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Abstract

This paper introduces the notion of upper linearizable/quadratizable functions, a
class that extends concavity and DR-submodularity in various settings, includ-
ing monotone and non-monotone cases over different convex sets. A general
meta-algorithm is devised to convert algorithms for linear/quadratic maximization
into ones that optimize upper quadratizable functions, offering a unified approach
to tackling concave and DR-submodular optimization problems. The paper ex-
tends these results to multiple feedback settings, facilitating conversions between
semi-bandit/first-order feedback and bandit/zeroth-order feedback, as well as be-
tween first/zeroth-order feedback and semi-bandit/bandit feedback. Leveraging
this framework, new algorithms are derived using existing results as base algo-
rithms for convex optimization, improving upon state-of-the-art results in various
cases. Dynamic and adaptive regret guarantees are obtained for DR-submodular
maximization, marking the first algorithms to achieve such guarantees in these
settings. Notably, the paper achieves these advancements with fewer assumptions
compared to existing state-of-the-art results, underscoring its broad applicability
and theoretical contributions to non-convex optimization.

1 Introduction

Overview: The prominence of optimizing continuous adversarial y-weakly up-concave functions
(with DR-submodular and concave functions as special cases) has surged in recent years, marking a
crucial subset within the realm of non-convex optimization challenges, particularly in the forefront
of machine learning and statistics. This problem has numerous real-world applications, such as
revenue maximization, mean-field inference, recommendation systems [4, [19} 29} 11} [23} [17} 25]].
This problem is modeled as a repeated game between an optimizer and an adversary. In each round,
the optimizer selects an action, and the adversary chooses a y-weakly up-concave reward function.
Depending on the scenario, the optimizer can then query this reward function either at any arbitrary
point within the domain (called full information feedback) or specifically at the chosen action (called
semi-bandit/bandit feedback), where the feedback can be noisy/deterministic. The performance
metric of the algorithm is measured with multiple regret notions - static adversarial regret, dynamic
regret, and adaptive regret. The algorithms for the problem are separated into the ones that use
a projection operator to project the point to the closest point in the domain, and the projection-
free methods that replace the projection with an alternative such as Linear Optimization Oracles
(LOO) or Separation Oracles (SO). This interactive framework introduces a range of significant
challenges, influenced by the characteristics of the up-concave function (monotone/non-monotone),
the constraints imposed, the nature of the queries, projection-free/projection-based algorithms, and
the different regret definitions.

In this paper, we present a comprehensive approach to solving adversarial up-concave optimiza-
tion problems, encompassing different feedback types (including bandit, semi-bandit and full-
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Table 1: Online up-concave maximization

F ] Set Feedback Reference Appx. # of queries log(a-regret)
@511 1—e 1 1/2
Full Information | stoch. 341 1—e ! T%(6 € 0,1/2)) 2/3—-0/3
VF Corollary@c 1—e™” 1 1/2
o 4] T—e ! - 3/4
) Semi-bandit stoch. Corollary@c 1— e ) 2/3
w 1 =T g
o i B4 T—e T°(@ € 0,1/4) | 4/5—0/5
. o Full Information | stoch. Corollaryc 1o h 3/4
g I 381 1T T—¢ ' - 3/4
E det. 7] 1—e™ 4/5
£ Bandit [3i,i — - 5/6
= stoch. L4] e ) /
Corollary@c 1—e™” - 4/5
Full Information | stoch. 34] 1/2 T°(0 € [0,1/2]) 2/3-0/3
_ | vr o 7 /(1 +%) - 1/2
s Semi-bandit stoch. [34] 1/2 - 3/4
% Corollary@b Y2/ (14 ey?) - 1/2
o0 Full Information | stoch. [34] 1/2 T7(0 € [0,1/4]) 4/5—0/5
F . [34] 1/2 - 5/6
Bandit stoch. Corollary [a}b Y /(1+ev?) - 3/4
[34] (1—-h)/4 | T €]0,1/2)) 2/3—-0/3
Full Information | stoch. [47] t (1—-h)/4 1 1/2
2 VF Coro[l;zjy@d El — Z; /i 1 ?1) /421
gl - : ) 1 1= .
% g Semi-bandit stoch. Corollary[g}d (1—h)/4 ] 2/3
=| 8 . 341 (1—h)/4 | T9(0 € [0,1/4]) 4/5—6/5
£ oh Full Information | stoch. Corollary [6} d (1—h)/4 1 3/4
Z F det. YA (1—h)/4 - 1/5
Bandit stoch 1347 T=h)/4 - 5/6
" | Corollary[6}ld | (1 —h)/4 - 4/5

This table compares different static regret results for the online up-concave maximization. The logarithmic
terms in regret are ignored. Here h := mingek ||Z||co. Our algorithm is projection-free and use a separation
oracle. The rows marked with { use gradient ascent, requiring potentially computationally expensive projec-
tions. Note that the result of [38]], marked by 11, uses a convex optimization subroutine in each iteration, which
could potentially be more expensive than projection and therefore not considered a projection-free result. It is
also the only existing result, in all the tables, that outperforms ours.

All results assume that functions are Lipschitz. Except for our results on monotone functions over general con-
vex sets, all results also assume differentiability. All previous results assume that functions are DR-submodular,
while we only require up-concavity. Results of [34] and [38]] also assume functions are smooth, i.e., their gra-
dients are Lipschitz.

information feedback), characteristics of the up-concave function and constraint region, projection-
free/projection-based algorithms, and regret definitions. While the problem has been studied in many
special cases, the main contribution of this work is a framework that is based on a novel notion of
the function class being upper linearizable (or upper quadratizable). We design a meta-algorithm
that converts certain algorithms designed for online linear maximization to algorithms capable of
handling upper linearizable function classes. This allows us to reduce the problem of up-concave
maximization in three different settings to online linear maximization and obtain corresponding
regret bounds. In particular, our results include monotone y-weakly up-concave functions over gen-
eral convex set, monotone y-weakly up-concave functions over convex sets containing the origin
and non-monotone up-concave functions. While the above result is for first order feedback, we then
derive multiple results that increase the applicability of the above results. We extend the applica-
bility of FOTZO and STB algorithm introduced in [33]] to our setting which allows us to convert
algorithms for first-order/semi-bandit feedback into algorithms for zeroth-order/bandit feedback.
We also design a meta-algorithm that allows us to convert algorithms that require full-information
feedback into algorithms that only require semi-bandit/bandit feedback.

We demonstrate the usefulness of results through two applications as described in the following. In
the first application, we use the SO-OGD Algorithm in [16] as the base algorithm for online linear
optimization, which is a projection-free algorithm. Using this, we first obtain the adaptive regret (and
therefore also static regret) guarantees for the three setups of DR-submodular (or more generally, up-
concave) optimization with semi-bandit feedback/first order feedback in the respective cases. Then,
the meta-algorithms for conversion of first-order/semi-bandit to zeroth-order/bandit are used to get
result with zeroth-order/bandit feedback. In the cases where the algorithms are full-information and
not (semi-)bandit, we use another meta-algorithm to obtain algorithms in (semi-)bandit feedback
setting. In the next application, we use the “Improved Ader” algorithm of [42] which is a projection
based algorithm providing dynamic regret guarantees for the convex optimization. Afterwards, the



same approach as above are used to obtain the results in the three scenarios of up-concave optimiza-
tion with first-order feedback.

Technical Novelty: The main technical novelties in this work are as follows.

1.This paper proposes a novel framework and novel notion of quadratizable functions and relates
the algorithms and regret guarantees for optimization of linear functions to that for quadratizable
functions. The key novelty is that while the relation to linearization has been studied for convex
optimization, we find that the relation is more general.

2.We show that the class of quadratizable function optimization is general, and includes not only
concave, but up-concave optimization in several cases. For some of the cases, this proof uses a
generalization of the idea of boosting ([45, 47]) which was proposed for DR-submodular maxi-
mization, as mentioned in Corollaries [2]and 3]

3.We design a new meta-algorithm, namely SFTT, that captures the idea of random permutations
(sometimes referred to as blocking) as used in several papers such as [44} 46| 34]]. While previous
works used this idea in specific settings, our meta-algorithm is applicable in general settings.

4.We note the generality of the above results in this paper. Our results are general in the following
three aspects:
a) In this work, we improve results for projection-free static regret guarantees for DR-submodular
optimization in all considered cases and obtain the first results for dynamic and adaptive regret.
Moreover, these guarantees follow from existing algorithms for the linear optimization, using only
the statement of the regret bounds and simple properties of the algorithms.
b) We consider 3 classes of DR-submodular functions in this work. However, to extend these
results to another function class, all one needs to do is to (i) prove that the function class is quadra-
tizable; and (ii) provide an unbiased estimator of g (as described in Equation|[T).
c) We consider 2 different feedback types in offline setting (first/zero order) and 4 types of feed-
back in the online setting (first/zero order and full-information/trivial query). Converting re-
sults between different cases is obtained through meta-algorithms and guarantees for the meta-
algorithms which only relies on high level properties of the base algorithms (See Theorems [6]

and [§)

Key contributions: The key contributions in this work are summarized as follows.

1.This paper formulates the notion of upper quadratizable functions, which is a class that gener-
alizes the notion of concavity and also DR-submodularity in several settings. In particular, we
demonstrate the the following function classes are upper quadratizable: (i) monotone ~y-weakly
p-strongly DR-submodular functions with curvature ¢ over general convex sets, (ii) monotone ~y-
weakly DR-submodular functions over convex sets containing the origin, and (iii) non-monotone
DR-submodular optimization over general convex sets.

2.We provide a general meta-algorithm that converts algorithms for linear/quadratic maximization
to algorithms that maximize upper quadratizable functions. This results is a unified approach to
maximize both concave functions and DR-submodular functions in several settings.

3.While the above provides results for semi-bandit feedback (for monotone DR-submodular opti-
mization over general convex sets) and first-order feedback (for monotone DR-submodular opti-
mization over convex sets containing the origin, and non-monotone DR-submodular optimization
over general convex sets), the results could be extended to more general feedback settings. Two
meta algorithms are provided that relate semi-bandit/first-order feedback to bandit/zeroth order
feedback; and that relate first/zeroth order feedback to semi-bandit/bandit feedback. Together
they allow us to obtain results in 4 feedback settings (first/zero order full-information and semi-
bandit/bandit). We also discuss a meta-algorithm to convert online results to offline guarantees.

4.The above framework is applied using different algorithms as the base algorithms for linear op-
timization. SO-OGD [16] is a projection-free algorithm using separation oracles that provides
adaptive regret guarantees for online convex optimization. We use our framework to obtain 10
projection-free algorithms that cover all 12 cases in Table|l} We improve the regret guarantees for
the previous SOTA projection-free algorithms in all the cases. If we also allow comparisons with
the algorithms that are not projection-free, we still improve the SOTA results in 3 cases and match
the SOTA in 8 cases.

5.Using our framework, we convert online results using SO-OGD to offline results to obtain 6 pro-
jection free algorithms described in Table 2] We improve the regret guarantees for the previous
SOTA projection-free algorithms in all the cases. If we also allow comparisons with the algorithms



that are not projection-free, we still improve the SOTA results in 3 cases and match the SOTA in
the remaining 3 cases.

6.We use our framework to convert the adaptive regret guarantees of SO-OGD to obtain projection-
free algorithms with adaptive regret bounds that cover all cases in Table [3] Our results are first
algorithms with adaptive regret guarantee for online DR-submodular maximization.

7.“Improved Ader” [42] is an algorithm providing dynamic regret guarantees for online convex
optimization. We use our framework to obtain 6 algorithms which provide the dynamic regret
guarantees as shown in Table 3] Our results are first algorithms with dynamic regret guarantee for
online DR-submodular maximization.

8.For monotone y-weakly functions with bounded curvature over general convex sets, we improve
the approximation ratio (See Lemmal|l).

9.As mentioned in the descriptions of the tables, in all cases considered, whenever there is another
existing result, we obtain our results using fewer assumptions than the existing SOTA.

2 Problem Setup and Definitions

For aset D C R, we define its affine hull aff (D) to be the set of ax + (1 —a)y for all x, y in K and

a € R. The relative interior of D is defined as relint(D) := {x € D | Ir > 0,B,.(x) Naff(D) C

D}. For any u € KT, we define the path length Pr(u) := ZiT;ll |lu; — u;yq||. Given p > 0 and

0 < v < 1, we say a differentiable function f : L — R is u-strongly v-weakly up-concave if it is

u-strongly y-weakly concave along positive directions. Spelciﬁcally if, for all x < y in K, we have
H K

7 (9505 =30+ By = xI) < 500 - 160 < 5 (9760.y =0~ By -

- x|? x||?

Table 2: Offline up-concave maximization

We say @f K — R? is a - F | Set | Feedback Reference Appx. Complexily
strongly ~y-weakly up-super-gradient 301 T—e7 o(1/&)
of f if for all x <y in K, the above o) VF [411]5&1 }: - 087 ;
holds with V instead of V. We say | , | Corollary[6le P o(1 /Z 2)
f is p-strongly v-weakly up-concave § r B3l T—e 0(1/e)
if it is continuous and it has a pu- g COT(’?;TYC 1—16""1 8(1/5)
strongly y-weakly up-super-gradient. - —_— [[3511 32% . i;’;,; OE 1;2 ;
When it is clear from the context, % Corollary[Elb /(L +ey) 0(1/¢%)
we simply refer to Vf as an up- o0 P 361 /2 0(1/5)
super-gradient for f. When v = 1 Corollafyb A(fi EltC’Yz)l 0(1/¢")
and the above inequality holds forall | £ | _ oF 351 e (5 - w) 0(1/€%)
x,y € K, wesay fis p-strongly | £| 5 Corm{riﬂd 8:2;;2 8;3
concave. A differentiable function |=| & o TN o)

. = k e (2 - L €
f + K — Ris called y-weakly con- S F Corollan Fla gl *(11 A fzz)/4ﬂ o)
tinuous DR-submodular if for all x < Y

y, we have Vf(x) > vV f(y).
follows that any ~-weakly continu-
ous DR-submodular functions is ~-
weakly up-concave. We refer to Ap-
pendix [B] for more details.

Given a continuous monotone func-
tion f : K — R, its curvature is
defined as the smallest number ¢ €
[0,1] such that f(y +2z) — f(y) >
(1 —o)(f(x+2) — f(x)), for all
x,y € K and z_> 0 such that
x + 2,y + 2z € K[| We define the
curvature of a function class F' as the
supremum of the curvature of func-
tions in F.

This table compares the different results for the number of oracle
calls (complexity) within the constraint set for up-concave maxi-
mization with stochastic feedback. Here h := minzcx ||z||oo and
v =y 41/y.

1 [19], [45] and [47] use gradient ascent, requiring potentially com-
putationally expensive projections.

All previous results assume that functions are differentiable, DR-
submodular, Lipschitz and smooth (i.e., their gradients are Lips-
chitz). Result of [18] also requires the function Hessians to be
Lipschitz. It also requires the density of the stochastic oracle to
be known and the log of density to be 4 times differentiable with
bounded 4th derivatives. We only require the functions to be up-
concave, differentiable and Lipschitz, expect for results on mono-
tone functions over general convex sets where we do not need dif-
ferentiability.

Online optimization problems can be formalized as a repeated game between an agent and an ad-
versary. The game lasts for 7" rounds on a convex domain /C where 1" and K are known to both

'In the literature, the curvature is often defined for differentiable functions. When f is differentiable, we

(VfW)]s
(VFE)]i

have ¢ = 1 — infx yex,1<i<d



Table 3: Non-stationary up-concave maximization

F | Set Feedback Reference Appx. regret type a-regret
——— : /2 /2
Full Information Corollary lc 1 e_ dynarTnC T —1’—/2P )
© VF Corollary [6{c 1—e™" adaptive T
o | W Semi-bandit Corollary [6tc 1—e™” adaptive T%/3
2 — : 377 /2
) < Full Information Corollary lc ! 6_ dynarTnc e —?i—/f 7)
e F Corollary |61c 1—e™” adaptive T
§ Bandit Corollary [6tc 1—e™” adaptive T4
2 2 : /2 /2
3 | vF Semi-bandit Corollary [7;b 72/(1 + 072) dynarTnc T%(1 —11—/2PT)
5 Corollary|6tb | v°/(1 4+ ¢y*) | adaptive T
o . Corollary[7]b | v2/(1 4+ ¢y?) | dynamic | T°/%(1 + Pr)'/?
F Bandit = 2 2 . 3/4
Corollary|6ib | v°/(1 4+ ¢y?) adaptive T
Q . Corollary[7{d (1—-h)/4 dynamic | T'/?(1 4 Pr)'/?
g Full Informat L
gl 5 | vr | TN coollaryl6ld | (1—h)/4 | adaptive T/
§ E Semi-bandit Corollary |6td (1-h)/4 adaptive T3%/3
5 - 377 72
. &b Full Information | Corolary[7id (1-h)/4 dynagnc T°/%(1 :l:/fT)
> F Corollary|6}d (1—h)/4 adaptive T
Bandit Corollary|6{d (1—-h)/4 adaptive 7175

This table includes different results for non-stationary up-concave maximization, while no prior results
exist in this setup to the best of our knowledge. The results for adaptive regret are projection-free and use a
separation oracle while results for dynamic regret use convex projection.

players. In ¢-th round, the agent chooses an action x; from an action set C C R?, then the adversary
chooses a loss function f; € F and a query oracle for the function f;. Then, for 1 < ¢ < ky,
the agent chooses a points y; ; and receives the output of the query oracle. The precise definition
of agent (QA, A%ton Aaery) is given in Appendix [B] with the query oracle being any of stochas-
tic/deterministic first/zeroth order or semi-bandit/bandit.

An adversary Adv is a set of realized adversaries B = (By,---,Br), where each 3; maps
(x1,-++,%x¢) € KT to (ft, Q¢) where f; € F and Q; is a query oracle for f;. Adversaries can be
oblivious (BB; are constant and independent of (x1, - - ,x;)), weakly adaptive (3; are independent
of x;), or fully adaptive (no restrictions). We use Advg(F) to denote the set of all possible realized
adversaries with deterministic i-th order oracles. If the oracle is instead stochastic and bounded by
B, we use Advi(F, B) to denote such an adversary. Finally, we use Adv(F) and AdvS(F, B)
to denote all oblivious realized adversaries with i-th order deterministic and stochastic oracles, re-
spectively. In order to handle different notions of regret with the same approach, for an agent A4,
adversary Adv, compact set { C KT, approximation coefficient 0 < o« < land1 <a < b < T,
we define regret as
b b

R:;‘,Adv(u)[a7b} = sup E |« max th(ut)_z,ft(xt) )

BeAdv u=(uy,-ur)et {= =

where the expectation in the definition of the regret is over the randomness of the algorithm and
the query oracle. We use the notation R(“;"B(U)[a, b] == RA yqv (U)[a,b] when Adv = {B} is a
singleton. We may drop o when it is equal to 1. When a < 1, we often assume that the functions
are non-negative. Static adversarial regret or simply adversarial regret corresponds to a = 1,
b=TandU = KI := {(x,---,x) | x € K}. Whena = 1, b = T and U contains only a
single element then it is referred to as the dynamic regret S0, 42]]. Adaptive regret is defined as
MaX]<q<b<T Ri adv(KT)[a,b] [22]. We drop a, b and U when the statement is independent of
their value or their value is clear from the context.

3 Formulation of Upper-Quadratizable Functions and Regret Relation to
that of Quadratic Functions

Let L C R? be a convex set, F be a function class over . We say the function class F is upper
quadratizable if there are maps g : F x K — R% and h : K — K and constants z > 0,0 < o < 1
and 8 > 0 such that

as(v) = 1) < 6 (ta(r0y =) = By = xl?) m



As a special case, when 1 = 0, we say F is upper linearizable. We use the notation F, ¢ to
denote the class of functions ¢(y) := (g(f,x),y —x) — 4[ly —x||* : K — R, forall f € F and
x € K. Similarly, for any By > 0, we use the notation F, [B1] to denote the class of functions
q(y) = {0,y —x) — &|ly —x||? : K — R, forall f € F,x € K and o € Bp, (0). A similar notion
of lower-quadratizable/linearizable may be similarly defined for minimization problems such as

convex minimization

We say an algorithm § is a first order query algorithm for
g if, given a point x € K and a first order query oracle
for f, it returns (a possibly unbiased estimate of) g( f, x).
We say G is bounded by B; if the output of G is always
within the ball B (0) and we call it trivial if it simply
returns the output of the query oracle at x.

Recall that an online agent A is composed of action
function A" and query function A%V, Informally,
given an online algorithm A with semi-bandit feedback,
we may think of A" := OMBQ(A, G, h) as the online
algorithm with (A")*°" ~ h(A*"") and (A")Y ~
G. As a special case, when i = Id and § is trivial, we

have A’ = A.

Algorithm 1: Online Maxi-
mization By Quadratization -

OMBQ(A, G, h)

Input : horizon 7', semi-bandit
algorithm 4, query algorithm G
for g, themap h : K — K
fort=1,2,...,T do
Play h(x:) where x; is the action
chosen by A
The adversary selects f; and a first
order query oracle for f;

Run G with access to x; and the
query oracle for f: to calculate o+
Return o, as the output of the query

oracle to A

Theorem 1. Let A be algorithm for online optimization end

with semi-bandit feedback. Also let F be function class over K that is quadratizable with i > 0
and maps g : F x K — Réand h : K — K, let G be a query algorithm for g and let A’ =
OMBQ(A, G, h). Then the following are true.

A < gRA
1.If G returns the exact value of g, then we have Ra,Advfl(F) < 6R1,Ava(F,l,,g)'

2.0n the other hand, if G returns an unbiased estimate of g and the output of G is bounded by B,
A’ A
then we have R%Adv,i(F’Bl) < 5R17AdVQ(F“[Bl])‘

As a special case, when f is concave, we may choose « = § = 1, h = Id, and g(f,x) to be a
super-gradient of f at x. In this case, Theorem [I| reduces to the concave version of Theorems 2
and 5 from [33]].

4 Up-concave function optimization is upper-quadratizable function
optimization
In this section, we study three classes of up-concave functions and show that they are upper-

quadratizable. We further use this property to obtain meta-algorithms that convert algorithms for
quadratic optimization into algorithms for up-concave maximization.

4.1 Monotone up-concave optimization over general convex sets

For differentiable DR-submodular functions, the following lemma is proven for the case v = 1
in Lemma 2 in [12] and for the case p = 0 in [19], (Inequality 7.5 in the arXiv version). See
Appendix [D|for proof.

Lemma 1. Let f : [0,1]Y — R be a non-negative monotone yi-strongly ~y-weakly up-concave
Sfunction with curvagure bounded by c. Then, for all x,y € [0, 1]%, we have

i gl = H 2
e )~ 100 = 1 (9160 y = =y —x1?).

where N f is an up-super-gradient for f.

Here we show that any semi-bandit feedback online linear optimization algorithm for fully adaptive
adversary is also an online up-concave optimization algorithm.

Theorem 2. Let K C [0, 1]¢ be a convex set, let 1 > 0, v € (0, 1], ¢ € [0, 1] and let A be algorithm
for online optimization with semi-bandit feedback. Also let F be a function class over K where every

f € F is the restriction of a monotone u-strongly y-weakly up-concave function curvature bounded
by c defined over [0,1]¢ to the set K. Then we have

*We say F is lower-quadratizable if af(y) — f(h(x)) > 3 ((g(f, x),y —x)+ §lly — x||2) .



A v A
[ —
R%wAdvﬁ F) — 1 + C’)/Q RlﬂAdel (F“)

Theorem 3. Under assumptions of Theorem |2} if we further assume that ¥ is M -Lipschitz for some
My > 0 and By > My, then we have
R.A Y A

< R
Tz AV (E.BY) © 14 cy? LAY (FL([BL))

These results follows immediately from Theorem [I| and Lemma Note that it is important to
assume that every function if f may be extended to a non-negative up-concave function over [0, 1]
for Lemmal [I]to be applied.

Corollary 1. The results of [19], [[7] and [l12]] on monotone continuous DR-submodular maximiza-
tion over general convex sets may be thought of as special cases of TheoremB|when A is the online
gradient ascent algorithm.

4.2 Monotone up-concave optimization over convex sets containing the origin

The following lemma is proven for differentiable
DR-submodular functions in Theorem 2 and Propo-
sition 1 of [45]. The proof works for general up-
concave functions as well. We include a proof in
Appendix [E] for completeness.

Algorithm 2: Boosted Query oracle for
Monotone up-concave functions over con-
vex sets containing the origin —- BQMO

Input : First order query oracle, point x
Sample z € [0, 1] according to Equation (2)
Lemma 2. Let f : [0,1]¢ — R be a non-negative Return the output of the query oracle at z * x
monotone y-weakly up-concave differentiable func-
tion and let F : [0,1]¢ — R be the function defined by

1 Ler(z=1)
P = [ FE e ) — f0)dz.

1—e™)z
Then F is differentiable and, if the random variable Z € [0, 1] is defined by the law
,}/e’\/(’U,71)

1—e

Vze[0,1], P(Z<z2)= /Z du, )
0

then we have E |V f(Z * x)] = VF(x). Moreover, we have

1—e

(I—e)fly) - f(x) < S

Theorem 4. Let K C [0,1]% be a convex set containing the origin, let v € (0,1] and let A be
algorithm for online optimization with semi-bandit feedback. Also let ¥ be a function class over
K where every f € F is the restriction of a monotone ~y-weakly up-concave function defined over
[0,1]? to the set K. Assume F is differentiable and M -Lipschitz for some My > 0. Then, for any
By > M, we have

(VF(x),y — x).

/ 1—e™7
A A
Rl—e‘”’,Adv”l(F,B1) < ~y 1,Adv/ (F,[B1])

where A" = OMBQ(A, BQMO, Id).

This result now follows immediately from Theorem [I]and Lemma 2]

Corollary 2. The result of [45]] in the online setting (when there is no delay) may be seen as an
application of Theorem[d|when A is chosen to be online gradient ascent.

4.3 Non-monotone up-concave optimization over general convex sets

The following lemma is proven for differentiable DR-submodular functions in Corollary 2, Theo-
rem 4 and Proposition 2 of [47]. The arguments works for general up-concave functions as well. We
include a proof in Appendix [F for completeness.

Lemma 3. Let f : [0,1]% — R be a non-negative continuous up-concave differentiable function
and let x € K. Define F : [0,1]? — R as the function

= [ s (f (5+x-x+x) —f<x>> i,



Then F is differentiable and, if the random variable Z € |0, 1] is defined by the law

Vze[0,1], P(Z<2) / u, 3)

then we have E {Vf (% (x—x)+ X):| = VF(x). Moreover, we have
1

by g (25 < Hvreoy - x.

Theorem 5. Let K C [0,1]¢ be a convex set, u € K, h = |||~ and A be algorithm for online
optimization with semi-bandit feedback. Also let F be a function class over IC where every f € F is
the restriction of an up-concave function defined over [0, 1] to the set K. Assume F is differentiable
and M, -Lipschitz for some My > 0. Then, for any B1 > M, we have

A
R1 1 Advg(F,By) < 8R1,Advg(Fo[31])

where A" = OMBQ(A, BQN, x thﬁ) Algorithm 3: Boosted Query oracle
for Non-monotone up-concave func-

These results now follows immediately from Theo- ;¢ (ver general convex sets — BQN

rem[I]and Lemma[3]

Input : First order query oracle, point x
Corollary 3. The result of [47)] in the online setting Sample z € [0, 1] according to Equation
without delay may be seen as an application of Theo- Return the output of the query oracle at
rem[D|when A is chosen to be online gradient ascent. Sx(x—x)+x

S Meta algorithms for other feedback cases

In this section, we study several meta-algorithms that allow us to convert between different feedback
types and also convert results from the online setting to the offline setting.

First order/semi-bandit to zeroth order/bandit feedback: In this section we discuss meta-
algorithms that convert algorithms designed for first order feedback into algorithms that can handle
zeroth order feedback. These algorithms and results are generalization of similar results in [33]] to
the case where o < 1.

We choose a point ¢ € relint(K) and a real number 7 > 0 such that aff () N B,.(c) C K. Then, for
any shrinking parameter 0 < § < r, we define K5 := (1 — g)IC + gc. For a function f : K — R
defined on a convex set K C R4, its §-smoothed version f(; : IC(; — R is given as

f6(x) i= Epasi()nB, ()L (2)] = Evmrzons, (0)[f (x4 V)],

where Ly = aff (K) — x, for any x € K, is the linear space that is a translation of the affine hull of X
and v is sampled uniformly at random from the k£ = dim(L)-dimensional ball £, N B;(0). Thus,
the function value f5 (x) is obtained by “averaging” f over a sliced ball of radius § around x. For
a function class F over K, we use F5 to denote { fs | f € F}. We will drop the subscript 6 when
there is no ambiguity (See Appendix [G]for the description of the algorithms and the proof.).

Theorem 6. Let F be an M, -Lipschitz function class over a convex set K and choose ¢ and r as
described above and let § < 1. LetUd C KT be a compact set and let U = (1 — g)u + gc. Assume A

is an algorithm for online optimization with first order feedback. Then, if A’ = FOTZO(A) where
FOTZO is described by Algorithm@and 0 < a<1, wehave

! - 2D
A A
Ry adve (F, o) (U) < Ra’Advﬁ(E%Bo)(u) + (3 + 7°> M T

On the other hand, if we assume that A is semi-bandit, then the same regret bounds hold with
A" = STB(A), where STB is described by Algorithm|6]

Full information to trivial query: In this section, we discuss a meta-algorithm that converts algo-
rithms that require full-information feedback into algorithms that have a trivial query oracle. In par-
ticular, it converts algorithms that require first-order full-information feedback into semi-bandit al-
gorithms and algorithms that require zeroth-order full-information feedback into bandit algorithms.



Here we assume that A% does not depend on  Algorithm 4: Stochastic Full-information To
the observations in the current round. If the Tyiyial query - SFTT(A)

number of queries k; is not constant for each

Input : base algorithm .A, horizon T, block size

time-step, we simply assume that 4 queries ex- L>K

tra points and then discards them, so that we ob- forg=1,2,...,T/L do

tain an algorithm that queries exactly K points Let %, be the action chosen by A%t

at each time-step, where K does not depend on Let (%)%, be the queries selected by AN
t. We say a function class F is closed under con- Let (tqquf. ., tq.) be a random permutation
vex combination if for any fi, -+, fr € F and of {(g— 1)L +1,...,qL}

any 01,--- 0, > 0 with 37, J; = 1, we have fort=(q—1)L+1,...,qL do

> 0ifi €F. ift = tq; for some 1 < i < K then
Theorem 7. Let A be an online optimization al- Play the action x; = ¥

gorithm with full-information feedback and with Return the observation to the query
K queries at each time-step where A" does oracle as the response to the i-th
not depend on the observations in the current query

round and A’ = SFTT(A). Then, for any else Plav the acti .

M -Lipschitz function class F that is closed un- e‘n d ay the action x¢ = Xq

der convex combination and any B1 > Mj, end

0O<a<landl <a <b<Tletad =
[(a—1)/L| + 1,V = [b/L], D = diam(K)
and let {T} and {T/ L} denote the horizon of the adversary. Then, we have

’

T/L
RiAdvg(F,Bl){T} (K1)la,b] < MyDE(V —a' +1) + LRiAdv‘l’(F,Bl){T/L}(’C*/ )a’, '],

end

This result (proof in Appendix [H) is based on the idea of random permutations used in [44} 46, [34].

Online to Offline: An offline optimization problem can be though of as an instance of online
optimization where the adversary picks the same function and query oracle at each round. Moreover,
instead of regret, the performance of the algorithm is measured by sample complexity, i.e., the
minimum number of queries required so that the expected error from the a-approximation of the
optimal value is less than €. Conversions of online algorithms to offline are referred to online-to-
batch techniques and are well-known in the literature (See [37]]). A simple approach is to simply
run the online algorithm and if the actions chosen by the algorithm are x;, - -- , X, return x; for
1 < ¢ < T with probability 1/7". We use OTB to denote the meta-algorithm that uses this approach
to convert online algorithms to offline algorithms. The following theorem is a corollary which we
include for completion (See Appendix |l for the proof.).

Theorem 8. Let A be an online algorithm that queries no more than K = T times per time-
step that obtains an a-regret bound of O(T™) over an oblivious adversary Adv. Then the sample

complexity of OTB(A) over {(f, Q) | ((f,Qy), -, (f,Qy)) € Adv}is O(e’%f;),

Figure 1: Summary of applications

6 Applications
Figure[6|captures the applications that are men-
tioned in Tables [, 2] and B] The exact state- [ *"®"" omea

ments are stated in Corollaries[6] [7jand [6]in the [ pon.x. == } N * seTT

Appendix. To obtain a result from the graph, let
A be one of SO-OGA or IA and select a directed path that has the following properties.

A, Trivial, Id

I

*The path starts at one of the three nodes on the left.
*The path must be at least of length 1 and the edges must be the same color.
oIf A is IA, the path should not contain SFTT or OTB.

For example, if A = SO-OGA and the path starts at the middle node on the left, then passes through
OMBQ, FOTZO, SFTT, we get

SFTT(FOTZO(OMBQ(SO-OGA, BQMO0,1d)))
which is a projection-free algorithm (using separation oracles) with bandit feedback for monotone
up-concave functions over convex sets that contain the origin. As mentioned in Table 3] and Corol-
lary EI-(C), the adaptive regret of this algorithm is of order O(T"*/%). Note that the text written in the
three nodes on the left correspond to the inputs of the meta-algorithm OMBQ. Also note that the

color red corresponds to the setting where G is a trivial query algorithm which means that the output
of OMBQ is semi-bandit.



7 Conclusions

In this work, we have presented a comprehensive framework for addressing optimization problems
involving upper quadratizable functions, encompassing both concave and DR-submodular functions
across various settings and feedback types. Our contributions include the formulation of upper
quadratizable functions as a generalized class, the development of meta-algorithms for algorithmic
conversions, and the derivation of new projection-free algorithms with improved regret guarantees.
By extending existing techniques from linear/quadratic optimization to upper quadratizable func-
tions, we have significantly advanced the state-of-the-art in non-convex optimization.

Moreover, our results offer insights into the fundamental properties of optimization problems, shed-
ding light on the connections between different function classes and algorithmic approaches. The
versatility of our framework allows for seamless transitions between different feedback settings,
enabling practitioners to tailor algorithms to specific application requirements. Furthermore, our
results in dynamic and adaptive regret guarantees for DR-submodular maximization represent sig-
nificant milestones in the field, opening up new avenues for research and application.
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A Related works

DR-submodular maximization Two of the main methods for continuous DR-submodular maxi-
mization are Frank-Wolfe type methods and Boosting based methods. This division is based on how
the approximation coefficient appears in the proof.

In Frank-Wolfe type algorithms, the approximation coefficient appears by specific choices of the
Frank-Wolfe update rules. (See Lemma 8 in [34]) The specific choices of the update rules for
different settings have been proposed in [3} 2, 31,136/ 9]. The momentum technique of [30] has been
used to convert algorithms designed for deterministic feedback to stochastic feedback setting. [[18]]
proposed a Frank-Wolfe variant with access to a stochastic gradient oracle with known distribution.
Frank-Wolfe type algorithms been adapted to the online setting using Meta-Frank-Wolfe [7, 8] or
using Blackwell approachablity [32]]. Later [44] used a Meta-Frank-Wolfe with random permutation
technique to obtain full-information results that only require a single query per function and also
bandit results. This was extended to another settings by [46] and generalized to many different
settings with improved regret bounds by [34]].

Another approach, referred to as boosting, is to construct an alternative function such that maxi-
mization of this function results in approximate maximization of the original function. Given this
definition, we may consider the result of [[19} 7, [12] as the first boosting based results. However,
in these cases (i.e., the case of monotone DR-submodular functions over general convex sets), the
alternative function is identical to the original function. The term boosting in this context was first
used in [45]] for monotone functions over convex sets containing the origin, based on ideas presented
in [13L29]. This idea was used later in 38} 26] in bandit and projection-free full-information set-
tings. Finally, in [47] a boosting based method was introduced for non-monotone functions over
general convex sets.

Up-concave maximization Not all continuous DR-submodular functions are concave and not
all concave functions are continuous DR-submodular. [29] considers functions that are the sum
of a concave and a continuous DR-submodular function. It is well-known that continuous DR-
submodular functions are concave along positive directions [} 3]]. Based on this idea, [40] defined
an up-concave function as a function that is concave along positive directions. Up-concave max-
imization has been considered in the offline setting before, e.g. [24], but not in online setting. In
this work, we focus on up-concave maximization which is a generalization of DR-submodular max-
1mization.

Projection-free optimization In the past decade, numerous projection-free online convex opti-
mization algorithms have emerged to tackle the computational limitations of their projection-based
counterparts [20, 16, 41, 18, 21} [15, 28l [16]]. In the context of DR-submodular maximization, the
Frank-Wolfe type methods discussed above are projection-free.

Non-stationary regret Dynamic regret was first analyzed in [50] for first order determinis-
tic feedback. Later [42] obtained the lower bound and optimal algorithm in this setting. This
was later expanded to bandit setting in [48]. Adaptive regret was first analyzed in [22] and
the first optimal algorithm for projection-free adaptive regret was proposed in [16]]. We refer to
[22, 11,110,143\ 142,149, 148l 277,139, [16]] and references therein for more details.

Optimization by quadratization The framework discussed here for analyzing online algorithms
is based on the convex optimization framework introduced in [33]]. We extend the framework to
allows us to work with a-regret.Moreover, [33]] also demonstrates that algorithms that are designed
for quadratic/linear optimization with fully adaptive adversary obtain a similar regret in the con-
vex setting. In this paper we introduce the notion of quadratizable functions generalizes this idea
beyond convex functions to all quadratizable functions. (see Theorem [I) This allows us to inte-
grate the boosting method with our framework to obtain various meta-algorithms for continuous
DR-submodular maximization.

B Problem Setup in Detail

In this section, we further expand on the description in Section 2]
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A function class is a set of real-valued functions. Given a set D, a function class over D is a
subset of all real-valued functions on D. A set K C R? is called a convex set if for all x,y € K
and a € [0,1], we have ax + (1 — a)y € K. For any u € KT, we define the path length

T 1
Pr(u) =37 lwi — ]|

A real-valued differentiable function f is called concave if f(y) — f(x) < f'(z)(y — ), for all
x,y € Dom(f). More generally, given x > 0 and 0 < v < 1, we say a real-valued differentiable
function is p-strongly ~v-weakly concave if

1)~ 160 < = (1@ (=) = Iy = aP)

for all z,y € Dom(f).

We say a differentiable function f : L — R is p-strongly y-weakly up-concave if it is p-strongly
~-weakly concave along positive directions. Specifically if, for all x <y in K, we have

7 (9505 =20+ By = xI?) < 500 - 109 < 2 (9760.y =20 - By - xI?).

This notion could be generalized in the following manner. We say Vf : K — R% is a p-strongly
v-weakly up-super-gradient of f if for all x < y in I, we have

= p 1 (e 7
3 (9503 =20+ By = xI?) < 700 - 109 < 2 (@760y =20 - By - xI?).
Then we say f is u-strongly y-weakly up-concave if it is continuous and it has a u-strongly y-weakly

up-super-gradient. When it is clear from the context, we simply refer to Vf asan up-super-gradient
for f. When v = 1 and the above inequality holds for all x,y € /C, we say f is u-strongly concave.

A differentiable function f : I — R is called continuous DR-submodular if for all x <y, we
have V f(x) > V f(y). More generally, we say f is y-weakly continuous DR-submodular if for
all x <y, we have Vf(x) > vV f(y). It follows that any vy-weakly continuous DR-submodular
functions is y-weakly up-concave.

Given a continuous monotone function f : I — R, its curvature is defined as the smallest number

¢ € [0,1] such that
fy+2) - f(y) 2 (A=) (f(x+2) - f(x)),

forallx,y € Kandz > Osuchthatx+z,y +z € K. We define the curvature of a function class
F' as the supremum of the curvature of functions in F.

Online optimization problems can be formalized as a repeated game between an agent and an adver-
sary. The game lasts for 7" rounds on a convex domain C where 7" and /C are known to both players.
In ¢-th round, the agent chooses an action x; from an action set K C R<, then the adversary chooses
a loss function f; € F and a query oracle for the function f;. Then, for 1 < ¢ < ki, the agent
chooses a points y; ; and receives the output of the query oracle.

To be more precise, an agent consists of a tuple (Q4, 421" Ay where Q4 is a probability
space that captures all the randomness of \A. We assume that, before the first action, the agent
samples w € ). The next element in the tuple, A*"" = (A" ...  AFU") is a sequence of
functions such that .A; that maps the history Q4 x Kt=1 x Hi;ll(lC x O)Fs to x; € K where we
use O to denote range of the query oracle. The last element in the tuple, A", is the query policy.
Foreach1 <t < Tand1 < i < ky, ALY 0 QA x K x [ILZ1(K x O)F x (K x O)i"lisa
function that, given previous actions and observations, either selects a point yi € K, i.e., query, or
signals that the query policy at this time-step is terminated. We may drop w as one of the inputs
of the above functions when there is no ambiguity. We say the agent query function is trivial if
ki =1landy;; = x; forall 1 < ¢ < T. In this case, we simplify the notation and use the notation

3In the literature, the curvature is often defined for differentiable functions. When f is differentiable, we

have Vfy)]
o - WYl
c=1 x,yEIC,IfSiSd [vf(x)}l
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A = A%ton — (A, ... Ar) to denote the agent action functions and assume that the domain of
Apis Q4 x (K x 0)1 1L

A query oracle is a function that provides the observation to the agent. Formally, a query oracle for a
function f is a map Q defined on /C such that for each x € I, the Q(x) is a random variable taking
value in the observation space O. The query oracle is called a stochastic value oracle or stochastic
zeroth order oracle if O = R and f(x) = E[Q(x)]. Similarly, it is called a stochastic up-super-
gradient oracle or stochastic first order oracle if O = R? and E[Q(x)] is a up-super-gradient of f
at x. In all cases, if the random variable takes a single value with probability one, we refer to it as
a deterministic oracle. Note that, given a function, there is at most a single deterministic gradient
oracle, but there may be many deterministic up-super-gradient oracles. We will use V to denote the
deterministic gradient oracle. We say an oracle is bounded by B if its output is always within the
Euclidean ball of radius B centered at the origin. We say the agent takes semi-bandit feedback it
the oracle is first-order and the agent query function is trivial. Similarly, it takes bandit feedback
if the oracle is zeroth-order and the agent query function is triviaﬂ If the agent query function is
non-trivial, then we say the agent requires full-information feedback.

An adversary Adv is a set such that each element B € Adv, referred to as a realized adversary,
is a sequence (By, -+ , Br) of functions where each B; maps a tuple (x1,--- ,x;) € K! to a tuple
(ft, Q) where f; € F and Q; is a query oracle for f;. We say an adversary Adv is oblivious if
for any realization B = (By,--- ,Br), all functions B; are constant, i.e., they are independent of
(x1,-+-,%¢). In this case, a realized adversary may be simply represented by a sequence of func-
tions (f1,--- , fr) € FT and a sequence of query oracles (Qy, - - - , Qr) for these functions. We say
an adversary is a weakly adaptive adversary if each function B; described above does not depend on
x; and therefore may be represented as a map defined on ! . In this work we also consider adver-
saries that are fully adaptive, i.e., adversaries with no restriction. Clearly any oblivious adversary is
a weakly adaptive adversary and any weakly adaptive adversary is a fully adaptive adversary. Given
a function class F and ¢ € {0,1}, we use Advg(F) to denote the set of all possible realized adver-
saries with deterministic ¢-th order oracles. If the oracle is instead stochastic and bounded by B, we
use Advg(F, B) to denote such an adversary. Finally, we use Adv;(F) and Adv;(F, B) to denote
all oblivious realized adversaries with ¢-th order deterministic and stochastic oracles, respectively.

In order to handle different notions of regret with the same approach, for an agent A, adversary Adv,
compact set U C KT, approximation coefficient 0 < a < land 1 < a < b < T, we define regret as

b b
RA U)la,b] ;== sup E |« max H(ug) — f(x¢) ],
a,Adv( )[a, b] BGA%v u:(ul,---,uT)EZ/{;ff( t) ;ft( t)

where the expectation in the definition of the regret is over the randomness of the algorithm and
the query oracle. We use the notation RiB(Z/{)[a, b = R{i Adv(U)]a,b] when Adv = {B}isa
singleton. We may drop « when it is equal to 1. When o < 1, we often assume that the functions
are non-negative.

Static adversarial regret or simply adversarial regret correspondstoa = 1,b =T and U = KT :=
{(x,-++,%x) | x € K}. When a = 1, b = T and U contains only a single element then it is referred
to as the dynamic regret [50, 42]|. Adaptive regret, is defined as maxj<g<p<7 Rﬁ, Ay (K [a, 0]
[22]]. We drop a, b and U/ when the statement is independent of their value or their value is clear
from the context.

C Proof of Theorem
The proof is similar to the proof of Theorems 2 and 5 in [33].

Proof. Deterministic oracle:

We first consider the case where G is a deterministic query oracle for g. Let o, = g(f:, x:) denote
the output of G at time-step t. For any realization B = (By,---,Br) € Adv)(F), we define

“This is a slight generalization of the common use of the term bandit feedback. Usually, bandit feedback
refers to the case where the oracle is a deterministic zeroth-order oracle and the agent query function is trivial.
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Bj(x1,- -, %) to be the tuple (¢;, V) where

Bylxt, -+ xi) = i =y = (o,y — i) — Sy = xil%,

and B’ = (B}, -, B). Note that each B; is a deterministic function of x1, - - - , x; and therefore
B e Advg (F.,qg)- Since the algorithm uses semi-bandit feedback, the sequence of random vectors
(x1,-+- ,x7) chosen by A is identical between the game with B and 5’. Therefore, according to

definition of quadratizable functions, for any y € IC, we have

B 0(y) — ) = 8 {0y =) = Gy = x.1?) = afly) = lhx)

Therefore, we have

ueld

b b b b
max OéZ:ft(ut)—Z:ft(h(Xt)) S/Blglleagf Z:Qt(ut)—Z:Qt(Xt) ) “4)

Hence
! o A/
Ra,Advfl(F)_ sup Ry
BeAdv! (F)

b b
= sup [E |max Oszt(ut)—th(h(xt))

BeAdV! (F) uey

b b
< sup E |fmax Z%(ut) - Z(Jt(xt)
t=a t=a

BeAdV! (F) uey

A A
<p sup RI,B’ = BRlyAdvfl(F“ o
B'eAdvi (F, q) '

Stochastic oracle:
Next we consider the case where G is a stochastic query oracle for g.

Let Q2 = ng X e X Q% capture all sources of randomness in the query oracles of Adv](F, By),
i.e., for any choice of # € Q< the query oracle is deterministic. Hence for any # € Q< and
realized adversary B € Adv](F, B ), we may consider By as an object similar to an adversary with
a deterministic oracle. However, note that By does not satisfy the unbiasedness condition of the
oracle, i.e., the returned value of the oracle is not necessarily the gradient of the function at that

point. Recall that B; maps a tuple (x1,---,X¢) to a tuple of f; and a stochastic query oracle for
ft. We will use Eqo to denote the expectation with respect to the randomness of query oracle and
]EQ? [[] :== Eqe[|ft,x¢] to denote the expectation conditioned on the history and the action of the

agent. Similarly, let Eq.a denote the expectation with respect to the randomness of the agent. Let o,
be the random variable denoting the output of G at time-step ¢ and let

o :=Efoy | ft,x¢] = EQ? [0:] = a(ft, x¢).

Similar to the deterministic case, for any realization B = (fi,--- , fr) € Adv®(F) and any 6 € Q°,
we define By ,(x1,- -+ ,x;) to be the pair (¢;, V) where

I
@G =y (0ny —X¢) — §||y—XtH2-

We also define Bj, := (B ,,--- , By ). Note that a specific choice of § is necessary to make sure
that the function returned by 5j , is a deterministic function of x4, - - - , x; and not a random variable

and therefore B, belongs to Adv) (F,[Bi]).

Since the algorithm uses (semi-)bandit feedback, given a specific value of 8, the sequence of random
vectors (x1,--- ,Xr) chosen by A is identical between the game with By and Bj;. Therefore, for
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any u; € K, we have

ofi(uy) - < 8 ( (60w — x2) ||ufxt||>

B

5( [0 | fi, %] ut_xt>_g”ut_xt”2>
(E O, U — >*§Hut*Xt||2 \ fn&})
=p (E qr(ug) — qs(x¢) | ft;xt]>

where the first inequality follows from the fact that f; is up-quadratizable and 6; = g(ft,x¢).
Therefore we have

b

b b
E o) filw) = > filh(xi)| <BE | D E [g:(w) — gi(x0)| fi %]

t=a

b
= BE | > gi(ur) — gi(xe)

Since B is oblivious, the sequence (f1,--- , fr) is not affected by the randomness of query oracles
or the agent. Therefore we have

b b
Ra s=E aglgggft(ut) - ;ft(h(xt))

b b
= Eleaz,}{(E Oé;ft(ut> - ;ft(h(xt))

b b
< BmaxE ;qt(m) - ;qt(xt)

b
< BE max th uy) ZQt(Xt) 5]E[ 18'}
t=a

where the second inequality follows from Jensen’s inequality. Hence we have

Rﬁ,Adv‘i (F,By) — sup Ré,B < sSup BRﬁBé
BeAdv (F,B1) BeAdv§ (F,B1),0€0Q2
= sup BRYp = ﬁRAdvg(l,FH [B1]) N

B/eAdV, (F,[B1])

D Proof of Lemmal(ll

Proof. We have x Vy + x Ay = x + y. Therefore, following the definition of curvature, we have

fxVy) = f(y) =2 (1 -o(f(x) - f(xAy)).
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Since f is non-negative, this implies that
(FxVy) - F() + $<f<x AY) - F(x))
— (f(y) - (0) + (F(xVy) - F(3) + %(f(x AY) — F(x)

> (£(3) = S(0)+ (1 = e = =)(f6) = fx 1Y) )
= J(3) = (e )06+ (1 e+ ) f(xA)
> £3) = e+ ) )
On the other hand, according to the definition, we have
Focvy) = ) < = (9760 x vy =) = vy - xl*)

= I
76 = 1y 20 (T x = xy) + = x v,
Therefore, using Inequalityand the fact that f(x Ay) > 0, we see that

fly) - - 60 < (fx v y) = £0) +72

(f(xAy) = f(x)

IN

}y((@f(x)x\/y—x) —g||x\/y—x||2—&—(@f(x),x/\y—x}

M 2
—Sx—xA
Clx—x Ayl )

(@160xvy +xny =20 - Slxvy —xiP - Sl - xy1?)

LR= 2=

= K
(7603 =30 = Gl =1
where weusedx Vy +x Ay =x+y and

vy —xP+lx—xAylP= 3 i-e)?+ Y (@)
[yli>[z]s [yli<[z]:

= (@i—v)*=lx—yl?

in the last equality. The claim now follows from multiply both sides by % O

E Proof of Lemma

Proof. Clearly we have F(0) = 0. For any x # O, the integrand in the definition of F is a
continuous non-negative function of z that is bounded by

e (z=1) e (z=1)
(1—e7)z (1—e7)z
Therefore F is well-defined on [0, 1]¢. Moreover, we haV

(f(zxx) = f(0)) <

Myllz# x| < = Mllx]|.

(== 1(z=1)
/0 (’1676 W)Vf Z*X dz—V/ ?ie ) (f(z*x) — f(0))dz = VF(x).

’Note that we do not require the gradient V f to be defined everywhere for this equality to hold. It is
sufficient for V f to exist at Lebesgue almost every point on every line segment. This is satisfied when the
1-dimensional Hausdorff measure of the set {x € [0, 1]% | Vf is undefined} is zero.
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It follows that F" is differentiable everywhere and E [V f(Z = x)] = VF(x). To prove the last
claim, first we note that

—— (VE(x),x) = < / ETDY (2 % x)dz,x>

Y 0

1
:/ TV F (2 % x),x)dz
0
1
:/ 67(271)df(2:>kx)
0

1
= D fz x| — / flz %)

de¥(z—1)

dz i

— f(x) — (0) - /0 e D) £ 4 x)d.

On the other hand, using monotonicity and up-concavity of f, we have

L X = 16’Y(2_1) Z*X z
CVFG.y) = [ s ).y

1
> /0 CETV(VF(z%x),y V (2%x) — 2% X)dz
> [ 20 (v (e o) = 2 0) s
> [ 20 (1) = o) s

1
=1 -y - (/O v’ D f(z % X)d2> :

where we used fol Y= U~dz =1 — €77 in the last equality. Therefore

A (VF.y = %) > (1= )~ )+ 1(0) = (1= ) f(y) ~ fx). O

F Proof of Lemma

We start by stating a useful lemma from the literature.

Lemma 4 (Lemma 2.2 of [31]]). For any two vectors x,y € [0,1]% and any continuously differen-
tiable non-negative DR-submodular function f we have

fxVy) > (1= [x]le) f(y)-

Proof of Lemma[3] Clearly we have F'(x) = 0. For any x # x, the integrand in the definition of F’
is a continuous function of z that is bounded by

ﬁ (f (; * (x—x)+x> —f(x)) < ﬁmll% x(x —x)|| < §M1||x_§||_

3 3)

Therefore F is well-defined on [0, 1]¢. Moreover, we haveE]

/Olef<;*(XX)+X)dZV/Ol?’Z(12_§)3 <f<;*(xx)+x) f(x)) dz

= VF(x)

8Similar to Lemma we do not require the gradient V f to be defined everywhere for this equality to hold.
It is sufficient for V f to exist at Lebesgue almost every CPoint on every line segment. This is satisfied when the
1-dimensional Hausdorff measure of the set {x € [0, 1]* | V f is undefined} is zero.
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It follows that F is differentiable everywhere and E {V f (% * (x — x) + x>:| = VF(x).
To prove the last claim, let x, := £ * (x — x) + x and w(z) = gr1=55. We have

8(1-2)3"

1
VPG = [ w9y

= /0 w(z) ((Vf(x2),y —x: Ay) +(Vf(x2), 3% Ay — %) + (VF(x2), x2)) dz

/O w(z) ((VF(x:), %2 Vy = x2) +(VF(x:), x: Ay — x2) + (Vf(x2), x2)) dz

Y

/0 w(z) ((fz Vy) = f(x:) + (f(xz Ay) = f(x2)) +(Vf(x2),x.)) dz

> [l (Pl vy) = 25x) + (97 x.) %))
Using Lemma[d] we have
fxVy) > (1= [x:]l00) f(y)

> (1 - ((1 - 5) bl + §||x||oo>> (v
> (1 - ((1 - 5) bl + 2)) (v

_ <1 - 2) (1~ llxlloc) £(»).

Therefore
2<VF(X)7y> 2 A W(Z) <(1 - ;) (1 - HKHOO) f(y) - 2f(xz) + <vf(xz)7xz>> dz. (6)
Next we bound (V F(x), x). We have

3 1 1
g<VF(x)7x> = /0 w2)(Vf(x),x —x,)dz +/0 w(2)(Vf(x),x,)dz

For the first term, we have

/01 w(z)(Vf(x),x —x;)dz = /01 w(z) <Vf(x), <1 - ;) (x — x)> dz
-/ [CREYE <Vf<x>, = X> dz

- / (2 - 2)w(2)df (x2)

= (2 - 2w ()| / (2 2 (2) — w(2))f(x.)dz

1 |
= f(x1) - Zf(X) —/0 @f(xz)dz,
which implies that

3 1 1 1
S(VP60.x) = f00) - 1709 - [ gt o+ [ u)9100 %00z
gf(xl)—/o 2u(2)f(x)dz + | w(2)(Vf(x),%.)dz )

0
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Combining Equations [6]and[7} we have

! z
SVFe.y =% > [ ) ((1 = 5) (= lsll) ) - 27 + <Vf<xz>,xz>> dz

fa) + / 200(z) f(x2)d — / w(2) (V1 (%), %:)dz

bl gy | p (1-3) i - s
ol g - g (252)). =

G Proof of Theorem

The algorithms are special cases of Algorithms 2 and 3 in [33]] where the shrinking parameter and
the smoothing parameter are equal. We include a description of the algorithms for completion.

Algorithm 5: First order to zeroth order - FOTZO(.A)

Input : Shrunk domain K. Linear space Lo, smoothing parameter 6 < «, horizon 7', algorithm .4
Pass K., as the domain to A
k « dim(ﬁo)
fort=1,2,...,Tdo
x; < the action chosen by A
Play x:
Let f; be the function chosen by the adversary
for i starting from 1, while A™" is not terminated for this time-step do
Sample v, ; € Stn Lo uniformly
Let y:,; be the query chosen by A
Query the oracle at the point y,; + vy ; to get o4
Pass gotvt as the oracle output to A
end

end

Algorithm 6: Semi-bandit to bandit - STB(.A)

Input : Shrunk domain K., Linear space Lo, smoothing parameter § < «, horizon 7', algorithm A
Pass I@a as the domain to A
k < dim(Lo)
fort=1,2,...,Tdo
Sample v; € S' N Lo uniformly
x; < the action chosen by A
Play X + 5Vt
Let f: be the function chosen by the adversary
Let o; be the output of the value oracle
Pass %otvt as the oracle output to A
end

The proof of Theorem [6]is similar to the proof of Theorems 6 and 7 in [33]]. The only difference
being that we prove the result for a-regret instead of regret. We include a proof for completion.

Proof.
Regret bound for STB:

Note that any realized adversary B € Adv((F, By) may be represented as a sequence of func-
tions (f1,---, fr) and a corresponding sequence of query oracles (Qy,- -, Qr). For such real-

ized adversary 3, we define B to be the realized adversary corresponding to (fy,- - , fT) with the
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stochastic gradient oracles

Qi(x) == th(x +ov)v, 8)

where v is a random vector, taking its values uniformly from S* N £y = S* N (aff(K) — z), for
any z € K and k = dim(Lg). Since Q; is a stochastic value oracle for f;, according to Remark 4

in [36], Q;(x) is an unbiased estimator of V f;(x). [/| Hence we have B € AdvS(F, %By). Using
Equation [§] and the definition of the Algorithm [6] we see that the responses of the queries are the

same between the game (A, B) and (A, B). It follows that the sequence of actions (X1, - -- ,Xp) in
(A, B) corresponds to the sequence of actions (x1 + dvy,- -+ , Xy + ovr) in (A', B).

Let u € argmax, o, Zf:a fi(uy) and @ € argmax, Zf:a fi(u;). We have

b

[ b b b
R&L‘,’B—Rig =E|a) filw) =D filxe+0ove)| —E [ad fi(a) =) fi(xt)

t=a t=a

o b b b
—F ;ft(Xt)—th(Xt—kévt) +a ;ft(ut)—;ft(ﬁt) . 9)

t=a

According to Lemma 3 in [36], we have | fi (x¢) — fi(x¢)] < §M;. By using Lipschitz property for
the pair (x¢,x; + dvy), we see that

| fo(xe + 0ve) — fu(xe)] < | fe(xe + Vi) — folxe)| + | fe(xe) — folxe)| < 20Mi. (10)
On the other hand, we have

b

b
D fily) = max Y fi(wy)

t=a el t=a
b
> M, T + ma};z fe(tag) (Lemma 3 in [36]])
aedl |
b 5 5
= oM, T + maxz I ((1 - ) u; + c> (Definition of Uf)
ueld —a T T

b
5
=0MT + r&lea%; I (ut + —(c— X))

r

(Lipschitz)

b
20M, D

>

> 0MT + max ;:a (ft(ut) + )

b
= <1 + 2TD> SMT + > fi(uy)

t=a

Therefore, using Equation 9} we see that

: 2D 2D
RE — Ry < 26MT + <1 - r) SMT = (3 - r) SM;T.

"When using a spherical estimator, it was shown in [14] that f is differentiable even when f is not. When
using a sliced spherical estimator as we do here, differentiability of f is not proved in [36]. However, their

proof is based on the proof for the spherical case and therefore the results carry forward to show that f is
differentiable.
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Therefore, we have

A _ A
Rixavs(.By) = sup Rp
BeAdvy(F,Bo)

2D
< sup Rg + (3 + > oML T
BeAdv(F,Bo) r

2D
< sup Rg + (3 + > oML T
BeAAvY(F,By) r

2D
A
< RAdv“ (B.5By) T (3 T r) OM.T

Regret bound for FOTZO:

The proof of the bounds for this case is similar to the previous case. As before, we see that the
responses of the queries are the same between the game (A, B) and (A’, B). It follows from the

description of Algorithmthat the sequence of actions (x1,--- ,xr) in (A, B) corresponds to the
same sequence of actions in (A’, B).

Let u € argmax, ¢, Zi’:a fi(ug) and @ € argmax Zi’:a ft(ut). We have

[ b b b b
Ré/—Rg:E ath(ut)_th(Xt) -E Oéth(flt)—th(Xt)

b b b b
=B [| D folx) =Y filo) | +a | D felwe) =D fl) | |- (11)

To obtain the same bound as before, instead of Inequality (L0} we have
| fe(xe) = fe(xe)| < 6My < 26My.

The rest of the proof follows verbatim. O

Corollary 4. Under the assumptions of Theorem@ if we have Rf Adve(F,By) = O(B1T") and
6 =T0=/2 then we have

’

Rf,Advg(F,Bg) = O(B,T+m/2),

H Proof of Theorem [7]

Proof. Given a realized adversary B € Adv?(F, B){T}, we may define B = Adv®(F, B){T/L}
to be the realized adversary constructed by averaging each T'/L block of length L. Specifically, if
the functions chosen by B are f1,--- , fr, the functions chosen by 1 are fq = % gi(q—l)L-i—l ft
for1 < ¢ < T/L. Note that, for any x € K and (¢ — 1)L < t < gL, we have E[f;(x)] = fq(x)
and if each f; is differentiable at x, then E[V f,(x)] = V f,(x). If the query oracles selected by 5

are Qy,---, Qp, then for any 1 < ¢ < T'/L we define the query oracle Qq as the algorithm that
first selects an integer (q — 1)L+ 1 <t < gL with uniform probability and then returns the output

of Q. It follows that Qq is a query oracle for fq It is clear from the description of Algonthm@
that, when the adversary is B, the output returned to the base algorithm corresponds to B. We have
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1g(a’—l)L+1<a<b<b’L<T.Hence

upelkl

b
Ris(KD)la,b] = E | o max Z filuo) = >~ fulx)
t=a

=E|L amaX—thuo thxt

UOG’C

b'L b'L

1 1
<E|L o max - > ft(uO)_E > filxe)
t=(a’—1)L+1 t=(a’—1)L+1

b’

y
—E Z Z (fir(%q) = fe(xt)) + L o max > Falug) = > folxy)

q=a' t= (q 1 LJrl g=a’ q=a’

b b’ b
<Y KMD+LE lamax y ) foluo) = fo(%)

q=a’ q=a’ q=a’

< (¥ —a + DKM D + LRA (KT ) [d! V)

Therefore
RiAdv?(F,B){T}(Kf)[av b] = sup Rt (KT)[a, b]
' BeAdv)(F,B){T}
<MDK —d +1)+ L sup RA (KT M)a! ¥]

BeAdv(F,B){T/L}
= MiDK(V = a' +1) + LR s vy pryny (K D) 0. O

Remark 1. Note that in the above proof, we did not need to assume that the query oracles are
bounded. Specifically, what we require is that the set of query oracles to be closed under convex
combinations. This holds when all query oracles are bounded by B, but it also holds under many
other assumptions, e.g., if we assume all query oracles variances are bounded by some o2 > 0.

Corollary 5. Under the assumptions of TheoremE] if we have R ave(F.B) (KT)[a,b] = O(BT™),
K=0(T% and L = Tlg:n, then we have

/

73£,Adv‘.’(F,B)(’Czﬂ)[a7 b} =0 (BTWW) .

As a special case, when K = O(1), then we have

! 1
Ré,Advg(F,B)(KT)[aa bj=0 (BTZ*W) )
Proof. We have
L
R sawe ey 1y (K0, B < MiDK(Y = a/ + 1) + LR s avoqw mypryny (K31, b]
T/L
< M]DK(T/L) —|— LRa Adv“(F B){T/L}(IC / )[a/7 b/]
= O(KT/L) + O(LB(T/L)")

_0 <B (1+9)(1’n)+n>. 0

Proof. Since A requires T queries per time-step, it requires a total of 77 queries. The expected
error is bounded by the regret divided by time. Hence we have ¢ = O(T"~!) after T'*? queries.

I Proof of Theorem [§|

Therefore, the total number of queries to keep the error bounded by € is O (e~ = ). O
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J Projection-free adptive regret

The SO-OGD algorithm in [[16] is a deterministic algorithm with semi-bandit feedback, designed for
online convex optimization with a deterministic gradient oracle. Here we assume that the separation
oracle is deterministic.

Here we use the notation ¢,  and K5 described in Section

Algorithm 7: Online Gradient Ascent via a Separation Oracle - SO-OGA
Input : horizon 7', constraint set /C, step size n

X1+ CcEKs
fort=1,2,...,Tdo

Play x; and observe o; = V fi(x:)

Xip1 = X+ 10¢

Set x¢4+1 = SO-IPx (x4 1), the output of Algorithmwith initial point x} ;1
end

Note that here we use a maximization version of the algorithm, which we denote by SO-OGA.
Here Py denotes projection into the convex set K. The original version, which is designed for
minimization, uses the update rule x;, ; = x; — 70, in Algorithminstead.

Algorithm 8: Infeasible Projection via a Separation Oracle - SO-IPx(yo)

Input : Constraint set /C, shrinking parameter 0 < 7, initial point yo

y1 + Pago) (o)

y2 ¢+ c+ m /* y1 is projection of yg over Bp(c)Naff(KC) */

fori=1,2,... do

Call SOk with input y;

ify; ¢ K then
Set g; to be the hyperplane returned by SOx /¥ Vx e, (yi—x,8)>0 */
g; — Paff(lc)fc(gi)
Update yi+1 < yi — 5%

else

| Returny < y;
end

end

Lemma 5. Algorithm@stops after at most (dist(yo, Ks)? — dist(y, K5)?)/6% + 1 iterations and
returns'y € K such thatVz € Ks, we have |y — z|| < |lyo — z||.

Proof. We first note that this algorithm is invariant under translations. Hence it is sufficient to prove
the result when ¢ = 0.

Let SO} denote the following separation oracle. If y € K or y ¢ aff(K), then SO} returns the
same output as SOx. Otherwise, it returns P, (x)(g) where g € R? is the output of SOx. To prove

that this is indeed a separation oracle, we only need to consider the case where y € aff (K) \ KC. We
know that g is a vector such that

vx ek, (y-x,g) >0.
Since P,g(x) is an orthogonal projection, we have
<y - X7Paff(l<:)(g)> = <Paﬂ'(l(:)(y - X)7g> = <y - X g> > 0.

for all x € KC, which implies that SO} is a separation oracle.

Now we see that Algorithm(8]is an instance of Algorithm 6 in [[16] applied to the initial point y; using
the separation oracle SO}.. Hence we may use Lemma 13 in [16] directly to see that Algorithm [3]
stops after at most (dist(y1, K5)% — dist(y, K5)2)/62 + 1 iterations and returns y € K such that
Vz € Kj, we have ||ly — z|| < ||y1 — z|| Since y; is the projection of y over aff(K), we see that
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Algorithm [§]stops after at most
dist(y1, Ks)? — dist(y, Ks)? . dist(yo, Ks)? — dist(y, K5)*  |lyo — y1l/?

52 52 RN
S dist(yo, K5)? — dist(y, Ks)? i1
52
steps and
Vz € K5 C aft(K), |y —zl| < [ly: — 2] < lyo — - =

In the following, we use the notation

A e A T
ARmAdv = ISI;?IJ);TROC,A(&V(K* )[a, 0],
to denote the adaptive regret.
Theorem 9. Let L be a class of linear functions over IC such that ||l|| < M for alll € L and let
D = diam(K). Fix v > 0 such that § = vT~'/% € (0,1) and set n = oA ~1/2, Then we have

AR ) = O TY?).

Proof. Since the algorithm is deterministic, according to Theorem 1 in [33], it is sufficient to prove
this regret bound against the oblivious adversary Adv{(L).

Note that this algorithm is invariant under translations. Hence it is sufficient to prove the result when
c = 0. If aff (K) = R, then we have B,.(0) C K C Br(0) and we may use Theorem 14 from [16]]
to obtain the desired result for the oblivious adversary Adv (L). On the other hand, the assumption
B, (0) C K is only used in the proof of Lemma 13 in [16]. Here we use Lemma instead which
does not require this assumption.

The following corollary is an immediate consequence of the above theorem and Theo-

rems 2} B} @l Bl [8] and Corollaries [ and [5}

Corollary 6. Let SO-OGA denote the algorithm described above. Then the following are true.

a) Under the assumptions of Theorem[2} we have:

S0-0GA 1/2
AR/%,Advf () < O(MlT )
1+cy 1

b) Under the assumptions of Theorem[3} we have:

SO-0OGA 1/2
AR 42 - Adve (F,B1) < O(BlT )
1+cy 1

If we also assume F is bounded by My and By > M, then

2 Adv§(F,By) 0 ‘
Fov

¢) Under the assumptions of Theorem[d) we have:
A
Alee_’ﬁAdv‘i (F,B1) < O(B1T1/2)7

where A = OMBQ(SO-OGA, BQMO, 1d). Note that A is a first order full-information
algorithm that requires a single query per time-step. If we also assume ¥ is bounded by
My and By > My, then

Asemi-bandi 2/3
ARI—@*’Y,Ath’i(F,Bl) < O(BlT ),

A ull-info
ARl—fen—vagvg(F,Bo) < O(BOT3/4)

A andit 4/5
ARl_be_d'Y,Advg(F,Bo) S O(BOT / )

where
Asemi-bandit = SFTT(A),  Agiinfo-o = FOTZO(A), Abandit = SFTT(Afullcinfo0)-
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d) Under the assumptions of Theorem[3] we have:

A
ARl;’l ,Advy(F,B1)

where A = OMBQ(SO-OGA,BQN,x + ’%i) Note that A is a first order full-
information algorithm that requires a single query per time-step. If we also assume F
is bounded by My and By > My, then

Asemi-bandit 1/2 2/3
ARt < O(BudPT°1?),

Afull-info— 1/273/4
ARIZ;L 7Adv‘§(F,B0) < O(Bod /°T'%),

Abandit 1/244/5
Aleh,iiAdvg(F,Bo) < O(Bod/*T*7),

< O(B,TY?),

where
Asemi—bandit = SFTT(A)7 -Afull—inf070 = FOTZO(A)7 -Abandit = SFTT(Afull—infofoy

K Dynamic regret

Improved Ader (IA) algorithm [42] is a deterministic algorithm with semi-bandit feedback, designed
for online convex optimization with a deterministic gradient oracle.

Algorithm 9: Improved Ader - IA
Input : horizon 7', constraint set /C, step size A, a set H containing step sizes for experts
Activate a set of experts { E" | n € H} by invoking Algorithmfor each step sizen € H
Sort step sizes in ascending order 1 < -+ < nn, and set w{? = ﬁ where C' =1+ ‘17‘
fort=1,2,...,Tdo

Receive x; from each expert E”

Play the action x; = 3_ , w;x} and observe o; = V fi(x:)

Define I:(y) := (0¢,y — x¢)

. N = Alg(xy)
Update the weight of each expert by w;’ = e R
Tpen wie MG

Send the gradient o, to each expert "
end

Algorithm 10: Improved Ader : Expert algorithm

Input : horizon 7', constraint set /C, step size n
Let x7 be any point in X
fort=1,2,...,Tdo

Send x} to the main algorithm

Receive o; from the main algorithm

X?—o—l = Pr(x] + no:)
end

In Algorithm P denotes projection into the convex set K. Note that here we used the maxi-
mization version of this algorithm. The original version, which is designed for minimization, uses
the update rule x;/, ; = Px(x] — 7o) in Algorithminstead.

Theorem 10. Let L be a class of linear functions over K such that ||I|| < M; for all l € L and let

D = diam(K). Set H = {n; = 2572\ /55 | 1 <i < N} where N = [Llog, (1 +4T/7)] + 1

and \ = \/2/(T M2 D?). Then for any comparator sequence u € K, we have

R, 1 1) = OO /T(L+ Pr(w).

Proof. 1f we use the oblivious adversary Adv{(L) instead, this theorem is simply a restatement of
the special case (i.e. when the functions are linear) of Theorem 4 in [42]. |°| Since the algorithm is

8We note that although Theorem 4 in [42]] assumes that the convex set contains the origin, this assumption
is not really needed. In fact, for any arbitrary convex set, we may first translate it to contain the origin, apply
Theorem 4 and then translate it back to obtain the results for the original convex set.

28



deterministic, according to Theorem 1 in [33], the regret bound remains unchanged when we replace
Adv(L) with Adv! (L). O

The following corollary is an immediate consequence of the above theorem and Theorems 2} [3] ] [5]
and Corollary [4]

Note that we do not use the meta-algorithm O'TB since Improved Ader is designed for non-stationary
regret and does not offer any advantages in the offline case. On the other hand, we do not use the
meta-algorithm SFTT in this case since Theorem [7]is only for the setting where the comparator is
KT and does not allow us to convert bounds for dynamic regret.

Corollary 7. Let IA denote “Improved Ader” described above. Then the following are true.

a) Under the assumptions of Theorem[2} if ¥ is M -Lipschitz, we have:

RA Advfl(F)(u) = O(My1v/T(1+ Pr(u))).

14ey2’

b) Under the assumptions of Theorem[3} we have:
IA _ \/7
leczw 7Advq(F7B1)(u) = O(B1/T(1+ Pp(u))).
If we also assume F is bounded by My and By > M, then

STB(IA) _ 3/4 1/2
RIJ:;Q’AdV%(F}BO)(u) O(BoT*'*(1 4 Pr(u))"/*).

¢) Under the assumptions of Theorem[d we have:
RiL e aavs (7,50 (W) = O(B1v/T (1 + Pr(u)))

where A = OMBQ(IA, BQMO, Id). Note that A is a first order full-information algorithm
that requires a single query per time-step. If we also assume F is bounded by My and
By > My, then

R R .50 (W) = OBOT (1 + Pr(w)').

where Afull_infO,Q = FOTZO(A).

d) Under the assumptions of Theorem[3] we have:
RﬁAjTh,Adv’{(F‘,Bl)(u) = O(B1\/T(1+ Pr(u)))

where A = OMBQ(IA, BQN,x — xtTJrE) Note that A is a first order full-information
algorithm that requires a single query per time-step. If we also assume F is bounded by

Mgy and By > M, then

ng;}l:xg)\:%()(F,Bo)(u) = O(BoT**(1 + Pr(w))'/?).

where Afull_jnfofo = FOTZO(A).
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