T'). Now we reach
the expression for the alignment cost Ca (M):

Ca(M) = % (5(m, a,T)+ mciné'(a +e¢,b, T)) 3)

where a is the previously defined monotonic sequence closest
to the average attention positions m. Note that the cost calcu-
lation pertains to a single input utterance, but to mitigate insta-
bility, we can opt to select multiple utterances and compute the
average cost, ensuring a more robust assessment of the corre-
lation of each head to the alignment. Finally, AEAMs can be
easily filtered out by setting a threshold 7 on the average of Cg
and Ca:

Ce (M) +Ca (M) < 27. 4)
An attention map is considered an AEAM if and only if Eq. 4
is satisfied. In experiments, we found that for models with dif-
ferent configurations and training datasets, after calculating and
ranking the entropy cost and alignment cost for all Ny, - Ny at-
tention maps, there is always at least one head in a particular
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Figure 2: An example of AEAM attention values and DP values, and corresponding CMasks. Here x is the input text tokens, and y
is the speech tokens. (a) presents an example of the attention value pattern of a normalized AEAM when generating yi+1, with the
maximum value of each row highlighted. The values are normalized so that each row sums up to 1. The constraining mask (CMask) for
the newly generated token y; is now needed. (b) shows the CMask obtained via the trivial argmax strategy, which is prone to causing
instability, such as the attention center being falling back. Based on attention values in (a), subfigure (c) illustrates the DP values d of
each state. (d) is the CMask obtained via the DP strategy, which shows stability in maintaining the monotonicity.

early layer (the second or the third layer) whose cost is sig-
nificantly lower than the others (Section 3.2). An example of
heatmap plots for such AEAMs is shown in Fig. 1a, clearly il-
lustrating their strong connection with real alignments (Fig. 1b).

2.3. Attention Constraining

VALL-E’s AR synthesis often encounters issues with word
skips, repeats, or pronunciation errors. We notice that when
the text and synthesized speech do not perfectly match, the at-
tention alignment in AEAMs show correspoding patterns (cf.
Fig. 1c and 1d). Assuming that y; to y; have been input or
synthesized and that y;1 is to be generated, a possible AEAM
value pattern is shown in Fig. 2a. Note that the key in the last
row is the newly generated y:, for which the alignment posi-
tion needs to be calculated in this AR iteration. However, the
AEAM may mistakenly align y; with a phoneme identical to the
true one but positioned differently, leading to a non-monotonic
attention alignment that misguide the subsequent generation.

To address this, we propose attention constraining strate-
gies, i.e., adding constraining masks (CMasks) on AEAMs to
guide the inherent alignment to proceed monotonically. We as-
sign potentially different CMasks to each AEAM based on their
values. A straightforward approach is to restrict y; to only at-
tend to the vicinity of the alignment (i.e., the attention center
position) of y;—1. The main challenge here is to determine the
attention center of y;—1 in each AEAM based on the known at-
tention values (i.e., upper ¢ — 1 rows of the normalized matrix
M). A trivial method denoted as the argmax strategy (Fig. 2b),
considers the column with the maximum attention value as the
attention center [21], but this may lead to instability. As long as
the attention values of the preceding token are not concentrated,
center fallback is likely to occur.

Another method denoted as the DP strategy (Fig. 2d), lever-
ages the DP algorithm introduced in Attention Sweeping, se-
lecting the position with the minimum DP cost. Since the global
information from the previous ¢ — 1 rows is taken into account,
the DP strategy is more stable in maintaining the monotonicity.

The two center locating strategies can be summarized as:
aci—1 = argmax,M;_1, for argmax strategies,

aci—1 = argmin,d;—1,¢ for DP strategies,

where ac; is the attention center position for y;. The CMask
for ¢-th row is then set as only [aci—1 — p + 1,act—1 + p — 1]
unmasked, where p is the unmasking radius, set to an integer
correlated with the entropy cost of the attention map in ex-
periments. Furthermore, to preserve the original attention val-
ues and to simulate monotonic alignments, we respectively de-
sign two mask strategies to generate the first new token after
the prompt: one that applies the CMask only to the ¢-th row
(denoted as the last-row strategy), and another that retains the
CMask history for all £ rows (denoted as the history-kept strat-
egy). The combination of two center locating strategies and two
mask strategies results in four attention constraining strategies,
which will be evaluated in the experiments.

3. Experiment
3.1. Setup

We use Encodec [10] tokenizer with a 16 000 Hz sampling rate
and a 20 ms frameshift to quantize each speech frame into 8
RVQ indices. We use a widely recognized implementation of
VALL-E ! as the base code. We then train four VALL-E mod-
els with three different sizes and on two different multi-speaker
datasets (LibriTTS [22] with a total of 585 hours and 2306
speakers, and LibriLight-6k [23] with transcribed text in Lib-
riHeavy [24] (with a total of 5000 hours and 1531 speakers),
whose detailed information is shown in Table 1. With each
model configuration, both AR and on-AR stages are trained. We
use the ScaledAdam [25] optimizer and the Eden [25] scheduler
with a 0.05 base learning rate to train all models.

3.2. Attention Sweeping

We first use the Attention Sweeping algorithm to filter out the
potential AEAMs. For the four models in Table 1, we respec-

Uhttps://github.com/lifeiteng/vall-e
Table 1: The information on the four VALL-E models used.

Name ‘ #Params N Ny Hidden Dim. Dataset Epochs
STD-585h 36TM 12 16 1024 LibriTTS 40
SMALL-585h 159M 9 12 512 LibriTTS 40
LARGE-585h 1.2B 18 24 1536 LibriTTS 40
STD-5000h 367M 12 16 1024 LibriLight-6k 10
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Figure 3: Calculate Cx, and Ca for each attention map of 4 models, and plot them as 2-D points. The separation line is set at T = 1.

Table 2: WER Results for all four models and four attention constraining strategies.

Table 3: MCD, Predicted-MOS (P-MOS), and

STD-585h SMALL-585h | LARGE-585h | STD-5000h .
Strategy } WER(%) ] Del(%) Ins(%) Sub(%) | WER(%) | } WER(%) | } WiR%y [~ SECS for STD-585h model and DP strategies.
None 178 074 084 320 6.65 7.60 731 Strategy (DP) [ MCD | P-MOST SECS T
argmax/last-row 4.46 0.65  0.67 3.13 5.63 413 3.62 None 3.94 4.40 0.856
argmax/history-kept 6.68 082 173 413 6.25 4.99 3.88 Tast-row 393 4.40 0.859
DP/last-row 4.26 0.64 079  2.82 5.56 4.12 3.55 history-kept 3.92 4.41 0.860
DP/history-kept 4.14 065 0.65 284 5.29 3.95 3.57

tively conduct the algorithm to sweep all Ny, - Ny attention
maps. We randomly select 5 text-speech pairs from the Lib-
riTTS validation set, feeding them into the models to obtain
the attention map values. For each attention map, we follow
Eq. I and Eq. 3 to calculate its entropy cost Cg and alignment
cost Ca. The reference alignments are obtained via conducting
the forced alignment algorithm in Kaldi [26], also employing a
frameshift of 20 ms. Then, we average the cost of 5 utterances,
so that each attention map can be regarded as a point on a 2-D
plot whose y-axis is for Cg and x-axis is for Ca. Simply set-
ting the AEAM threshold 7 (i.e., the average of Cg, and Ca, see
Eq. 4) as 1, we obtain the results of Attention Sweeping, shown
in Fig. 3. The y-axis and x-axis of the plot are log-scaled with
bases 2 and 10, respectively. Points located below the AEAM
separation line 7 = 1 (green line) represent attention maps con-
sidered as AEAMs. The four models each have between one to
four AEAMs, with their attention value distributions being con-
centrated and strongly correlated with the true alignment (see
Fig. 1a and 1b). Additionally, note that each model’s AEAMs
are located within the same Transformer layer, specifically in
the relatively early second or third layer. This indicates that
VALL-E treats the text-speech alignment as a shallow-level fea-
ture of the text-speech joint distribution, which implies that by
constraining these shallow-layer attentions, we can influence
the inference of deeper layers to improve the robustness.

3.3. Robust Generation

Following the identification of AEAMs and the corresponding
layers and heads for each model, we can enhance the robustness
of synthesis using attention constraining strategies. Our test set,
mirroring the one employed in UniCATS [27], includes 500 ut-
terances from 37 speakers in the LibriTTS test set, with each
speaker assigned a distinct speech prompt. We use the word er-
ror rate (WER) as our main metric to measure the robustness
of zero-shot TTS synthesis. Our evaluation process for each
VALL-E model and attention constraining strategy involves per-
forming inference on the test set (applying the strategy during
the AR stage and leaving the non-AR stage untouched), then
reconstructing the RVQ indices into speech, and finally tran-
scribing the speech into text using the ASR model, Whisper”
[28]. The WER is then calculated by comparing the ground-
truth text and the transcribing text. The CMask radius p for
attention map M is set to round (8Cg (M)) + 1, and the base-

Zhttps://huggingface.co/openai/whisper-medium

line is not to employ any attention constraining strategies, i.e.,
the original VALL-E inference. The results, listed in Table 2,
show that while the argmax strategies sometimes perform un-
stably, the DP strategies obtain a WER reduction of 13.4% to
20.5% in each model, and the counts of deletions, insertions,
and substitutions are all lower than the baseline.

Additionally, we evaluated the mel-cepstral distortion
(MCD) generated under the DP strategies to measure the dis-
tance between generated speech and ground truth. Pre-trained
NISQA? [29] and Resemblyzer4 models are also utilized to as-
sess Predicted Mean Opinion Score (P-MOS) and Speaker Em-
bedding Cosine Similarity (SECS), respectively, evaluating the
synthesis naturalness (automatically predicted by the NISQA
model) and the speaker similarity compared to the prompt. Re-
sults in Table 3 indicate that the speech synthesized using ACI
shows no degradation in the aforementioned metrics. Subjective
auditory perception also indicates that the naturalness under DP
strategies is slightly higher or on par with the baseline.

3.4. Ablation Study

The strategy employed in Section 3.3 involved applying
CMasks across all AEAMs. This section conducts an ablation
study where, during the inference of the STD-585h model us-
ing DP with history kept, only the head with the lowest average
cost, specifically the 16-th head of the 2-nd layer (denoted as
(2-16)), is subjected to a CMask. We also tested the results of
applying CMasks to all 2-nd layer attention maps. The results,
as shown in Table 4, indicate that only applying CMasks to all
AEAMs below the 7 = 1 line is the most robust choice.

Table 4: STD-585h model and DP/history-kept strategy: impact
of applying constraining masks on less or more AEAMs

Attn. Constrained AEAM(s) \ WER(%) ] Del(%) Ins(%) Sub(%)
(2-16) and (2-4) 4.14 0.65 0.65 2.84
(2-16) 4.28 0.68 0.71 2.89
all 2-nd layer attention maps 4.76 0.89 0.80 3.06

4. Conclusions

Our paper introduced a training-free method, ACI, to improve
the decoder-only TTS model VALL-E’s synthesis robustness.
Utilizing Attention Sweeping, we identify and filter AEAMs,
strongly related to the alignment, then employ attention con-
straining to mitigate synthesis errors. Experimental results

3https://github.com/gabrielmittag/NISQA
“https://github.com/resemble-ai/Resemblyzer



demonstrate noticeable improvements in WER without degrad-
ing naturalness. Our work demonstrates that decoder-only TTS
models can unsupervisedly learn alignment-like structures and
shows a way to locate and exploit them, laying the foundation
for various potential works, such as streaming generation or in-
tegrate additional signals into attention maps during training.
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