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Abstract— Autonomous Vehicles (AVs) redefine 

transportation with sophisticated technology, integrating 

sensors, cameras, and intricate algorithms. Implementing 

machine learning in AV perception demands robust hardware 

accelerators to achieve real-time performance at reasonable 

power consumption and footprint. Lot of research and 

development efforts using different technologies are still being 

conducted to achieve the goal of getting a fully AV and some cars 

manufactures offer commercially available systems. 

Unfortunately, they still lack reliability because of the repeated 

accidents they have encountered such as the recent one which 

happened in California and for which the Cruise company had 

its license suspended by the state of California for an 

undetermined period [1]. This paper critically reviews the most 

recent findings of machine vision systems used in AVs from both 

hardware and algorithmic points of view. It discusses the 

technologies used in commercial cars with their pros and cons 

and suggests possible ways forward. Thus, the paper can be a 

tangible reference for researchers who have the opportunity to 

get involved in designing machine vision systems targeting AV. 

Index Terms— ADAS, ASIC, CNNs, CPU, Datasets, FPGA, 

GPU, Hardware Accelerators, SSD, Object Detection, YOLO 

I. INTRODUCTION 

AVs represent a groundbreaking technological innovation 

with profound implications for the field of transportation and 

beyond. Using a combination of sensors, cameras, lidar 

(Light Detecting and Range Technology), radar, and complex 

software algorithms, autonomous cars can observe their 

surroundings, make quick decisions in real time, and travel 

safely without the need for a driver. AVs have garnered 

significant interest recently and they hold a crucial place in 

transportation not just for the convenience they offer in 

relieving drivers but also for their capacity to revolutionize 

the entire transportation ecosystem. As per the WHO, 

approximately 1.3 million lives are lost each year due to road 

traffic accidents [2], and 94% of these accidents are because 

of human errors and distracted driving [3]. Therefore, their 

significance is underscored by their role in enhancing road 

safety by eliminating human errors, optimizing traffic flow, 

reducing congestion, and minimizing environmental impact 

[4]. Additionally, they offer increased mobility for 

individuals who cannot drive due to elderly or disabilities, 

promising a future that is safer, more efficient, and more 

accessible.  

In recent decades, Machine Learning (ML) algorithms 

have played a pivotal role in advancing AV technology, 

particularly in the perception system. These algorithms 

facilitate the assessment of the vehicle's surroundings and 

identification of objects like pedestrians, vehicles, and traffic 

signals. The control system module utilizes this information 

to implement essential measures, covering actions related to 

braking, speed, lane changes, or steering adjustments [5]. The 

integration of artificial intelligence (AI) and ML is 

widespread in AV development, led by companies such as 

Waymo, Uber, and Tesla. This shift replaces conventional 

systems, reducing reliance on costly equipment like LRF 

(Laser Range Finder), LiDAR, and GPS [5]. Ongoing 

research aims to ensure AV safety by addressing challenges 

in modelling human-like driving behaviour for passenger 

comfort. ML, especially through the application of 

Convolutional Neural Networks (CNNs), assumes a central 

role in performing vital computer vision tasks essential for 

AV autonomy [5].  

AVs leverage not just machine vision algorithms but also 

depend on hardware accelerators to furnish robust parallel 

computing frameworks, essential for managing the intricate 

responsibilities of perception, decision-making, and control 

[6]. These hardware accelerators encompass graphics 

processing units (GPUs), Central processing units (CPUs), 

Field-Programmable Gate Arrays (FPGAs), and Application-

Specific Integrated Circuits (ASICs). The selection of these 

hardware accelerators for AVs can fluctuate based on several 

factors, including the AVs autonomy level, sensor 

configuration, computational demands, and safety 

prerequisites. 

This review paper makes a valuable contribution to the 

field of AVs in several ways. Firstly, it addresses the absence 

of comprehensive review papers that discuss commercially 

available machine vision systems for autonomous vehicles. 

This serves as a valuable resource for researchers and 

industry professionals seeking insights into the practical 

implementation and industry relevance of these systems. 

Furthermore, this paper is groundbreaking because it covers 

all aspects of hardware accelerators and machine vision 

systems for AVs in one comprehensive document. 

Additionally, it tackles the issue of fragmented information 

by consolidating and presenting it in one accessible resource, 

making research and knowledge exchange more efficient. 

These contributions aim to advance research and drive 

progress in the development of AVs technologies. 

The remaining sections of this paper are organized as 

follows:  

• Section II provides a background overview of the 

hardware accelerators, sensors and machine vision 

algorithms commonly employed in AVs.  

• Section III is dedicated to providing an overview of the 

machine vision algorithms used in AVs, offering insights 

into deep learning algorithms and machine learning 

algorithms used to detect relevant objects on the road.  

• In Section IV, we conduct an in-depth exploration of 

some of the state-of-the-art processors and other 

potential hardware accelerators utilized in AVs to 

enhance machine vision algorithms. 

• In Section V, we offer our conclusions, summarizing the 

main findings and implications presented throughout this 

paper. 
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II. BACKGROUND 

A. Levels of ADAS 

In 2014, SAE International introduced the J3016 

standard, known as "Levels of Driving Automation" [7]. This 

standard classifies the Advanced Driver-Assistance System 

(ADAS) into six distinct levels of driving automation, as 

depicted in Fig 1 [7]. It commences at SAE level 0, where the 

driver maintains full control, and advances to SAE level 5, 

where vehicles achieve complete autonomy and handle all 

dynamic driving tasks without human intervention. In a level 

5 system, the vehicle assumes full responsibility, even in the 

event of faults, errors, or accidents [8]. To reach higher 

autonomy levels, AVs depend on a combination of sensors 

and software to perceive their environment and navigate 

autonomously [9]. Currently, automotive manufacturers like 

Audi (Volkswagen) and Tesla have adopted SAE level 2 

automation standards in the development of automation 

features like Tesla's Autopilot and Audi A80s Traffic Jam 

Pilot. In contrast, Alphabet’s Waymo has been exploring a 

business model centered on SAE level 4 self-driving taxi 

services since 2016, offering rides within specific areas in 

Arizona, USA [7]. 

B. General Structure of ADAS Systems  

 ADAS is a system that helps automobile drivers navigate 

and park without automating the whole process by employing 

camera-based sensors. It aims to minimize human accidents 

by processing important data about traffic, congestion levels, 

and road closures, among other things.  

The brain of most ADAS systems is a hardware 

accelerator to perceive the car's surroundings to avert danger. 

They typically comprise four perception sensors LIDAR, 

RADAR, Cameras, and Ultrasonic Sensors [10]. The data 

from these sensors is processed using a dedicated hardware 

accelerator and fused together to identify nearby objects such 

as pedestrians, vehicles, lanes, and traffic signs [11]. Finally, 

the pre-processed data is explored by other components such 

as the brake, steering, and throttle control to react accordingly 

based on the obstacles faced. The entire process is depicted 

in the figure below. 

C. Perception Sensors Used by Manufacturers 

AVs utilize 4 main types of perception sensors: cameras, 

RADARs, LIDARs and ultrasonic sensors. The cameras 

which arguably yield the most useful and larger information 

may be of different type: fish-eye cameras for wide-angle 

coverage, monocular cameras for basic visual data, stereo 

cameras for depth perception, and 360-degree cameras for 

panoramic views [7]. Also, depending on their focal length 

and orientation, they can be used to cover different views 

surrounding the car: near/far front-view, side-view, rear-

view, surround-view, and built-in cameras, based on the 

different applications and scenarios [12].  

RADARs, Radio Detection and Ranging sensors, detect 

and locate objects within a specific range from the car. Most 

AVs employ 3 variants of RADARS: long-range, medium 

range and short-range [13].  

LIDAR, sensors use laser beams to detect and measure 

the time it takes for the beams to reach the object; thereby 

allowing the system to create a 3D map of the environment 

[14]. Their high accuracy, along with their effectiveness in 

low-light conditions, makes them an important component 

for autonomous vehicles.  

Ultrasonic sensors provide short-distance data and are 

typically used for parking assistance and backup warning 

systems, as far as there is no rain [9]. However, unlike 

cameras, they can operate in foggy and dusty weather 

conditions. 

Among all sensors, the camera is the main visual sensor 

of the ADAS system due to its ability to perform high-

resolution tasks, including classification and scene 

understanding that require color perception. There has been a 

growing belief among researchers and even companies that 

autonomous driving will be possible with cameras only. Tesla 

is one of such companies as it uses AI and dedicated hardware 

accelerators to process video data in order to simultaneously 

estimate the depth, velocity, and acceleration using camera 

input [15]. However, this system has yet to demonstrate its 

reliability as some fatal accidents have occurred since its 

adoption [16]. In this paper, the focus will be made on such 

camera-based systems as they have great potential to achieve 

the SAE level 5 in the near future. The continuous advance of 

AI and associated hardware accelerators is the main catalyzer 

for this optimism. Fig 3 shows the overall sensor placement 

in AVs.  

Figure 1. An overview of the levels of driving automation [7] 

Figure 3. Typical Placement of Sensors Around an Autonomous 

Vehicle [18] 
Figure 2. ADAS General Processing Structure 
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D. Need for Hardware Accelerators 

In AVs, traditional computer processors, such as Intel-7 

CPU, lack the power to host computationally intensive 

machine vision algorithms hence the need for special-purpose 

coprocessors or AI accelerators such as GPUs, FPGAs, and 

ASICs have been widely used in automobiles as shown in Fig 

4 [17-19]. 

On one end, while multicore CPUs have general 

flexibility and can execute AI and machine learning 

workloads, there is no specific support for them, and they are 

not energy efficient. On the other hand, GPUs, which are also 

versatile, feature higher levels of parallelism using even 

single and double precision arithmetic. Thus, they are more 

adequate to handle memory intensive tasks required in 

machine vision algorithms to yield higher throughput than 

multicore CPUs [6]. FPGAs also offer adaptability for 

customizing parallelism, data types, and hardware 

architecture to suit specific applications. They are useful for 

accommodating lighter versions of modern DNN models 

featuring quantized weights and reduced number of layers 

[6]. Furthermore, ASICs, which are customized hardware 

chips designed for specific applications, offer high 

performance and efficiency tailored to their designated 

functions in terms of execution time and power consumption 

[6]. However, they lack flexibility and are designed for 

specific purposes. Therefore, systems designers must 

consider a blend of processor resources to meet their 

application needs. Tesla, NVIDIA, Qualcomm, and 

Mobileye, among other companies, have been working on 

developing their own AI accelerators targeting AV 

applications.  

E. Machine Vision and emergence of CNNs 

One of the most significant advancements in machine 

vision technology is the integration of CNNs. They are one 

of the best machine learning algorithms for recognizing 

image content and have demonstrated good performance in 

image segmentation, classification, detection, and retrieval 

related tasks [20]. Some of the most widely used CNN 

models in machine vision targeting AV are YOLO, Faster 

RCNN, SSD, and MobileNet [21]. These models are well-

known for their exceptional performance in various image-

related tasks, making them essential tools in the field of AVs. 

F. State of the Art AVs and their level of autonomy  

Car manufacturers have been researching AVs since the 

1920s [22]. The first modern AV in 1984 had level 1 

autonomy, followed by a level 2 AV from Mercedes-Benz in 

1987 that could control steering and acceleration with limited 

human supervision [23]. In 2014, Tesla became the pioneer 

in bringing AVs to the commercial market with their 

Autopilot system, offering level 2 autonomy [23]. Tesla's 

AVs heavily rely on sensors for self-navigation and decision-

making, including a suite of six forward-facing cameras and 

ultrasonic sensors [24]. Volvo, in 2017, introduced their 

Drive Me feature, providing level 2 autonomy, allowing their 

vehicles to travel autonomously in specific weather 

conditions [25]. Furthermore, Waymo launched a driverless 

taxi service with level 4 autonomy in 2018 in the Phoenix 

area, USA, serving 1,000 to 2,000 riders weekly, with 5-10% 

of these rides being entirely autonomous [26]. Cruise 

Automation, in 2017, began testing a fleet of 30 vehicles with 

level 4 autonomy and introduced their self-driving Robotaxi 

service in 2021 [23]. Cruise AVs utilize a sensor cluster, 

featuring a front radar and cameras along with lidar sensors 

mounted on top to offer a comprehensive 360-degree view of 

their surroundings [26]. However, it's worth noting that the 

California Department of Motor Vehicles (DMV) has 

recently revoked Cruise's permits for testing and operating 

fully autonomous vehicles on the state's roads due to several 

reasons, including their failure to disclose information about 

a pedestrian accident, where a Cruise vehicle struck a 

pedestrian and dragged them along the road [27]. Although 

both Waymo and Cruise aspire to achieve level 5 autonomy, 

their AVs are presently classified as level 4 due to the absence 

of a guarantee for safe operation in all weather and 

environmental conditions as well as to the road traffic 

accidents they have caused. 

G. Challenges in AVs  

Recent research in machine vision for AVs has achieved 

significant progress but faces various challenges that warrant 

further investigation. Firstly, real-time object detection is 

complex due to the need for simultaneously processing 

several video streams in real-time (more than 10 video 

streams corresponding to different orientations and zooming 

of the cameras in most of the cases) [23]. A limited number 

of studies, such as [28] and [29], considered multi-frame 

perception, which uses data from previous and current time 

instances. Moreover, semi-supervised object detection, 

involving annotated data for model training, faces challenges 

in annotating diverse scenarios, which are essential for the 

models' adaptability in real-world AV driving scenarios [23]. 

Recent research [30-32] recommends semi-supervised 

transformer models for improved accuracy but deploying 

them on embedded onboard computers poses memory 

challenges requiring further investigation. Finally, object 

detector performance varies with changing environmental 

conditions like light and weather. Addressing this issue 

involves collecting diverse weather data, crucial for training 

reliable object detectors. The Waymo open dataset offers 

such diversity to improve detector performance [33]. Such 

open datasets are vital for ensuring consistent performance in 

various environmental conditions in AVs. The other 

challenge is the increasing complexity of the hardware 

accelerators which require an in-depth hardware skill as well 

as masterminding of both the AI algorithms and the 

associated firmware and the real-time operating system 

structure. It is rare to have these attributes featured by one 

single researcher which require multidisciplinary teamwork. 

III.  MACHINE VISION ALGORITHMS FOR AVS 

In the past, the computational capabilities of hardware 

accelerators were not powerful enough to support the 

integration of CNN models. Most of the traditional vision 

algorithms were not using CNN models, primarily because 

they are computationally intensive. Nevertheless, with the 

advancement of hardware accelerators, their implementation 

Figure 4. Spectrum of Hardware Accelerators [17] 
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at reasonable power consumption to be performed in real-

time is becoming possible. As a result, CNN models have 

replaced most traditional image processing methods. 

Moreover, these image processing methods are not reliable 

because they rely on manual feature engineering, making 

them less adaptive and time-consuming, especially for 

complex object detection tasks. They often struggle to 

recognize objects in diverse driving scenarios, requiring 

frequent adjustments for changes in object scale, rotation, and 

varying environmental conditions, which can limit their 

reliability and effectiveness. This is, in fact, a big drawback 

of traditional legacy image-processing algorithms dedicated 

to autonomous cars. The challenge lies in their ability to 

accurately detect vehicles, where even minor alterations in a 

vehicle’s appearance can lead to detection failures. An 

illustrative example is the disruption caused by an extended 

arm from a car’s window, resulting in a system malfunction. 

In contrast, CNN models prove advantageous as they exhibit 

robust performance, making them the preferred choice.  

The illustration in Fig 5 outlines the autonomous vehicle 

processing pipeline employed in today's machine vision 

systems. The pipeline, structured in discrete stages, facilitates 

the seamless flow of information from sensor data to high-

level decision-making. Specialized CNN models tailored for 

distinct object detection tasks enhance vehicle safety and 

overall performance. Beginning with the camera capturing 

images, the pipeline includes video decoding for bandwidth 

optimization, image preprocessing for tasks like resizing and 

noise reduction, and specialized models for detecting 

vehicles, pedestrians, lanes, and traffic signs. The high-level 

preprocessing phase integrates these outputs to make 

informed decisions, addressing tasks such as safe distance 

calculation and responding to traffic signs. Finally, the 

decoder translates processed data for visualization, control, 

and output, including displaying object detections on a user 

interface and transmitting commands to vehicle actuators. 

A. Object Detection Algorithms 

Object detection comprises two key tasks: localization, 

determining the precise object position in an image or video 

frame, and classification, assigning a specific class to the 

object. This classification can include identifying objects like 

pedestrians, vehicles, or traffic lights [23]. Detection and 

classification can be done in a single (e.g. R-CNN) or two 

independent stages (e.g. YOLO) [34]. Unlike two-stage 

detectors, which rely on a separate region proposal step for 

bounding-box prediction, one-stage detectors perform this 

directly from input images, resulting in faster performance 

[34].  

 

1) Two-Stage Detectors 

a) R-CNN 

R-CNN is a two-stage object detection framework that 

converts the traditional object detection problem into a 

feature acquisition problem for regions and a classification 

problem for proposals [35]. To minimize information loss 

and enhance efficiency, spatial pyramid pooling (SPPNet) is 

used for feature extraction, providing features of various sizes 

[35]. R-CNN has been demonstrated to yield high 

performance for AVs, specifically for detecting various 

objects, including pedestrians, cars, and traffic signs [36]. 

Even though R-CNN achieves cutting-edge results, it is very 

slow to train and test due to the need to process thousands of 

regional proposals for each image [36].  

In the initial phase of the R-CNN methodology, as shown 

in Fig 6, approximately 2,000 region proposals are generated 

to encompass potential objects [34]. Then, each region goes 

through a backbone network such as AlexNet, to extract 

feature representations consisting of 4,096 dimensions. To 

enhance the accuracy of object classification, the system uses 

a Support Vector Machine (SVM) for making predictions. 

Furthermore, the system utilizes Fully Connected Layers 

(FCLs) to refine these predictions. Adjustments to the 

bounding boxes are made more precise with a Bounding-Box 

regression technique and a method called greedy non-

maximum suppression (NMS). By following this process, R-

CNN achieved a mean average precision (mAP) of 58.5% on 

the Pascal VOC dataset. 

b) Fast R-CNN 

Fast R-CNN model enhances object detection by analyzing 

the entire image simultaneously, making it faster and more 

accurate than the previous R-CNN model. As shown in Fig 7, 

it begins by processing the image through a CNN to create a 

feature map. Regions of interest (ROIs) are then identified on 

this map, and through ROI pooling, fixed-size feature vectors 

are generated. These vectors are employed in FCLs for 

predictions, using 'softmax' and 'bounding-box regression' for 

categorization and precise location determination, 

respectively. It achieved mAPs of 70.0%, 68.8%, and 68.4% 

on Pascal VOC 2007, 2010, and 2012 datasets when trained 

with VGG-16 [34].  However, it relies on external region 

proposals, which is computationally expensive [6], therefore, 

Faster R-CNN was introduced. 

c) Faster R-CNN 

Faster R-CNN builds upon the improvements made by R-

CNN and Fast R-CNN by eliminating the need for selective 

search and introducing a Region Proposal Network (RPN) 

[23]. As shown in Fig 8, this small convolutional network 

generates region proposals directly from the CNN's feature 

map, streamlining the process of extracting bounding boxes 

Figure 6. R-CNN Process Pipeline 

Figure 7. Fast R-CNN Process Pipeline 

Figure 5. AVs Processing Pipeline 
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and significantly enhancing training and computing speed. 

Moreover, Faster R-CNN employs a separate network to feed 

the ROI to the ROI pooling layer and the feature map [34]. 

These inputs are subsequently reshaped and utilized for 

prediction. In Faster R-CNN, the number of ROIs is not a 

constant value and is defined by the size of the feature map. 

Thus, the region proposals were implemented on GPUs with 

nearly free computation cost compared to previous baselines 

[34]. This optimized architecture allows Faster R-CNN to 

achieve a rapid 6 frames per second (FPS) inference speed on 

a GPU while maintaining state-of-the-art detection accuracy 

on Pascal-VOC 2007 [6]. Despite speed and accuracy 

improvements, the two-stage approach still falls short of real-

time performance requirements. 

2) Single-Stage Detectors 

a) YOLO 

Although Faster R-CNN reduces region proposal 

overlaps, it still hinders performance due to repeated 

calculations [34]. A new hybrid CNN-based architecture 

called YOLO (You Only Look Once) addresses this issue. It 

can predict objects with a single pass and efficiently handle 

object identification and classification by combining region 

proposals and detection into one stage [36].   The architecture 

of YOLO models is illustrated in Fig 9. It consists of three 

components: the backbone network, the neck, and the head. 

The backbone network is a convolutional neural network that 

extracts features from the input image. The neck consists of a 

series of convolutional layers that combine the features from 

the backbone network to form a high-level representation. 

Lastly, the head is composed of convolutional layers that 

generate the final predictions of bounding boxes and class 

probabilities [37].  Fig 10 illustrates the process pipeline of 

YOLO models, they divide input images into a set of grid 

cells, with each cell responsible for predicting bounding 

boxes and class probabilities for the objects present [34]. 

Previous YOLO models faced limitations in detecting 

small objects, generally with varying object aspect ratios, and 

issues with their loss functions [34]. To address these 

limitations, improved versions of YOLO were suggested. 

YOLOv8, the latest version of YOLO excels in precision and 

speed, making it ideal for detecting small objects using 

advanced techniques such as bounding boxes, multi-scale 

prediction, and feature fusion [38]. YOLOv8 introduces five 

different versions (nano, small, medium, large, and extra-

large) and supports various vision tasks, including object 

detection, segmentation, pose estimation, tracking, and 

classification. It utilizes a modified backbone called the C2f 

module, which combines high-level features with contextual 

information and employs an anchor-free model with a 

decoupled head to enhance overall accuracy [39]. In the 

output layer, the model employs the sigmoid activation 

function to determine the abjectness score, indicating the 

probability that the bounding box contains an object. 

Additionally, the softmax function is utilized for class 

probabilities, indicating the objects’ probabilities belonging 

to each possible class. When evaluated on the MS COCO 

dataset test-dev 2017, YOLOv8x achieved an Average 

Precision (AP) of 53.9% with a 640-pixel image size and a 

speed of 280 FPS on an NVIDIA A100 with TensorRT [39]. 

b) SSD 

Single-Shot Detector (SSD) models offer another good 

alternative  for real-time video applications as they efficiently 

handle both classification and localization tasks on the entire 

image, ensuring accuracy [23]. The SSD model is structured 

with six stages in a hierarchical design to form a single 

forward pass network [34]. The goal is to achieve hierarchical 

feature extraction, where each layer in the hierarchy 

contributes to object classification and bounding-box 

detection with different levels of semantic information (Fig 

11). To optimize efficiency, each stage incorporates a fast 

non-maximum suppression (NMS) technique, removing 

redundant bounding boxes in post-processing.  

Table I provides a performance comparison of different 

object detection models for AVs. The models are evaluated 

based on key metrics, including model size, FPS, and Mean 

Average Precision (mAP). Notably, the table shows that 

studies on autonomous driving face limitations due to the 

trade-off between accuracy and real-time operation speed, 

restricting the applicability of self-driving systems. For 

instance, while some models exhibit high accuracy, they may 

compromise on operational speed, and vice versa. YOLOv8 

stands out as a state-of-the-art model, achieving an 

impressive mAP of 95.1. Its model size of 9.2 MB and FPS 

of 221 showcase a well-balanced performance, ideal for 

accurate and efficient object detection tasks without 

compromising on real-time processing speed. Additionally, 

SSD impressively achieves a high mAP of 90.56, showcasing 

Figure 11. SSD Process Pipeline [34] 

Figure 10. YOLO Architecture [121] 

Figure 9. Faster R-CNN Process Pipeline 

Figure 8. YOLO Process Pipeline [121] 
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its proficiency in accurately identifying objects. Although its 

specific model size is not disclosed, SSD exhibits a 

remarkable FPS rate of 105.14, indicating rapid real-time 

detection capabilities. 

TABLE I 

PERFORMANCE METRICS OF OBJECT DETECTION MODELS 

Model Dataset 
Hardware 

Platform 

Model 

Size 

(MB) 

FPS mAP 

DYNAMI

C R-CNN 

[34]  

MS COCO 
GeForce 

RTX 

2080TI 

550 13.9 49.2 

YOLOv5x 

[40] 

VOC2007 
+ 2012 

COCO 

GeForce 

GTX 1650 
87.37 10.09 

81.1

8 

MobileNet-

YOLO 

[40] 

VOC2007 
+ 2012 

COCO 

GeForce 

GTX 1650 
3.23 73.39 

73.1

7 

YOLOv7-

tiny [41] 
TIB-Net 

GeForce 

RTX 3070 
12.2 227 85 

YOLOv8 

[41] 
TIB-Net 

GeForce 

RTX 3070 
9.2 221 95.1 

SSD [42] 

PASCAL 

VOC 2007 
+ 2012 

COCO 

GeForce 

RTX 

2080TI 

- 105.14 
90.5

6 

Faster R-

CNN 

(VGG16) 

[43] 

PASCAL 

VOC 2007 
+ 2012 

COCO 

CPU - 7 73.2 

Fast R-

CNN [43] 

PASCAL 
VOC 2007 

+ 2012 

COCO 

CPU - 0.5 70.0 

 

B. Algorithms for Detected Objects in AVs 

1) Lane Detection 

Lane detection algorithms rely on line detection and edge 

detection [44]. Initially, traditional image processing 

algorithms were used such as the Hough transform which is 

one of the widely used algorithms as it features high level of 

parallelism and accuracy of detection [45]. Other image 

processing-based algorithms including LaneATT [46], 

RANSAC, control point detection, lane marking clustering 

and fan-scanning line detection, were also employed [44], 

[46]. With the development of deep learning techniques, 

CNN algorithms such as CNN, RNN, R-CNN and YOLO 

family have been used for lane detection [44], [46]. 

According to [47], CNN models reported a 90% accuracy for 

lane detection as compared to traditional image processing 

algorithms, which have an accuracy of 80% [44]. Caltech 

Lane, KITTI, TuSimple, and CuLane are the most used 

datasets to train algorithms for lane detections [44], [46]. 

 

2) Pedestrian Detection 

In the past, traditional object detection algorithms such as 

VJ detector and Histogram of Oriented Gradients (HOG) 

have been used for pedestrian detection, all of which provided 

high accuracy rates [48]. In 2008, the Deformable Parts 

Models (DPM) detection algorithm was proposed [49]. DPM 

divided pedestrians into different parts and then treated them 

as a collection consisting of different parts during object 

classification. At that time, the algorithm had the best 

detection results until the optimization methods using deep 

learning emerged. RFCN, Mask RCNN, RetinaNet, YOLO, 

and SSD are commonly used algorithms for pedestrian 

detection [50], [51]. Additionally, CompACT, SAF RCNN, 

and ALFNet are proposed optimized algorithms specific for 

pedestrian detection tasks [51-53]. In [54], YOLO-R, an 

optimized YOLO algorithm has been proposed, which has a 

high precision of 98.6%. In comparison, R-CNN models 

typically reported a precision ranging from 70-80% [55], 

[56]. To train pedestrian detection algorithms, Caltech, 

KITTI, CityPersons, EuroCity, INRIA and COCO are among 

the most used datasets [57]. 

 

3) Traffic Sign Detection 

Traffic sign detection algorithms are essential in analyzing, 

detecting, and categorizing traffic signs based on their shape, 

color and drawings on them [58]. Traffic sign algorithms are 

classified into two types: machine learning based, and deep 

learning based. Machine learning based algorithms include 

Support Vector Machine (SVM), and AdaBoost to detect 

traffic signs accurately using handcrafted features [58]. On 

the other hand, deep learning algorithms such as CNNs and 

RNNs have been more commonly used recently due to their 

ability to automatically learn complex features from raw data, 

reducing the need for manual extraction [58]. For instance, 

enhanced algorithms based on ResNet and CNN, as 

introduced by [59], demonstrate effective capture of intricate 

features in traffic signs. Utilizing the Kaggle traffic sign 

dataset, the ResNet-based model achieved an impressive 

recognition accuracy of 99%, while the CNN-based model 

attained a recognition accuracy of 98%. GTSRB, COCO and 

TT100K are some of the most used datasets to train traffic 

sign detection algorithms [58], [60], [61].  

 

4) Traffic Light Detection 

Traditional image-processing traffic light algorithms can 

be processed into two steps: feature extraction and template-

matching [62]. Feature-extraction algorithms are used to 

know the features of the traffic light signal, and commonly 

used algorithms are SIFT, PCA-SIFT, and SURF [63-65]. On 

the other hand, template-matching algorithms, or classifiers 

are used to match and classify features. Adaboost, SVM, and 

LDA are some of the algorithms used for template matching 

[68-70]. While these algorithms are still being used, they lack 

generality where even a marginal change in the object 

appearance would cause false negatives. With the 

development of deep learning algorithms, the YOLO family 

and RCNN series have been widely used for traffic light 

detection [62]. Most of the recent research has been focused 

on optimizing YOLO algorithms [69-73]. Most notably, the 

most recent version of YOLO, YOLOv8 has been optimized 

for traffic light detection in [72], achieving a high mean 

average precision of 98.5% as compared to the 

implementation of Faster R-CNN in [74], which achieves a 

maximum mean average precision of 86.4%. In order to train 

the algorithms, LISA, Bosch, and DriveU are some of the 

main datasets created specifically for traffic light color 

detection [75-77]. 

IV. HARDWARE ACCELERATORS 

Recent advancements in computer vision algorithms have 

been primarily driven by deep learning and the availability of 

extensive datasets. Hardware acceleration has played a 
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significant role in this progress, providing parallel computing 

architectures that enable the efficient training and execution 

of complex neural networks. State-of-the-art processors such 

as the ones manufactured by Tesla, NVIDIA, Mobileye, and 

Qualcomm hardware accelerators have been among the most 

widely used accelerators in the industry to power autonomous 

vehicles. However, FPGAs and TPUs are also other hardware 

accelerators that hold great protentional to be used to other 

autonomous vehicles. When hardware accelerators are 

combined properly and optimized, they can make-up for the 

drawbacks in each other, paving the path for attractive 

heterogenous hardware solution. In this section of the report, 

an overview is first given of the different state-of-the-art 

processors used in AVs, concluding it with a comparison 

between them.  

A. State-of-the-Art Processors Targeting AVs 

In the fast-changing world of AVs, the core of advanced 

technology lies in state-of-the-art processors. Companies like 

NVIDIA, Tesla, Qualcomm, and MobileEye lead the way in 

shaping the intelligence and effectiveness of self-driving 

systems using their own hardware accelerator. Besides 

NVIDIA, all other manufactures do not commercialize their 

respective processors, which may alter their progress in both 

the software and hardware areas. This has led NVIDIA to 

lead the race by offering cutting edge processors effectively 

used not only in AVs but also in other related areas such as 

generative AI, metaverse, and robotics. Indeed, most of the 

algorithms dedicated for AVs were developed on NVIDA 

platforms. This section explores the details of these powerful 

processors, exploring their unique features, innovations, and 

contributions to improving self-driving technology. 

 

1) TESLA 

In 2019, Tesla introduced Hardware 3.0 (HW3), its 

dedicated AI self-driving hardware supporting Full Self-

Driving (FSD) technology [78]. This custom-designed chip is 

built on Samsung's 14 nm process [79]. As shown in Fig 12, 

it integrates 3 quad-core Cortex-A72 clusters, totalling 12 

ARM Cortex-A72 CPUs operating at 2.2 GHz, 2 neural 

processing units (NPUs) operating at 2 GHz, achieving a peak 

performance of 36.86 TOPS, and a GPU operating at 1 GHz 

with a capacity of 600 GFLOPS [79]. The FSD chip also 

features an image signal processor (ISP) for handling the 

eight High Dynamic Range (HDR) sensors, H.265 video 

encoder, and camera serial interface (CSI) for managing 

sensors, along with a conventional memory subsystem 

supporting 128-bit LPDDR4 memory at 2133 MHz [80]. The 

system features two independent FSD chips, each with its 

dedicated storage and operating system [78]. In case of a 

primary chip failure, the backup unit seamlessly takes over. 

Notably, the HW3 outperforms the previous NVIDIA 

DRIVE PX 2 AI platform, delivering 36.86 TOPS compared 

to the previous 21 TOPS [78]. The FSD computer consumes 

72 Watts, with 15 Watts attributed to the NPUs [80].  

Various object detection algorithms are employed in Tesla 

cars to recognize and monitor objects within the visual scope 

of a vehicle. This includes conventional computer vision 

methods like HOG or employ more sophisticated deep 

learning methodologies such as YOLO and R-CNN [81]. 

 

 

 

 

 

2) NVIDIA 

Nvidia Jetson is a low-power computing board series, 

integrating an ARM architecture CPU used to accelerate 

machine learning applications using tensor cores [82]. Most 

notably, Jetson Xavier, Jetson Nano, and Jetson Orin have 

been used for autonomous vehicle applications.  

The NVIDIA Jetson AGX Orin, released in 2023, is 

programmable using CUDA and Tensor APIs and libraries, 

offering 275 TOPS with power configurable between 15W 

and 60W [83]. Jetson AGX Orin modules feature the 

NVIDIA Orin SoC, which is built on an 8nm chip, with a 

NVIDIA Ampere architecture GPU, Arm Cortex-A78AE 

CPU, next-generation deep learning and vision accelerators, 

and a H.264/5 video encoder and a video decoder. 

Furthermore, it supports LPDDR5 memory and has a DRAM 

capacity of 32GB or 64GB. 

 

 

 

 

 

 

 

 

 

 

 

 

In addition to being very powerful, the other main 

advantage of this processor is its wide availability for 

researchers, and to feature a powerful software development 

kit. Thus, Yassin K. et. al [84] proposed a lane detection 

algorithm based on CNN Encoder–Decoder and Long Short-

Term Memory (LSTM) networks, implemented on the 

NVIDIA Jetson Xavier. Notably, it achieves a frame rate of 

6.78 FPS and takes 147 ms to process a 1280*720 input 

image as compared to Intel Core i7-2630QM CPU processor, 

which achieves a frame rate of only 3.62 FPS and an 

execution time of 276 ms. In [85], LW-YOLOv4-tiny is 

implemented on the Nvidia Jetson Nano for rapid object 

detection and it achieves an execution speed of 56.1 FPS.  

Automotive manufacturers like Audi, Mercedes-Benz, and 

Volvo partnered with Nvidia to incorporate NVIDIA Jetson 

into their autonomous vehicles, aiming to achieve advanced 

self-driving capabilities [86-88]. 

 

 

Figure 12. FSD Block Diagram [79] 

Figure 13. NVIDIA Jetson Orin AGX Block Diagram [122] 
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3) Qualcomm Snapdragon 

In January 2022, Qualcomm launched the Snapdragon 

Ride Vision System, employing cutting-edge 4-nanometer 

processing technology in a flexible and scalable vision 

software stack [89]. Integrated with the proven Vision Stack, 

it enhances front and surround-view cameras for ADAS and 

automated driving [89]. The Snapdragon Ride SoC, a key 

element of the hardware platform, is tailored for ADAS 

needs, featuring machine learning processors, image signal 

processors, vision and graphics acceleration, dedicated DSPs, 

GPU technology, multi-core ARM-based CPU, and safety 

and security systems [90]. With excellent thermal efficiency, 

it delivers 30 TOPS for L1/L2 applications and over 700 

TOPS at 130W for L4/L5 autonomous driving [91]. 

The Platform is designed to serve three distinct segments 

of autonomous systems [90]. In the Active Safety ADAS 

segment, it addresses functions like autonomous braking, 

traffic sign recognition, and lane assist, employing a 

passively cooled ADAS chip delivering 30 TOPS. The 

Convenience ADAS segment encompasses applications such 

as self-parking, highway driving, and urban driving, utilizing 

a combination of SoCs with the goal of delivering 60 to 125 

TOPS. Lastly, the Fully Autonomous Driving segment is 

tailored for autonomous urban and highway driving, 

employing two ADAS chips and one to two ML accelerators, 

capable of delivering up to 700 TOPS at 130W. However, 

there is no information disclosed about the specific types of 

machine learning algorithms used to employ these segments. 

Qualcomm's advanced processors are favoured by top AV 

companies like Waymo, Cruise, and Argo AI for their high 

performance and efficiency. Qualcomm also leads a 

collaboration with BMW to develop a comprehensive range 

of driving features [92]. This includes advanced image 

recognition utilizing front, rear, and ambient cameras, 

supported by a dedicated processor (Computer Vision SoC) 

and a high-performance computing unit tailored for ADAS 

[92]. 

4) Mobileye EyeQ 

The Mobileye EyeQ system-on-chip is a chip using a single 

camera sensor to provide passive and active autonomous 

driving. In mid-2023, EyeQ6 became Mobileye’s main 

ADAS SoC, coming in two variants: EyeQL, which is the 

entry-level chip powering forward-facing camera systems, 

and EyeQH, which is more full-featured and has multiple 

surrounding cameras [93]. It features a CPU with MIPS 

architecture, featuring multithreading. Compared to its 

predecessors, it features two important GPUs, a small-scale 

ARM MALI GPU for AR image overlay, and the other GPU 

is unidentified; however, it is dedicated to handling OpenCL 

for stereo matching [94]. Furthermore, MobilEye launched 

EyeQ Ultra shown in Fig 14 [95], which is expected to power 

autonomous vehicles from 2025. EyeQ Ultra is built on a 5nm 

chip, has 12 CPU cores with 24 threads based on RISC-V 

architecture, a GPU, a vision processor, an image signal 

processing core, and 16 convolutional neural network 

clusters. Furthermore, it can encode videos of H.264/5 

standard and it supports a memory of LPDDR5X. As 

compared to NVIDIA, which focuses on deep learning 

algorithms, Mobileye solutions still utilize convolutional 

computer vision algorithms aided by deep learning 

algorithms [96]. Some of those algorithms include True 

Redundancy for Sensor Fusion, Road Experience 

Management, and Intelligent Speed Assist [96], [97]. 

However, while the solutions are known to the public, most 

of the underlying CNN algorithms used by Mobileye remain 

undisclosed. Automative manufacturers such as Ford, NIO, 

Volkswagen, BMW and Nissan have collaborated with 

Mobileye to incorporate their EyeQ solution [98], [99].  

 

A summary table of the hardware processors discussed, and 

their key features is shown in Table III. Most notably, the 

NVIDIA Jetson Orin AGX has the lowest power 

consumption. The Qualcomm Snapdragon SoC offers the 

highest peak performance of 700 TOPS coming at a cost of 

an extremely high-power consumption of 130 W.  However, 

as much of the architecture of some of the chips is 

undisclosed such as the specific number of cores and their 

memory capacity, it is difficult to make a viable comparison 

between them all. Among all commercial accelerators for 

AVs, NVIDIA has the most open-source software platforms, 

making it the hardware processor of choice as it can be easily 

catered to the requirements of different AV manufacturers. 

 

TABLE II 

THE KEY DISTINCTIONS AMONG THE FOUR STATE-OF-THE-

ART PROCESSORS 

Feature 

TESLA 

FSD 

HW3 

Nvidia Orin 

SoC 

Mobileye 

EyeQ 

Ultra 

Qualcomm 

Snapdrago

n SoC 

Chip Width 14nm 8nm 5nm 4nm 

CPU 

Architecture 

ARM 

Cortex-

A72 (12 

cores) 

ARM 

Cortex-

A78AE 

12 Cores, 

24 

Threads, 

ARM-

based 

Multi-Core 

ARM-

based CPU 

Video 

Encoding/ 

Decoding 

Video 

Encoder 

(H.265) 

Video 

Encoder and 

Decoder 

(H.264/5 

and AVI) 

Video 

Encoder 

(H.264/5) 

Not 

specified 

Memory 

Type and 

Bandwidth 

LPDDR

4 (2133 

MHz, 68 

GB/s) 

LPDDR5 
LPDDR5

X 

Not 

specified 

Peak 

Performance 

73.7 

TOPS 

Up to 275 

TOPS 

176 

TOPS 

Over 700 

TOPS 

Power 72 W 15W to 60W 
Under 

100W 

Up to 

130W 

Memory 

Capacity 

16GB 

RAM 

32GB/64GB 

DRAM 

Not 

specified 

Not 

specified 

Figure 14. Qualcomm Snapdragon SoC Architecture [123] 
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B. Other Hardware Accelerators 

Beyond state-of-the-art processors based on GPU or CPU 

architectures, other hardware accelerators are crucial to 

advancing the capabilities of AVs. Specialized hardware 

accelerators like FPGAs and ASICs (specifically TPUs) have 

gained importance due to their ability to deliver lower latency 

and higher throughput compared to traditional general-

purpose CPUs. As a result, there is a growing demand for 

these robust hardware accelerators in the industry. 

Manufacturers are actively incorporating them into their 

hardware solutions to meet the requirements of implementing 

high-performance algorithms and applications in AVs.  

 

1) Field Programmable Arrays (FPGA) 

FPGAs, comprise an array of configurable logic blocks and 

programmable interconnects, which can be tailored to create 

intricate digital circuits [100]. They also comprise hundreds 

of DSP blocks to handle multiply-and-accumulate intensive 

operations. They are specifically designed for executing 

fixed-point operations using a hardware-centric 

programming approach. In the field of autonomous vehicles, 

the utilization of FPGA-based systems aims to achieve two 

primary objectives: cost reduction in driverless technology 

and enhanced energy efficiency of their controllers. As a 

result, they offer substantial acceleration in image processing 

applications, rendering these systems significantly faster and 

more power efficient [101]. Their innate parallelism aligns 

seamlessly with the data-intensive demands of sensory fusion 

in autonomous vehicles. 

Xilinx and Intel (Altera) have been at the forefront when 

it comes to manufacturing FPGAs for ADAS. Most notably, 

Xilinx’s ZYNQ FPGA incorporates multiple ARM 

processors and leverages nested-loop algorithms to accelerate 

CNN inference [41]. It achieves an impressive 14 frames per 

watt (fps/watt) when handling CNN tasks, surpassing the 

Tesla K40 GPU, which achieves only 4 fps/watt [102]. Other 

XILINX boards recently used for CNNs include XILINX’s 

Virtex-7 and Kintex-7. In 2021, XILINX released the Kria 

KV260, which is a development platform for Kria K26 

System-On-Modules built for advanced machine vision 

application developments without requiring advanced 

hardware design knowledge [103]. Notably, it has a high 

number of DSPs and logic cells. However, this comes at the 

cost of higher power consumption.  

Intel Cyclone 10 also exhibits great performance given the 

high number of logic elements and digital signal processing 

blocks, leveraging its parallel processing speed and 

flexibility. Table III provides a list of some of the most recent 

commercial FPGAs used for CNN algorithms. The FPGAs 

are compared based on the number of logic elements, DSPs, 

memory, and availability of video decoder, among other 

things. Generally, most recent review papers about CNN 

models use XILINX ZNYQ. Xilinx Virtex-7 shows superior 

performance, as indicated by the high number of logic 

elements and DSPs. However, its high versatility comes with 

a high cost. XILINX Kria KV260 and Intel Cyclone 10 GX 

are also FPGAs that show great potential for ADAS 

applications.  

A study conducted by [110] proposes a reconfigurable 

CNN accelerator tested using YOLOv2-TINY and applied on 

XILINX KV260 FPGA, NVIDIA GeForce RTX2060 GPU 

and AMD Ryezen7 4800 H CPU. The KV260 board has the 

lowest operating frequency at 250 MHz and the lowest power 

consumption of 5.220W as compared to the GPU’s power 

consumption of 175 W and the CPU’s, 45W. When 

comparing the implementation of YOLOv2-TINY on the 

KV260 to the ZYNQ FPGA, the KV260 has a high data 

precision of 32 bits as compared to 16 bits on ZYNQ. 

Additionally, the KV260 has a high peak energy efficiency of 

13.62 GOPS/W as compared to 6.3125 GOPS/W on the 

ZYNQ FPGA. With the increasing computational demands 

for AVs, FPGAs offer a great alternative solution to 

traditional processors given their high parallelism, low power 

consumption and high energy efficiency. Furthermore, FPGA 

manufacturers are moving towards creating FPGAs catered 

towards handling machine vision algorithms as exemplified 

by XILINX’s KV260 FPGA.  

 

2) Tensor Processing Unit (TPU) 

Unlike more generic co-processors like GPUs and 

FPGAs, Google’s TPUs, which are ASIC-based processors, 

are designed to meet specific requirements and are 

increasingly being adopted in the automotive industry [6]. 

TABLE III 

SPECIFICATIONS OF FPGA BOARDS USED IN CNN ALGORITHMS 

 
FPGA Kit System on Chip/Module Logic Elements DSP Blocks Memory 

ALINX SoM AC7020: SoC 

Zynq7000 XC7Z020 

Module [104] 
Zynq 7000 XC7Z020 SoC 85K 220 1 GB RAM DDR3L + 16 MB Quad-SPI Flash 

Avnet ULTRA96-V2 

Development Board  [105] 
Zynq Ultrascale+ MPSoC 154K 360 Micron 2 GB (512M x32) LPDDR4 Memory 

Xilinx Kria KV260 Vision 

AI starter kit  [103] 

Kria K260 SoM 

 
256K 1.2K 

4 GB 

DDR4 

Xilinx Kintex-7 KC705  
[106] 

Kintex 7  
XC7K325T2FFG900CES 

326K 840 
1 GB DDR3 + 128 MB Linear BPI flash + 128 

Mb Quad SPI flash 

Xilinx Virtex-7 AMD 

VC709  [107] 

Virtex-7 

XC7VX485T-2FFG1761C 
485K 3.6K 

DDR3 SODIMM + 
BPI Parallel NOR Flash: 32MB + 

IIC EEPROM:1KB (8Kb) 

Intel Altera Cyclone V 

(terasic DE-10 Development 

Kit)  [108] 
Cyclone V 110K 112 

HPS SDRAM 1 GB DDR3 + 64MB FPGA 

SDRAM + EPCS128 Flash 

Intel Cyclone 10 GX FPGA 

Kit  [109] 
Cyclone 10 220K 192 

1 channel of x40 DDR3 @ 933 MHz + EPCQ-
L Flash + QSPI Flash 
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These specialized devices offer a tailored solution for 

complex AI and deep learning tasks within AV systems, 

granting them high flexibility, high performance, and low 

power in hardware implementation [111]. Developed as a 

stand-alone device, the TPU is finely tuned for neural 

networks and is designed to work seamlessly with the Google 

TensorFlow framework [6]. This ASIC targets high volumes 

of low-precision arithmetic, particularly 8-bit calculations, 

and has already been leveraged across various applications at 

Google, including the search engine and AlphaGo [6].  

The TPU v4 model comprises four chips, each with two 

cores as shown in Fig 15, and can compute more than 275 

teraflops (BF16 or INT8) [112]. These cores incorporate 

scalar units, vector units, and 4 128x128 matrix units, all 

interconnected with on-chip 32GB high bandwidth memory 

(HBM) to facilitate pulsating matrix calculations. Notably, 

the TPU's performance is heightened by its ability to execute 

16K multiply-accumulate operations in each cycle through 

one matrix unit per core employing BF16 precision. 

Moreover, other ASIC solutions, such as the EdgeTPU AI 

accelerator can achieve a remarkable 4 TOPS while 

consuming just 2 watts of power [113]. For instance, it can 

efficiently run cutting-edge mobile vision models like 

MobileNet V2 at nearly 400 FPS while conserving power 

[113]. 

 A study conducted by [119] showed that Google's TPU v4 

outperforms Nvidia A100 GPUs, demonstrating a 1.2 to 1.7 

times faster speed, while simultaneously consuming 1.3 to 

1.9 times less power than the Nvidia A100 GPU. In another 

study conducted by [111], a comparative analysis of ASICs 

with other hardware accelerators, including CPUs and GPUs, 

in the context of autonomous driving tasks unveiled several 

significant insights. Firstly, ASICs exhibit a substantial 

reduction in power consumption with almost a seven-fold 

improvement in energy efficiency for tasks like object 

detection. Additionally, when assessing power-hungry 

accelerators like GPUs, ASICs have the potential to 

significantly mitigate the thermal constraints, limiting the 

reduction in the vehicle's driving range to under 5%. 

Furthermore, ASIC-accelerated systems can markedly 

enhance the system's performance, reducing tail latency by a 

substantial factor, up to 93 times. This underscores their 

crucial role in maintaining consistent and responsive 

operations in AV systems when compared to GPUs, thereby 

ensuring reliability and safety in real-time applications. 

Notably, specialized ASICs like Google's TPU excel in 

lower-precision calculations, providing high throughput for 

training and inference in neural networks [120].  

 

3) Heterogenous Hardware Platforms 

Table IV offers an insight into the performance of different 

hardware implementations to run algorithms like SSD, CNN, 

YOLO, MobileNet, and others for object detection and 

classification. Each device is evaluated in terms of latency, 

accuracy, execution time, and power consumption. Notable 

findings include the diverse performance characteristics, with 

GPUs generally providing fast execution times but higher 

power consumption, while FPGAs and ASICs like the offer 

impressive accuracy with low power usage. These insights 

can be valuable for selecting the right hardware for specific 

algorithmic applications targeting AVs. Additionally, Table 

IV underscores the significance of heterogeneous hardware 

accelerators in modern computing. As the demands of various 

algorithms and datasets vary significantly, the availability of 

diverse hardware options is critical. Heterogeneous hardware 

accelerators enable organizations and researchers to tailor 

their hardware choices that align with their algorithmic and 

computational goals, ultimately leading to more efficient and 

effective implementations across a broad spectrum of 

applications. 

Type CPU GPU FPGA ASIC 

Source [114] [115] [116] [117] [118] [115] [116] [117] 

Device 

Intel 
i7-

7700 

Intel core 

i7-4770 

NVIDIA 

GTX1060 
Nvidia Jetson Xavier 

XILINX 
ZYNQ 

ZCU102 

Xilinx 

ZC706 

Intel Arria 

10 GX 
Google Edge TPU 

Algorithm 
CBFF-

SSD 

CNN for 
traffic 

sign 

detection 

Speed-sign 

recognition 
algorithm 

MobileN

et V2 

Inception 

V3 
YOLOv2 

CNN for 

Stop-sign 
detection 

Speed-sign 

recognition 
algorithm 

MobileNet 

V2 

Inception 

V3 

Dataset 

NWPU 
VHR-

10 

dataset 

Real time 

video 
Input 

LISA 

dataset 

COCO 

dataset 

COCO 

dataset 

COCO 

dataset 

Real time 

video input 

LISA 

dataset 

COCO 

dataset 

COCO 

dataset 

Latency 382.15 - - 2.57 14.51 5.376 - - 3.5 52.77 

Accuracy - - 92% 71.15% 77.82% 76.21% 99.8% 92% 70.94% 77.62% 

Execution 

Time 
- 136.2 ms 30.3 ms 24039 ms 42808 ms 0.244 s 7.9 ms 33.3 ms 6051 ms 17456 ms 

Power 

Consumption 
65 W 76 W 19 W 10.47 W 21.84 W 5.376 W 5.2 W 12.5 W 4.89 W 4.68 W 

TABLE IV 

COMPARISON OF DIFFERENT HARDWARE IMPLEMENTATIONS ACROSS VARIOUS OBJECT DETECTION ALGORITHMS USED IN AVS 

Figure 15. TPU v4 Chip [112] 
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V. CONCLUSION 

In conclusion, the evolving landscape of AVs demands a 

meticulous integration of hardware accelerators and 

sophisticated machine vision algorithms. This review paper 

has presented a comprehensive examination of different types 

of hardware accelerators and their features and sophisticated 

machine vision algorithms generally used for AVs, shedding 

light on the advancements in the field. The evolution of GPU-

based hardware accelerators has been fundamental in 

addressing the computational demands of real-time 

processing for commercial autonomous vehicles.  

Simultaneously, the development of machine vision 

algorithms has been instrumental in enhancing the perception 

of autonomous vehicles. However, to meet the increasing 

computational demands of machine vision algorithms for 

autonomous vehicles, it is vital to consider other potential 

solutions such as FPGAs and TPUs and how can they be 

integrated into autonomous vehicles to offload some tasks 

from commercial hardware accelerators, paving the path for 

new heterogenous hardware solutions in autonomous 

vehicles. The synergy between hardware accelerators and 

machine vision algorithms has paved the way for 

advancements in autonomous vehicle technology. Looking 

into the future, the ongoing collaboration between 

researchers, engineers, and the industry will yield more 

robust hardware accelerators to meet the ever-increasing 

computational demands of machine vision algorithms to 

tackle the challenges faced in the field. 
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