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A pseudo Nambu-Goldstone boson (PNGB) coupled to a confining gauge group via an anomalous
term is characterised, during the confining phase transition, by a temperature dependent mass
m2(T ) ∝ T−n. For n > 2, a non-relativistic population of such particles dominating the cosmological
energy density would act as dark energy (DE), accelerating the expansion. We study the possibility
that a PNGB φb coupled to a hidden gauge group that is presently undergoing confinement could
realise this scenario. To obtain the observed amount of DE, the number density of φb must be
boosted by some mechanism. Assuming that the QCD axion φa constitutes the dark matter (DM),
a non-adiabatic level crossing between φa and φb shortly before matter-DE equality can convert a
small fraction of DM into DE, providing such mechanism and explaining the coincidence puzzle.

Introduction. Unveiling the true nature of dark en-
ergy (DE) and dark matter (DM) undoubtedly stands
as one of the most formidable endeavors in contempo-
rary fundamental physics. We propose a framework in
which DE and DM emerge as intricately connected phe-
nomena. They are both explained in terms of elemen-
tary particles, albeit characterised by a rather peculiar
intertwined dynamics. As a first assumption, we posit
that the QCD axion embodies the entirety of DM [1–
3]. The QCD axion (see [4] for a review) is a hypo-
thetical particle whose existence is implied by the most
elegant solution to the strong CP problem [5, 6], the so-
called Peccei-Quinn (PQ) mechanism [7–10]. The axion
arises as a Nambu-Goldstone boson (NGB) of a sponta-
neously broken global Abelian symmetry endowed with
a mixed anomaly with the color gauge group SU(3)c.
The anomaly represents an explicit breaking of the global
U(1) that provides the axion with a tiny mass ma. How-
ever, at temperatures well above the QCD confining tem-
perature Tc, the axion is massless because free color
charges in the plasma screen the non-perturbative effects
responsible for generating its mass. As T decreases to-
wards Tc, color charges get confined into color singlets,
and a mass is generated, which at T ≲ Tc reaches its
final value ma ∼ Λ2

QCD/F , where ΛQCD ∼ O(100MeV)

is the QCD scale, and F ≳ 109 GeV is the axion decay
constant. The dependence of the axion mass on tem-
perature is generally written as m2

a(T ) ∼ T−n. In the
dilute instanton gas approximation (DIGA) [11, 12] at
lowest order one has n = β0 + nf − 4 where nf is the
number of light quarks and β0 = 11

3 N − 1
3nsTs −

4
3nfTf

is the one loop coefficient of the β-function, N is the
degree of the confining gauge group, ns the number of
light scalars and Ts,f the index of the corresponding rep-
resentations (Ts,f = 1/2 for the fundamental). In QCD
with nf = 3, (0) one obtains n = 8, (7). However, the
exponent n is not a constant but it has a rather in-
tricate temperature dependence, and lattice simulations
(see Ref. [13] for a review) have found that while at tem-

peratures well above the transition, values of n are gen-
erally close to the DIGA results, at temperatures rele-
vant for the onset of oscillations of the axion field the
dependence on T is milder. This is intriguing because
for values around n ≈ 6 (see e.g. Refs. [14, 15]) a popu-
lation of cold axions would contribute an approximately
constant energy density component ρa = mana. More
generally, within a sufficiently small time/temperature
window such that n ≈ const., one obtains from the con-
servation law d(ρaa

3) = −pada3 (with a the cosmological
scale factor and pa the pressure) an effective equation of
state p = wρ with w = −n

6 . Thus, already for n > 2 a
component of such particles dominating the cosmological
energy density would accelerate the expansion, behaving
as quintessence for n < 6 [16], as a cosmological constant
for n = 6, and for n > 6 as phantom DE [17]. Moreover,
a variation of n with the temperature would be reflected
in w(z) varying with the redshift.1

In the case of the QCD axion, the dependence of the
mass on the temperature has no effects on the cosmolog-
ical expansion, since this occurs in the radiation domi-
nated era. By the time of matter/radiation equality, ma

has long reached its zero temperature constant value,
behaving as cold DM. It is, however, natural to ask if
a mass-varying mechanism could be at work in a dark
sector (DS) containing an axion coupled to a confining
gauge group Gb that is undergoing a phase transition at
present time. Energetic considerations suggest that in
its simplest form this scenario is not viable, because the
amount of energy that the axion potential can provide is
bounded by the Gb confining scale ρb < Λ4

b . In turn, to
ensure an ongoing DS phase transition, Λb must be below

1 Recently the DESI collaboration has reported results from pre-
cise baryon acoustic oscillation measurements in galaxy, quasar
and Lyman-α forest tracers [18]. Combined with CMB data or
type Ia supernovae, their results indicate a preference for DE
time-variance at a late epoch over the ΛCDM model that, de-
pending on the combined data set, can exceed the 3σ level.
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the present DS temperature TDS . Therefore, similarly to
the QCD case, during the mass-varying era the DS re-
mains dominated by radiation from the dark plasma.

In this paper we propose a mechanism that allows to
circumvent this argument, and that can yield ρb ≫ Λ4

b .
We assume that at a certain temperature TLC somewhat
above the temperature of matter/DE equality TDE, the
T -dependent dark axion mass mb(T ) hits a level crossing
(LC) with the mass of the QCD axion mb(TLC) ≃ ma.
Then a fraction of DM gets converted into a DE com-
ponent, that will come to dominate the energy density
at T = TDE. Due to the different scaling ρb/ρa ∼
(TLC/T )

n/2, only a small fraction of DM needs to be
converted, which implies a strongly non-adiabatic LC.2

In summary, the particle physics interpretation of the
DE phenomenon that we are suggesting neatly accounts
for the DE/DM coincidence puzzle, it is consistent with
variations of the effective DE equation of state, and it
predicts that in the far future, once T will fall below Λb,
DE will end up contributing to DM. Thus, even phantom
DE (n > 6) would not constitute a cosmological problem,
because it would remain a transitory regime [28].

Two coupled axions system. Consider two confining
gauge gropus Ga, Gb with confining scales Λa > Λb, and
two set of fermions transforming underGa⊗Gb as ψL,R ∼
[(daψ, T

a
ψ), (d

b
ψ, T

b
ψ)], χL,R ∼ [(daχ, T

a
χ ), (d

b
χ, T

b
χ)], where

da,b and T a,b denote respectively the dimension and index
of the representation. Consider the Yukawa Lagrangian

LY = ψLψRΦ1 + χLχRΦ2 , (1)

where Φ1,2 are two gauge singlet scalars, acquiring VEVs
v1,2. There are in total six fields carrying six overall
phases. Two conditions for rephasing invariance are fixed
by Eq. (1). The remaining four global symmetries are
two independent baryon numbers Bψ, Bχ, and two global
Peccei-Quinn (PQ) symmetries U(1)q,p under which the
scalar fields carry charges Φ1 ∼ (q1, 0) and Φ2 ∼ (0, p2).
The Yukawa terms impose the conditions qψL

−qψR
= q1,

pχL
− pχR

= p2 and, without loss of generality, we can
normalize q1 = p2 = 1. Then the mixed U(1)q,p − Ga,b
anomaly coefficients are given by:

n1= 2dbψT
a
ψ , m1= 2daψT

b
ψ, n2= 2dbχT

a
χ , m2= 2daχT

b
χ, (2)

where the factors of 2 ensure that the coefficients are
integers. After U(1)q,p spontaneous breaking the Yukawa
terms in Eq. (1) can be rewritten as

Leff
Y = ψLψRv1e

i
a1
v1 + χLχRv2e

i
a2
v2 . (3)

Removing the complex phases via chiral rotations of the
fermion fields generates the anomalous terms Ci

16π2 Fi · F̃i

2 Two axions LC, tipycally in the adiabatic regime, has been pre-
viously harnessed in various contexts unrelated to DE [19–27].

SU(2) : 2 (1) 3 (4) 4 (10) 5 (20) 6 (35) 7 (56)

SU(3) : 3 (1) 6 (5) 8 (6) 10 (15) 15 (20) 21 (35)

SU(4) : 4 (1) 6 (2) 10 (6) 15 (8) 20 (13) 20′ (16)

SU(5) : 5 (1) 10 (3) 15 (7) 24 (10) 35 (28) 40 (22)

TABLE I. SU(N) (N = 2, 3, 4, 5) representations of lowest
dimension (in bold face) with twice the value of the index
given in parenthesis.

(i = a, b) with coefficients:

Ca = n1
a1
v1

+ n2
a2
v2
, Cb = m1

a1
v1

+m2
a2
v2
. (4)

We see that if the dimension/index of the representations
satisfy the condition (daψd

b
χ)/(d

b
ψd

a
χ) = (T aψT

b
χ)/(T

b
ψT

a
χ )

(i.e. n1/n2 = m1/m2) then Ca ∝ Cb. The field com-
bination orthogonal to Ca,b would then decouple from
the symmetry breaking effects generated by the anoma-
lies, maintaining a flat potential. If instead the relation
holds only approximately, then the flat direction would
get lifted only slightly by anomaly effects, realising the
Kim-Nilles-Peloso (KNP) mechanism [29]. While enforc-
ing an exact equality is straightforward, enforcing it to
a given level of approximation requires a careful choice
of groups and representations. This can be understood
by looking at the dimension and index values of SU(N)
representations in Table I.
Let us now assume Λa ≫ Λb, so that at a tempera-

ture T ∼ Λa the combination of NGB φa/F ∼ Ca ac-
quires a mass while the orthogonal combination φb/f ∼
−n2a1/v2 + n1a2/v1 remains massless The mass eigen-
states (φa, φb) are related to (a1, a2) by an orthogonal
transformation with angle ϑ = arctan(n2v1

n1v2
). Following

Ref. [30], we can obtain the respective decay constants
from the variations of the fields δai = viαi (i = 1, 2):

δφa ≡ Fη = cϑδa1 + sϑδa2 =
v1v2
√ (n1α1 + n2α2) (5)

where cϑ(sϑ) = cosϑ(sinϑ),
√

=
√
n21v

2
2 + n22v

2
1 , and

η = n1α1 + n2α2 ̸= 0 is an arbitrary non-vanishing shift.
Therefore F = v1v2/

√
. A variation in the orthogonal

direction is identified by the condition n1α̂1 + n2α̂2 = 0,
that is α̂1 = −n2η′, α̂2 = n1η

′ for some arbitrary shift
η′. We then have

δφb = −sϑδâ1 + cϑδâ2 =
√

· η′ . (6)

Finally, by expressing a1,2 in Cb in Eq. (4) in terms of
φa, φb one can easily obtain

Cb =
φa
F ′ +

φb
f
, (7)

with

F ′ =
v1v2

√
m1n1v22 +m2n2v21

, f =

√
|m2n1 −m1n2|

. (8)
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Equations of motion. The Ga × Gb strong dynamics
generates the following potential:

V = Λ4
a

[
1− cos

(φa
F

)]
+ Λ4

b

[
1− cos

(
φa
F ′ +

φb
f

)]
,

(9)
from which one can obtain the equations of motion. In
the limit of small oscillations, they can be written as:

Ä+ 3HȦ+M2A = 0 , (10)

with

A =

(
φa
φb

)
, M2 = m2

a

(
1 + ϵ2r ϵ r
ϵ r r

)
, (11)

and we have definedma = Λ2
a/F , r = r(T ) = m2

b(T )/m
2
a,

ϵ = f/F ′. Let us now assume that at zero temperature
mb = Λ2

b/f > ma. Since Λa ≫ Λb this implies the
condition f/F ≪ 1. A class of models satisfying this
condition is easily obtained by assuming v1/v2 ≪ 1 and
by choosing ψ to be a singlet of Ga. Then n1 = 0 and
we have f/F = (n2/m1)(v1/v2) as well as ϵ = f/F ′ =
(m2/m1)(v1/v2) ≪ 1 Under these conditions, it is clear
that at temperatures around T ∼ Λb, when mb(T ) is still
evolving, while ma has long reached its constant value,
a level crossing (LC) will be encountered. Neglecting for
simplicity the highly suppressed ϵ2 term in (M2)11, the
LC is defined by the condition mb(TLC) = ma. Let us
now introduce the time variable x = t/tLC, and let us
define the instantaneous mass basis Am as

A = R(x) Am, M2 = R†(x)M2R(x) , (12)

where M2 = diag (M2
+,M

2
−) and R(x) is an orthogonal

matrix defined in terms of an angle β(r(x)). We have:

M2
± =

m2
a

2
(1 + r ±∆), tanβ =

2ϵr

1− r +∆
(13)

with ∆ =
√
(1− r)2 + 4ϵ2r2. At LC tanβ → 1 and

R(x = 1) describes maximal mixing. At r = (1 + 3
2ϵ)

−1

tanβ = 1
2 so that the width of the resonance is ∆r ∼ 3ϵ.

In the instantaneous mass basis Eq. (11) becomes

Äm + 3HȦm +M2Am = 0 , (14)

where

H = H +
2

3
R†Ṙ, M2 =M2 +R†R̈+ 3HR†Ṙ .

and

R†Ṙ = iσ2 ·
ϵ

∆2
ṙ ,

R†R̈ = iσ2 ·
[
2(1− r − 4rϵ2)

∆2
ṙ2 + r̈

]
ϵ

∆2
− σ0 ·

ϵ2

∆4
ṙ2

with σ2 the Pauli matrix and σ0 the identity. The na-
ture of the LC is characterised by the ratio between the

splitting of the two levels, and the off-diagonal entries in
M2 that mix these levels, evaluated at LC:

γ =

∣∣∣∣∣ Tr (σ3M
2)

Tr ( i2σ2M
2)

∣∣∣∣∣
LC

=

∣∣∣∣ 8m2
aϵ

2

3Hṙ − 2ṙ2 + r̈

∣∣∣∣
LC

=
36(ϵtLCma)

2

n(2n− 3)
.

(15)
If, in the resonance region, the splitting is much larger
than the variation of r (γ ≫ 1), the heavier state (φa
at t ≪ tLC) remains the heavier, and emerges as φb at
t ≫ tLC, that is, in crossing the resonance region, the
two axions swap their “flavor” identities. This defines
the adiabatic regime, which is then realised when ϵω ≡
ϵ tLCma ≫ 1. Since ma corresponds to the oscillation
frequency at LC, and ϵ tLC to the width of the resonant
region, γ ≫ 1 can also be interpreted as the requirement
that several oscillations occur within this region.
The adiabatic LC phenomenon is well known in con-

densed matter physics, and analytic treatments valid un-
der certain assumptions were formulated long ago, most
notably by Landau [31] and Zener [32]. In particle
physics, the phenomenon is realised in the Mikheyev-
Smirnov-Wolfenstein (MSW) enhancement of in-matter
νe → νµ conversion of solar neutrinos [33, 34]. However,
our two-axion LC differs from the MSW effect in that be-
sides the mass splitting between the two “flavour” states,
also the off diagonal entries in M2 are time-dependent.
It bears a closer resemblance to a variant MSW realiza-
tion [35] where the off-diagonal entries stem not from
vacuum mixing angles, but from (hypothetical) νe−νµ
flavor changing interactions with electrons and nucleons,
so that they also vary as a function of the matter density.
We are interested in a LC occurring during matter

domination (a(t) ∼ t2/3, H = 2/(3t)). Let us consider
the evolution around x ∼ 1. m2

b(T ) = m2
a(TLC/T )

n gives

r(x) = x
2n
3 . Eq. (10) can then be written as:

φ̈a +
2

x
φ̇a + ω2φa + ϵω2x

2n
3 φb = 0, (16)

φ̈b +
2

x
φ̇b + ω2x

2n
3 φb + ϵω2x

2n
3 φa = 0, (17)

where ω = matLC and the dots represent derivatives with
respect to x.

Dark energy from the QCD axion. Let us now study
whether the LC mechanism can be harnessed to gener-
ate a density of mass-varying axions sufficient to drive a
cosmological acceleration. Assuming that both φa and
φb are dark sector particles would ease the construction.
However, taking Ga = SU(3)QCD and φa as a QCD axion
supplying the entirety of DM is more economical, it pro-
vides a compelling connection between DM and DE, and
it also yields testable (at least in principle) predictions.
A sketch of the evolution of the DM and DE components,
neglecting for simplicity the baryon contribution, is de-
picted in figure 1 (not to scale). The DM energy density
ρφa

dominates at early times (EDM), dropping as T 3.
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FIG. 1. Sketch of the evolution of the cosmological energy
density, neglecting the baryon contribution. The initial Early
DM (EDM) phase evolves at t > tLC into a mixed DM+DE
phase. After Gb confinement (t > tb) DE is converted into a
Late DM (LDM) component reinstating matter domination.

At tLC a tiny fraction of QCD axions is converted into
φb whose mass is growing as ∼ T−n/2 providing a DE
component (ρφb

≈ const. for n ≈ 6). After ρφb
= ρDM

is reached at tDE, the DE component starts dominat-
ing, eventually matching the present time (t0) values of
ΩDE and ΩDM. In the far future, after Gb confinement
is completed (t > tb), mb =const. and φb will end up
contributing a Late DM (LDM) component, reinstating
matter domination. Figure 2 gives an example of the
dynamics of LC conversion. We have fixed n = 6 for
the evolution of m2

b(T ), ϵω = 1 for the adiabaticity pa-
rameter, and ω = 50 that, although unrealistically small,
allows to easily integrate numerically the system of cou-
pled equations (16)-(17). At t ≪ tLC the initial ampli-
tude of φb is vanishingly small. The amplitude of φa is
relatively large, and decreases with time because of the
cosmological expansion. Around t ≃ tLC the frequency of
φb approaches that of φa, and a partial conversion takes
place. In the picture the amplitude of φb is multiplied
by ten, so that the efficiency of the conversion at the
level of amplitudes is about 10%. After LC both ampli-
tudes decrease as 1/t. However, while the frequency of
φa remains constant, that of φb keeps increasing as t2.

There are severe constraints on our scenario. We are
interested in the evolution of mb(T ) around TLC:

mb(TLC) ∼
Λ2
b

f

(
Tb
TLC

)3

= ma =
Λ2
a

F
(18)

where Tb ≈ Λb is the Gb confinement temperature, and
Λa = ΛQCD. We take for simplicity the same temper-
ature for the QCD and Gb sectors (we will comment
on the consequences of dropping this assumption in the
next section.) In viable models we will generally find

FIG. 2. An example of the LC mechanism for n = 6, ϵ ω = 1
and ω = 50. The φb amplitude is increased by a factor of 10.

F ′ ∼ F ∝ v2 (f ∝ v1), so we can write

ϵ ≃ f

F
=

Λ2
b

Λ2
a

T 3
b

T 3
LC

≲ 10−25

(
Λb

10−4eV

160MeV

Λa

)2

(19)

where for the inequality we have used Tb/TLC < T0/TDE

as is implied by TLC > TDE and by the requirement
that mb is still evolving (Tb < T0), together with
T0/TDE = (1 + zDE)

−1 with zDE ≈ 0.5 the redshift
at which DE starts dominating. An additional condi-
tion is implied by the requirement that the PQ symme-
try is broken at a temperature sufficiently above TLC,
say f ≳ 10−2 eV. Together with Eq. (19) this yields
F ≳ 1014 GeV (ma ≲ 6 · 10−8 eV) which implies a pre-
inflationary QCD axion scenario, with a moderate tun-
ing of the initial misalignment angle (θa ≲ 6%) in order
to reproduce ΩDM . Another consequence of Eq. (19) is
that, assuming as a benchmark tLC = 109 yr (TLC ∼
1.3 · 10−3 eV, zLC ∼ 4.6) we obtain for the adiabaticity
parameter in Eq. (15) γ ≲ 1, that is the LC occurs in the
deep non-adiabatic regime, so that only a tiny fraction
of QCD axions is converted into φb. Notably, in order to
reach DE-matter equality at zDE ∼ 0.5, one needs at LC
ρDE

ρm

∣∣∣
LC

=
(

1+zDE

1+zLC

)3

∼ 1%−2%, consistently with a non-

adiabatic conversion. Let us now specify some minimal
possibilities for Gb and for the fermions representations.
Gb = SU(2), with ψ ∼ (1,2) and χ ∼ (3,2). We have
F = v2/2, F

′ = v2/3 and f = v1. In this case the ex-
ponent for the evolution of m2

b(T ) in the DIGA approx-
imation is n = 11

3 which gives for the equation of state
w ≃ −0.61, so that DE behaves as quintessence.
Gb = SU(3), with ψ ∼ (1,3) and χ ∼ (3,3). We have
F = F ′ = v2/3 and f = v1. This model encompasses a
wider range of possibilities. In the DIGA approximation
n = 22

3 which gives w ≃ −1.2. This opens up the possibil-
ity that during the cosmological evolution DE could be-
have initially as phantom DE, evolving at later times into
a cosmological constant and eventually into quintessence.
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Discussion. A precise study of the dynamics of the
LC in the physical regime is an extremely difficult task.
Analytic tools as the Landau-Zener (LZ) approxima-
tion [31, 32] cannot be employed because they rely on
assumptions that are not respected in our case (a mass
splitting linear function of time and time independent
off-diagonal mixing terms). Moreover, it is known that
the LZ formula cannot be extrapolated to the strong non-
adiabatic regime [36–38]. On the other hand, attempts at
numerical integration of Eqs. (16)-(17) encounter daunt-
ing obstacles, related to the well known problem of fol-
lowing the dynamics of fast oscillating fields at late cos-
mological times. In our case this is represented by the
huge value of the dimensionless parameter ω that, for the
values of ma and tLC mentioned above, is ω ∼ 1024. For
manageable values of ω the numerical results confirm the
qualitative behaviour depicted in figure 2. However, pur-
suing numerical solutions of Eqs. (16)-(17) in the physical
regime certainly deserves further efforts.

The Ga and Gb sectors undergo thermal decoupling
since the very early times of the cosmological evolu-
tion. This is because the only portal is represented by
the χ fermions that transform under both gauge groups,
and can mediate via loop box diagrams gluon scatter-
ing gaga ↔ gbgb. However, the large mass mχ ∼ v2 ∼
1014 GeV ensures that this process is unable to keep ther-
mal equilibrium (it also ensures that the χ’s, which could
potentially constitute cosmologically dangerous strongly
interacting stable relics [39], are effectively inflated away.)
Ga-Gb thermal decoupling can imply that our benchmark
values for Λb and f have to be modified by a factor of a
few. It is, however, a welcome feature of the construction,
in that for Tb < Ta the contribution of dark radiation to
the effective number of neutrino species Nν

eff can be re-
duced. In fact, given that the visible sector gets reheated
by annihilation of all the standard model (SM) degrees of
freedom (except photons and neutrinos), it turns out that
the Gb = SU(2) model remains compatible at 90% c.l.
with the recent DESI result on Nν

eff [18]. For Gb = SU(3)
some further entropy injection in the visible sector would
be needed. The additional degrees of freedom of the min-
imal supersymmetric SM would sufficie
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