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We expand on the methodology outlined in previous work that predicted the width of an antineu-
trino wave packet emerging from a beta-decaying nucleus, to the case of a neutrino from electron
capture decay. Based on this result, we also respond to a recent Beryllium Electron capture in Super-
conducting Tunnel junctions Experiment (BeEST) paper which utilizes this previous work in forming
their measurement of the neutrino wave packet width. According to our interpretation, the direct
limit on the neutrino wave packet width from electron capture decay (e− + 7Be →

7Li + νe) using
the BeEST analysis should map to σν,x > 6.2 pm while our theoretical prediction is σν,x ∼ 2.7 nm.

I. INTRODUCTION

The coherent width of a neutrino wave packet is a quantum mechanical quantity that is expected to impact neutrino
oscillation phenomenology at long baselines [3–9], through coherence loss between interfering mass eigenstates. This
width is an emergent property, that is predictable from first principles [1, 10], with dependencies on the neutrino
energy, initial flavor and production process. A recent paper from the BeEST collaboration [2] aims to set direct
limits on the size of the neutrino wave packet emerging from electron capture via precision spectroscopy of the
entangled recoil. The extremely precise energy resolution of superconducting tunnel junctions make them the ideal
sensors for this type of measurement [11, 12], and since this is the first reported measurement of this kind, it represents
an exciting advance in this area.
While it is difficult to imagine neutrino wave packet effects impacting oscillation observables in near-term neutrino

experiments [9, 10], the prospect of sensitivity to the neutrino wave packet width based on measurements of the
recoiling daughter nucleus, as in BeEST, motivates predictions for this quantity. Our previous work [1] presents an
explicit calculation of the wave packet width of an antineutrino emerging from nuclear beta decay. We emphasize
in that paper the role of the initial state delocalization scale in determining the wave packet width. Here, we
apply this methodology to the case of electron capture. At present, the BeEST measurement extraction relies on
misinterpretations of our previous work [1] for both calculations used to derive a neutrino coherent width limit
based on the energy of the recoiling daughter nucleus in e− + 7Be → 7Li + νe decay, and comparison between their
measurement and our “prediction” of the neutrino width. This paper aims to point out the discrepancies we observe,
and to provide improved estimates.

II. PREDICTED WIDTH OF AN ELECTRON CAPTURE NEUTRINO

The initial states in beta decay and electron capture are in fact quite different: in beta decay, a single nucleon that
is localized within a nucleus transforms via weak decay into a final state consisting of an entangled system of electron,
antineutrino, and nuclear recoil. In electron capture, two initial particles, atomic electron and parent nucleus, interact
to yield a two particle final state of neutrino and daughter nucleus. There is a relative momentum uncertainty between
the two initial-state particles in electron capture that corresponds to a distance uncertainty on atomic scales. Our
prescription can be applied to electron capture, but it must account for both initial state particles and conserve energy
and momentum in the process.
As a brief summary, our proposed prescription for calculating neutrino wave packet widths is as follows:

1. Write down the initial state, accounting for as many entangled microscopic degrees of freedom as desired. If the
recipe is followed sufficiently carefully, there will be no ambiguity about which degrees of freedom / distance
scales ultimately act to determine the neutrino wave packet width. Any extra recursive delocalization ultimately
disappears when forming the reduced density matrix;

2. Conserve energy and momentum in the decay to form the final state density matrix for the full entangled system;

3. Trace out everything that is not the neutrino, to form the neutrino reduced density matrix. This will account
for the localizing influence of everything except the neutrino that is entangled with it;

4. The full neutrino oscillation phenomenology can be obtained from the neutrino reduced density matrix. The
quantity playing the role of the coherent wave packet width in this object is the off-diagonal width of the
position-space density matrix.
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We now proceed to follow this recipe for electron capture.

We will consider an initial state comprised of an electron and a nucleus, with momentum-space wave function

Φi =

∫

d3P

∫

d3p Ψ(~P )ψ(~p)|N(~pN )〉 � |e(~pe)〉. (1)

Here the coordinates chosen are the sum and difference of the momenta,

p = pe/ν − pN , P = pe/ν + pN . (2)

A note is in order about this coordinate choice. For the initial state, an alternative coordinate choice would be the
center-of-mass and reduced-mass coordinates

q = µ

(

pe
me

− pN
mN

)

, Q = pe + pN . (3)

This coordinate system has the convenient feature that variable q satisfies the Schrödinger equation with mass µ,
and it is the one that is typically used to find the electron orbitals of the atom in the center of mass frame. On the
other hand, since in the final state the neutrino is relativistic, these coordinates eventually become a burden. It is
important to observe, however, that in the center of mass frame where pe = −pN , there is an equivalence q = p and
Q = P . As such, we can assert that the center of mass wave function φ(p) will be well approximated by φ(q), as
long as we restrict our calculations to frames where the neutrino carries far more of the energy than the nucleus. The
frames we are interested in will always satisfy this requirement.
The electron capture process is expressed in terms of initial Ni and final Nf nuclei as

Ni + e→ Nf + νe. (4)

For a sufficiently long-lived nucleus, we can assume energy and momentum to be conserved in the decay, for
practical purposes. For a sufficiently short lifetime, an intrinsic energy uncertainty is also required by the energy-time
uncertainty principle, but this will be a small contribution for the 7Be system. Thus we can schematically consider
this decay as being mediated by the following quantum operator, which conserves momentum in the decay, and also
that energy will be conserved in the decay amplitude,

O =

∫

d3pid
3ped

3pfd
3pν a

pi

Ni
ape
e a

pf †
Nf
apν†
ν δ3(pi + pe − pf − pν). (5)

Operator 5 conserves the center of mass momentum of the whole system, but changes the relative momentum between
the lepton and nucleus. Thus the final state system wave function Φf must be expressible as

Φf =

∫

d3P

∫

d3p Ψ(~P )
[

φ(~p)|Nf (~pNf
)〉 � |ν(~pν)〉

]

. (6)

Where Ψ is the same as it was before (the total delocalization wave function of the center of mass in momentum
space, which we assume to be a Gaussian with width σP = 1/2σX) and φ is a new center of mass wave function that
is derivable from ψ through kinematic considerations.
For capture from the K shell the relative momentum wave function is spherically symmetric ψ(~p) = ψ(p). Assuming

nothing in the initial state to be spin-polarized, the final state will also be spherically symmetric in the center of mass
frame φ(~p) = φ(p). Since the nuclei are both non-relativistic, energy conservation requires that

(

mNi
+

p2Ni

2mNi

)

+
√

p2e +m2
e =

(

mNf
+

p2Nf

2mNf

)

+ |pν | . (7)

If we consider this expression in the center of mass frame then we may write

pe = −pNi
= pi, pν = −pNf

= pf , (8)

p2i

(

1

2me
+

1

2mNi

)

+M =
p2f

2mNf

+ |pf |. (9)
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Here M = mNf
− mNi

− me. The nucleus is much heavier than both the electron mass and the relevant kinetic
energies in the problem, so we can to a reasonable degree of approximation neglect the 1/mN terms, to give the
following relation between initial and final center of mass momenta,

|pf | =M +
p2i
2me

. (10)

This approximation is equivalent to the statement that in the center of mass frame where momentum in the decay
is shared equally, the electron or neutrino must carry essentially all of the kinetic energy in the initial or final state,
respectively. A more accurate relation can be obtained using the quadratic solution to Eq. 9 and following the steps
below, adding complexity but with negligible impact on the final answer.
We consider here only the K shell electron capture, so the relevant initial wave function is approximately the 1S

electron wave function with atomic number Z = 4,

ψ(~x) =
Z3/2

a
3/2
0

1√
π
e−Zr/a0 , (11)

where a0 is the Bohr radius. To move into momentum space we Fourier transform in 3D:

ψ(~p) =

∫

d3xei~p·~xψ(~x) =

∫

d cos θ dφ drr2ei~p·~xψ(~x). (12)

Choosing coordinates for the ~x integral such that ~p points along θ = 0,

ψ(~p) = 2π

∫

d cos θ drr2eipr cos θψ(r) (13)

=
8√
π

Z3/2

a
3/2
0

a30Z

(a20p
2 + Z2)

2
≡ A

(

1 +
p2i

(Z/a0)
2

)−2

. (14)

We have collected several constants into a normalization factor A that we can restore later if needed. To obtain φ
in terms of ψ, consider that each initial momentum magnitude pi maps to a unique final momentum magnitude pf .
Thus their wave function amplitudes should also map, as

φ(pf ) = f [ψ(pi [pf ]), pf ]. (15)

Getting the precise shape for this final state wave function depends on whether we consider the 1D or 3D problem,
but in order to satisfy our present purposes it suffices to use an example wave function with the correct mean and
width. We will thus use our trusty workhorse, the Gaussian wave packet,

φ(pf ) = B exp

[

− (p− prel)
2

4σ2
rel

]

, (16)

where prel and σrel represent the relative momentum and width, respectively. We estimate prel and σrel by noting that
peak of Eq. 14 occurs at pmean

i = 0 with its half width at half maximum (HWHM) at (pHWHM
i )2 =

(√
2− 1

)

(Z/a0)
2.

This suggests we might as a reasonable estimate take φ to have peak and HWHM at the kinematically related points
at the corresponding neutrino momenta (with an extra factor of 1

2
to account for the fact the kinematically related

peak is one sided),

prel =M, σrel ∼
1

2
√
2ln2

[

M +
p2i
2me

]pHWHM
i

0

=
ζZ2

2a20me
. (17)

With ζ =
√
2−1

2
√
2 ln 2

∼ 0.18. To find the quantity representing neutrino wave-packet width using the methodology of

Ref. [1], we need to calculate the off-diagonal width of the reduced neutrino density matrix. This full-system density
matrix is defined as

ρ = |Φf 〉〈Φf |. (18)

The neutrino reduced density matrix, from which all oscillation phenomenology can be calculated, is

ρν =

∫

dpN 〈pN |ρ|pN 〉. (19)
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Writing this out with all its ingredients, where subscripts 1,2 refer to the variables that appear on the left and right
of the density matrix, and |ν(p)〉 is a neutrino state vector with momentum p,

ρν =

∫

d3P1Ψ̃( ~P1)

[
∫

d3p1 ψ̃f (~p1)

]
∫

d3P2Ψ̃(~P2)

[
∫

d3p2 ψ̃f (~p2)

]

δ(pN1 − pN2) |ν(~pν1)〉〈ν(~pν2)| (20)

We will carry all the Gaussian normalization factors forward in an arbitrary constant N , which will cancel when
we calculate the quantities of interest. We can easily take care of the pN delta function,

= N
∫

d3pν1d
3pν2d

3pN exp

[

− (pν1 + pN)2

4σ2
P

− (pν2 + pN )2

4σ2
P

− (pν1 − pN − prel)
2

4σ2
rel

− (pν2 − pN − prel)
2

4σ2
rel

]

|ν(~pν1)〉〈ν(~pν2)|.

(21)
For our present purposes it suffices to consider the 1D problem, to avoid needing to do all these integrals in 3D, so
we proceed as

ρ1Dν = N
∫

dpν1dpν2dpN exp

[

− (pν1 + pN )
2
+ (pν2 + pN )

2

4σ2
P

− (pν1 − pN − prel)
2
+ (pν2 − pN − prel)

2

4σ2
rel

]

|ν(~pν1)〉〈ν(~pν2)|.

(22)
We can take care of the second nuclear momentum integral at this point,

= N
∫

dpν1dpν2 exp

[

−1

8

(

1

σ2
P

+
1

σ2
rel

)

(pν1 − pν2)
2 − (pν1 + pν2 − prel)

2

2 (σ2
P + σ2

rel)

]

|ν(~pν1)〉〈ν(~pν2)|. (23)

To find the position-space density matrix, project Eq. 23 onto position basis states left and right,

ρν(y1, y2) = N
∫

dpν1dpν2 exp

[

−1

8

(

1

σ2
P

+
1

σ2
rel

)

(pν1 − pν2)
2 − (pν1 + pν2 − prel)

2

2 (σ2
P + σ2

rel)
+ ipν1y1 − pν2y2

]

. (24)

Switching coordinates to p± = pν1 ± pν2 and y± = y1 ± y2 (including a factor of 1

2
for the Jacobian of the integral

transformation),

ρν(y1, y2) = N 1

2

∫

dp−dp+ exp

[

−1

8

(

1

σ2
P

+
1

σ2
rel

)

p2− − (p+ − prel)
2

2 (σ2
P + σ2

rel)
+ i (p+y− + p−y+)

]

. (25)

The two p integrals are now just Gaussian Fourier transforms,

ρν(y1, y2) = N 1

2
exp

[

− 1

2∆2
D

(y1 + y2)
2 − 1

8∆2
OD

(y1 − y2)
2 − iprel(y1 − y2)

]

, (26)

written here in a form to be comparable with Eq. 16 of Ref. [1]. From this expression we can read off the diagonal
and off-diagonal widths in position space,

∆2
D =

1

4

(

1

σ2
P

+
1

σ2
rel

)

, ∆2
OD =

1

4(σ2
P + σ2

rel)
. (27)

The neutrino wave packet width in this formalism is associated with the value of ∆OD.

σν,x ∼
√

∆OD =
1

2
√

σ2
P + σ2

rel

. (28)

We can consider the behavior of this expression in two limits. If the atom is very spatially localized, uncertainty on
the center of mass coordinate will dominate and σν,x ∼ σX = 1/2σP . If the atom is more delocalized than this, the
neutrino wave function’s size is dictated by the relative momentum scale, and is

σν,x ∼ a20me

ζZ2
∼ 2.7 nm. (29)

Since the solid lattice localizes the center of mass of the atom to scales smaller than an atomic diameter, we expect
that the uncertainty associated with σrel will be the dominant one in the electron capture neutrino production process
at BeEST.
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III. EXTRACTING CONSTRAINTS ON THE NEUTRINO SPATIAL WIDTH FROM BEEST DATA

Along with predicting the outgoing neutrino width following an electron capture decay, a connected issue is the
method by which sensitivity to the width can be derived based on measuring the nuclear recoil energy spectrum.
The authors of Ref. [2] aim to contrast the approaches advocated by different schools of thought on this matter.

We note that the first approach, assigning equal energy width to neutrino and recoil, is one we too would subscribe
to in the case where the energy width were limited by intrinsic line width of the decay. However, since the electron
capture lifetime is 53 days, this would imply an energy width of 10−22 eV. It is well understood that it is not this
width that is encoded in measurement of the recoil system in electron capture. Instead, this quantity is dictated by
homogeneous broadening due to widths associated with de-excitation processes in the daughter atom [13], as well as
inhomogeneous broadening associated with solid state effects in materials [14]. The latter is understood to be the
dominant contribution in the BeEST case [15].
Both the effects of homogeneous broadening due to finite lifetime and inhomogeneous broadening due to the variable

environment of the emitter can be incorporated simply into the present formalism. The energy broadening would
appear as a widening of the δ function in Eq. 5, as was done in Ref. [1]. Due to the very small width expected, this
is not understood to limit the neutrino coherent width in this system. Accounting for the inhomogeneous broadening
due to variability of the initial state amounts to taking a weighted sum of reduced density matrices for neutrinos
produced from emitters in each possible kind of vacancy, as given in Ref. [14]. Since this represents an additional
source of classical uncertainty about the initial state, which is in any case traced out of the final state density matrix
incoherently, it will not impact the prediction for the off-diagonal width that dictates neutrino spatial coherence via
σν,x. While neither of these effects will modify the predictions of this calculation concerning the predicted spatially
coherent width of the neutrino wave packet, they do broaden the electron capture energy peak, implying that it must
be a lower limit that is extracted from BeEST data. Ref. [2] recognizes this clearly, and appropriately derives a lower
limit on the neutrino width.
The approach we advocate for in assigning a neutrino spatial width limit is to compare the expected off-diagonal

width of the neutrino position-space density matrix to the on-diagonal width of the recoil momentum-space density
matrix. The latter quantity is what is encoded in the energy spread measurement that is accessed experimentally by
BeEST. Running through an argument similar to that in the previous section, the momentum space reduced density
matrix for the recoil is

ρN ′(p1, p2) = N exp

[

− 1

2(2∆OD)−2
(p1 + p2)

2 − 1

2(2∆D)−2
(p1 − p2)

2

]

, (30)

from which we can extract that

σN,p′ = σν,p =
1

2σN ′,x
=

1

2σν,x
. (31)

This contradicts Eq. 2 in the BeEST paper, which cites Ref. [1] for its origin,

σν,x
?
=

2m2
N

m2
N −m2

N ′

(

1 +
pNc

√

m2
Nc

4 + p2Nc
2

)−1

σN,x. (32)

The apparent conflict is resolved by noting that Eq. 32 relates the neutrino wave packet width σν,x to the delocalization
scale in an initial state system σN,x in a two body decay scenario. In the BeEST analysis, this formula appears to
have been mis-applied, with σN ′,x on the right instead of σN,x. Even with σN,x on the right, this formula would not
be strictly applicable under the notation we are using in this paper. According to the present notation, σN,x would
denote the width of the initial state nucleus alone, not the full initial state system.
As such, we recommend the following prescription to extract a lower limit on the coherent width of the neutrino

wave packet. First, note from Eq. 31 that σν,p = σN,p′ . Intuitively this can be understood by considering that the
two particles recoil against each other in approximately the center of mass with equal momenta. Then, taking the
measured energy spectrum width of the recoil of σN ′,E =2.9 eV and applying the mapping to momentum width as
described in Ref. [2],

σν,p = σN,p′ =
√

m/2EσN ′,E , (33)

Finally, applying the Heisenberg uncertainty principle for the neutrino wave packet, we find

σν,x = σN ′,x ≥ ~

2σν,p
= 6.2 pm, (34)

with equality in the case where the wave packet is Gaussian. This is the limit on the spatial neutrino wave packet
width from BeEST data to which our prediction above, σν,x ∼ 2.7 nm, should be consistently compared.
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IV. CONCLUSION

We have used a density matrix formalism and careful consideration of the relevant distance scales in the electron
capture decay of 7Be (e− + 7Be → 7Li + νe) to predict the width of the emerging neutrino wavepacket. We find
that the uncertainty associated with the relative momentum between the initial state electron and parent nucleus,
rather than the two-body initial state center of mass coordinate, sets the localization scale relevant for the neutrino
width. Our resulting prediction, σν,x ∼ 2.7 nm, can be compared to recent experimental results from the BeEST
Collaboration (σν,x > 6.2 pm).
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