

Steel Plate Fault Detection using the Fitness
Dependent Optimizer and Neural Networks

Salar Farahmand-Tabar1* · Tarik A. Rashid 2
1Department of Civil Engineering Eng., Faculty of Engineering, University

of Zanjan, Zanjan, Iran,
2Department of Computer Science and Engineering, University of Kurdistan

Hewler, Erbil, KR, Iraq

*farahmandsalar@znu.ac.ir; farahmandsalar@gmail.com

 tarik.ahmed@ukh.edu.krd

Abstract. Detecting faults in steel plates is crucial for ensuring the

safety and reliability of the structures and industrial equipment. Early

detection of faults can prevent further damage and costly repairs. This

chapter aims at diagnosing and predicting the likelihood of steel

plates developing faults using experimental text data. Various

machine learning methods such as GWO-based and FDO-based MLP

and CMLP are tested to classify steel plates as either faulty or non-

faulty. The experiments produced promising results for all models,

with similar accuracy and performance. However, the FDO-based

MLP and CMLP models consistently achieved the best results, with

100% accuracy in all tested datasets. The other models' outcomes

varied from one experiment to another. The findings indicate that

models that employed the FDO as a learning algorithm had the

potential to achieve higher accuracy with a little longer runtime

compared to other algorithms. In conclusion, early detection of faults

in steel plates is critical for maintaining safety and reliability, and

machine learning techniques can help predict and diagnose these

faults accurately.

Keywords. Fault detection, Steel plates, Machine learning, FDO

algorithm, Predictive diagnosis

1. Introduction

Surface defects on steel products can have a significant impact on their

quality [1]. Not only do these defects impact the later stages of production,

but they also undermine the ability of the final products to withstand

corrosion and wear. In order to identify these flaws, inspection systems

employ CCD cameras to capture images of the steel surface under specific

mailto:farahmandsalar@znu.ac.ir
mailto:farahmandsalar@gmail.com
mailto:tarik.ahmed@ukh.edu.krd

lighting conditions. Subsequently, defect identification algorithms are

utilized to analyze the images and identify and categorize the surface

defects. However, designing algorithms for the detection and classification

of surface defects has proven to be a challenging task due to their rarity and

variations in appearance. As illustrated in Fig. 1, steel plates commonly

exhibit two types of surface defects: seams (a)-(d) and scales (e)-(h). The

surface defects found on steel plates show considerable differences within

each category, and the image background is often intricate.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Types of typical defects on hot rolled plates: 1) seams [(a)–(d)] and 2)

scales [(e)–(h)] [2]

There are four distinct approaches to detect surface defects, which include

statistical, model-based, structural, and filter-based techniques. The

statistical approach utilizes properties such as histogram, autocorrelation,

local binary patterns, and Gray Level Co-occurrence Matrix (GLCM).

GLCM can determine various statistics of texture, such as entropy,

dissimilarity, energy, correlation, homogeneity, and contrast. The model-

based approach involves creating mathematical models to represent surface

defects and comparing the actual surface with the models to detect

deviations. The structural approach involves examining the geometric

properties of the surface, such as edges and contours, to detect defects. The

filter-based approach uses various filters to enhance the appearance of

surface defects.

Despite the availability of various approaches to surface defect detection,

there are still some limitations that need to be addressed. One significant

challenge is the need for specialized illumination and imaging equipment,

which can be expensive and difficult to maintain. Additionally, the accuracy

of detection algorithms can be affected by changes in lighting conditions

and surface geometry. As such, there is a need to continue developing more

robust and adaptable algorithms that can overcome these limitations and

provide accurate and reliable detection of surface defects.

In recent years, there have been significant advancements in algorithms

designed to detect and classify defects on steel surfaces. For instance, a

method utilized an extreme learning machine (ELM) and a well-known

genetic algorithm (GA) [3] to classify hot-rolled plate defects [4]. By

employing this method, the durability, and effectiveness of the ELM in

inspecting steel surfaces were improved. Using enhanced metaheuristics [5,

6] can make further improvements in the process. Another strategy involved

incorporating the RNAMlet into surface inspection as a feature extractor,

enabling the image to be decomposed asymmetrically [7]. As a result, the

adaptability of the feature extraction process was enhanced, enabling its

application across various steel production lines.

Furthermore, surface inspection algorithms have been devised utilizing

the scale-invariant feature transform (SIFT) and support vector machine

(SVM) [8]. These algorithms have demonstrated favorable detection

outcomes in production lines where image backgrounds are uncomplicated

and uncluttered. Another notable advancement in surface inspection

involves the utilization of the shearlet transform (ST) to offer an effective

representation of defects at multiple scales [9]. By employing this technique,

the precision of defect recognition on steel surfaces with intricate

backgrounds was significantly enhanced.

In the detection of surface cracks on structural steels, a combination of

discrete Fourier transform (DFT) and artificial neural network was

employed [10]. Additionally, Gabor filters were utilized to identify corner

and thin cracks in raw steel blocks by minimizing the cost function that

separates the energy characteristics of defective and defect-free regions [11].

Furthermore, an online system for crack detection was designed, which

relied on 3D contour data from the steel plate surface and integrated image

processing with statistical classification using logistic regression [12]. These

various algorithms exemplify the ongoing progress and advancement in

techniques for detecting and categorizing defects on steel surfaces.

Hence, surface inspection algorithms need to possess the ability to

classify intricate defects and learn from data that lacks labels. In recent

times, deep learning techniques have displayed exceptional performance in

tasks like image classification and object detection. One widely used deep

learning method is the Convolutional Neural Network (CNN), which was

initially introduced by LeCun [13] and has proven to be highly effective in

image classification. Unlike other classification algorithms, CNN does not

rely on explicit feature extraction processes; instead, it learns the weights of

the convolutional layers by minimizing the loss function. This empowers

CNN to achieve superior classification results even when confronted with

images featuring complex backgrounds and variations in appearance.

Additionally, several variations of CNN have been proposed, such as

Alexnet [14], VGG [15], NIN [16], Inceptions [17], Inception-Resnet [18],

and Densenet [19]. These variants often incorporate deeper stacked

convolutional layers or employ asymmetrical structures to extract more

nonlinear features, thereby enhancing the CNN's performance in processing

complex images. Furthermore, recent studies have demonstrated the

effectiveness of CNN in tackling more demanding tasks, including object

detection [20-26].

However, the effectiveness of CNN-based approaches heavily depends

on the availability of an adequate number of training samples. When training

a CNN with small datasets, the algorithm's ability to generalize can be

significantly affected, thereby limiting its applicability in industrial settings.

Presently, the most viable solution for utilizing CNN with small datasets is

transfer learning [27]. This method works based on the assumption that the

sample images within our specific field exhibit basic characteristics, such as

edges and curves, which are also present in the images used to train existing

models. Transfer learning can be employed in conjunction with

convolutional neural networks (CNN) to train smaller datasets for tasks like

emotion recognition [27] and automated medical diagnosis [28-30].

However, when it comes to steel surface inspection, the effectiveness of

applying transfer learning is not as pronounced as in other domains. This

limitation primarily stems from the substantial disparity in image context

between steel surfaces and the majority of pre-existing models, thereby

violating the application requirements of transfer learning.

Considering the previous works, it is clear that machine-learning

techniques have shown promising results in diagnosing and predicting faults

in steel plates. In this chapter, the use of various machine learning

algorithms, such as MLP and CMLP optimized with GWO, MGWO, and

FDO has demonstrated the potential for accurately classifying steel plates

as either faulty or non-faulty considering a dataset. While all the models

produced similar accuracy results, FDO_MLP and FDO_CMLP

consistently achieved 100% accuracy in all tested datasets. This suggests

that using the FDO algorithm as a learning algorithm may lead to higher

accuracy with a slightly longer runtime compared to other algorithms. These

findings highlight the importance of early detection of faults in steel plates

for maintaining safety and reliability and the significant role that machine

learning techniques can play in achieving this goal.

2. Research Methodology

This study involves the comparison of several different approaches.

Specifically, five models with distinct network architectures or training

algorithms were utilized and assessed across the dataset. The methodology

of this investigation involves the identification of each dataset and the

preparation of its data, the selection of appropriate features, the application

of the classification model, and the utilization of statistical techniques to

draw comparisons between the outcomes of each method (Fig. 2).

Fig. 2. Methodology of the research

2.1. Data Collection and Feature Selection

The crucial initial stage in machine learning is constructing a database.

The utilized dataset is a unique steel plate fault dataset that originated in the

research center of Sciences of Communication, Italy [31]. It comprises steel

plate faults, classified into 6 different types Pastry, Z-Scratch, K-Scratch,

Stains, Dirtiness, and Bumps. There are 29 variables including Min. and

Max. of X, Min. and Max of Y, Pixels Areas, X and Y Perimeter, Sum of

Luminosity, Min. and Max. of Luminosity, Length of Conveyer,

TypeOfSteel_A300 and A400, Steel Plate Thickness, Edges Index, Empty

Index, Square Index, Outside-X Index, Edges-X Index, Edges-Y Index,

Outside-Global Index, Log. of Areas, Log. X Index, Log. Y Index,

Orientation Index, Luminosity Index, Sigmoid of Areas. The aim was to

train machine learning for automatic pattern recognition [32, 33].

To preprocess the data for model training, the positive and negative input

features are encoded as 0 and 1. In terms of the target, we used 1 to represent

"positive" and 2 to represent "negative".

2.2. Model of Classification

This section outlines the methodology of the considered models, which

includes the model architecture and the training methods explained in the

following sections.

2.2.1. The architecture of the neural network

A neural network's architecture comprises three crucial components: the

overall count of layers, encompassing both the input and output layers, the

existence and quantity of hidden layers, and the number of nodes within

each layer. The process of selecting an optimal topology for a neural

network involves regulating the number of hidden layers and neurons within

each layer [34]. In all of our proposed models, we utilized a solitary hidden

layer, and the number of neurons in that layer was determined by the number

of features present in the dataset. The criterion for determining the number

of neurons in the hidden layer is as follows:

𝐻𝑛𝑜 = 2 ∗ 𝐼𝑛𝑜 + 1 (1)

Within this context, we utilize the symbols 𝐻𝑛𝑜 and 𝐼𝑛𝑜, representing the

number of hidden layers and input layers respectively. Our study

incorporates two types of neural networks: basic feed-forward artificial

neural networks and cascade feed-forward artificial neural networks. The

initial arrangement comprises three interconnected layers: an input layer, a

hidden layer, and an output layer. In this configuration, the artificial neural

network (ANN) establishes connections from the input layer to each

subsequent layer and between each layer and the subsequent ones. On the

other hand, the cascade ANN introduces an additional connection that

directly links the input layer to the output layer. This allows the network to

learn intricate associations and enhances the speed at which it acquires the

desired relationship [35, 36].

2.2.2. Learning Method of Artificial Neural Network

The primary goal during training is to determine the most effective

weights and biases that yield the highest possible accuracy in classification.

In this study, various models utilize either GWO (Grey Wolf Optimizer),

modified GWO, or FDO (Fitness Dependent Optimizer) as their training

algorithms. The optimization process revolves around adjusting the weights

and biases, to minimize an associated objective function. In neural networks,

the Mean Square Error (MSE) serves as a commonly adopted evaluation

metric. It quantifies the average squared difference between the desired

output and the output generated by the ANN model. The MSE can be

calculated using the following formula:

𝑀𝑆𝐸 = ∑(𝑦𝑖 − 𝑦𝑖̂)
2

𝑛

𝑖=1

 (2)

The calculation of the Mean Square Error (MSE) is given by the equation

where 𝑖 is the input unit iteration, 𝑛 is the number of outputs, 𝑦𝑖 represents

the desirable output, and 𝑦𝑖̂ denotes the achieved value. To assess the

model's performance, we compute the MSE for all training samples and then

average the results. The optimization algorithm utilizes the computed

average MSE value to make adjustments to the weights and biases of the

model, aiming to minimize the average MSE across all training samples.

The average MSE is calculated using the formula provided below:

𝑀𝑆𝐸𝑎𝑣𝑔 = ∑ ∑ (𝑦𝑖 − 𝑦𝑖̂)
2

𝑛

𝑖=1
𝑚

𝑚

𝑗=1

 (3)

The application of the optimization algorithm to update the weights of

neural network and achieve maximum accuracy is illustrated in Fig. 3.

Fig. 3. Training procedures of the proposed models.

2.3. Result Evaluation

As mentioned earlier, the evaluation of the applied models involves two

approaches: the Mean Square Error (MSE) value and the confusion matrix.

Models that yield a very low MSE value, approaching zero, are regarded as

effective. The confusion matrix provides a summary of the accurate and

inaccurate predictions made by the models. Sensitivity (true positive rate),

specificity (true negative rate), Positive Predictive Value (PPV), and

Negative Predictive Value (NPV) are metrics obtained from the confusion

matrix to understand the model's reliability. These metrics offer a measure

of the probability that a sample classified as positive is indeed positive, or

that a sample classified as negative is truly negative. Their values lie

between 0 and 1, where a value closer to 1 signifies a more favorable result.

A value of 1 represents the optimal outcome, while a value of 0 indicates

the poorest performance. [37].

3. Optimization Algorithms for Weight and Bias Updating

In this research, three optimization algorithms were employed: the

standard and Modified Grey Wolf Optimizer, and Fitness Dependent

Optimizer. These algorithms were utilized to find the most suitable weight

and bias values for a neural network used for predicting the presence or

absence of faults in steel plates. The specifics of each algorithm will be

discussed in this section.

3.1. Grey Wolf Optimization

Grey Wolf Optimization (GWO) is a type of swarm intelligence

algorithm that was introduced by Mirjalili et al. [38]. This algorithm is based

on the hunting behavior of grey wolves in nature. Grey wolves are

recognized for their adeptness in efficiently hunting prey, employing a

distinct approach. The GWO algorithm imitates this behavior by simulating

the organization of tasks within a wolf pack, which is characterized by a

social hierarchy. This social hierarchy represents the optimality of solutions,

with the alpha (𝛼) being the most preferred solution, followed by the beta

(𝛽) and delta (𝛿), and finally the other solutions are classified as omega (𝜔).

During a hunt, the grey wolf will first encircle the prey. The position of the

grey wolf (
⇀

𝑋𝑝
(𝑡)) around the prey (

⇀

𝑋
(𝑡)) is updated using Eq. (4).

Fig. 4. Position vectors in two-dimensional space.

⇀

𝐷
= |

⇀

𝐶
.

⇀

𝑋𝑝

(𝑡) −
⇀

𝑋
(𝑡)| (4)

⇀

𝑥
(𝑡 + 1) = |

⇀

𝑋𝑝

(𝑡) −
⇀

𝐴
.
⇀

𝐷
|

(5)

The variables used in the Grey Wolf Optimization algorithm include 𝑡,

which represents the current iteration, as well as coefficient vectors

represented by
⇀

𝐴
 and

⇀

𝐴
. The position vector of the prey is denoted by 𝑋𝑝,

while the position vector of the grey wolf is represented by 𝑋. Equations are

used to define the
⇀

𝐴
 and

⇀

𝐴
 vectors in the algorithm, as described in the source

[38].

⇀

𝐴
= 2

⇀

𝑎
. 𝑟1 −

⇀

𝑎
 ,

⇀

𝐶
= 2

⇀

𝑟2

 (6)

During the Grey Wolf Optimization algorithm, the position of the wolves is

updated, where the components of the vector
⇀

𝑎
 decrease linearly from 2 to

0 over iterations, and 𝑟1 and 𝑟2 are random vectors between 0 and 1. Through

manipulation of the
⇀

𝐴
 and

⇀

𝐶
vectors, the optimal wolf can be identified and

repositioned strategically around the prey, as depicted in Fig. 4. In natural

circumstances, grey wolves possess the ability to locate their prey, whereas,

in mathematical applications, the location of the prey (i.e., the optimal

solution) is unknown. Therefore, it is assumed that the 𝛼, 𝛽, and 𝛿 wolves

have a better understanding of the potential location of the prey. The

solutions achieved by these three wolves are preserved, while the remaining

wolves update their positions based on the saved solutions. This process is

mathematically represented by equations that calculate the distances

between the alpha, beta, and delta wolves [38].

⇀

𝐷𝑎

= |
⇀

𝐶1

.
⇀

𝑋𝑎

−
⇀

𝑋
|,

⇀

𝐷𝛽

= |
⇀

𝐶2

.
⇀

𝑋𝛽

−
⇀

𝑋
|,

⇀

𝐷𝛿

= |
⇀

𝐶3

.
⇀

𝑋𝛿

−
⇀

𝑋
|

(7)

Where
⇀

𝑋𝑎
,

⇀

𝑋𝛽
, and

⇀

𝑋𝛿
 are the positions of 𝛼, 𝛽, and 𝛿.

⇀

𝑋
 is the current

solution’s position.

⇀

𝑋1

=
⇀

𝑋𝑎

−
⇀

𝐴1

. (
⇀

𝐷𝑎

), (8)

⇀

𝑋2

=
⇀

𝑋𝛽

−
⇀

𝐴2

. (
⇀

𝐷𝛽

),

⇀

𝑋3

=
⇀

𝑋𝛿

−
⇀

𝐴3

. (
⇀

𝐷𝛿

)

⇀

𝑋

(𝑡 + 1) =

⇀
𝑋1

+
⇀
𝑋2

+
⇀
𝑋3

3

The 𝐶 Vector is a crucial parameter in the GWO algorithm that controls

exploration. It is assigned a random value between 0 and 2 and influences

the weight given to the prey based on a wolf's position. The parameter

known as 𝐶 plays a crucial role in determining the level of difficulty in

reaching the prey. A value greater than 1 (𝐶 > 1) makes the task more

challenging and increases the distance to the prey, while a value less than 1

(𝐶 < 1) makes it easier and brings the prey closer. The 𝐶 vector serves as

an effective means to prevent getting stuck in local optima, particularly

during the later stages of the algorithm. Another important parameter that

facilitates exploration is 𝐴. Its value is determined by a linearly decreasing

parameter that ranges from 2 to 0. When the random values of the
⇀

𝐴
 vector

falls within the interval of [-1,1], a wolf is capable of moving to any position

between its current location and the prey's position. If |
⇀

𝐴
| < 1, the wolves

launch a direct attack on the prey, while values greater than 1 signify that

they attack from a distance away from the prey.

3.2. Modified grey wolf optimization

To modify the Grey Wolf Optimizer, two simple changes have been

proposed. The first change added a new group of wolves called Gamma (γ),

in addition to the existing Alpha (𝛼), Beta (𝛽), Delta (𝛿), and Omega (ω)

groups. With this addition, the omega wolves will adjust their positions

based on the positions of all four groups of wolves instead of three. The

second modification relates to the equation used to determine the step size

of the omega wolves, which is presented in the original GWO. In the

modified version, an extra equation is included to compute the distance

between the alpha, beta, delta, and gamma wolves.

⇀

𝐷𝛾

= |
⇀

𝐶4

.
⇀

𝑋𝛾

−
⇀

𝑋
| (9)

The calculation of the positions of alpha, beta, delta, and gamma can be done

using the following formulae, where
⇀

𝑋𝛾
 represents the position of gamma

and
⇀

𝑋
 is the current solution [37].

⇀

𝐷𝑎𝑣𝑔

=

⇀
𝑋1

+
⇀
𝑋2

+
⇀
𝑋3

3

⇀

𝑋1
=

⇀

𝑋𝑎
−

⇀

𝐴1
. (

⇀

𝐷𝑎𝑣𝑔

),
⇀

𝑋2
=

⇀

𝑋𝛽
−

⇀

𝐴2
. (

⇀

𝐷𝑎𝑣𝑔

),

⇀

𝑋3
=

⇀

𝑋𝛿
−

⇀

𝐴3
. (

⇀

𝐷𝑎𝑣𝑔

),
⇀

4
=

⇀

𝑋𝛿
−

⇀

𝐴4
. (

⇀

𝐷𝑎𝑣𝑔

)

⇀

𝑋

(𝑡 + 1) =

⇀
𝑋1

+
⇀
𝑋2

+
⇀
𝑋3

+
⇀
𝑋4

4

(10)

3.3. Fitness Dependent Optimizer

The Fitness Dependent Optimizer (FDO) is a recently developed

algorithm, introduced by Jaza Abdullah and Tarik Rashid in 2019, that

draws inspiration from the reproductive behavior of swarm bees. Unlike

GWO, the FDO algorithm adopts a simpler concept and is easier to grasp. It

emulates the scouting behavior of bees as they search for a suitable hive

among numerous potential options, aiming to identify optimal solutions

from a pool of possibilities. The FDO process consists of two main

components: the search process, where the related agents make efforts to

discover the optimal solution, and the movement process, in which the

position of scout bee is updated. Detailed explanations of these two

processes will be provided in the following sections [39, 40].

3.4. Searching Process of the Scout Bee

The fundamental idea of the Fitness Dependent Optimizer (FDO) is to

discover suitable new solutions similar to finding new hives in the bee

reproduction process. Scout bees act as search agents to look for new

solutions, just like in the GWO algorithm. In the FDO algorithm, a new

solution is denoted by the position of a scout bee. During the execution of

FDO, the initial positions of artificial scout bees are generated randomly

within the search space. Throughout the algorithm, a global best solution is

identified. The scout bees utilize a combination of fitness weight

mechanisms and random walk to explore and discover new solutions. They

persistently search for improved solutions within the predefined boundaries

until the end of the process. If a superior solution is discovered, the previous

solution is discarded in favor of the new one. However, if no better solution

is discovered, the previous solution is retained.

3.5. Movement Process of the Scout Bee

The FDO algorithm involves updating the positions of the scout bees to

improve the solution. This is done by adding a step size to the current

position.

𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 + 𝑝𝑎𝑐𝑒 (11)

The search agent at the present moment is symbolized by 𝑖, while 𝑡

represents the ongoing iteration. The artificial scout bee or search agent is

denoted by 𝑋, and 𝑝𝑎𝑐𝑒 signifies the speed and direction of movement for

the scout bee. The pace's speed and direction are influenced by the fitness

weight (𝑓𝑤). Nevertheless, the specific direction of the pace is determined

randomly. The fitness weight is computed

𝑓𝑤 = |
𝑥𝑖,𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠

∗

𝑥𝑖,𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠
 | − 𝑤𝑓 (12)

The formula above calculates the weight factor (𝑤𝑓) used to control the

fitness weight (𝑓𝑤), which determines the movement pace of the scout bees

in FDO. 𝑥𝑖,𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠
∗ and 𝑥𝑖,𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠

 represent the best global and current

solutions for the fitness function, respectively. The weight factor The value

of 𝑤𝑓 can be either 0 or 1, with 1 indicating a high level of convergence and

a low chance of coverage. However, if 𝑤𝑓 is 0, it is ignored and does not

affect the equation. It is important to note that setting wf to 0 does not

necessarily increase the stability of the search; the fitness function value

depends on the problem. To avoid unacceptable cases, the 𝑓𝑤 value should

be between 0 and 1 and the equation should avoid division by zero, which

can occur if the value of 𝑥𝑖,𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠
 is 0. The following rules, as shown in

Eq. (10), should be applied in FDO.

{

𝑓𝑤 = 1 𝑜𝑟 𝑓𝑤 = 0 𝑜𝑟 𝑥𝑖,𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠
 = 0 𝑜𝑟 𝑝𝑎𝑐𝑒 = 𝑥𝑖,𝑡

 × 𝑟

𝑓𝑤 > 𝑎𝑛𝑑 𝑓𝑤 < 1 {
𝑟 < 0, 𝑝𝑎𝑐𝑒 = (𝑥𝑖,𝑡

 − 𝑥𝑖,𝑡
∗) × 𝑓𝑤 × −1

𝑟 ≥ 0, 𝑝𝑎𝑐𝑒 = (𝑥𝑖,𝑡
 − 𝑥𝑖,𝑡

∗) × 𝑓𝑤

} (13)

In the given equation, 𝑟 represents a randomly generated number within

the interval of [-1, 1]. The term 𝑥𝑖,𝑡
 denotes the current solution at iteration

𝑡 for the search agent 𝑖. On the other hand, 𝑥𝑖,𝑡
∗ refers to the best solution

attained globally up until the present moment.

4. Implementation, Results, and Discussion

Here, the outcomes achieved through the implemented architecture are

analyzed and an evaluation of the training and testing processes are

presented. We will provide an overview of the experimental environment

and framework employed, as well as showcase the overall performance of

the proposed model. Subsequent sections will delve into the specific results

obtained from each dataset. The construction and execution of the machine

learning classification were conducted using the MATLAB platform. To

evaluate the classification model, a dataset was utilized being divided into

an 80:20 ratio. This means that 80% of the data was employed for training

purposes, while the remaining 20% was reserved for testing.

Tables 1 and 2 present the classification accuracy of each model on the

dataset, showcasing the performance during the training and testing phases

of the implemented architecture. The datasets were divided into training and

testing sets using an 80:20 ratio, comprising a total of 1,941 samples, with

1,553 samples allocated for training and 388 samples for testing. The table

provides information on the correct classification rate achieved by each

model on each dataset, along with details such as problem dimension, the

number of search agents utilized, and the maximum iteration of the search

algorithm. All models were tested under identical conditions, employing 10

search agents and a maximum iteration of 50 for each algorithm. From Table

1, it can be observed that all models yielded similar results, but the FDO

algorithm exhibited a higher likelihood of achieving more accurate

outcomes, attaining 100% accuracy across all experiments. However, it is

worth noting that the FDO algorithm took longer to complete compared to

the GWO algorithm. Notably, the GWO_MLP model demonstrated the

shortest runtime, possibly due to the faster GWO algorithm and the MLP

architecture having fewer connections compared to the CMLP.

Table 1 Proposed models and their correct classification rates.

Model Samples Dimensions Run time Training rate Testing rate

GWO_MLP 1941 2346 139.223s 92.740 % 92.87 %
MGWO_MLP 1941 2346 241.248s 95.816 % 96.39 %
GWO_CMLP 1941 2482 181.149s 95.217 % 100.0 %
FDO_MLP 1941 2346 5637.132s 100.00 % 100.0 %
FDO_CMLP 1941 2380 5837.251s 99.771 % 98.65 %

Table 2 showcases the outcomes of the proposed models, presenting the

Mean Square Error (MSE) and the classification rate achieved during both

the testing and training phases. The achieved classification rate on this

dataset is highly encouraging, particularly considering its substantial size,

as it represents the largest dataset utilized in this study. The classification

accuracy ranges from 99% to 100%, demonstrating the effectiveness of the

models.

Table 2. Performance results of the proposed models.

Model Train

/Test

Pos.

case

Correct

predicts

Accuracy Neg.

case

Correct

predicts

Accuracy MSE Rate

GWO_

MLP

Tr. 958 876 91.379 595 552 92.469 0.00268 92.740

Ts. 311 311 100.00 77 72 92.215 0.00269 96.371

MGWO

_MLP

Tr. 958 926 96.643 595 556 93.266 0.00179 95.816

Ts. 311 311 100.00 77 73 94.682 0.00189 97.651

GWO_C

MLP

Tr. 958 911 95.071 595 559 93.664 0.00221 95.217

Ts. 311 311 100.00 77 73 93.757 0.00243 97.171

FDO_M

LP

Tr. 958 958 100.00 595 596 100.00 0.00225 100.00

Ts. 311 311 100.00 77 77 100.00 0.00244 100.00

FDO_C

MLP

Tr. 958 947 98.764 595 596 100.00 0.00199 99.771

Ts. 311 311 100.00 77 77 100.00 0.00196 100.00

Additionally, Table 3 provides an evaluation of the confusion matrices

for the proposed models on this dataset, offering further insights into their

performance. Finally, Fig. 5 illustrates the roc curve results of all the

proposed models that underwent testing on the dataset, providing a visual

representation of their performance.

Table 3 Confusion matrices for a dataset using considered methods.

Model Sensitivity Specificity PPV NPV Accuracy

GWO_MLP 0.95 0.87 0.91 0.93 96.37%
MGWO_MLP 0.98 1 1 0.94 97.65%
GWO_CMLP 0.96 0.95 0.97 0.93 97.17%

FDO_MLP 0.99 1 1 0.95 100%
FDO_CMLP 0.96 0.92 0.95 0.94 100%

Fig. 5. ROC curve results for the dataset.

4.1. Conclusions

Early detection of faults in steel plates is crucial for maintaining safety

and reliability, and machine learning techniques can accurately predict and

diagnose these faults. The investigations conducted in this chapter used five

machine-learning techniques to classify steel plates as faulty or non-faulty.

In these techniques, the metaheuristic algorithms such as FDO were used to

reduce the mean square error.

Based on the results obtained from the experiments, the FDO-based MLP

and CMLP models exhibited superior performance compared to the other

models, achieving 100% accuracy. Nevertheless, the FDO algorithm

exhibits a longer runtime compared to GWO across the dataset. However,

in the engineering domain, where accuracy holds paramount importance, the

FDO algorithm is considered more favorable. The performance of the other

models showed slight variations depending on the specific dataset used. No

significant difference was observed between MLP and CMLP models as

results varied across experiments. The classification models presented in

this study demonstrate impressive precision and offer a promising initial

step toward developing a predictive system for identifying infected or high-

risk patients, which plays a crucial role in controlling the spread of

infections. However, considering the sensitivity of the engineering field, it

is crucial to have a highly reliable and efficient system in place. It is

important to note that achieving 100% accuracy in classification models is

rare and can be influenced by factors such as the number of features used

and the ease of classification. Furthermore, the dataset utilized in this

research did not include noisy data, which could potentially lead to errors in

generalization. Therefore, additional testing is necessary to ensure the

reliability of these models. Future work could involve expanding or

developing the research by performing additional tests:

• Increasing the database size by adding more features and samples

related to the steel plate fault, will enhance the efficiency and

comprehensiveness of the prediction process.

• Exploring the creation of alternative neural network models capable of

processing diverse data types, including images, audio, and time-series

data. This endeavor would result in the development of a more advanced

system, characterized by enhanced intelligence and a wide range of

advantages, particularly in the engineering field.

• Investigating novel approaches to generate models that are both reliable

and advanced. One avenue to accomplish this is by adapting or

combining the utilized algorithms with traditional or metaheuristic

algorithms to construct innovative models.

References

1. Ravikumar S, Ramachandran KI, Sugumaran V (2011) Machine learning

approach for automated visual inspection of machine components Expert Syst

Appl 38 (4): 3260-3266I.

2. He D, Xu K, Zhou P, Zhou D (2019) Surface defect classification of steels with

a new semi-supervised learning method. Optics and Lasers in Engineering 117:

40-48.

3. Farahmand‐Tabar S, and Ashtari P (2020) Simultaneous size and topology

optimization of 3D outrigger‐braced tall buildings with inclined belt truss using

genetic algorithm. The Structural Design of Tall and Special Buildings 29(13):

e1776. https://doi.org/10.1002/tal.1776

4. Tian S, Xu K (2017) An algorithm for surface defect identification of steel

plates based on genetic algorithm and extreme learning machine. Metals 7 (8):

311.

5. Ashtari P, Karami R and Farahmand-Tabar S (2021) Optimum geometrical

pattern and design of real-size diagrid structures using accelerated fuzzy-

genetic algorithm with bilinear membership function. Applied Soft Computing

110: 107646. https://doi.org/10.1016/j.asoc.2021.107646

https://doi.org/10.1002/tal.1776
https://doi.org/10.1016/j.asoc.2021.107646

6. Farahmand-Tabar S, Babaei M (2023) Memory-assisted adaptive multi-verse

optimizer and its application in structural shape and size optimization. Soft

Comput. https://doi.org/10.1007/s00500-023-08349-9

7. Xu K, Xu Y, Zhou P, Wang L (2018) Application of RNAMlet to surface defect

identification of steels. Opt Lasers Eng. 105: 110-117.

8. B. Ahn SJ, Ko J (2012) Steel surface defects detection and classification using

SIFT and voting strategy. Int J Softw Eng Appl. 6 (2): 161-165.

9. K. Xu, S. Liu, Y. Ai (2015) Application of shearlet transform to classification

of surface defects for metals. Image Vis Comput, 35: 23-30.

10. M.P. Paulraj, A.M. Shukry, S. Yaacob, A.H. Adom, R.P. Krishnan (2010)

Structural steel plate damage detection using DFT spectral energy and artificial

neural network. Signal Processing and Its Applications (CSPA), 6th

International Colloquium on, IEEE: 1-6.

11. J.P. Yun, S. Choi, J.W. Kim, S.W. Kim (2009) Automatic detection of cracks

in raw steel block using Gabor filter optimized by univariate dynamic encoding

algorithm for searches (uDEAS) NDT & E Int, 42 (5): 389-397.

12. A. Landstrom, M.J. Thurley (2012) Morphology-based crack detection for

steel slabs. IEEE J Sel Top Signal Process, 6 (7): 866-875.

13. LeCun Y, et al. Gradient-based learning applied to document recognition. In:

Proceedings of the IEEE 86.11; 1998. p. 2278–324.

14. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep

convolutional neural networks. In: Advances in neural information processing

systems; 2012.p. 1097–105.

15. Simonyan K, Zisserman A, 2014. Very deep convolutional networks for large-

scale image recognition. arXiv:1409.1556.

16. Lin M, Chen Q, Yan S, 2013. Network in network. arXiv:1312.4400.

17. Szegedy C, et al. Going deeper with convolutions. In: Proceedings of the IEEE

conference on computer vision and pattern recognition; 2015.

18. Szegedy C, et al. Inception-v4, Inception-ResNet and the impact of residual

connections on learning AAAI; 2017.

19. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ, et al. Densely connected

convolutional networks. In: Girshick R, et al., editors. CVPR. Rich feature

hierarchies for accurate object detection and semantic segmentation, 1; 2017.

p. 3. Proceedings of the IEEE conference on computer vision and pattern

recognition. 2014, July.

20. He K, et al. Spatial pyramid pooling in deep convolutional networks for visual

recognition European conference on computer vision Cham. Springer; 2014.

21. Girshick, R. “Fast r-cnn.” arXiv:1504.08083 (2015).

22. Ren S, et al. Faster r-cnn: towards real-time object detection with region

proposal networks. Adv Neural Inf Process Syst 2015.

23. Redmon J, et al. You only look once: unified, real-time object detection. In:

Proceedings of the IEEE conference on computer vision and pattern

recognition; 2016.

24. Redmon, J., and A. Farhadi. “YOLO9000: better, faster, stronger.” arXiv

preprint (2017).

25. Liu W, et al. Ssd: single shot multibox detector European conference on

computer vision Cham. Springer; 2016.

26. Ng H-W, et al. (2015) Deep learning for emotion recognition on small datasets

using transfer learning. In: Proceedings of the 2015 ACM on international

conference on multimodal interaction. ACM.

27. Huynh BQ, Li H, Giger ML. Digital mammographic tumor classification using

transfer learning from deep convolutional neural networks. J Med Imaging 3.3

2016:034501.

28. Hoo-Chang S, et al. (2016) Deep convolutional neural networks for computer-

aided detection: CNN architectures, dataset characteristics and transfer

learning. IEEE Trans Med Imaging 35(5):1285.

29. Li Q, et al. (2014) Medical image classification with convolutional neural

network Control Automation Robotics & Vision (ICARCV), 2014 13th

International Conference on. IEEE.

30. Masci J, et al. (2011) Stacked convolutional auto-encoders for hierarchical

feature extraction International conference on artificial neural networks Berlin,

Heidelberg. Springer.

31. dataset provided by Semeion, Research Center of Sciences of Communication,

Via Sersale 117, 00128, Rome, Italy.

32. M Buscema, S Terzi, W Tastle, (2010) A New Meta-Classifier,in NAFIPS

2010, Toronto (CANADA), 978-1-4244-7858-6/10 Â©2010 IEEE

33. M Buscema, MetaNet: The Theory of Independent Judges, in Substance Use &

Misuse, 33(2), 439-461,1998

34. Steven W (2019) Artificial neural network, in: Advanced Methodologies and

Technologies in Artificial Intelligence, Computer Simulation, and Human-

Computer Interaction, IGI Global : 40–53.

35. Rashid T (2012).Direct current motor model using RBF, Int. J. Adv. Res.

Comput. Sci. Softw. Eng. 2 (9).

36. Mummadisetty BC, Puri A, Sharifahmadian E, Latifi S (2015) A hybrid

method for compression of solar radiation data using neural networks. Int. J.

Commun., Netw. Syst. Sci. 8 (06): 217.

37. Rashid TA, Abbas DK, Turel YK (2019) A multi hidden recurrent neural

network with a modified grey wolf optimizer. PLOS ONE, 14(3), e0213237.

https://doi.org/10.1371/journal.pone.0213237

38. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer, Adv. Eng.

Software 69: 46–61.

39. Abdullah JM, Ahmed T (2019) Fitness Dependent Optimizer: Inspired by the

Bee Swarming Reproductive Process. in IEEE Access 7: 43473-43486.

https://doi: 10.1109/ACCESS.2019.2907012.

40. Muhammed DA, Saeed S.A.M, Rashid TA (2020) Improved Fitness-

Dependent Optimizer Algorithm. in IEEE Access, 8: 19074-19088. https://doi:

10.1109/ACCESS.2020.2968064.

