
 

 

Steel Plate Fault Detection using the Fitness 
Dependent Optimizer and Neural Networks  

Salar Farahmand-Tabar1* · Tarik A. Rashid 2  
1Department of Civil Engineering Eng., Faculty of Engineering, University 

of Zanjan, Zanjan, Iran,  
2Department of Computer Science and Engineering, University of Kurdistan 

Hewler, Erbil, KR, Iraq 

*farahmandsalar@znu.ac.ir; farahmandsalar@gmail.com 

  tarik.ahmed@ukh.edu.krd  

 

 
Abstract. Detecting faults in steel plates is crucial for ensuring the 

safety and reliability of the structures and industrial equipment. Early 

detection of faults can prevent further damage and costly repairs. This 

chapter aims at diagnosing and predicting the likelihood of steel 

plates developing faults using experimental text data. Various 

machine learning methods such as GWO-based and FDO-based MLP 

and CMLP are tested to classify steel plates as either faulty or non-

faulty. The experiments produced promising results for all models, 

with similar accuracy and performance. However, the FDO-based 

MLP and CMLP models consistently achieved the best results, with 

100% accuracy in all tested datasets. The other models' outcomes 

varied from one experiment to another. The findings indicate that 

models that employed the FDO as a learning algorithm had the 

potential to achieve higher accuracy with a little longer runtime 

compared to other algorithms. In conclusion, early detection of faults 

in steel plates is critical for maintaining safety and reliability, and 

machine learning techniques can help predict and diagnose these 

faults accurately.  
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1. Introduction 

Surface defects on steel products can have a significant impact on their 

quality [1]. Not only do these defects impact the later stages of production, 

but they also undermine the ability of the final products to withstand 

corrosion and wear. In order to identify these flaws, inspection systems 

employ CCD cameras to capture images of the steel surface under specific 
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lighting conditions. Subsequently, defect identification algorithms are 

utilized to analyze the images and identify and categorize the surface 

defects. However, designing algorithms for the detection and classification 

of surface defects has proven to be a challenging task due to their rarity and 

variations in appearance. As illustrated in Fig. 1, steel plates commonly 

exhibit two types of surface defects: seams (a)-(d) and scales (e)-(h). The 

surface defects found on steel plates show considerable differences within 

each category, and the image background is often intricate.  

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 1. Types of typical defects on hot rolled plates: 1) seams [(a)–(d)] and 2) 

scales [(e)–(h)] [2] 

 

There are four distinct approaches to detect surface defects, which include 

statistical, model-based, structural, and filter-based techniques. The 

statistical approach utilizes properties such as histogram, autocorrelation, 

local binary patterns, and Gray Level Co-occurrence Matrix (GLCM). 

GLCM can determine various statistics of texture, such as entropy, 

dissimilarity, energy, correlation, homogeneity, and contrast. The model-

based approach involves creating mathematical models to represent surface 

defects and comparing the actual surface with the models to detect 

deviations. The structural approach involves examining the geometric 

properties of the surface, such as edges and contours, to detect defects. The 

filter-based approach uses various filters to enhance the appearance of 

surface defects. 

Despite the availability of various approaches to surface defect detection, 

there are still some limitations that need to be addressed. One significant 

challenge is the need for specialized illumination and imaging equipment, 



 

 

which can be expensive and difficult to maintain. Additionally, the accuracy 

of detection algorithms can be affected by changes in lighting conditions 

and surface geometry. As such, there is a need to continue developing more 

robust and adaptable algorithms that can overcome these limitations and 

provide accurate and reliable detection of surface defects. 

In recent years, there have been significant advancements in algorithms 

designed to detect and classify defects on steel surfaces. For instance, a 

method utilized an extreme learning machine (ELM) and a well-known 

genetic algorithm (GA) [3] to classify hot-rolled plate defects [4]. By 

employing this method, the durability, and effectiveness of the ELM in 

inspecting steel surfaces were improved. Using enhanced metaheuristics [5, 

6] can make further improvements in the process. Another strategy involved 

incorporating the RNAMlet into surface inspection as a feature extractor, 

enabling the image to be decomposed asymmetrically [7]. As a result, the 

adaptability of the feature extraction process was enhanced, enabling its 

application across various steel production lines. 

Furthermore, surface inspection algorithms have been devised utilizing 

the scale-invariant feature transform (SIFT) and support vector machine 

(SVM) [8]. These algorithms have demonstrated favorable detection 

outcomes in production lines where image backgrounds are uncomplicated 

and uncluttered. Another notable advancement in surface inspection 

involves the utilization of the shearlet transform (ST) to offer an effective 

representation of defects at multiple scales [9]. By employing this technique, 

the precision of defect recognition on steel surfaces with intricate 

backgrounds was significantly enhanced. 

In the detection of surface cracks on structural steels, a combination of 

discrete Fourier transform (DFT) and artificial neural network was 

employed [10]. Additionally, Gabor filters were utilized to identify corner 

and thin cracks in raw steel blocks by minimizing the cost function that 

separates the energy characteristics of defective and defect-free regions [11]. 

Furthermore, an online system for crack detection was designed, which 

relied on 3D contour data from the steel plate surface and integrated image 

processing with statistical classification using logistic regression [12]. These 

various algorithms exemplify the ongoing progress and advancement in 

techniques for detecting and categorizing defects on steel surfaces. 

Hence, surface inspection algorithms need to possess the ability to 

classify intricate defects and learn from data that lacks labels. In recent 

times, deep learning techniques have displayed exceptional performance in 

tasks like image classification and object detection. One widely used deep 

learning method is the Convolutional Neural Network (CNN), which was 

initially introduced by LeCun [13] and has proven to be highly effective in 

image classification. Unlike other classification algorithms, CNN does not 



 

 

rely on explicit feature extraction processes; instead, it learns the weights of 

the convolutional layers by minimizing the loss function. This empowers 

CNN to achieve superior classification results even when confronted with 

images featuring complex backgrounds and variations in appearance. 

Additionally, several variations of CNN have been proposed, such as 

Alexnet [14], VGG [15], NIN [16], Inceptions [17], Inception-Resnet [18], 

and Densenet [19]. These variants often incorporate deeper stacked 

convolutional layers or employ asymmetrical structures to extract more 

nonlinear features, thereby enhancing the CNN's performance in processing 

complex images. Furthermore, recent studies have demonstrated the 

effectiveness of CNN in tackling more demanding tasks, including object 

detection [20-26]. 

However, the effectiveness of CNN-based approaches heavily depends 

on the availability of an adequate number of training samples. When training 

a CNN with small datasets, the algorithm's ability to generalize can be 

significantly affected, thereby limiting its applicability in industrial settings. 

Presently, the most viable solution for utilizing CNN with small datasets is 

transfer learning [27]. This method works based on the assumption that the 

sample images within our specific field exhibit basic characteristics, such as 

edges and curves, which are also present in the images used to train existing 

models. Transfer learning can be employed in conjunction with 

convolutional neural networks (CNN) to train smaller datasets for tasks like 

emotion recognition [27] and automated medical diagnosis [28-30]. 

However, when it comes to steel surface inspection, the effectiveness of 

applying transfer learning is not as pronounced as in other domains. This 

limitation primarily stems from the substantial disparity in image context 

between steel surfaces and the majority of pre-existing models, thereby 

violating the application requirements of transfer learning. 

Considering the previous works, it is clear that machine-learning 

techniques have shown promising results in diagnosing and predicting faults 

in steel plates. In this chapter, the use of various machine learning 

algorithms, such as MLP and CMLP optimized with GWO, MGWO, and 

FDO has demonstrated the potential for accurately classifying steel plates 

as either faulty or non-faulty considering a dataset. While all the models 

produced similar accuracy results, FDO_MLP and FDO_CMLP 

consistently achieved 100% accuracy in all tested datasets. This suggests 

that using the FDO algorithm as a learning algorithm may lead to higher 

accuracy with a slightly longer runtime compared to other algorithms. These 

findings highlight the importance of early detection of faults in steel plates 

for maintaining safety and reliability and the significant role that machine 

learning techniques can play in achieving this goal. 



 

 

2. Research Methodology 

This study involves the comparison of several different approaches. 

Specifically, five models with distinct network architectures or training 

algorithms were utilized and assessed across the dataset. The methodology 

of this investigation involves the identification of each dataset and the 

preparation of its data, the selection of appropriate features, the application 

of the classification model, and the utilization of statistical techniques to 

draw comparisons between the outcomes of each method (Fig. 2). 

 
Fig. 2. Methodology of the research  

2.1. Data Collection and Feature Selection 

The crucial initial stage in machine learning is constructing a database. 

The utilized dataset is a unique steel plate fault dataset that originated in the 

research center of Sciences of Communication, Italy [31]. It comprises steel 

plate faults, classified into 6 different types Pastry, Z-Scratch, K-Scratch, 

Stains, Dirtiness, and Bumps. There are 29 variables including Min. and 

Max. of X, Min. and Max of Y, Pixels Areas, X and Y Perimeter, Sum of 

Luminosity, Min. and Max. of Luminosity, Length of Conveyer, 

TypeOfSteel_A300 and A400, Steel Plate Thickness, Edges Index, Empty 

Index, Square Index, Outside-X Index, Edges-X Index, Edges-Y Index, 

Outside-Global Index, Log. of Areas, Log. X Index, Log. Y Index, 



 

 

Orientation Index, Luminosity Index, Sigmoid of Areas.  The aim was to 

train machine learning for automatic pattern recognition [32, 33]. 

To preprocess the data for model training, the positive and negative input 

features are encoded as 0 and 1. In terms of the target, we used 1 to represent 

"positive" and 2 to represent "negative". 

2.2. Model of Classification  

This section outlines the methodology of the considered models, which 

includes the model architecture and the training methods explained in the 

following sections. 

2.2.1. The architecture of the neural network 

A neural network's architecture comprises three crucial components: the 

overall count of layers, encompassing both the input and output layers, the 

existence and quantity of hidden layers, and the number of nodes within 

each layer. The process of selecting an optimal topology for a neural 

network involves regulating the number of hidden layers and neurons within 

each layer [34]. In all of our proposed models, we utilized a solitary hidden 

layer, and the number of neurons in that layer was determined by the number 

of features present in the dataset. The criterion for determining the number 

of neurons in the hidden layer is as follows: 

𝐻𝑛𝑜 = 2 ∗ 𝐼𝑛𝑜 + 1 (1) 

Within this context, we utilize the symbols 𝐻𝑛𝑜 and 𝐼𝑛𝑜, representing the 

number of hidden layers and input layers respectively. Our study 

incorporates two types of neural networks: basic feed-forward artificial 

neural networks and cascade feed-forward artificial neural networks. The 

initial arrangement comprises three interconnected layers: an input layer, a 

hidden layer, and an output layer. In this configuration, the artificial neural 

network (ANN) establishes connections from the input layer to each 

subsequent layer and between each layer and the subsequent ones. On the 

other hand, the cascade ANN introduces an additional connection that 

directly links the input layer to the output layer. This allows the network to 

learn intricate associations and enhances the speed at which it acquires the 

desired relationship [35, 36]. 



 

 

2.2.2. Learning Method of Artificial Neural Network  

The primary goal during training is to determine the most effective 

weights and biases that yield the highest possible accuracy in classification. 

In this study, various models utilize either GWO (Grey Wolf Optimizer), 

modified GWO, or FDO (Fitness Dependent Optimizer) as their training 

algorithms. The optimization process revolves around adjusting the weights 

and biases, to minimize an associated objective function. In neural networks, 

the Mean Square Error (MSE) serves as a commonly adopted evaluation 

metric. It quantifies the average squared difference between the desired 

output and the output generated by the ANN model. The MSE can be 

calculated using the following formula: 

𝑀𝑆𝐸 = ∑(𝑦𝑖 − 𝑦𝑖̂)
2

𝑛

𝑖=1

 (2) 

The calculation of the Mean Square Error (MSE) is given by the equation 

where 𝑖 is the input unit iteration,  𝑛 is the number of outputs, 𝑦𝑖 represents 

the desirable output, and 𝑦𝑖̂ denotes the achieved value. To assess the 

model's performance, we compute the MSE for all training samples and then 

average the results. The optimization algorithm utilizes the computed 

average MSE value to make adjustments to the weights and biases of the 

model, aiming to minimize the average MSE across all training samples. 

The average MSE is calculated using the formula provided below: 

𝑀𝑆𝐸𝑎𝑣𝑔 = ∑ ∑ (𝑦𝑖 − 𝑦𝑖̂)
2

𝑛

𝑖=1
𝑚

𝑚

𝑗=1

 (3) 

The application of the optimization algorithm to update the weights of 

neural network and achieve maximum accuracy is illustrated in Fig. 3. 



 

 

 
Fig. 3. Training procedures of the proposed models. 

2.3. Result Evaluation 

As mentioned earlier, the evaluation of the applied models involves two 

approaches: the Mean Square Error (MSE) value and the confusion matrix. 

Models that yield a very low MSE value, approaching zero, are regarded as 

effective. The confusion matrix provides a summary of the accurate and 

inaccurate predictions made by the models. Sensitivity (true positive rate), 

specificity (true negative rate), Positive Predictive Value (PPV), and 

Negative Predictive Value (NPV) are metrics obtained from the confusion 

matrix to understand the model's reliability. These metrics offer a measure 

of the probability that a sample classified as positive is indeed positive, or 

that a sample classified as negative is truly negative. Their values lie 

between 0 and 1, where a value closer to 1 signifies a more favorable result. 

A value of 1 represents the optimal outcome, while a value of 0 indicates 

the poorest performance. [37]. 

3. Optimization Algorithms for Weight and Bias Updating 

In this research, three optimization algorithms were employed: the 

standard and Modified Grey Wolf Optimizer, and Fitness Dependent 

Optimizer. These algorithms were utilized to find the most suitable weight 

and bias values for a neural network used for predicting the presence or 



 

 

absence of faults in steel plates. The specifics of each algorithm will be 

discussed in this section. 

3.1. Grey Wolf Optimization 

Grey Wolf Optimization (GWO) is a type of swarm intelligence 

algorithm that was introduced by Mirjalili et al. [38]. This algorithm is based 

on the hunting behavior of grey wolves in nature. Grey wolves are 

recognized for their adeptness in efficiently hunting prey, employing a 

distinct approach. The GWO algorithm imitates this behavior by simulating 

the organization of tasks within a wolf pack, which is characterized by a 

social hierarchy. This social hierarchy represents the optimality of solutions, 

with the alpha (𝛼) being the most preferred solution, followed by the beta 

(𝛽) and delta (𝛿), and finally the other solutions are classified as omega (𝜔). 

During a hunt, the grey wolf will first encircle the prey. The position of the 

grey wolf (
⇀

𝑋𝑝
(𝑡)) around the prey (

⇀

𝑋 
(𝑡)) is updated using Eq. (4). 

 

 

 
Fig. 4. Position vectors in two-dimensional space. 
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(𝑡)| (4) 



 

 

⇀

𝑥
(𝑡 + 1) = |

⇀

𝑋𝑝

(𝑡) −
⇀

𝐴
.
⇀

𝐷
| 

(5) 

The variables used in the Grey Wolf Optimization algorithm include 𝑡, 

which represents the current iteration, as well as coefficient vectors 

represented by 
⇀

𝐴
 and 

⇀

𝐴
. The position vector of the prey is denoted by 𝑋𝑝, 

while the position vector of the grey wolf is represented by 𝑋. Equations are 

used to define the 
⇀

𝐴
 and 

⇀

𝐴
 vectors in the algorithm, as described in the source 

[38]. 

⇀

𝐴
= 2

⇀

𝑎
. 𝑟1 −

⇀

𝑎
 ,         

⇀

𝐶
= 2

⇀

𝑟2

 (6) 

During the Grey Wolf Optimization algorithm, the position of the wolves is 

updated, where the components of the vector 
⇀

𝑎
 decrease linearly from 2 to 

0 over iterations, and 𝑟1 and 𝑟2 are random vectors between 0 and 1. Through 

manipulation of the 
⇀

𝐴
 and 

⇀

𝐶
vectors, the optimal wolf can be identified and 

repositioned strategically around the prey, as depicted in Fig. 4. In natural 

circumstances, grey wolves possess the ability to locate their prey, whereas, 

in mathematical applications, the location of the prey (i.e., the optimal 

solution) is unknown. Therefore, it is assumed that the 𝛼, 𝛽, and 𝛿 wolves 

have a better understanding of the potential location of the prey. The 

solutions achieved by these three wolves are preserved, while the remaining 

wolves update their positions based on the saved solutions. This process is 

mathematically represented by equations that calculate the distances 

between the alpha, beta, and delta wolves [38]. 

⇀

𝐷𝑎

= |
⇀

𝐶1

.
⇀

𝑋𝑎

−
⇀

𝑋
|, 

  
⇀

𝐷𝛽

= |
⇀

𝐶2

.
⇀

𝑋𝛽

−
⇀

𝑋
|, 

  
⇀

𝐷𝛿

= |
⇀

𝐶3

.
⇀

𝑋𝛿

−
⇀

𝑋
| 

(7) 

Where 
⇀

𝑋𝑎
, 

⇀

𝑋𝛽
, and 

⇀

𝑋𝛿
 are the positions of 𝛼, 𝛽, and 𝛿. 

⇀

𝑋
 is the current 

solution’s position. 

⇀

𝑋1

=
⇀

𝑋𝑎

−
⇀

𝐴1

. (
⇀

𝐷𝑎

), (8) 



 

 

  
⇀

𝑋2

=
⇀

𝑋𝛽

−
⇀

𝐴2

. (
⇀

𝐷𝛽

), 

  
⇀

𝑋3

=
⇀

𝑋𝛿

−
⇀

𝐴3

. (
⇀

𝐷𝛿

) 

⇀

𝑋 

(𝑡 + 1) =

⇀
𝑋1

+
⇀
𝑋2

+
⇀
𝑋3

3
 

The 𝐶 Vector is a crucial parameter in the GWO algorithm that controls 

exploration. It is assigned a random value between 0 and 2 and influences 

the weight given to the prey based on a wolf's position. The parameter 

known as 𝐶 plays a crucial role in determining the level of difficulty in 

reaching the prey. A value greater than 1 (𝐶 > 1) makes the task more 

challenging and increases the distance to the prey, while a value less than 1 

(𝐶 < 1) makes it easier and brings the prey closer. The 𝐶 vector serves as 

an effective means to prevent getting stuck in local optima, particularly 

during the later stages of the algorithm. Another important parameter that 

facilitates exploration is 𝐴. Its value is determined by a linearly decreasing 

parameter that ranges from 2 to 0. When the random values of the 
⇀

𝐴 
 vector 

falls within the interval of [-1,1], a wolf is capable of moving to any position 

between its current location and the prey's position. If |
⇀

𝐴 
| < 1, the wolves 

launch a direct attack on the prey, while values greater than 1 signify that 

they attack from a distance away from the prey. 

3.2. Modified grey wolf optimization 

To modify the Grey Wolf Optimizer, two simple changes have been 

proposed. The first change added a new group of wolves called Gamma (γ), 

in addition to the existing Alpha (𝛼), Beta (𝛽), Delta (𝛿), and Omega (ω) 

groups. With this addition, the omega wolves will adjust their positions 

based on the positions of all four groups of wolves instead of three. The 

second modification relates to the equation used to determine the step size 

of the omega wolves, which is presented in the original GWO. In the 

modified version, an extra equation is included to compute the distance 

between the alpha, beta, delta, and gamma wolves. 

⇀

𝐷𝛾

= |
⇀

𝐶4

.
⇀

𝑋𝛾

−
⇀

𝑋
| (9) 



 

 

The calculation of the positions of alpha, beta, delta, and gamma can be done 

using the following formulae, where 
⇀

𝑋𝛾
 represents the position of gamma 

and 
⇀

𝑋
 is the current solution [37].  

⇀

𝐷𝑎𝑣𝑔 

=

⇀
𝑋1

+
⇀
𝑋2

+
⇀
𝑋3

3
 

⇀

𝑋1
=

⇀

𝑋𝑎
−

⇀

𝐴1
. (

⇀

𝐷𝑎𝑣𝑔 

),     
⇀

𝑋2
=

⇀

𝑋𝛽
−

⇀

𝐴2
. (

⇀

𝐷𝑎𝑣𝑔 

), 

⇀

𝑋3
=

⇀

𝑋𝛿
−

⇀

𝐴3
. (

⇀

𝐷𝑎𝑣𝑔 

),    
⇀

4
=

⇀

𝑋𝛿
−

⇀

𝐴4
. (

⇀

𝐷𝑎𝑣𝑔 

) 

⇀

𝑋 

(𝑡 + 1) =

⇀
𝑋1

+
⇀
𝑋2

+
⇀
𝑋3

+
⇀
𝑋4

4
 

(10) 

3.3. Fitness Dependent Optimizer 

The Fitness Dependent Optimizer (FDO) is a recently developed 

algorithm, introduced by Jaza Abdullah and Tarik Rashid in 2019, that 

draws inspiration from the reproductive behavior of swarm bees. Unlike 

GWO, the FDO algorithm adopts a simpler concept and is easier to grasp. It 

emulates the scouting behavior of bees as they search for a suitable hive 

among numerous potential options, aiming to identify optimal solutions 

from a pool of possibilities. The FDO process consists of two main 

components: the search process, where the related agents make efforts to 

discover the optimal solution, and the movement process, in which the 

position of scout bee is updated. Detailed explanations of these two 

processes will be provided in the following sections [39, 40]. 

3.4. Searching Process of the Scout Bee  

The fundamental idea of the Fitness Dependent Optimizer (FDO) is to 

discover suitable new solutions similar to finding new hives in the bee 

reproduction process. Scout bees act as search agents to look for new 

solutions, just like in the GWO algorithm. In the FDO algorithm, a new 

solution is denoted by the position of a scout bee. During the execution of 

FDO, the initial positions of artificial scout bees are generated randomly 

within the search space. Throughout the algorithm, a global best solution is 



 

 

identified. The scout bees utilize a combination of fitness weight 

mechanisms and random walk to explore and discover new solutions. They 

persistently search for improved solutions within the predefined boundaries 

until the end of the process. If a superior solution is discovered, the previous 

solution is discarded in favor of the new one. However, if no better solution 

is discovered, the previous solution is retained. 

3.5. Movement Process of the Scout Bee  

The FDO algorithm involves updating the positions of the scout bees to 

improve the solution. This is done by adding a step size to the current 

position. 

𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 + 𝑝𝑎𝑐𝑒 (11) 

 

The search agent at the present moment is symbolized by 𝑖, while 𝑡 

represents the ongoing iteration. The artificial scout bee or search agent is 

denoted by 𝑋, and 𝑝𝑎𝑐𝑒 signifies the speed and direction of movement for 

the scout bee. The pace's speed and direction are influenced by the fitness 

weight (𝑓𝑤). Nevertheless, the specific direction of the pace is determined 

randomly. The fitness weight is computed  

 

𝑓𝑤 = |
𝑥𝑖,𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠

∗

𝑥𝑖,𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠
 | − 𝑤𝑓 (12) 

The formula above calculates the weight factor (𝑤𝑓) used to control the 

fitness weight (𝑓𝑤), which determines the movement pace of the scout bees 

in FDO. 𝑥𝑖,𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠
∗  and 𝑥𝑖,𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠

  represent the best global and current 

solutions for the fitness function, respectively. The weight factor The value 

of 𝑤𝑓 can be either 0 or 1, with 1 indicating a high level of convergence and 

a low chance of coverage. However, if 𝑤𝑓 is 0, it is ignored and does not 

affect the equation. It is important to note that setting wf to 0 does not 

necessarily increase the stability of the search; the fitness function value 

depends on the problem. To avoid unacceptable cases, the 𝑓𝑤 value should 

be between 0 and 1 and the equation should avoid division by zero, which 

can occur if the value of 𝑥𝑖,𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠
  is 0. The following rules, as shown in 

Eq. (10), should be applied in FDO. 



 

 

{

𝑓𝑤 = 1 𝑜𝑟 𝑓𝑤 = 0 𝑜𝑟  𝑥𝑖,𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠
 = 0 𝑜𝑟 𝑝𝑎𝑐𝑒 = 𝑥𝑖,𝑡

 × 𝑟

𝑓𝑤 > 𝑎𝑛𝑑 𝑓𝑤 < 1 {
𝑟 < 0, 𝑝𝑎𝑐𝑒 = (𝑥𝑖,𝑡

 − 𝑥𝑖,𝑡
∗ ) × 𝑓𝑤 × −1

𝑟 ≥ 0, 𝑝𝑎𝑐𝑒 = (𝑥𝑖,𝑡
 − 𝑥𝑖,𝑡

∗ ) × 𝑓𝑤            

} (13) 

In the given equation, 𝑟 represents a randomly generated number within 

the interval of [-1, 1]. The term 𝑥𝑖,𝑡
  denotes the current solution at iteration 

𝑡 for the search agent 𝑖. On the other hand, 𝑥𝑖,𝑡
∗  refers to the best solution 

attained globally up until the present moment. 

4. Implementation, Results, and Discussion 

Here, the outcomes achieved through the implemented architecture are  

analyzed and an evaluation of the training and testing processes are 

presented. We will provide an overview of the experimental environment 

and framework employed, as well as showcase the overall performance of 

the proposed model. Subsequent sections will delve into the specific results 

obtained from each dataset. The construction and execution of the machine 

learning classification were conducted using the MATLAB platform. To 

evaluate the classification model, a dataset was utilized being divided into 

an 80:20 ratio. This means that 80% of the data was employed for training 

purposes, while the remaining 20% was reserved for testing. 

Tables 1 and 2 present the classification accuracy of each model on the 

dataset, showcasing the performance during the training and testing phases 

of the implemented architecture. The datasets were divided into training and 

testing sets using an 80:20 ratio, comprising a total of 1,941 samples, with 

1,553 samples allocated for training and 388 samples for testing. The table 

provides information on the correct classification rate achieved by each 

model on each dataset, along with details such as problem dimension, the 

number of search agents utilized, and the maximum iteration of the search 

algorithm. All models were tested under identical conditions, employing 10 

search agents and a maximum iteration of 50 for each algorithm. From Table 

1, it can be observed that all models yielded similar results, but the FDO 

algorithm exhibited a higher likelihood of achieving more accurate 

outcomes, attaining 100% accuracy across all experiments. However, it is 

worth noting that the FDO algorithm took longer to complete compared to 

the GWO algorithm. Notably, the GWO_MLP model demonstrated the 

shortest runtime, possibly due to the faster GWO algorithm and the MLP 

architecture having fewer connections compared to the CMLP. 

 



 

 

Table 1 Proposed models and their correct classification rates. 

Model Samples Dimensions Run time  Training rate  Testing rate  

GWO_MLP 1941 2346 139.223s 92.740 % 92.87 % 
MGWO_MLP 1941 2346 241.248s 95.816 % 96.39 % 
GWO_CMLP 1941 2482 181.149s 95.217 % 100.0 % 
FDO_MLP 1941 2346 5637.132s 100.00 % 100.0 % 
FDO_CMLP 1941 2380 5837.251s 99.771 % 98.65 % 

 

Table 2 showcases the outcomes of the proposed models, presenting the 

Mean Square Error (MSE) and the classification rate achieved during both 

the testing and training phases. The achieved classification rate on this 

dataset is highly encouraging, particularly considering its substantial size, 

as it represents the largest dataset utilized in this study. The classification 

accuracy ranges from 99% to 100%, demonstrating the effectiveness of the 

models.  

 

Table 2. Performance results of the proposed models. 

Model Train 

/Test 

Pos. 

case 

Correct 

predicts 

Accuracy Neg. 

case 

Correct 

predicts 

Accuracy MSE Rate 

GWO_

MLP 

Tr. 958 876 91.379 595 552 92.469 0.00268 92.740 

Ts. 311 311 100.00 77 72 92.215 0.00269 96.371 

MGWO

_MLP 

Tr. 958 926 96.643 595 556 93.266 0.00179 95.816 

Ts. 311 311 100.00 77 73 94.682 0.00189 97.651 

GWO_C

MLP 

Tr. 958 911 95.071 595 559 93.664 0.00221 95.217 

Ts. 311 311 100.00 77 73 93.757 0.00243 97.171 

FDO_M

LP 

Tr. 958 958 100.00 595 596 100.00 0.00225 100.00 

Ts. 311 311 100.00 77 77 100.00 0.00244 100.00 

FDO_C

MLP 

Tr. 958 947 98.764 595 596 100.00 0.00199 99.771 

Ts. 311 311 100.00 77 77 100.00 0.00196 100.00 

 

Additionally, Table 3 provides an evaluation of the confusion matrices 

for the proposed models on this dataset, offering further insights into their 

performance. Finally, Fig. 5 illustrates the roc curve results of all the 

proposed models that underwent testing on the dataset, providing a visual 

representation of their performance. 

 

Table 3 Confusion matrices for a dataset using considered methods. 

Model Sensitivity Specificity PPV NPV  Accuracy 

GWO_MLP 0.95 0.87 0.91 0.93 96.37% 
MGWO_MLP 0.98 1 1 0.94 97.65% 
GWO_CMLP 0.96 0.95 0.97 0.93 97.17% 



 

 

FDO_MLP 0.99 1 1 0.95 100% 
FDO_CMLP 0.96 0.92 0.95 0.94 100% 

 

 
Fig. 5. ROC curve results for the dataset. 

4.1. Conclusions 

Early detection of faults in steel plates is crucial for maintaining safety 

and reliability, and machine learning techniques can accurately predict and 

diagnose these faults. The investigations conducted in this chapter used five 

machine-learning techniques to classify steel plates as faulty or non-faulty. 

In these techniques, the metaheuristic algorithms such as FDO were used to 

reduce the mean square error.  

Based on the results obtained from the experiments, the FDO-based MLP 

and CMLP models exhibited superior performance compared to the other 

models, achieving 100% accuracy. Nevertheless, the FDO algorithm 

exhibits a longer runtime compared to GWO across the dataset. However, 

in the engineering domain, where accuracy holds paramount importance, the 

FDO algorithm is considered more favorable. The performance of the other 

models showed slight variations depending on the specific dataset used. No 

significant difference was observed between MLP and CMLP models as 

results varied across experiments. The classification models presented in 

this study demonstrate impressive precision and offer a promising initial 

step toward developing a predictive system for identifying infected or high-

risk patients, which plays a crucial role in controlling the spread of 



 

 

infections. However, considering the sensitivity of the engineering field, it 

is crucial to have a highly reliable and efficient system in place. It is 

important to note that achieving 100% accuracy in classification models is 

rare and can be influenced by factors such as the number of features used 

and the ease of classification. Furthermore, the dataset utilized in this 

research did not include noisy data, which could potentially lead to errors in 

generalization. Therefore, additional testing is necessary to ensure the 

reliability of these models. Future work could involve expanding or 

developing the research by performing additional tests: 

• Increasing the database size by adding more features and samples 

related to the steel plate fault, will enhance the efficiency and 

comprehensiveness of the prediction process. 

• Exploring the creation of alternative neural network models capable of 

processing diverse data types, including images, audio, and time-series 

data. This endeavor would result in the development of a more advanced 

system, characterized by enhanced intelligence and a wide range of 

advantages, particularly in the engineering field. 

• Investigating novel approaches to generate models that are both reliable 

and advanced. One avenue to accomplish this is by adapting or 

combining the utilized algorithms with traditional or metaheuristic 

algorithms to construct innovative models. 
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