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Abstract: Gravitational chiral anomaly connects the topological charge of spacetime and

the chirality of fermions. It has been known that the chirality is carried by the particles

(or the excited states) and also by vacuum. While the gravitational anomaly equation has

been applied to cosmology, distinction between these two contributions has been rarely

discussed. In the study of gravitational leptogenesis, for example, lepton asymmetry as-

sociated with the chiral gravitational waves sourced during inflation is evaluated only by

integrating the anomaly equation. How these two contributions are distributed has not

been seriously investigated. Meanwhile, a dominance of vacuum contribution is observed

in some specific types of Bianchi spacetime with parity-violating gravitational fields, whose

application to cosmology is not straightforward. One may wonder whether such a vacuum

dominance takes place also in the system with chiral gravitational waves around the flat

background, which is more suitable for application to realistic cosmology. In this work, we

apply an analogy between U(1) electromagnetism and the weak gravity to the spacetime

that resembles the one considered in the gravitational leptogenesis scenario. This approach

allows us to obtain intuitive understanding of the fermion chirality generation under the

parity-violating spin-2 gravitational field. By assuming the emergence of Landau level-like

dispersion relation in our setup, we conjecture that level-crossing does not seem to be ef-

ficient while the charge accumulation in the vacuum likely takes place. Phenomenological

implication is also discussed in the context of gravitational leptogenesis.
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1 Introduction

In the relativistic field theory, which successfully describes particles and forces in nature,

classical conservation law is sometimes violated once the fields are quantized. Such a viola-

tion of the classical symmetry at the quantum level is called quantum anomaly. One of the

most well known examples is the chiral anomaly in a massless quantum electrodynamics

(QED), first discovered by S. Adler, J. Bell and R. Jackiw [1, 2]. There, the chiral current

of a Dirac fermion is connected to the topological current of the external U(1) gauge field.

Such an anomalous violation of the axial symmetry, or the chiral anomaly, has a variety of

implications to the phenomenology. For example, anomalous violation of B + L, the sum

of baryon number B and lepton number L in the Standard Model (SM) of particle physics,

is derived as a net contribution of the chiral anomaly for the SU(2)W as well as U(1)Y
gauge interaction [3]. One of the most important consequence of this B + L anomaly is

the electroweak sphaleron process [4–6], which is essential for the electroweak baryogen-

esis [6] as well as the leptogenesis [7] and realizes the non-trivial charge (re)distribution
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in the equilibrium plasma in the early Universe [8–10]. Also it is recently noticed that

through the chiral anomaly the helical U(1)Y hypermagnetic field generation during axion

inflation leads to the simultaneous generation of B+L asymmetry [11–13], together with

the B+L generation from the hypermagnetic helicity decay at the electroweak symme-

try breaking [14, 15], which can be responsible for the present baryon asymmetry of the

Universe.

For the U(1) gauge theory, the chiral anomaly equation indicates that the aligned

electric field and magnetic field produces the chiral charge of fermion. This process is ele-

gantly described with the Landau levels due to the magnetic field. It has been shown that

only the lowest Landau level (LLL), which smoothly connects the positive frequency and

negative frequency mode, participates in this parity-violating process while higher Landau

level preserving parity does not [11, 16]. The excitation in the LLL caused by the elec-

tromagnetic field yields the chiral charge consistent with the prediction of chiral anomaly

equation. One should, however, note that chirality connected to the gauge field topology

in anomaly equation consists of the asymmetry both in the excitation and the vacuum.

The later is known as the eta invariant [17, 18], which can be evaluated with the dispersion

of the Dirac field. As discussed in Ref. [19], substantial chirality is actually accumulated

in the case of chirality production due to the homogeneous SU(2) gauge field. Note that

the vacuum contribution also exists in the induced SU(2) current, which was shown to be

renormalized with the running coupling constant. This observation indicates that when ap-

plying the prediction of chiral anomaly to the phenomenology, proper distinction between

the contribution from excitation and vacuum might be required.

While those mentioned above are for the gauge fields, one can also consider the gravi-

tational contribution to the chiral anomaly [20–23] and its phenomenological consequences.

For example, the topological charge of the background metric and simultaneously chiral

charge of fermions become non-vanishing when the circular polarization of gravitational

waves (GWs) are generated or growing as in the models of axion inflation. For the SM

plasma, if the right-handed neutrino is decoupled from the theory up to the inflationary

scale, lepton number can be generated in such axion inflation models [24]. This scenario,

which may be responsible for the observed baryon asymmetry of the Universe, is called as

gravitational leptogenesis and investigated in the field of particle cosmology [24–34].

In the literature, however, no distinction between the excitation and vacuum contri-

bution has been drawn in the evaluation of lepton number. The conversion of “vacuum

lepton charges” to the observable baryon charges would not be described by the usual ki-

netic equation with the electroweak sphaleron process unlike those in the thermal plasma,

and, in the worst case, they might not be converted at all. A conservative prediction of

the net baryon asymmetry would be those by counting the contribution from excitation.

The question then becomes, in the gravitational leptogenesis which is more dominant in

the system, the excitation or the vacuum contribution? In fact, dominance of the chirality

accumulated in vacuum is also observed in the gravitational systems. One example is the

Bianchi type-II spacetime recently studied in Ref. [35]. Another example is the Bianchi

type-IX spacetime discussed in the old seminal papers [36, 37] by Gibbons. The later one is

of our interest since the spacetime can be decomposed into the closed Friedmann-Lemaitre-
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Roberson-Walker (FLRW) universe and the standing chiral GW [38, 39].

In this work, we investigate the effect of parity-violating weak spin-2 gravitational

field on the massless Dirac field. While we find a “simple” configuration of the metric

that is similar to the homogeneous electromagnetic field and mimics those generated in the

gravitational leptogenesis, it turns out that it is difficult to find a physically interpretable

analytical solution. Compared to the solvable Bianchi type-IX case, this is partly due to

the absence of a globally defined momentum. Instead of trying to find solutions of the

Dirac equation, we make use of an analogy between the classical electromagnetism and the

weak gravitational field [40, 41]. We discuss how the parity-violating (spin-2) gravitational

field can generate the excited contributions in fermion chirality to obtain an indication on

the efficiency of the gravitational leptogenesis. In order to make this inference based on

the physics with gauge fields more convincing, we also clarify how the chirality generation

of fermions in the Bianchi type-IX spacetime is analogous to the SU(2) gauge field case.

The rest of papers is organized as follows. In Sec. 2, we briefly review the gravitational

leptogenesis scenario and the conventional evaluation of lepton number produced by infla-

tionary chiral GWs. In Sec. 3, we give a brief review on the chirality production of fermions

under the gauge fields. This provides the basis to understand the physics of chirality gen-

eration in the gravitational systems. We discuss the analogy between cases of the Bianchi

type-IX spacetime and SU(2) gauge field in Sec. 4. In Sec. 5, we introduce the metric

configuration that is similar to the homogeneous electromagnetic field with non-vanishing

topological charge and resembles those generated in the gravitational leptogenesis scenario.

We finally make a comment on the implication to the gravitational leptogenesis scenario

in Sec. 6. We use the notations following Ref. [42, 43].

• sign of the metric: gµν = (−+++).

• Greek indices (µ, ν, ...) run 0 to 3, Latin indices (i, j, ...) run 1 to 3.

• Levi-Chivita symbol: ϵ0123 = 1.

• Chern-Pontryagin density: RR̃ ≡ −1
2
ϵαβγδ
√
−g
RαβρσR

ρσ
γδ .

• γ matrices in Weyl rep.:

γµ =

(
0 σµ

σ̄µ 0

)
=

{(
0 I2×2

I2×2 0

)
,

(
0 σi

−σi 0

)}
,

where σi are the Pauli matrices.

2 Gravitational leptogenesis

In this section, we briefly review the gravitational leptogenesis scenario, which is the start-

ing point of our study. In the SM, the lepton number is gravitationally violated through

the chiral anomaly as [20–23]

∇µJ
µ
L =

3

384π2
RR̃, (2.1)
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due to the absence of the right-handed neutrinos, where Jµ
L is the lepton current and RR̃

is the gravitational Chern-Pontryagin density. The coefficient 3 comes from the number of

family of leptons. This gravitational anomaly equation (2.1) indicates that lepton number

should be generated in the spacetime with non-vanishing RR̃. Among such spacetime

configurations, parity-violating spin-2 perturbations (or circularly polarized GWs) around

flat Friedmann-Lemaitre-Roberson-Walker (FLRW) spacetime has been discussed in the

context of inflationary phenomenology. More explicitly, the spacetime metric is expressed

as

ds2 = a2(η)[−dη2 + (δij + hij(η,x))dx
idxj ], (2.2)

where |hij | ≪ 1 is the spin-2 perturbation around the conformally flat spacetime. This

perturbation is known to propagate as GW expressed with two independent polarization

mode and satisfies transverse-traceless (TT) condition

hii = 0, ∂jhij = 0, (2.3)

where the indices are raised and lowered by ηµν = diag(−1, 1, 1, 1). Similarly to the elec-

tromagnetic waves, one can define the circular polarization basis (left and right) for GWs.

Interestingly, circularly polarized GWs can be generated and continuously contribute to

the expectation value of the Chern-Pontryagin density ⟨RR̃⟩ in some models of axion in-

flation. For example, in the model with gravitational Chern-Simons coupling of inflaton

ϕRR̃ [24, 25], which is regarded as the minimal model for the gravitational leptogene-

sis, ⟨RR̃⟩ becomes constant during inflation [26, 34] (see also Refs. [27–32] for the other

realizations). According to the anomaly equation, lepton numbers would be simultane-

ously produced in the early universe, which could explain the observed baryon number

excess [24, 25] through the conversion by the electroweak sphaleron process [5–7]. This

lepton number production associated with the circularly polarized GW generation is called

gravitational leptogenesis.

Conventionally, the lepton number produced during inflation is evaluated by integrat-

ing the spatially averaged anomaly equation up to the linear order in h:

⟨nL(ηf )⟩ = a(ηf )J
0
L(ηf )

=
3

192π2a(ηf )3

∫
k

a(ηf )
<Λ

d3k

(2π)3
k
[(
|(hRk (ηf))′|2 − k2|hRk (ηf)|2

)
− (R ↔ L)

]
, (2.4)

where ηf is conformal time at the end of inflation and h
R/L
k (η) is the mode function of

quantized perturbation (graviton) in the circular polarization basis. Here in the integration,

we introduce the cutoff scale Λ, which yields a factor (Λ/H)4 with H being the inflationary

Hubble scale. Note that no definitive conclusion has been reached on what scale should be

taken as this Λ. For example, Λ may be taken as the Hubble scale during inflation after

proper renormalization procedure [26, 34], while it could be the scale of a UV physics such

as the mass of the right-handed Majorana neutrino [24]. Therefore, here we shall not go

into the details of the evaluation of Eq. (2.4).
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As in the vanilla leptogenesis scenario [7], the lepton number (2.4) is assumed to be

converted to the baryon number in the thermal equilibrium as [9, 10]

nB|eq = −28

79
nL(ηf ). (2.5)

Therefore, if sufficiently large asymmetry is produced in the circular polarization of infla-

tionary GWs, the observed value of nB/s can be explained with this anomalously generated

lepton number1.

However, this evaluation never clarifies how the chirality of fermion is generated and

to our best knowledge, there has been no investigation of the fermion field equations under

the chiral spin-2 background. As we will see below, the fermion chirality generally consists

of two different contributions and its distribution is in fact significantly differs depending

on the external field sourcing the chirality. Before discussing the chirality generation under

the gravitational fields, we review those under the gauge fields, which provides a basis to

investigate the former.

3 Chirality production of fermions under helical gauge fields

In this section, we give a review on the chirality production of fermions under external

gauge fields in terms of the level crossing. For the U(1) gauge field, the physics of chirality

production can be nicely understood with the creation of Landau levels. While it accounts

for all the chirality in the U(1) case, vacuum contribution becomes more important in the

case of non-Abelian gauge field. While the latter example provide the understanding on

when the contribution of vacuum becomes important, the former one is expected to be

useful for understanding the effect of weak gravitational field as we will see later.

3.1 Chiral anomaly and Landau levels in U(1) theory

Let us start with massless Dirac fermions in 3+1 dimensions charged under the U(1) gauge

field case [16]. The Lagrangian is given by

L = iΨ̄γµ(∂µ + ieAµ)Ψ, (3.1)

where Ψ =

(
ψL

ψR

)
is the Dirac fermion (ψR/L are the right- and left-handed fermions,

respectively), e is its U(1) charge, and Aµ is the U(1) gauge field. We define the field

strength tensor and its dual as

Fµν = ∂µAν − ∂νAµ, (3.2)

F̃µν =
1

2
ϵµναβFαβ. (3.3)

1Even if the lepton asymmetry at the end of inflation is significantly small, nL/s might be larger by

assuming the inefficient reheating process [33]
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The electric field and the magnetic field are written as

Ei = Fi0, (3.4)

Bi =
1

2
ϵ0ijkFjk. (3.5)

The Chern-Pontryagin density is expressed in the following way,

FµνF̃
µν ≡ 1

2
ϵµναβFµνFαβ = −4E⃗ · B⃗. (3.6)

We immediately find that the parallel E⃗ and B⃗ fields give non-zero FF̃ . In the following

we investigate the particle production in the presence of non-vanishing background Chern-

Pontryagin density.

For concreteness, we consider the following background gauge field configuration,

Aµ = (0, 0, By,−Et), (3.7)

which gives a homogeneous electric and magnetic field in the z direction, Ez = E,Bz = B,

and hence FµνF̃
µν = −4EB [11]. First we turn on only the magnetic field. Then, the

quantization in the x-y plane gives us the energy dispersion relation in the momentum

space, known as the Landau levels,

ω2
n = Π2

z + (2n+ 1)eB − 2eBSz, n = 0, 1, 2, · · · . (3.8)

Here ωn is the energy, Πz = pz − eAz(= pz (for Az = 0)) is the canonical conjugate

momentum in the z direction, the integer n represents the quantized energy levels in the x-

y plane, and Sz = ±1/2 is the spin of the fermion in the z direction. The LLL corresponds

to the state with n = 0 and Sz = 1/2, that is, ω2
n = Π2

z or ωn = ±Πz. + and - correspond

to the right- and left-handed fermions, respectively [16, 44]. Higher Landau levels (HLLs)

correspond to ωn = ±
√

Π2
z + 2neB (n > 0), which are gapped and parity-symmetric. The

vacuum of this system is the Dirac sea, where the negative energy states in the HLL,

ωn = −
√
Π2

z + 2neB, and those in the LLL, are fully occupied.

Now we turn on the electric field adiabatically in the z direction to the system in the

vacuum. The classical equation of motion for the fermion is ∂Πz/∂t = eE, which means

that each particle in a energy level acquires a momentum

∆Πz = e

∫
Edt. (3.9)

along with the corresponding Landau levels. While the particles in the HLL stay in the

Dirac sea, the right-handed fermions in the LLL are shifted to the positive energy state and

the left-handed fermions in the LLL develop the hole as shown in Fig. 1, which corresponds

to the level crossing from the shift of the canonical momentum in the presence of the electric

field. As a result, a chiral asymmetry is induced in the system. Quantitatively, the number

of induced right- and left-handed fermions are evaluated as

∆QR =

∫
eE

2π
dtdz

∫
eB

2π
dxdy =

e2

4π2

∫
d4xEB, (3.10)

∆QL = −
∫
eE

2π
dtdz

∫
eB

2π
dxdy = − e2

4π2

∫
d4xEB, (3.11)
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where we have taken into account the quantization condition of the momentum in the z

direction,
∫
Πn/2πdz ∈ Z, and the Landau degeneracy per unit area in the x-y plane,

eB/2π. Consequently, we obtain the variation of the axial charge Q5 ≡ QR −QL as

∆Q5 = ∆QR −∆QL =
e2

2π2

∫
d4xEB. (3.12)

We find that Lorentz-covariant version of this expression is nothing but the chiral anomaly

equation (in the covariant definition [44])

∂µj
µ
5 =

e2

2π2
EB = − e2

8π2
FµνF̃

µν , (3.13)

where the axial current jµ5 = (Q5, j
i
5) is defined as jµ5 ≡ Ψ̄γµγ5Ψ. This description clearly

shows that the Landau level crossing is a powerful tool to examine the particle production

as an excitation in the chiral anomaly. Moreover, this particle production with the field

configuration (3.7) is used to investigate the induced current during axion inflation [11]

(see also Refs. [45, 46]), where the gauge fields are amplified at the Hubble horizon scale

and can be taken as (random) homogeneous field at smaller scales.

Figure 1. The Landau levels for massless Dirac fermions. Blue and red lines represent the LLL for

the right- and left-handed fermions, respectively, and gray curves represent HLLs. Filled (empty)

circles represent the occupied (empty) states, and gray shaded region means the Dirac sea. After

turning on an electric field adiabatically, right-handed fermions in the LLL obtain the positive

energy while left-handed fermions in the LLL develop the holes. The states in the HLLs look

unchanged.

3.2 Non-Abelian gauge theory and eta-invariant

We next review the chirality production under external SU(2) gauge field, Aa
µ, discussed

in Ref. [19]. We consider the following Lagrangian,

L = iΨ̄γµ(∂µ − iAa
µT

a)Ψ, (3.14)
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where T a = σa/2 is the generator of the SU(2) gauge group. The field strength tensor and

its dual are given as

F a
µν = ∂µA

a
ν − ∂νA

a
µ + ϵ0abcAb

µA
c
ν , (3.15)

F̃ aµν =
1

2
ϵµναβF a

αβ. (3.16)

We may define the electric and magnetic fields for the SU(2) field as

Ea
i = F a

i0, (3.17)

Bai =
1

2
ϵ0ijkF a

jk, (3.18)

such that the Chern-Pontryagin density is written as

F a
µνF̃

aµν = −4Ea
i B

ai. (3.19)

One could find the exactly same physics for chirality production as the case of U(1)

gauge theory supposing a background field configuration, Aa
µ = Āµn

a with Āµ = (0, 0,−Bx,Et).
Here na is an arbitrary constant unit vector. which projects the SU(2) gauge group onto

its U(1) subgroup. Once we have in mind the gauge field amplification during axion in-

flation through the Chern-Simons coupling, (ϕ/4Λ)TrF a
µνF̃

aµν (ϕ is the inflaton and Λ is

the mass scale related to axion decay constant), however, this configuration is turned out

to be unstable for large (∂ϕ/∂t)/Λ due to the non-linear term in F a
µν [47]. Instead, it has

been found that there is a homogeneous and isotropic attractor solution in the presence of

the homogeneous axion dynamics as

Aa
0 = 0, Aa

i = −f(t)δai , (3.20)

where f(t) is determined by the homogeneous axion velocity (∂ϕ/∂t). Such a field configu-

ration has been extensively studied in the context of the chromo-natural inflation [48] (see

also Ref. [27]). The electric and magnetic field, as well as the Chern-Pontryagin density

for this field configuration is given as

Ea
i = ḟ δai (3.21)

Bai = f2δai (3.22)

F a
µνF̃

aµν = −4Ea
i B

ai = −12ḟf2 = −4(f3)
·
. (3.23)

Let us stress that here a non-vanishing magnetic field is provided by the homogeneous

vector potential, which is distinct from the Abelian case. In the following, we consider the

field configuration given by Eq. (3.20) and investigate the particle production from this

background, changing f adiabatically.

One can explicitly solve the Dirac equation in the momentum space under this SU(2)

field configuration (3.20) with f being constant:

[i∂t ± (σ · p+ fσ · T )]ψL/R(t,p) = 0, (3.24)
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where +(−) refers left- (right-)handed fermions, respectively, and the SU(2) generators T a

acts on the gauge indices of the Dirac field while the Pauli matrices σi acts on its spin

indices. Without loss of generality, one can take the momentum along the z-direction,

p = pêz, and introduce the following eigenbases of the spin and gauge degrees of freedom

χ±
p and t±p satisfying

(p̂ · σ)χ±
p = ±χ±

p , (p̂ · T ) t±p = ±1

2
t±p , (3.25)

σ±χ
±
p = 0, σ∓χ

±
p = 2χ∓

p , T±t
±
p = 0, T∓t

±
p = t∓p , (3.26)

where σ± ≡ σ1 ± iσ2 and T± ≡ T1 ± iT2 are ladder operators. Then, the Dirac field can be

expanded with these bases

ψL/R(t,p) =
∑

s,m=±
ψ
(s,m)
L/R (t,p)χs

pt
m
p , (3.27)

and noting that σ · T = (σ+T− + σ−T+)/2 + (p̂ · σ) (p̂ · T ) the Dirac equation finally

becomes [
i∂t ±

(
p+

f

2

)]
ψ
(+,+)
L/R (t,p) = 0, (3.28)[

i∂t ±
(
−p+ f

2

)]
ψ
(−,−)
L/R (t,p) = 0, (3.29)[

i∂t ±

(
p

(
1 0

0 −1

)
+
f

2

(
−1 2

2 −1

))](
ψ
(+,−)
L/R (t,p)

ψ
(−,+)
L/R (t,p)

)
= 0, (3.30)

where, once more, +(−) refers left- (right-)handed fermions, respectively. Since (+,−)

and (−,+) modes are mixed, one needs to perform diagonalization to identify the energy

eigenstates. After diagonalization, one finds the expression of energy dispersion relation

for four independent modes as

ω
(+1)
L/R = ±

(
−p− f

2

)
,

ω
(−1)
L/R = ±

(
p− f

2

)
,

ω
(0;1)
L/R = ±

(
−
√
p2 + f2 +

f

2

)
,

ω
(0;2)
L/R = ±

(√
p2 + f2 +

f

2

)
,

(3.31)

where +(−) refers left- (right-)handed fermions, respectively. Among these four modes,

three modes are gapped and only ω
(−1)
L/R smoothly connects the positive frequency state and

negative frequency state at p = f/2.

By adiabatically evolving f from fi (at t = ti) to ff (at t = tf ) , level crossing occurs for

these lowest modes as in the Abelian case where an electric field is applied to LLL. Figure 2
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Figure 2. The levels for the massless left- (left figure) and right-handed (right figure) fermions in

the background field configuration of SU(2) gauge field (3.20), respectively. Blue lines are those for

f = fi while orange lines are those for f = ff = 3ff . Solid, dashed, dotted, and dot-dashed lines

represent ω
(−1)
L/R , ω

(+1)
L/R , ω

(0;1)
L/R , and ω

(0;2)
L/R , respectively. Gray shaded region represents the Dirac sea.

While for the right-handed fermions states of ω = ω
(−1)
R from p = fi/2 to p = ff/2 in the Dirac

sea at f = fi (red thick line) are excited at f = ff (purple thick line), for the left-handed fermions

unoccupied states of ω = ω(−1) from p = fi/2 to p = ff/2 at f = fi (red double line) become holes

at f = ff (purple double line). Note that the horizontal axes are those for the physical momenta

but not the conjugate momenta, and hence we do not see the sideways shift of the momentum seen

in the U(1) case.

shows the schematic picture of the level crossing in this system. With the normally ordered

charge operator, the chiral charge associated with this excitation can be evaluated as

∆Q
(e)
5 = ∆Q

(e)
R −∆Q

(e)
L =

1

3
× V

1

8π2
(
f3f − f3i

)
, (3.32)

where V ≡
∫
d3x is the volume factor, and we have taken into account that in the momen-

tum space there is one state occupied in each volume V d3p/(2π)3 = 1. Since we take the

infinite volume limit, we do not discretize the momentum space. In contrast to U(1) case,

however, this contribution from excitation does not account for all the fermion chirality:

∆⟨Q5⟩ = ∆(⟨QR⟩ − ⟨QL⟩) = V
1

4π2
(
f3f − f3i

)
, (3.33)

which is derived by integrating anomaly equation,

∂µJ
µ
5 = − 1

16π2
F a
µνF̃

aµν =
1

4π2
(f3)·, (3.34)

from ti to tf and over whole space. This is because one needs to take into account the

vacuum contribution of chiral charge, known as the eta invariant in the Atiyah-Patodi-

Singer index theorem [17, 18]. The theorem indicates the following relation of the charges

in our Lorentzian manifold [35, 36]:

∆⟨Q5⟩ =
∫

dtd3x∂µJ
µ
5 = ∆Q

(e)
R −∆Q

(e)
L − [ηH ]

t=tf
t=ti

, (3.35)

= ∆Q
(e)
R −∆Q

(e)
L +∆Q

(v)
R −∆Q

(v)
L , (3.36)
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where the vacuum charge can be identified as ∆Q
(v)
R/L = ∓(1/2)[ηH ]

t=tf
t=ti

. Here ηH is the

eta invariant defined with respect to the Hamiltonian of (right-handed) Weyl fermion as

ηH = lim
s→0

ηH(s), ηH(s) ≡
∑
ωR ̸=0

sgn(ωR)|ωR|−s = −
∑
ωL ̸=0

sgn(ωL)|ωL|−s, (3.37)

which diverges and requires an appropriate regularization. In Ref. [19], it is shown that

the chiral anomaly equation is reproduced with the regularized vacuum contribution

∆Q
(v)
R/L =

 lim
Λ→∞

−1

2

∑
ωR/L ̸=0

sgn(ωR/L)R
(ωR/L

Λ

)t=tf

t=ti

(3.38)

where the regulator R(s) is smooth and approaches rapidly to zero sufficiently, and satisfies

R(s→ 0) = 1. By substituting the dispersion (3.31), chiral charge associated with vacuum

contribution is evaluated as

∆Q
(v)
5 = ∆Q

(v)
R −∆Q

(v)
L (3.39)

= [ηH ]
t=tf
t=ti

=
5

6
× V

1

4π2
(
f3f − f3i

)
, (3.40)

with which the net chirality ∆⟨Q5⟩ = ∆Q
(e)
5 +∆Q

(v)
5 becomes consistent with the prediction

of anomaly equation. Let us stress that in contrast to the case of U(1) gauge field, the

contribution from gapped modes ω
(+1)
L/R , ω

(0;1)
L/R , and ω

(0;2)
L/R participates in ∆⟨Q5⟩ via ∆Q

(v)
5 .

Physically, the eta invariant accounts for the chiral asymmetry accumulated in the

vacuum due to the asymmetric energy spectrum of fermions. It is quite interesting that

a substantial fraction of the chiral charge lies in the vacuum in this SU(2) gauge field

configuration. At this point, one may wonder whether the charge accumulated in the

vacuum plays a physical role or not. In other words, it is not clear how this charge interacts

with other fields or particles, if ever. For example, there also exists a vacuum contribution

in the SU(2) current (not the chiral current) of the fermion in this system. The authors of

Ref. [19] has shown that such a contribution can be renormalized with the running coupling

constant and does not interact with other fields. As a result, the backreaction from the

fermion to the SU(2) gauge fields is turned out to be inefficient in contrast to the case of

U(1) gauge field. Anyway, the above observation indicates that if one needs to distinguish

the excitation and vacuum contribution, one should not naively use the integrated anomaly

equation (3.33). This distinction could be more important for the gravitational anomaly

and leptogenesis through that as we will see.

3.3 Lessons from gauge field cases

Before proceeding, we summarize what we learn from the chirality production from the

point of view of the (Landau) level crossings in the cases of the U(1) and SU(2) gauge

fields. For both cases, degeneracy in the helicity and the spin states are broken by the

presence of homogeneous magnetic field (or constant f with the non-trivial configuration

in the SU(2) case). Consequently, the “lowest” mode globally appears, where the spin
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polarization is along with the magnetic component of the gauge field, smoothly connect-

ing the negative and positive frequency modes. The generation of chirality is, however,

qualitatively different. For the U(1) case, only this lowest mode participates in the chiral-

ity generation. That is, the electric field causes momentum shift in LLL and the excited

states account for all the chirality generated in this system. On the contrary, the (higher)

gapped modes also contribute in the homogeneous and isotropic SU(2) case as the vacuum

contribution although level-crossings never take place there. In this case, the amplitude of

the SU(2) field value f plays a similar role as the chiral chemical potential and causes chi-

rality dependent bias for all the modes. This is the most striking difference from the U(1)

example. Consequently, the evolution of bias f (or the existence of “electric component”

of SU(2) field) results in the accumulation of vacuum chiral charge, including the modes

without level-crossing.

Although it is sub-leading, the excited states still have non-negligible contribution

for SU(2) case. In this respect, we conjecture that for having non-negligible contribution

from excitation, homogeneity of the external field seems to play a key role. Because of

the homogeneity, the modes relevant for the chiral particle production are globally defined

over the whole momentum space, both for the U(1) and SU(2). This global nature allows

fermions to have continuous excitation as long as the electric field or growth of f is provided.

As we will see in the following, this seems the crucial difference from the chiral spin-2

gravitational field we consider in Sec. 5. As a supporting example of this discussion, let

us refer to Ref. [49] where the author evaluated the fermion chirality production under the

gauge field “radiations” carrying topological charge. Interestingly, for the U(1) case, the

vacuum charge accounts for all the chirality generated in this system. Moreover, the U(1)

chiral anomaly is recently investigated under the inhomogeneous electric field, which also

shows that chiral charge is not produced2 [50].

Another thing we would like to mention here is that, as discussed in Ref. [19], there

are two conditions for vacuum contribution to be non-vanishing. I) The initial and final

external field configuration must not be equivalent up to gauge transformation. II) By

definition, the spectrum of positive and negative frequency modes must be asymmetric.

Note that both of them are not satisfied in the homogeneous U(1) electromagnetic field

case. In order to satisfy the first condition, evolution in the magnetic component of the

field is indispensable. If the excitation does not reproduce the anomaly equation and these

conditions are satisfied, we can presume that the vacuum contribution would compensate

to reproduce the anomaly equation, without a concrete calculation.

As we will see below, the first condition for the existence of the vacuum contribution is

always satisfied in the chiral GW generation. In this situation, one may naturally come up

with the following question: Can the vacuum contribution be also dominant in gravitational

leptogenesis? In fact, the dominance of vacuum asymmetry is observed in the gravitational

system, for example, Bianchi type-IX spacetime [36, 37] and Bianchi type-II spacetime [35].

In the following section, before focusing on the system of our interest, flat FLRW plus chiral

2In this case, anomaly equation is saturated by the generation of J1
5 . Although this is qualitatively

different from our case where ⟨J0
5 ⟩ ̸= 0 dominated by vacuum contribution, it still suggests the difficulty of

exciting J0
5 in a non-uniform external field.
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GWs, we discuss the fermion chirality production in the Bianchi type-IX spacetime. Since

it can be decomposed into the closed FLRW spacetime and the standing chiral GWs, the

investigation of this system may provide us a hint to understand the physics of gravitational

leptogenesis.

4 A solvable exmaple in gravitational system: Bianchi type-IX spacetime

Now let us turn to the chirality production under the non-trivial gravitational background.

Before examining the configuration motivated from the gravitational leptogenesis, we first

review the case with closed homogeneous spacetime, classified according to the Bianchi

type models.

Among the Bianchi classification of the homogeneous 3+1 spacetime, Bianchi type-IX

is particularly of our interest. As discussed in Refs. [38, 39], this spacetime can be expressed

as a closed FLRW spacetime onto which circularly polarized GWs are superimposed. This

fact motivates us to investigate the gravitational chiral anomaly in this system since the

circular polarization of GWs yields non-vanishing Chern-Pontryagin density. Indeed, Gib-

bons has discussed gravitational production of neutrino in the evolving spacetime which

starts from ”polarized” initial state to the isotropic (unpolarized) final state [36, 37]. Let

us give a review on how the chirality of fermion is generated in this system with certain

clarification compared to the previous studies.

4.1 Bianchi type-IX and GW interpretation

We first briefly review the general characteristics of Bianchi type-IX spacetime, following

the discussion in Ref. [39]. A right-homogeneous Bianchi type-IX spacetime is generally

described by a metric (with the Cartan calculus) as

ds2 = −a2(η)(dη2 − dl2), (4.1)

dl2 = Aij(η)λ
i ⊗ λj , (4.2)

where η is the conformal time, and
{
λi
}
are three left-invariant 1-form on the 3-sphere S33

satisfying

dλi =
1

S
ϵijkλ

j ∧ λk. (4.3)

More concretely, they can be expressed as

λ1 =
S

2
[− sinψdθ + sin θ cosψdϕ] , (4.4)

λ2 =
S

2
[cosψdθ + sin θ sinψdϕ] , (4.5)

λ3 =
S

2
[cos θdϕ+ dψ] , (4.6)

3On S3, there are two different ways to construct three translational Killing vectors
{
ξ(1), ξ(2), ξ(3)

}
.

Depending on the sign of their commutation relation
[
ξ(i), ξ(j)

]
∝ ∓ϵijkξ(k), they are referred to as the

left-translation (-) and right-translation (+), respectively. 1-form (or the measure of the 1-dim integration)

invariant under this left-translation is called as left-invariant. For the left-invariant 1-forms (4.4)-(4.6), the

corresponding killing vectors satisfy the commutation relation
[
ξ(i), ξ(j)

]
= −(2/S)ϵijkξ(k).
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with (θ, ψ, ϕ) being the Euler angles which run 0 ≤ θ ≤ π, 0 ≤ ψ ≤ 2π, 0 ≤ ϕ ≤ 4π [51],

and S being the (comoving) radius of S3. The spatial part of the metric (4.2) can be

decomposed into the background closed sphere (or the closed FLRW Universe) and the five

independent tensor fields as

Aij(η) = A0(η)δij +
5∑

a=1

Aa(η)C
a
ij , (4.7)

where Ca
ij are five linearly independent traceless matrices. While the isotropy of background

sphere is broken, the tensor fields Aa(η)C
a
ijλ

i ⊗ λj imposed onto the sphere preserves its

right homogeneity. In this sense, one can understand that the Bianchi type-IX spacetime

is an anisotropic generalization of the closed FLRW Universe.

Another aspect of this spacetime we would like to mention is that this anisotropy of

closed sphere involves the parity-violation. As shown in Ref. [39], the right homogeneous

tensor fields described byAa(η)C
a
ijλ

i⊗λj are the symmetric, transverse, and traceless tensor

spherical harmonics on the background 3-sphere. In other words, they can be understood

as the standing GWs around the sphere with the longest wavelength. In addition, these

waves have the left-circular polarization (see Ref. [39] for graphical description). Therefore,

the right homogeneous Bianchi type-IX spacetime can be decomposed into the background

closed sphere plus left circularly polarized GWs [38, 39]. Note that the same discussion

applies to the left homogeneous Bianchi type-IX and in this case the spacetime is wrapped

by the right circularly polarized GWs. As we will see below with a specific example of the

metric, parity-violating GWs yield non-vanishing Chern-Pontryagin density. Therefore,

this spacetime can be a playground to investigate the generation of fermion chirality.

Now we consider a specific class of this spacetime called as the axial Bianchi type-IX,

which was considered in Refs. [36, 37] to examine the chiral fermion production. The metric

of the axial Bianchi type-IX is given as

ds2 = −a(η)2
(
dη2 − (e2β+(η)λ1 ⊗ λ1 + e2β+(η)λ2 ⊗ λ2 + e−4β+(η)λ3 ⊗ λ3)

)
,

= −a(η)2
(
dη2 − S2

4

[
e2β+(η)dθ2 +

(
e2β+(η) sin2 θ + e−4β+(η) cos2 θ

)
dϕ2

+2e−4β+(η) cos θdϕdψ + e−4β+(η)dψ2
])
, (4.8)

where β+ is a function of time and characterizes the anisotropy of the closed sphere. At

the same time, β+ also characterizes the amplitude of the polarized GWs. This can be

seen by performing the decomposition mentioned above:

ds2 = −a(η)2
(
dη2 −

(
dl2B + dl2h

))
, (4.9)

where dl2B is the background sphere,

dl2B =
(2e2β+ + e−4β+)

3
δijλ

i ⊗ λj

=
(2e2β+ + e−4β+)

3

S2

4

[
dθ2 + dϕ2 + 2 cos θdϕdψ + dψ2

]
. (4.10)
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On the other hand, dl2h is the standing GW described by one specific mode (a = 5 in

Eq. (4.7) if we follow the notation in Ref. [39])

1√
6

(
−λ1 ⊗ λ1 − λ2 ⊗ λ2 + 2λ3 ⊗ λ3

)
(4.11)

as

dl2h =
(e2β+ − e−4β+)

3

(
λ1 ⊗ λ1 + λ2 ⊗ λ2 − 2λ3 ⊗ λ3

)
=

(e2β+ − e−4β+)

3

S2

4

[
dθ2 + (1− 3 cos2 θ)dϕ2 − 4 cos θdϕdψ − 2dψ2

]
. (4.12)

Note that the standing GW is not restricted to be perturbative as ordinary GWs. Hence,

this expression in the large anisotropy limit β+ ≫ 1 still makes sense.

For this metric (4.8), the gravitational Chern-Pontryagin density RR̃ is evaluated as

RR̃ = − 48

a4S3
β′+

(
4k4 − 4k2 − 6S2k4/3β′2+ + 3S2k4/3β′′+

)
=

1√
−g

∂η

(
6 sin θ

(
1

3
(k2 − 1)2 − 3S2

2
k4/3β′2+

))
, with k ≡ exp(−3β+), (4.13)

where g = −S6a8 sin2 θ/64 is the determinant of the metric and the prime denotes the

derivative with respect to the conformal time. Here we have introduced a new parameter k

following Refs. [36, 37]. One can see that RR̃ becomes non-vanishing when the anisotropy

β+ (or k) evolves. This is a clear indication of parity-violation due to the polarized GW,

which may be quantified by the gravitational helicity density defined as

√
−gK0 = 6 sin θ

(
1

3
(k2 − 1)2 − 3S2

2
k4/3β′2+

)
. (4.14)

Since the spacetime with different β+ or k is not equivalent up to the gauge transformation,

the first condition for the existence of the vacuum contribution in the particle production

is satisfied. This motivates us to investigate the particle production in terms of the level

crossing to clarify the distribution of chiral charge.

4.2 Chirality production and comparison to the SU(2) gauge example

We now see the chirality production in the point of view of the level crossing. According

to the gravitational chiral anomaly equation,

∇µJ
µ
5 =

1√
−g

∂µ(
√
−gJµ

5 ) = − 1

12(4π)2
RR̃, (4.15)

we would expect that the fermion chirality production takes place when β+ (or k) changes.

Integration of the chiral anomaly equation (4.13) leads to

∆Q5 = −
∫ π

0
dθ

∫ 2π

0
dψ

∫ 4π

0
dϕ

sin θ

2(4π)2
∆

(
1

3
(k2 − 1)2 − 3S2

2
k4/3β′2+

)
= −1

6
∆
(
(k2 − 1)2 − 3k4/3(β′[η])2

)
. (4.16)
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Then we wonder how they are divided into the excitation and vacuum contribution. Fol-

lowing Refs. [36, 37], let us discuss the generation of fermion chirality under the adiabatic

evolution of the spacetime assuming β′+ → 0.

Since the Bianchi-IX space has an SU(2) structure as seen in Eq. (4.3), it is convenient

to study the system in the frame with the Cartan calculus (see Eq. (4.2)). The Dirac

equation for the massless fermion in that frame is given as [52]

iγµ(ωµ(Ψ)− ΓµΨ) = 0, (4.17)

where ωµ are the dual of the normalized 1-forms in 4 dimension ωµ, such that it forms

Minkowskian metric. The connection Γµ is defined as

Γµ = −1

4
ωµνργ

νγρ, (4.18)

where ωµ
νρ satisfies dωµ = ωµ

νρων ∧ ωρ.

In our case of Eq. (4.8), the Dirac equation can then be expressed as

(i∂η ∓D)(a3/2(η)ψL/R) = 0, (4.19)

where - (+) refers left- and right-handed fermions, respectively, and the Dirac operator D

is defined as4

D =
k1/3

S


2L(3)

k
+

(
1

k
+
k

2

)
2L−

2L+ −
2L(3)

k
+

(
1

k
+
k

2

)
 . (4.20)

Here we have have dropped the terms proportional to β′+ and defined

L(i) ≡ − iS

2
ξ(i), L± = L(1) ± iL(2). (4.21)

The constant terms (1/k + k/2) comes from the connection, while terms with L(i) comes

from ωµ. Note that {L(i)} satisfy the spin algebra,

[L(i), L(j)] = iϵijkL(k), [L(3), L±] = ±L±, (4.22)

and hence L± can be understood as the ladder operators. Then we can introduce eigen-

function |l,m, n⟩ as

L3 |l,m, n⟩ = n |l,m, n⟩ , (4.23)

L± |l,m, n⟩ =
√

(l ∓ n)(l ± n+ 1) |l,m, n± 1⟩ , (4.24)

where l is a non-negative half-integer or a natural number, and m,n are (half-) integers

satisfying m,n = −l,−l + 1, ..., l − 1, l. Here the quantum number m is introduced be-

cause these states are also representations of the right-translations. Using this function,

4The expression of the Dirac operator is different from the one in Ref. [36, 37] due to the difference in

the choice of the coordinate basis, but the physics is unchanged.
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eigenstates of the Dirac operator (4.20) can be constructed as

Φ±(l,m, n) =

((
n/k ±

√
(n/k)2 + (l + 1/2)2 − n2

)
|l,m, n− 1/2⟩√

(l + 1/2)2 − n2|l,m, n+ 1/2⟩

)
, (4.25)

whose eigenvalues are

k1/3

S

k
2
± 2

√(n
k

)2
+

(
l +

1

2

)2

− n2

 , (4.26)

Here m runs from −l to l, which gives a degeneracy 2l + 1, while n runs from −l − 1/2 to

l + 1/2. Note that for |n| = l + 1/2, we only have Φ+(l,m, l + 1/2) since Φ−(l,m, l + 1/2)

is a null state. Thus we obtain the energy dispersion relation as

ω±
L (l,m, n) =

k1/3

S

k
2
± 2

√(n
k

)2
+

(
l +

1

2

)2

− n2

 , (4.27)

ω±
R(l,m, n) = −k

1/3

S

k
2
± 2

√(n
k

)2
+

(
l +

1

2

)2

− n2

 . (4.28)

for the left- and right-handed fermions, respectively. While ω+
L and ω+

R are positive and

negative definite, respectively, ω−
L and ω−

R connects the positive and negative energy eigen-

states. Figure 3 shows the dispersion relation of the left-handed fermions for n = 0 and

some choices of k.

Figure 3. The levels for the massless left-handed fermions in the Bianchi IX spacetime (4.8) for

n = 0. Blue, red, and green lines and markers are those for k = 1, 4, 8, respectively. Solid lines and

circles represent ω−
L while dashed lines and triangles represent ω+

L . Gray shaded region represents

the Dirac sea. While all the states of ω−
L are in the Dirac sea for k = 1, the highest state l = 1/2

appears as the excitation at k = 4 while the state l = 3/2 appears at k = 8.

As can be seen from Eqs. (4.27) and (4.28), in the isotropic background (k = 1), all the

states of ω−
L are in the Dirac sea and those of ω−

R have positive definite energy eigenvalue.
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The sign of eigenvalue ω−
L/R can be flipped for large enough k, or in other words, “non-

perturbatively” large amplitude of the standing wave. For example, the lowest energy

state (l, n) = (1/2, 0) changes the sign at k = 4. Therefore, if the universe evolving from

the vacuum isotropic space to large k, left-handed fermions appear as excitations while

right-handed fermions develop holes as a consequence of the zero-crossing, which leads to

a negative chirality production (or vice versa as discussed in Refs. [36, 37])5, This excited

contribution of chiral charge is then evaluated as

∆Q
(e)
5 = ∆Q

(e)
R −∆Q

(e)
L = −

∑
l,n

2(2l + 1). (4.29)

where (l, n) runs the states that experiences the level crossing. Here 2l + 1 counts the

degeneracy of m and 2 counts the left- and right-handed fermions.

In the large k limit, we can obtain an approximate evaluation by replacing the sum-

mation to the integral,
∫
dldn, with the region of (l, n),

|n| ≤ l − 1

2
,

(
l +

1

2

)2

− n2 <
k2

16
, (4.30)

which leads to

∆Q
(e)
5 ≃ − k4

256
. (4.31)

The k dependence, ∆Q
(e)
5 ∝ k4, is the same to the anomaly equation (4.16). This means

that the level crossing contribution continues to be non-negligible with respect to ∆Q5

even in k → ∞ limit. We anticipate that this feature is due to the homogeneity of system

as we discussed in Sec. 3.3. That is, the system admits globally defined momentum (or

the infinite sets of label (l,m, n)) over phase space and also global selection of spin states.

Therefore, as long as the anisotropy increases (or decreases), there will always be modes

excited as in the gauge field examples.

There is, however, an order of magnitude difference between ∆Q
(e)
5 and ∆Q5 predicted

from the anomaly equation (4.16). Moreover at k < 4 there are no level crossing at all as

has been seen in Fig. 3, while the anomaly equation (4.16) suggests the generation of the

chiral asymmetry for any k > 1. This indicates that the chirality is not mainly carried by

the particles (excitation) but the vacuum. Indeed, Ref. [53] has shown that for k < 4 the

eta invariant is evaluated (see also Ref. [35]) as

ηH(0) = −1

6
(1− k2)2, (4.32)

while larger k we shall subtract the (sub-dominant) contribution of the level-crossing.

Since the eta invariant in the small anisotropy regime (4.32) fully agrees with the chiral

asymmetry predicted by the anomaly equation (4.16), we safely conclude that the anomaly

equation holds by taking into account both the excitation and vacuum contribution,

∆Q5 = ∆Q
(e)
5 +∆Q

(v)
5 , ∆Q

(v)
5 = [ηH(0)]

t=tf
t=ti

. (4.33)

5These are not solutions to the Einstein equation. Here the evolving spacetime is considered as an

artificial external field to the fermions.
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We now obtain further qualitative insights on the chiral anomaly in this system by

comparing to the homogeneous SU(2) gauge field case. From Eqs. (4.27) and (4.28), one

can easily see that the spatial anisotropy k behaves similar to the chemical potential µR/L

and breaks the degeneracy as it causes energy bias ∼ k4/3/2S between the positive and

negative energy mode. This is similar to the case with homogeneous SU(2) gauge field

discussed in Sec. 3.2, where the energy bias f/2 leads to chirality production in a very

different way from the Abelian case. It is interesting to note that the bias term in the

Dirac operator (4.20) comes from the connection term in Eq. (4.17) and can be regarded

as the “non-Abelian” contribution of the homogeneous but anisotropic geometry. Note

that the bias term exists even for the background sphere without GWs, β+ = 0 or k = 1.

Therefore, one might expect that such a chemical potential-like bias could arise if the

“non-Abelian” nature is inherent to the spacetime geometry, which is already curved at

the background.6. Such a concordance reminds us the sub-leading (but non-negligible)

contribution from the smooth excitation and the domination of vacuum contribution in

the SU(2) case. Then, the distribution of chiraliy in the Bianchi type-IX discussed above

is no longer surprising to us.

Let us summarize this section with a comment on the GW interpretation of the Bianchi

type-IX spacetime. If one assumes |β+| ≪ 1, the amplitude of gravitational standing waves

becomes small enough and they seems to resemble the “ordinary” GWs which are the

fluctuation around the “flat” spacetime. As we will discuss below, however, the ordinary

GWs are essentially different from the standing GWs around closed sphere. Therefore,

while the fact that level-crossing does not occur unless the amplitude of standing wave is

non-perturbatively large is suggestive, one cannot simply apply this result to the fluctuation

around (conformally) flat spacetime. On the other hand, we have seen a concordance of

the chirality generation between the Bianchi type-IX case and the homogeneous SU(2)

gauge field case. This suggests that a deeper understanding of the chirality generation

under the external gauge field may help us to understand that generated by the parity-

violating gravitational field. With this spirit, in the following section we discuss the fermion

chirality generation under chiral GWs around flat spacetime based on the analogy between

the classical electromagnetism and the weak gravitational fields.

5 Investigation of the Dirac equation under the parity-violating weak

spin-2 field

In this section, to obtain the insights on the gravitational leptogenesis, we investigate the

effect of weak spin-2 gravitational field around the Minkowski spacetime on the massless

Dirac fermion. We first introduce a toy model for the parity-violating spin-2 gravitational

background yielding RR̃ ̸= 0, which is a simple extension of the U(1) gauge field configura-

6One may seek the origin of such a similarity of Bianchi type-IX to the SU(2) gauge field example for

the SU(2) algebra of momentum globally defined over the closed sphere. Indeed, in the both cases, the

eigenstates (or the solution to the Dirac equation) are constructed similarly to the addition of angular

momentum. The similar bias is, however, also observed in the case of Bianchi type-II spacetime [35], where

the momentum is no longer associated with the SU(2) algebra.
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tion discussed in Sec. 3.1 and would be suitable for examining the gravitational leptogenesis.

This system is, however, hard to solve analytically in contrast to the U(1) case. Therefore,

in order to understand intuitively, we tackle this system by relying on the analogy between

the classical electromagnetism and weak gravity. We find that spin-2 nature of the gravity

seems to make the level crossing less efficient than U(1) case.

5.1 Similarity to electromagnetism

5.1.1 Dirac equation under the weak gravitational field

We first investigate the field equation for the massless Dirac fermion in the weak gravita-

tional field background, where we find an “Abelian”-like nature, or that is similar to the

helical U(1) gauge fields. Here we consider the metric perturbation around the Minkowski

spacetime: gµν = ηµν + hµν . Throughout this section, we impose the TT gauge condition

to pick up the spin-2 contribution 7. The massless Dirac equation in the curved spacetime

is given as [57, 58]

iγaeµaDµψ = 0, Dµ ≡ ∂µ − i

4
ωµabσ

ab, (5.1)

where eµa is the tetrad that satisfies gµν = eµaeνbη
ab, ω ab

µ = e a
ν Γν

σµe
σb + e a

ν ∂µe
νb (Γν

σµ

is the Christoffel symbol) is the spin connection, and σab = (i/2)[γa, γb]. The tetrad and

the spin connections around the Minkowski spacetime are expanded in terms of hij (see

Eq. (2.2)) as

eia ≃ δia −
1

2
ηikhka +O(h2), ωµab =

1

2
(∂bhµa − ∂ahµb), (5.2)

such that the Dirac equation can be expanded as{
i∂t ± i

(
δji −

1

2
hji

)
σi∂j

}
ψR/L(t,x) = 0. (5.3)

Note that from the TT gauge condition we find ω0ab = 0 and γiωiabσ
ab = γiΓi = 0 at the

linear order in hij , and hence hij in Eq. (5.3) comes solely from the tetrad in Eq.(5.1). This

is quite in contrast to the small GW amplitude limit β+ ≪ 1 of Bianchi type-IX case where

γiΓi ̸= 0 at the leading order of β+ (or hij) and the energy bias still appears (even for

β+ = 0). This is because the Bianchi type-IX spacetime is the deformation of an already-

curved spacetime (more specifically, a closed sphere), where the spin connection yields

non-vanishing γiΓi. While this bias term is important for the particle production (as well

as the emergence of the vacuum contribution) in the Bianchi type-IX case, the gravitational

leptogenesis occurs in the system with the parity-violating GWs around the conformally flat

spacetime. Therefore, to investigate how the particle production takes place in gravitational

leptogenesis, we cannot use the result in the Bianchi type-IX spacetime directly and we

need to examine the Dirac equation Eq. (5.3). Note that in the gravitational leptogenesis

introduced in Sec. 2, the lepton asymmetry is generated at the level of linear perturbation.

7We can also consider, for example, the spin-1 contribution, which may be related to the chiral vortical

effect [54–56], and perform a similar discussion, but it is not the physical degree of freedom that plays the

role in the gravitational leptogenesis.
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By using the plane wave ansatz formally,

ψR/L(t,x) = eip·xψ̃R/L(t,x;p), (5.4)

where ψ̃R/L(t,x;p) does not depend explicitly on x, the equation of motion becomes{
i∂t ∓ (σ · p)± 1

2
hijσipj

}
ψ̃R/L(t,x;p) = 0. (5.5)

Note that pi is the “momentum” associated with the background flat spacetime ηµν , but not

the quantity defined for the full spacetime gµν(= ηµν +hµν). Indeed, in the case of Bianchi

type-IX spacetime preserving homogeneity, we can take the invariant basis on which hij
becomes constant and easily find the momentum globally defined. As usually done in

the study of cosmological perturbation theory, we use this flat spacetime momentum and

regard the last term as an interaction between the “external field” hij and the Dirac field.

One can formally identify the external hij field with a U(1) gauge field as

Aj ≡ (1/2)hijpi, (5.6)

which the fermion with momentum pi feels. Here Aj satisfies the Lorentz gauge condition

due to the TT gauge condition and hereafter we shall refer to it as geometric gauge field.

5.1.2 A toy field configuration of parity-violating weak spin-2 field

Next we construct a parity-violating configuration of weak gravitational fields, which would

be suitable to investigate the situation of our interest. The construction can be done in a

similar fashion to the helical U(1) gauge fields studied in Sec. 3.1, by making an analogy

to the classical electromagnetism and weak gravity.

Under the TT gauge condition, we can linearize the Riemann curvature tensor as

Rτ
σµν ≃ ∂µΓ

τ
νσ − ∂νΓ

τ
µσ ≃ ∂µ

{
1

2
(∂σh

τ
ν − ∂τhνσ)

}
− ∂ν

{
1

2

(
∂σh

τ
µ − ∂τhµσ

)}
. (5.7)

With the naive identification of Γτ
µσ with a gauge field, one can see the similar structure

between the linearized Riemann curvature tensor and the field strength of Abelian gauge

field (3.2). This similarity in the structure of electromagnetism and gravity has been widely

investigated in the field of “gravito-electromagnetism” (GEM). The interested readers can

refer to, for example, Ref. [40] as a comprehensive review of GEM.

This correspondence motivates us to define the “electric-like” component and the

“magnetic-like” component of the curvature tensor as follows:

Eiστ ≡ Ri0στ ≃ 1

2

(
∂σḣiτ − ∂τ ḣiσ

)
, (5.8)

Bi
στ ≡ 1

2

ϵ0ijk√
−g

Rjkστ ≃ 1

2
ϵijk∂j (∂τhkσ − ∂σhkτ ) . (5.9)

With these components, we can express the Chern-Pontryagin density as

RR̃ = −4EiστB
iστ , (5.10)
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which is a similar expression with the decomposition of FF̃ in Eq. (3.6). Under the TT

gauge condition, Eij0 and Eijk, Bij0 and Bijk generically become non-vanishing.

It is known that for GWs, RR̃ quantifies the asymmetry between the left and right

circular polarizations. Particularly, it measures the growth in deviation from the on-shell

solution for each polarization as ∂t

(
|ḣR/L(t)|2 − k2|hR/L(t)|2

)
+O(h4), where hR/L(t) ab-

stractly represents the amplitude of the mode with wave number k. This means that when

|ḣR/L(t)|2 has non-trivial evolution in the left-right asymmetric manner, RR̃ becomes non-

vanishing. One can easily check that ∂t|ḣR/L(t)|2 contribution arises from Eij0B
ij0 in RR̃.

Indeed, in the gravitational leptogenesis, the lepton asymmetry is evaluated by picking up

from this lowest order contribution of hR/L(t) in RR̃. Therefore, hereafter we shall inves-

tigate the configuration of hij in the linear perturbation with which both of Eij0 and Bij0

are non-vanishing.

In a similar way to the helical U(1) gauge field studied in Sec. 3.1, we can construct

a parity-violating gravitational field configuration where both of Eij0 and Bij0 are non-

vanishing as follows. In terms of hij , Eij0 and Bij0 are expressed as8

Eij0 = −1

2
ḧij , (5.11)

Bi
j0 =

1

2
ϵilm∂lḣmj . (5.12)

From these expressions, one can see that formally, Aij ≡ (1/2)ḣij is quite similar to the

vector potential Aµ. In the gravitational leptogenesis, GWs distribute as stochastic vari-

ables with a certain coherence length, in a similar way to the electric and magnetic fields in

the U(1) case studied in Ref. [11]. Following the approach there, it would be appropriate

to study the system with a constant electric and magnetic-like component of the curvature

tensors, Eij0 and Bij0. By comparing to the configuration Aµ = (0, 0, By,Et) resulting in

a constant FF̃ = 4EB (see Eq. (3.7)), we find that

Aij =

 Et −Bz 0

−Bz −Et 0

0 0 0

 , (5.13)

where we shall restrict ourselves to small intervals of t and z for perturbativity. The

configuration (5.13) resembles GW running in the z direction and gives a constant and

parallel E and B tensor in x-y direction as B110 = −B220 = B and E110 = −E220 = −E
at the first order in the perturbation. This leads to RR̃ = 16EB, which could be the

counterpart of the homogeneous and aligned electromagnetic field, and we expect that

the chirality should be generated according to the anomaly equation. Note that Eijk

has non-vanishing component such as E123 = B in the present case but it should not

contribute to the chiral anomaly since Bijk = 0. In the next subsection, we discuss how

8These tensors are nothing but the gravito-electromagnetic tidal tensors, Eij ≡ Riαjβu
αuβ and Bij ≡

(ϵ ρσ
αi /2

√
−g)Rρσjβu

αuβ , for the static observer uα = δα0 [41]. Note that the correspondence between

the gravitational fields described with gravito-electromagnetic tidal tensors and the electromagnetic fields

becomes clearer when thinking of geodesic deviation caused by the latter (see Appendix. A of Ref. [41]).
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this geometric U(1) gauge field with the metric (5.13) affects the fermion field through the

Dirac equation (5.5).

5.2 Application of U(1) gauge physics to the weak spin-2 gravitational field

Now we try to examine the dynamics of fermions on the spacetime with the metric (5.13).

The explicit form of the geometric gauge field (5.6) for a fermion with momentum pi can

be given as

Ax =
1

2
Et2px −Btzpy, Ay = −1

2
Et2py −Btzpx, Az = 0. (5.14)

Note that the spacetime dependence of Ax/y is the second order to yield non-vanishing RR̃,

which has one additional derivative compared to FF̃ . This is originated from the difference

in the order of derivatives between the Riemann tensor and gauge field strength tensor.

Eq. (5.6) results in the following geometric “electric and magnetic fields”, Ei ≡ −∂tAi,

Bi = ϵijk∂jAk, as
9

Ex = −Etpx +Bzpy, Ey = Etpy +Bzpx, Ez = 0,

Bx = Btpx, By = −Btpy Bz = 0.
(5.15)

From the Dirac equation (5.2) with the identification (5.6), a fermion particle with mo-

mentum pi would feel the electric force as F = E = (−Etpx −Bzpy, Etpy −Bzpx, 0) and

the Lorentz force with “magnetic” field B = (Btpx,−Btpy, 0) (see also Ref. [35]).

Nevertheless, one can clearly recognize the difference from the homogeneous and con-

stant electric and magnetic field for the U(1) gauge theory discussed in Sec. 3.1. For

example, the contribution proportional B appears in Ei, which is related to the fact that

there are non-vanishing spatial component in Eijk such as E123 = B. This component of

electric field is, however, orthogonal to the magnetic field, and the anomaly equation indi-

cates that it does not contribute to chirality generation. Hence, as for the electric field, we

will focus on the contribution that is proportional to E for a while. Much more important

difference is that the magnitude of “electric and magnetic” fields depends on the time,

space and momentum of the fermions, and they are no longer constant. Consequently, the

direction of the “electric and magnetic” fields is not fixed but lies somewhere in the x-y

plane. Note that the time dependence of our “electric and magnetic” fields, which mimics

that of the polarized GWs, satisfies the first condition for the vacuum contribution being

non-vanishing. That is, the gravitational field is non-equivalent between the initial and

final configurations up to the gauge (or general coordinate) transformation.

One may expect that the Dirac equation with the gravitational background (5.14) could

be solved in a similar way to the case of U(1) gauge field in Sec. 3.1. In fact, this is not

possible due to the qualitative difference discussed above. While the U(1) gauge field there

also admits the time and space dependence, its electric and magnetic fields are constant

and aligned. Consequently, we can fortunately find the elegant analytic solution with the

9This “electric and magnetic fields” are related to but different from the gravito-electromagnetic tidal

tensors introduced in the previous subsection.
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help of globally defined Landau levels, which are physically meaningful quantities. In the

present case, however, our geometric electric and magnetic fields have the complicated

dependence on spacetime and momentum. Therefore, despite the simple expression of RR̃

in Eq. (5.10), we do not have globally defined Landau levels. This, reflecting the essential

difference between FF̃ ∝ EB and RR̃ ∝ EB, is the one of the reasons for the difficulty in

obtaining the analytic solution.

Instead, we try to read off the physics with the analogy between weak gravitational

field and electromagnetism, which provides us an intuitive understanding of the chirality

generation in this system. Here we apply what is understood for the case of U(1) gauge

fields (discussed in Sec. 3.1) to our present system. Namely, we speculate the kinematics of

fermion field when we first add only the “magnetic” field and then turn on the “electric”

field for a finite time. In the case of U(1) gauge fields, Landau levels appeared along the

direction of the magnetic field, where the LLL connects smoothly the negative and positive

energy modes. Once we turn on the electric field in parallel to the magnetic field, the states

in the LLL are accelerated to lead chirality generation. We could imagine that Landau

levels locally appear as if the gravitational “magnetic” field is constant and examine if the

gravitational “electric” field can accelerate the fermion in a state at the LLL to cross from

the negative to positive energy states.

!!

!"

!! = −!$%!
&! = &$%!

&" = −&$%"
!" = !$%"

Figure 4. Configuration of the geometric electric and magnetic field (with z = 0) in the momentum

space. One can see the configuration becomes the same after 180◦ rotation due to the spin-2 nature.

In Fig. 4, the configuration of “gravitational electric and magnetic field” of our met-

ric (5.13) is shown in the momentum space (in the px-py plane). Here the spin-2 nature is

manifest such that the configuration becomes the same after 180◦ rotation. This nature,

however, results in the crucial difference from the case of U(1) gauge fields. Let us focus

on the px axis at t ̸= 0 and z = 0 where the geometric electric field and magnetic field are

parallel to those axis,

Bx = Btpx, Ex = −Etpx, By = Bz = Ey = Ez = 0. (5.16)
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Figure 5. Schematic description that even if the LLL-like dispersion exists, positive mode and

negative mode are not connected.

In this axis, a simpler “kinematics” is expected. Since only the LLL participates the physics

of the chiral anomaly in the U(1) case, the states we are interested in here would be those

with spin aligned with the magnetic fields. On this axis, the magnetic field continues

to point in the opposite direction for px > 0 and px < 0, namely, sgn(Bx(px > 0)) =

−sgn(Bx(px < 0)). Therefore one may expect the states similar to the LLL appear in a

directionally dependent way. By naively applying the dispersion of LLLs (with the electric

field being turned off), we anticipate the following LLL-like dispersion for these regions:

ωR(px ̸= 0, py = 0) ≃ |px|,
ωL(px ̸= 0, py = 0) ≃ −|px|,

(5.17)

where the |px| dependence arises because of the flip of the geometric magnetic field direction

at the origin of momentum space due to the spin-2 nature. Consequently, we find the LLL-

like dispersion does not smoothly connect the negative and positive energy modes. Similar

discussion holds for the py axis. In Fig. 5, the dispersion (5.17) is schematically shown.

Note that the direction of magnetic field and therefore the dispersion (5.17) does not change

in time, but the Landau degeneracy per unit area, |B|/2π, should change with time and

momentum according to Eq. (5.15).
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When the electric field is applied to the system for a certain time duration, the LLL

allows the excitation continuously to occur in the case of U(1). As shown in Fig. 5, however,

this spin-2 configuration does not seem to allow continuous level crossing on each axis in

the same way as the U(1) example. That is, even if the LLL-like dispersion appears, it can

not connect positive and negative frequency mode because of the |px/y| dependence, and
hence it is unlikely that particle production occurs even when we turn on the “electric”

field. Although the geometric electric and magnetic fields are always aligned, absence of

globally defined Landau-level in the present case, which is originated from the anisotropy

and homogeneity, results in this qualitative difference. Moreover, at pi = 0 where ωR/L = 0

and the level crossing could occur, Ei = 0 and hence no acceleration occurs. Having in

mind that hij interacts with fermions analogously to the U(1) gauge field, we expect that

the excitation cannot be the principal source for the fermion chirality.

Since we have non-vanishing RR̃, the anomaly equation should be totally satisfied

by taking into account the vacuum contribution. Indeed, the second condition for the

appearance of the vacuum contribution, namely, the asymmetric structure in the dispersion

relation between the positive and negative energy modes, seems to be satisfied with non-

zero B independently for px and py axis. Although the contributions from the px and py axis

looks to cancel each other for vanishing E, non-vanishing E causes a bias in the opposite

direction depending on the chirality (see Fig. 5), such that the cancellation is broken

down. Therefore, we expect that an asymmetry would be accumulated as the vacuum

contribution. Note that we have already seen that the first condition for the appearance

of the vacuum contribution (gauge inequivalence of initial and final field configuration)

is satisfied. Therefore, although we do not confirm that the anomaly equation is really

satisfied by taking into account the vacuum contribution with a concrete calculation, we

have the suggestion that all (or at least most of) the chiral charge would be accumulated

in the vacuum. Note that we have a same situation in the Bianchi type-IX spacetime for

k < 4 discussed in Sec. 4.

Although the argument in the above is merely a qualitative discussion based on the

kinematic analogy, we have obtained the suggestion for the inefficiency of the particle

production through the level crossing in the case of parity-violating weak gravitational

background with the field configuration (5.13). This behavior is totally different from the

homogeneous U(1) case where the Landau level is globally defined and the electric field ex-

cites the field with the homogeneous acceleration. We have also seen that the case of Bianchi

type-IX spacetime causes a weaker chiral particle creation through the level crossing along

with a dominant vacuum contribution, but it is qualitatively different from our system.

In that case, in addition to having non-Abelian-like interaction, which causes a bias term

in the dispersion relation from the spin connection, the field configuration preserves the

homogeneity of the system. We believe that this homogeneity leads to the less efficient but

non-negligible amount of chiral particle production through the level crossing. In contrast,

the spacetime with the geometric electric and magnetic field we considered in this section is

highly inhomogeneous and anisotropic, which would be the reason of the inefficiency of the

particle production. We emphasize that although more realistic field configuration must

be considered to conclude, the features that lead to the inefficient level-crossing should be
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the same for the chiral GWs studied in the context of gravitational leptogenesis, which is

nothing but the spin-2 perturbations around the conformally flat background. Therefore,

we conjecture that the fermion chirality generated in the gravitational leptogenesis scenario

is likely to be accumulated mainly in the vacuum.

We should admit that the above discussion is based on the naive application of the

well-studied cases of gauge field, since we were not able to solve the field equation ana-

lytically. For example, we have not seriously considered the region where px · py ̸= 0 and

the component of electric field that depends on Bzpx/y. As we mentioned above, however,

the latter contribution is hardly expected to be the essential contribution for generating

chirality, because it is always orthogonal to the magnetic field (E ·B = 0). We also expect

that chiral particle production may not efficiently take place in the region px ·py ̸= 0 as the

geometric magnetic field does not align with the momentum, resulting in low selectivity of

chirality. One may think the field configuration we consider is not very good to examine the

particle production in the gravitational leptogenesis, but we believe that it is the simplest

field configuration that picks up its essential feature.

We would therefore expect the above inferences to be somewhat on target, but unfor-

tunately they remain inconclusive yet. All these expectations could be clarified when, for

example, the system is numerically solved. Before concluding, for our future reference, let

us summarize the practical difficulties to work on the field equation of this system and the

main differences from the solvable case of U(1) gauge fields.

• Field configuration of hij with RR̃ ∝ EB results in the equation of motion where

two directions of momentum are involved (x/y in the above case).

• Since the order of derivative in RR̃ is different from that in FF̃ (second-order for

the former while first-order for the latter), the geometric “electric” and “magnetic”

fields in Eq.(5.15) have explicit space time dependence.

• The interaction between graviton and fermion non-trivially depends on the “momen-

tum” of fermion field. This makes it difficult to solve the Dirac equation with the

usual mode expansion of the fermion field if the globally defined momentum is absent.

5.3 Implication to the gravitational leptogenesis

Finally, let us comment on the feasibility of gravitational leptogenesis scenario in the light

of our discussion in the above. As discussed in Sec. 2, chiral charge carried by the left-

handed neutrinos, which is generated under chiral GWs during inflation, provides non-zero

lepton number in the early universe. If sufficiently large lepton number is produced and

converted into the baryon number, the observed baryon asymmetry could be explained by

this anomalous contribution. As we have seen, however, it seems difficult for the parity-

violating spin-2 gravitational field (including GWs) around the flat FLRW universe to

cause level-crossing. Therefore, we have conjectured that the lepton number generated in

this scenario (Eq. (2.4)) may almost coincide with the eta invariant and accumulate in the

vacuum, which does not count the number of left-handed neutrinos as excited states.
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If this is the case, one may wonder whether the transport relation (2.5) holds for the

vacuum contribution. The relation (2.5) is derived under the framework of kinetic theory,

which deals with the non-perturbative electroweak sphaleron process as well as the many

body scattering in thermalized system. Therefore, it is questionable whether the lepton

number accumulated in the vacuum can be converted into the baryon number in the thermal

plasma according to Eq. (2.5) and contribute to the thermal history of the Universe such

as the Big Bang Nucleosynthesis. If the lepton number accumulated in the vacuum, which

may account for the substantial amount of net lepton number (2.4), completely decouples

from this transport, resultant baryon-to-entropy ratio in this scenario could be significantly

smaller than expected. Nevertheless, we cannot rule out the possibility that the “lepton-

charged” vacuum induces a bias for the sphaleron process to convert the vacuum lepton

charge to the baryon number in the plasma. We leave the investigation whether the vacuum

contribution becomes relevant for the baryon number conversion to future work.

6 Summary and Discussion

In this paper, we investigated the chirality production of fermion under parity-violating

spin-2 gravitational fields based on the existing studies on the cases with the gauge fields

(e.g., Refs. [11, 16, 19]). Chirality of fermion generally consists of the contribution from

excitation and that accumulated in vacuum [17, 18]. The distinction of these contributions,

however, was never addressed in the context of gravitational leptogenesis [24], where lepton

number is produced by chiral GWs during inflation according to the gravitational chiral

anomaly [20–23]. On the other hand, in addition to the old study on the Bianchi type-IX

spacetime [36, 37], the dominance of vacuum contribution was recently reported for the

Bianchi type-II spacetime [35], both of which study parity-violating deformation of metric

in the already-curved background. In this situation, it is worth investigating which contri-

bution becomes dominant when the parity-violating spin-2 gravitational field is imposed

around flat Minkowski spacetime. Such a clarification may help refining the prediction in

the scenarios of gravitational leptogenesis.

We first made a review on the chirality generation under the gauge fields. While

the smooth excitation in the LLL accounts for all the fermion chirality in the U(1) case,

vacuum contribution known as eta invariant becomes important in the SU(2) case. The

most distinct difference is that non-Abelian “magnetic field” causes overall bias in the

dispersion similarly to the chemical potential, which makes the energy spectrum highly

asymmetric, leading to the dominance of vacuum contribution in the chiral charge. As

discussed in Sec. 4, this result is in fact helpful in understanding the generation of fermion

chirality in the Bianchi type-IX spacetime, since it shares the similar characteristics with

the homogeneous SU(2) gauge field case. To the best of our knowledge, this is the first

discussion of this system from such a perspective, and the section can be considered as a

comprehensive review, including an explicit decomposition into closed spheres and chiral

GWs and confirmation of the APS index theorem. On the other hand, in both SU(2) and

Bianchi type-IX cases, excited contribution in chirality is small but always non-negligible
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even in the strong external field limit. We conjecture that this behavior is provided by the

homogeneity of the external field as it seems to allow continuous excitation.

In Sec. 5, we introduced a specific configuration of metric perturbation around the

flat spacetime, which has the parity-violating spin-2 polarization and yields non-vanishing

topological charge of the spacetime similarly to the aligned constant electric and magnetic

field. With the classical analogy between the electromagnetism and weak gravitational

field, we anticipate the physics of Landau levels in U(1) gauge field can be applied to the

weak spin-2 gravitational system. The configuration in fact resembles the amplitude growth

of chiral GWs, so it is appropriate for our purpose to discuss the chirality generation in

the context of gravitational leptogenesis. However, as the order of differentiation in the

curvature tensor differs, the metric perturbation admits non-trivial spacetime dependence

in the Dirac equation, which acts as an anisotropic and inhomogeneous gravitational electric

and magnetic field. As a result, it becomes difficult to obtain analytical solution and

physical understanding of chirality generation. Thus we tried to investigate the system

with brave approximations. That is, we assume that the system is described by the Landau

levels induced by the geometric “magnetic” fields along which the fermions in the levels

are accelerated by the geometric “electric” fields, in a similar way to the case of U(1)

gauge field. From this approach, we find that the spin-2 nature of the gravitational field

seems to prevent the efficient excitation. As the geometrical “magnetic field” changes the

direction at the origin of the momentum space, smooth excitation could not take place in

the “possible” lowest Landau level-like dispersion. If this investigation is correct for the

gravitational leptogenesis, it may lead to less efficiency of the baryon number generation

in the sceneario, since the charge transfer through the electroweak sphalerons to baryon

charge is non-trivial for the lepton charge accumulated in the vacuum.

There are several directions in our future work. One direction is, of course, the numeri-

cal approach to the field equations we have formulated. Considering different configurations

of the gravitational field than ours would also deepen the understanding of the effects of

parity-violating gravitational fields. Moreover, we can think of alternative formulation of

the system such as the chiral kinetic equation in curved spacetime [59, 60]. This theory

naturally involves the extension of the momentum space and could be useful for our case

where the momentum is regarded as the local quantity. If exist, it may be worth investi-

gating whether the vacuum contribution of the induced energy momentum tensor can be

renormalized or not similarly to the study of SU(2) gauge field case [61]. Apart from the

gravity, it is also worth addressing as a general question how chiral charges accumulated

in a vacuum contribute to the transport equation as we mentioned in the last part.
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