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Abstract—Rice disease classification is a critical task in agri-
cultural research, and in this study, we rigorously evaluate the
impact of integrating feature extraction methodologies within
pre-trained convolutional neural networks (CNNs). Initial in-
vestigations into baseline models, devoid of feature extraction,
revealed commendable performance with ResNet-50 and ResNet-
101 achieving accuracies of 91% and 92%, respectively. Subse-
quent integration of Histogram of Oriented Gradients (HOG)
yielded substantial improvements across architectures, notably
propelling the accuracy of EfficientNet-B7 from 92% to an
impressive 97%. Conversely, the application of Local Binary
Patterns (LBP) demonstrated more conservative performance
enhancements. Moreover, employing Gradient-weighted Class
Activation Mapping (Grad-CAM) unveiled that HOG integra-
tion resulted in heightened attention to disease-specific features,
corroborating the performance enhancements observed. Visual
representations further validated HOG’s notable influence, show-
casing a discernible surge in accuracy across epochs due to
focused attention on disease-affected regions. These results un-
derscore the pivotal role of feature extraction, particularly HOG,
in refining representations and bolstering classification accuracy.
The study’s significant highlight was the achievement of 97%
accuracy with EfficientNet-B7 employing HOG and Grad-CAM,
a noteworthy advancement in optimizing pre-trained CNN-based
rice disease identification systems. The findings advocate for the
strategic integration of advanced feature extraction techniques
with cutting-edge pre-trained CNN architectures, presenting a
promising avenue for substantially augmenting the precision
and effectiveness of image-based disease classification systems
in agricultural contexts. Code is available at: https://github.com/
shohanursobuj/LeafExtractCNN.

Index Terms—Rice Disease Classification, Feature Extraction,
Histogram of Oriented Gradients (HOG), Local Binary Patterns
(LBP), Convolutional Neural Networks (CNNs), Grad-CAM

I. INTRODUCTION

The cultivation and sustenance of rice hold immense signif-
icance globally, particularly catering to a substantial portion of
Asia’s population [1]. In Bangladesh, rice stands as a primary
dietary staple for around 170 million people, contributing
significantly to their protein intake and carbohydrates [2].
Economically, it plays a pivotal role, contributing 4.4% to
the country’s agricultural GDP and forming a substantial part
of its national income [3]. The deeply ingrained practice of
rice cultivation involves nearly all of Bangladesh’s 13 million
farming families, utilizing 10.5 million hectares of land con-

sistently over several decades [4]. Bangladesh’s status as the
fourth largest global rice producer underscores its substantial
contribution to the world’s rice output [5].

However, the urgent need to escalate rice production faces
formidable challenges, including the prevalence of pests,
diseases, pathogens, and the exacerbating effects of climate
change. Diverse pathogens such as fungi, viruses, and bacteria
pose threats to rice crops, causing afflictions like blast, bakanae
disease, brown leaf spot, leaf folder, sheath blight, hispa,
sheath rot, and bacterial leaf blight [6].

The present research aims to address these challenges
by enhancing rice disease classification accuracy through
strategic feature extraction techniques. Specifically, the study
delved into the implementation of Histogram of Oriented
Gradients (HOG) and Local Binary Patterns (LBP) to refine
the classification process. Additionally, we utilized Gradient-
weighted Class Activation Mapping (Grad-CAM) to highlight
important regions within the images for prediction, providing
deeper insights into the classification process. The subse-
quent section elucidates the methodology employed, includ-
ing a thorough evaluation encompassing model performance
metrics—precision, recall, accuracy, and F1 score—post the
integration of these feature extraction methods and Grad-
CAM analysis. Notably, substantial improvements were ob-
served across a spectrum of models including ResNet-50,
ResNet-101, VGG16, VGG19, MobileNetV2, InceptionV3,
and EfficientNet-B7, showcasing notable advancements com-
pared to baseline models.

Tables I, II, and III in the subsequent sections present the
detailed performance metrics of various models in classifying
rice diseases with and without the application of feature
extraction techniques. The inclusion of HOG features notably
improved the F1 scores across different models, demonstrating
enhanced precision, recall, accuracy, and overall performance
compared to the baseline models. Conversely, while LBP
feature extraction demonstrated improvements, they were rel-
atively lower compared to the HOG-extracted features.

This research strives to pave the way for more effective
strategies to bolster rice cultivation and sustain global food
security, especially in regions like Bangladesh facing growing
population demands.
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II. RELATED WORK

In the exploration of CNN-based deep learning architectures
for rice disease classification, Ahad et al. showcased the
effectiveness of an ensemble framework, achieving a notable
accuracy rate of 98%. Furthermore, by incorporating transfer
learning techniques, they demonstrated an enhancement in
accuracy, underscoring the potential of deep CNN models in
real-time disease detection within agricultural systems [7].

Singh et al. proposed a tailored CNN architecture designed
specifically for detecting and classifying prevalent rice plant
diseases. Their model, trained on a dataset featuring four
disease types along with 1400 healthy rice leaf images, demon-
strated commendable accuracy rates. Notably, the evaluation
using distinct optimization techniques highlighted the Adam
optimizer’s superiority over SGD. While the model achieved
a maximum accuracy of 99.66% with Adam optimization,
it reached 97.61% accuracy with SGD. This underscores
the significance of optimizer selection in achieving optimal
performance [8].

Bharanidharan et al. utilized a Modified Lemurs Optimiza-
tion Algorithm to enhance paddy disease detection accuracy.
Analyzing thermal images of healthy and diseased paddy
leaves, their proposed feature transformation technique no-
tably improved classifier performance, achieving a balanced
accuracy of 90% for the K-Nearest Neighbor classifier [6].

Haridasan et al. focused on developing a comprehensive
deep learning system for paddy plant disease detection, achiev-
ing a high validation accuracy of 0.9145. Their system emerges
as a valuable predictive tool for stakeholders in agriculture to
effectively combat these diseases [9].

In their research on AI-based rice leaf disease identification
enhanced by Dynamic Mode Decomposition, K.M. et al.
compared 10 DCNN models for rice leaf disease identification
utilizing attention-driven preprocessing. Among these mod-
els, DenseNet121 exhibited noteworthy performance; however,
XceptionNet, trained on deep features, outperformed others,
achieving a classification accuracy of 94.33% [10].

Another study by Aggarwal et al. presented a lightweight
federated deep learning architecture for rice leaf disease clas-
sification using non-independent and identically distributed
images. This architecture ensured data privacy and showcased
outstanding accuracy of 99% on both IID and non-IID datasets,
offering a promising alternative for early rice leaf disease
classification [11].

Simhadri et al. employed transfer learning across 15 CNN
models for automatic recognition of rice leaf diseases. Their
study highlighted InceptionV3 as the top-performing model,
surpassing others with an impressive average accuracy of
99.64% [12].

Shruti Aggarwal et al. conducted a comprehensive study on
rice disease detection using artificial intelligence and machine
learning techniques, analyzing methodologies, seedling health,
and grain quality over an eight-year period. Their work,
utilizing Web of Science and Scopus databases, provided
valuable insights supporting researchers in this field [13].

Prottasha et al. proposed an optimized convolutional neural
network architecture for identifying various rice plant diseases.
With MobileNet v2 as the focal architecture, their study
achieved a notable validation accuracy of 98.% with 16,770
collected images, demonstrating its significant performance in
detecting rice plant diseases [14].

Islam et al. introduced a novel technique for rice disease
identification through leaf image analysis coupled with an
IoT-based smart rice field monitoring system. Leveraging
convolutional neural networks, their system achieved a high
accuracy of 98.7% and utilized remote data collection for field
monitoring and medication [15].

In another study by Islam et al., a segmentation-based
method employing VGG, ResNet, and DenseNet deep neural
networks for rice leaf disease recognition exhibited promising
performance with potential practical applications in agriculture
[16].

III. MATERIALS AND METHODS

Our study, depicted in Figure 1, presents the fundamental
stages of our devised methodology. The approach encompasses
the strategic utilization of feature engineering algorithms piv-
otal in the precise selection of optimal features within our
workflow.

Rice Disease
Images

Data Preprocessing

Feature Extraction
(HOG, LBP)

Classification Model
(EfficientNet, VGG, etc.)

Classified Images

Fig. 1: Proposed Workflow for Rice Disease Classification

A. Dataset

The dataset utilized for rice plant species classification
comprised 4078 images across distinct categories, including
613 images of Brown Spot, 1488 images of Healthy speci-
mens, 977 images of Leaf Blast, and 1000 images of Neck
Blast. This dataset amalgamated contributions from various
sources. The Dhan-Shomadhan Dataset, focused on rice leaf
disease classification for Bangladeshi local rice, contributed



a significant portion of the images. Within this dataset, Leaf
background images from Brown Spot and Rice Blast classes
were incorporated into the Rice Brown Spot and Rice Leaf
Blast classes, respectively [17]. Additionally, images sourced
from the ”Rice Leafs” dataset on Kaggle were included,
specifically adding to the Rice Brown Spot, Rice Healthy, and
Rice Leaf Blast categories [18].

Fig. 2: Visual representation of rice diseases. (Left to right):
Brown spot, Leaf blast, and Neck blast

B. Rice Disease Types

Rice cultivation is susceptible to various diseases, impacting
yield and quality. This subsection focuses on three prevalent
diseases: Rice Leaf Blast, Neck Blast, and Brown Spot.

1) Leaf Blast: Leaf Blast, caused by the fungus Magna-
porthe oryzae, is a significant threat to rice crops. It manifests
as lesions on leaves, stems, and panicles, leading to yield
reduction. The disease is favored by humid conditions and can
spread rapidly, affecting large areas if not managed effectively.

2) Neck Blast: Neck Blast, also caused by the fungus
Magnaporthe oryzae, affects the neck or collar region of
rice plants. It leads to the development of lesions in this
area, potentially resulting in lodging and yield losses. Neck
Blast shares similarities with Leaf Blast but requires specific
attention due to its impact on plant stability.

3) Brown Spot: Brown Spot, caused by the fungus
Cochliobolus miyabeanus, is characterized by small, dark
brown lesions with yellow halos on leaves. It thrives in warm
and humid conditions, affecting leaf health and causing yield
losses if not managed through cultural or chemical methods.

C. Image Preprocessing and Augmentation

To prepare the collected images for model training, a
standardized resizing procedure was implemented, setting the
image dimensions uniformly to 224x224 pixels. Leveraging
the ImageDataGenerator module within the TensorFlow
2.0 library, a sequence of augmentation techniques was em-
ployed to enhance the dataset’s diversity and augment its
robustness for subsequent model training.

The image augmentation parameters are listed below:
• Horizontal Flip: RandomFlip("horizontal")
• Rotation Range: RandomRotation(0.2)
• Zoom Range: RandomZoom(0.2)
• Height Range: RandomHeight(0.2)
• Width Range: RandomWidth(0.2)

The augmentation pipeline was structured using a Ten-
sorFlow Keras Sequential model, incorporating several key
augmentation layers to generate augmented images. These
techniques allowed for an increase in dataset diversity, con-
tributing to improved model generalization and performance
during subsequent training and validation phases.

D. Feature Extraction

In the domain of image processing and computer vision,
feature extraction plays a fundamental role in elucidating
and interpreting image content. This process involves the
extraction of meaningful patterns, textures, or structural details
from raw pixel data, enabling a more abstract and informative
representation of images.

1) Histogram of Oriented Gradients (HOG): The His-
togram of Oriented Gradients (HOG) feature extraction
method, proposed by Dalal and Triggs [19], is employed on
images resized to 224x224 and converted to grayscale. The
key parameters utilized for HOG are as follows:

• Number of orientations: 9
• Pixels per cell: (14, 14)
• Cells per block: (2, 2)

The resulting HOG feature vector length is computed to be
6084, derived from a cell size of (14, 14) pixels.

In this research paper, the HOG feature extraction technique
using the specified parameters was employed for analysis.

Fig. 3: Visualization of HOG Features for Brown Spot Disease
in Rice Leaves.

The HOG technique finds extensive use in diverse com-
puter vision applications such as object detection and image
classification due to its adeptness in capturing crucial image
characteristics.

2) Local Binary Pattern (LBP): The Local Binary Pat-
tern (LBP) feature extraction technique, pioneered by Ojala,
Pietikäinen, and Harwood [20], involves resizing images to
224x224, converting them to grayscale, and applying the LBP
algorithm. The specific LBP parameters applied are:

• LBP radius: 3
• LBP points: 24 (8 * radius)
• Uniform method

The resulting LBP feature vector length stands at 50176,
derived from a cell size of (14, 14) pixels.



Fig. 4: Visualization of LBP Features: Leaf Blast Disease in
Rice Leaves.

Both HOG and LBP feature extraction techniques play a
pivotal role in facilitating image analysis by providing repre-
sentations that aid in comprehending and interpreting image
content in various scientific and application-driven contexts.

IV. CONVOLUTIONAL NEURAL NETWORK
ARCHITECTURES FOR IMAGE CLASSIFICATION

In recent years, numerous Convolutional Neural Network
(CNN) architectures have been developed, showcasing signifi-
cant advancements in image classification and computer vision
tasks. This section provides an overview and comparison of
several prominent CNN architectures utilized extensively in
the field.

A. ResNet-50

The ResNet-50 architecture proposed by He et al. in [21]
presents a 50-layer deep neural network. Using residual blocks
and skip connections, ResNet-50 effectively addresses the
vanishing gradient problem encountered in training deep net-
works. Pre-trained on ImageNet, this model serves as a robust
feature extractor and demonstrates remarkable performance in
various computer vision applications.

B. InceptionV3

Szegedy et al.’s InceptionV3 [22] introduces an architecture
that employs various convolutional layers with different filter
sizes within modules. By capturing features at multiple spatial
scales, InceptionV3 achieves versatility in pattern recognition.
The incorporation of factorization, auxiliary classifiers, and
global average pooling enhances its efficacy in image classi-
fication tasks.

C. ResNet-101

Similar to ResNet-50, ResNet-101 [21] employs resid-
ual blocks with skip connections. This architecture, with
a deeper network comprising 101 layers, further augments
feature extraction capabilities, leveraging bottleneck design,
1x1 convolutions, and global average pooling for multi-class
classification tasks.

D. VGG16 and VGG19

The VGG series, introduced by Simonyan and Zisserman
[23], comprises VGG16 and VGG19 architectures. Both mod-
els employ consistent 3x3 filters across their layers, maintain-
ing a uniform design while varying in depth.

The research team explored six distinct CNN configurations
labeled A, A-LRN, B, C, D (VGG16), and E (VGG19), with
corresponding layer counts of 11, 11, 13, 16, 16, and 19,
respectively. Configuration D specifically denotes VGG16.
These configurations retain the use of 3x3 filters through-
out the network, maintaining fixed parameters while varying
depth. VGG19, distinguished by its 19 layers, delves deeper
to capture more intricate features [23].

E. MobileNetV2

MobileNetV2 [24] is specifically tailored for resource-
constrained environments like mobile and edge devices. Its
lightweight design, featuring inverted residuals, linear bottle-
necks, and global average pooling, strikes a balance between
model accuracy and computational efficiency. This architec-
ture finds widespread applications in scenarios with limited
computational resources.

F. EfficientNet-B7

The EfficientNet-B7 proposed by Tan et al. [25] intro-
duces a novel approach to scaling CNNs by balancing depth,
width, and resolution. Leveraging Mobile Inverted Bottleneck
(MBConv) blocks and the squeeze-and-excitation mechanism,
EfficientNet-B7 optimizes performance while maintaining a
manageable model size. This architecture is adept at handling
varying computational constraints while delivering competitive
accuracy.

V. RESULTS AND DISCUSSION

The evaluation of rice disease classification models reveals
compelling insights into feature extraction techniques’ impact
on various CNN architectures (Table I). The baseline mod-
els, devoid of feature extraction, demonstrated commendable
performance, with ResNet-50 and ResNet-101 achieving an
accuracy of 91% and 92%, respectively. Notably, these models
exhibited consistent precision and recall scores, reflecting their
robustness.

TABLE I: Performance of Baseline Models without Feature
Extraction

Model Accuracy Precision Recall F1 Score
ResNet-50 0.91 0.91 0.88 0.90
ResNet-101 0.92 0.92 0.88 0.89
VGG16 0.90 0.90 0.87 0.89
VGG19 0.90 0.90 0.88 0.89
MobileNetV2 0.86 0.86 0.81 0.83
InceptionV3 0.91 0.91 0.89 0.90
EfficientNet-B7 0.92 0.92 0.90 0.91

Upon integrating Histogram of Oriented Gradients (HOG)
feature extraction, a marked enhancement across all mod-
els became evident (Table II). The augmentation was most
pronounced in the EfficientNet-B7 architecture, where the



addition of HOG led to a notable surge in accuracy from 92%
to an impressive 97%. This substantial improvement was also
reflected in precision, recall, and the F1 score, underscoring
the efficacy of HOG in enriching feature representation.

TABLE II: Model Performance with HOG Feature Extraction

Model Accuracy Precision Recall F1 Score
ResNet-50 0.95 0.93 0.90 0.91
ResNet-101 0.96 0.94 0.91 0.92
VGG16 0.94 0.92 0.90 0.91
VGG19 0.94 0.92 0.91 0.91
MobileNetV2 0.90 0.88 0.84 0.86
InceptionV3 0.95 0.93 0.91 0.92
EfficientNet-B7 0.97 0.95 0.93 0.96

Contrarily, Local Binary Patterns (LBP) as a feature ex-
traction method exhibited a more modest impact (Table III).
While still contributing to performance augmentation in certain
models like ResNet-101 and EfficientNet-B7, its influence re-
mained comparatively subdued. For instance, the combination
of EfficientNet-B7 with LBP resulted in an accuracy of 90%,
showing a marginal improvement compared to the baseline
EfficientNet-B7 model.

TABLE III: Model Performance with LBP Feature Extraction

Model Accuracy Precision Recall F1 Score
ResNet-50 0.88 0.88 0.85 0.86
ResNet-101 0.89 0.89 0.86 0.87
VGG16 0.85 0.86 0.83 0.84
VGG19 0.86 0.87 0.84 0.85
MobileNetV2 0.82 0.82 0.79 0.80
InceptionV3 0.87 0.88 0.85 0.86
EfficientNet-B7 0.90 0.90 0.87 0.88

These findings substantiate the pivotal role of feature ex-
traction techniques, particularly HOG, in bolstering the clas-
sification performance of CNN architectures for rice disease
identification. While both HOG and LBP contribute to varying
degrees (Table IV), the substantial leap in accuracy and perfor-
mance, especially with HOG in conjunction with EfficientNet-
B7, underscores its significance in refining feature representa-
tions and ultimately enhancing the classification accuracy for
agricultural disease identification systems.

TABLE IV: Top Performing Models with Feature Enhance-
ment

Model Accuracy Precision Recall F1 Score
EfficientNet-B7 0.92 0.92 0.90 0.91
EfficientNet-B7 + HOG 0.97 0.95 0.93 0.96
EfficientNet-B7 + LBP 0.90 0.90 0.87 0.88

The visual representation in Figure 5 provides a clear
comparison of classification accuracies among various models
utilizing different feature extraction techniques.

A. Comparison with Previous Techniques

In this section, we present a comparative analysis of various
methods employed in the field. Table V provides an overview
of these methods along with their respective accuracies.
Notably, our proposed method, utilizing EfficientNet-B7 in
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Fig. 5: Comparison of Classification Accuracies among Vari-
ous Models with Different Feature Extraction Techniques.

conjunction with HOG descriptors, demonstrates the highest
accuracy of 97%, outperforming the other techniques listed.

TABLE V: Comparison of Methods and Their Accuracy

Ref Method Accuracy
[6] Modified Lemurs Optim. Algorithm 0.90

[10] 10 Transfer Learned DCNN Models 0.94
[9] ReLU & Softmax DL Strategy 0.91

[16] VGG, ResNet, DenseNet Ensemble 0.82
Proposed EfficientNet-B7 + HOG 0.97

B. Visualizing Neural Network Decision Making

This section aims to elucidate the neural network’s decision-
making process concerning rice disease classification by em-
ploying Gradient-weighted Class Activation Mapping (Grad-
CAM). Grad-CAM, a class discriminative localization tech-
nique, offers insights into the regions within rice images
pivotal for accurate disease identification without necessitating
architectural modifications or re-training of the CNN-based
network [26]. We leverage Grad-CAM to discern important re-
gions in rice crop images that influence the network’s decision-
making. Figure 6 illustrates the process: an original rice leaf
image affected by blast disease, the corresponding heatmap
highlighting disease-affected areas, and the Grad-CAM visual-
ization overlaying disease regions on the original image. These
visual representations highlight the specific areas of interest
within the images that contribute significantly to accurate
disease classification. This analysis provides valuable insights
into the network’s focus areas and aids in understanding the
network’s decision rationale, further enhancing interpretability
and trustworthiness of the classification process.

VI. CONCLUSION

In this work, we introduced and assessed advanced feature
extraction methodologies, notably the Histogram of Oriented
Gradients (HOG) and Local Binary Patterns (LBP), integrated
within convolutional neural networks (CNNs) to enhance pre-
cision in rice disease classification. Our investigation revealed



Fig. 6: Original rice leaf image affected by blast disease,
corresponding heatmap highlighting disease-affected areas,
and Grad-CAM visualization overlaying disease regions on
the original image (Left to right)

the substantial efficacy of HOG, showcasing an impressive
97% accuracy when employed with the EfficientNet-B7 model,
emphasizing its pivotal role in refining feature representations.
However, contrary to expectations, the integration of Local
Binary Patterns (LBP) resulted in a decrease in overall per-
formance, with an accuracy of 90% with the EfficientNet-
B7 model. This decline in performance indicates that LBP
may not be as suitable for capturing relevant features in
rice disease images compared to HOG. Furthermore, the
incorporation of Gradient-weighted Class Activation Mapping
(Grad-CAM) augmented interpretability by highlighting cru-
cial disease-affected areas within rice images. These findings
collectively highlight the potential of optimized CNN-based
systems to revolutionize agricultural disease identification,
offering promising avenues for bolstering rice cultivation and
addressing challenges impeding global food security.
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