
Type II t-J model in charge transfer regime in bilayer La3Ni2O7 and trilayer La4Ni3O10

Hanbit Oh,∗ Boran Zhou,† and Ya-Hui Zhang‡

William H. Miller III Department of Physics and Astronomy,
Johns Hopkins University, Baltimore, Maryland, 21218, USA

Recent observations of an 80 K superconductor in La3Ni2O7 under high pressure have attracted
significant attention. Recent experiments indicate that La3Ni2O7 may be in the charge transfer
regime, challenging the previous models based purely on the Ni dx2−y2 and dz2 orbitals. In this
study, we propose a low energy model that incorporates doped holes in the oxygen p orbitals. Given
that the parent nickel state is in the 3d8 configuration with a spin-one moment, doped hole only
screens it down to spin-half, in contrast to the Zhang-Rice singlet in cuprate. We dub the single hole
state as Zhang-Rice spin-half and build an effective model which includes three spin-one states (d8)
and two Zhang-Rice spin-half states (d8L). At moderate pressure around 20 GPa, the dominated
oxygen orbital is an in-plane Wannier orbital with the same lattice symmetry as the dx2−y2 orbital.
The resulting model reduces to the bilayer type II t-J model previously proposed in the Mott-
Hubbard regime. Notably, the hopping between the in-plane p orbitals of the two layers is still
suppressed. Density matrix renormalization group (DMRG) simulation reveals a pairing dome with
the optimal hole doping level at x = 0.4 ∼ 0.5, distinct from the hole doped cuprate where optimal
doping occurs around x = 0.19. Further increasing pressure initially raises the critical temperature
(Tc) until reaching an optimal pressure beyond which the pz orbital of oxygen becomes favorable
and superconductivity is diminished. This shift from in-plane p orbital to pz orbital may elucidate
the experimentally observed superconducting dome with varying pressure. As an extension, we also
suggest a trilayer version of the type II t-J model as the minimal model for pressured La4Ni3O10,
which is distinct from the models in the Mott-Hubbard regime.

Introduction.— The recent discovery of a superconduc-
tor with a critical temperature of approximately 80 K
in La3Ni2O7 under high pressure[1–3] has sparked con-
siderable interest[4–44]. Additionally, there is emerging
evidence of superconductivity in La4Ni3O10 under high
pressure, exhibiting critical temperatures ranging from
20-30 K, which has further fueled research interest in this
area [45–52]. Identifying a minimal model that captures
the essential physics is a crucial step forward.

According to density functional theory (DFT) [1], the
valence of the nickel (Ni) atom in the bilayer nickelate
La3Ni2O7 is in the 3d8−x configuration. The dx2−y2 or-
bital is at density n1 = 1 − x per site with x = 0.5,
while the dz2 orbital has the density n2 ≈ 1 and is near
Mott localization. Following this picture, many theoret-
ical works propose a two-orbital Hubbard or t-J model
in terms of the dx2−y2 and the dz2 orbital. Especially,
Refs.[17, 18] highlight the role of Hund’s coupling JH
in transmitting a large inter-layer spin-spin coupling J⊥
from the dz2 to the dx2−y2 orbital, providing a plau-
sible explanation for a high critical temperature (Tc)
even at large doping x ≈ 0.5. In Ref.[18], the local-
ized dz2 orbitals are simply integrated out, so the model
is reduced to a one-orbital bilayer t-J model of dx2−y2

with a negligible t⊥. But the integration of dz2 orbital
is not appropriate in the large JH limit [17, 53]. In-
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stead, the minimal model is demonstrated to be a bilayer
type-II t-J model [17, 53], which includes the spin-one
Ni2+ state (3d8) and spin-half Ni3+ state (3d7) at each
site. The type II t-J model hosts unique physics such
as a dome of pairing gap around x ≈ 0.5 due to dop-
ing induced Bardeen-Cooper-Schrieffer(BCS) to Bose-
Einstein-condensate (BEC) crossover[53]. There are also
two different Fermi liquids above Tc with a jump of the
Fermi surface volume by 1/2 Brillouin zone[17, 53, 54].
Clearly the physics is essentially different from the fa-
miliar hole doped cuprates. However, the model is
derived[17] assuming that the system is in the Mott-
Hubbard regime of the Zaanen–Sawatzky–Allen classi-
fication scheme [55]. Depending on the energy splitting
∆ between the oxygen p orbital and the Ni d orbital com-
pared to Hubbard U, we have the Mott-Hubbard regime
(∆ > U) or the charge-transfer regime (∆ < U). In
the Mott-Hubbard regime, the doped holes enter the 3d
orbitals of the Ni atom and we can ignore the oxygens.
However, a recent experiment suggests that La3Ni2O7

might be within the charge transfer regime where holes
enter the oxygen p orbitals while the nickel atom is pinned
to be in the 3d8 configuration with a localized spin-one
moment [56]. This challenges the previous theoretical
models. It is thus critical to derive an effective model for
the charge transfer regime, akin to what has been done
in hole doped cuprates [57].

There is a notable distinction between bilayer nicke-
lates and cuprates. The undoped Ni state is in the spin-
one 3d8 configuration with two electrons in the two eg or-
bitals, (dx2−y2 , dz2), strongly coupled together by a Hund
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coupling JH . Thus doped hole in the oxygen can at best
screen the spin-one moment down to spin-half, contrast-
ing the Zhang-Rice singlet in cuprate. In this work, we
demonstrate that the doped hole enters the in-plane oxy-
gen orbital and forms a net spin-half moment together
with the Ni spin-one moment at moderate pressure. The
hole state state is dubbed as the Zhang-Rice spin-half.
Then by taking the Zhang-Rice spin-half as the primary
state of the single-hole d8L state and keeping the spin-
triplet parent state of the undoped d8 state, the type-II
t-J model [58] is shown to be the minimal model also
in the charge-transfer regime of the doped bilayer nicke-
lates. Besides, we reveal that the oxygen pz orbital liv-
ing between the two layers can only mediate a very small
inter-layer hopping t⊥ due to symmetry. From the den-
sity matrix renormalization group (DMRG) simulation,
we show that the pairing gradually decreases with t⊥ but
remains robust. If we further increase across an optimal
value, the doped hole shifts from the intra-layer px, py
oxygen orbital to the inter-layer pz oxygen and the pair-
ing is suppressed. We finally point out that the trilayer
La4Ni3O10 is also described by a trilayer version of type
II t-J model in the charge transfer regime.

Charge transfer model.— We consider a model on bi-
layer square lattice (See Fig. 1), which includes three
p-orbitals (2px, 2py, 2pz) of oxygen as well as the two Eg

d-orbitals (3dx2−y2 , 3dz2) of nickel. In the hole picture,
we first focus on one-unit cell with two Ni atoms and nine
O atoms, the Hamiltonian is,

H = Hdp +
∑
i,l

[
U1n

d
1;i;l;↑n

d
1;i;l;↓ + U2n

d
2;i;l;↑n

d
2;i;l;↓

+U ′nd1;i;ln
d
2;i;l − 2JH(s⃗d1;i;l · s⃗d2;i;l +

1

4
nd1;i;ln

d
2;i;l),

+
∑
a

ϵd,an
d
a;i,l

]
+

∑
i′,l,α

ϵpn
p
α;i′;l +

∑
i

ϵp;zn
p
z;i, (1)

and

Hdp =
∑

i,l,a,σ

[
2tdp;ad

†
a;i;l;σpa;i;l;σ +H.c.

]
+

∑
i,σ

[
tdp;z(d

†
2;i;t;σ − d†2;i;b;σ)pz;i;σ +H.c.

]
with

p1;i;l;σ =
1

2

[
px;i+ x̂

2 ;l;σ
− px;i− x̂

2 ;l;σ
− py;i+ ŷ

2 ;l;σ
+ py;i− ŷ

2 ;l;σ

]
,

p2;i;l;σ =
1

2

[
px;i+ x̂

2 ;l;σ
− px;i− x̂

2 ;l;σ
+ py;i+ ŷ

2 ;l;σ
− py;i− ŷ

2 ;l;σ

]
,

where a = 1, 2 labels dx2−y2 and dz2 orbital of Ni and
l = t, b labels the top and bottom layer. σ =↑, ↓ labels
the spin. Here d†a;i;l;σ creates a hole on the nickel site
i relative to the 3d10 state. p†a;i;l;σ creates a hole in a
superposition of occupying the four oxygen atom sites i′

FIG. 1. The lattice structure and p, d orbitals of the
bilayer Nickelates La3Ni2O7. The green (yellow) sphere
denotes Ni (O) atom, respectively. At each Ni atom, there are
two d orbitals, d1, d2 (Left inset). Around each Ni atom at
site i, the px, py orbitals from the four oxygen atoms around
the Ni site in the same plane form two orbitals pi;1, pi;2 living
on the same site i. Meanwhile, there is a pz orbital from the
oxygen at the center of the ẑ bond. At moderate pressure,
the doped hole enters the Wannier orbital, p1;i = 1

2
[px;i+x̂/2−

px;i−x̂/2 − py;i+ŷ/2 + py;i−ŷ/2] which has the same symmetry
as the d1 orbital. The hole in this pi;1 orbital couples to the
S = 1 moment of the Ni 3d8 state and forms a Zhang-Rice
spin-half state.

around the Ni site i. The px, py orbitals are regrouped
as p1, p2 orbitals living on the Ni site according to the
D4h symmetry. One can check that p1, p2 have the same
lattice symmetry as the d1, d2 orbitals. In supplemen-
tal material (SM) Sec.I, we provide the details on the
symmetry analysis. U(U ′) is the intra-(inter-) orbital
onsite repulsion, and JH > 0 is the Hund coupling. tdp
is the nearest-neighbor hopping between d − p orbitals.
There are three different hopping channels, (d1;l, p1;l),
(d2;l, p2;l), and (d2;t − d2;b, pz) classified by D4h point
group, respectively. The relative size of the onsite ener-
gies ϵd and ϵp decides whether the system is in the charge
transfer or Mott Hubbard regime. We consider the case
that the undoped parent Ni state is in 3d8 with two holes
in the two eg orbitals, forming a S = 1 localized moment.
Then under further hole doping, additional holes enter
the oxygen p orbitals. We note that the orbital p1 and
p2, pz have different eigenvalues under the C4 rotation
and can not hybridize. So the doped hole enters either
p1 or p2, pz depending on energetics.

Zhang-Rice Spin-half.— In the strong coupling limit,
tdp ≪ U,U ′, the hole enters the oxygen p orbitals and
interact with the localized spin-one moments from the
Ni2+ state through a Kondo coupling,

HK =
∑
i,l,a

JK;a

[
(p†a;i;lσ⃗pa;i;l) · s⃗da;i;l −

1

2
npa;i;l

]
(2)
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+
∑
i,l

JK;z[(p
†
z;iσ⃗pz;i) · s⃗d2;i;l −

1

2
npz;i]

−
∑
i,l

2JH [s⃗d1;i;l · s⃗d2;i;l +
1

4
],

where s⃗da;i;l is the spin 1/2 operator from the da orbital
of the Ni at site i of layer l = t, b. We have

JK;a =
4t2dp;a

U1 + U ′ + JH −∆p;a
+

4t2dp;a
∆p;a + JH − U ′ ,

JK;z =
t2dp;z

U2 + U ′ + JH −∆z
p;2

+
t2dp;z

∆z
p;2 + JH − U ′ . (3)

with ∆p;a = ϵp−ϵd;a, ∆z
p;a = ϵp;z−ϵd;a. Here, we assume

U ′ − JH ≪ ∆p,a,∆
z
p,a ≪ Ua + U ′ so the system is in

the charge transfer regime. For illustration, we adopt
the hopping parameters calculated at 29.5GPa by DFT,
tdp;1 = 1.56eV, tdp;2 = −0.75eV, tdp;z = 1.63eV [13].
We assume the similar interaction strength, Ua = 10eV,
U ′ = 6eV, JH = 2eV and as in the cuprates [59] and
use ∆p;a = ∆z

p;a = 9eV. Within those parameter sets,
we found that JK;z ≃ JK;1/4 with JK;1 = 3.03eV and
JK;z = 0.83eV.

We should view p1, p2 as Wannier orbitals centered
on Ni atom. The doped hole is favored to enter one of
them or the pz orbital by minimizing the Kondo coupling
JK;1, JK;2, JK;z. When the hole occupies the in-plane pa
orbital, it forms a net S = 1

2 together with the origi-
nal spin-one moment from the Ni2+. On the other hand,
when the hole occupies the pz orbital, it couples to the
spin-one moments of Ni from both layers. The ground
state energies resulting from the Kondo interactions per
unit cell summed over two layers for each case are

Ea
G = −

[
JH +

√
J2
H + JK;aJH + J2

K;a + JK;a

]
,

Ez
G = −1

2

[
2JH +

√
4J2

H + 8JK;zJH + 9JK;z
2 + 3JK;z

]
.

Using the condition tdp;1 ≫ tdp;2, we always have
E1

G(JK;1) ≫ E2
G(JK;2) and the main competition is be-

tween the p1 and pz orbitals. For the estimated param-
eter of JK;1 ≃ 4JK;z, we have E1

G(JK;1 ≃ 4JK;z) <
Ez

G(JK;z) and the p1 orbital wins. In this regime the
doped hole enters the in-plane oxygen orbital p1 and
screens the spin-one Ni2+ down to spin-half. We dub
this hole state as Zhang-Rice spin-half state as analog
to the Zhang-Rice singlet in hole doped cuprate. This
Zhang-Rice spin-half consists of the spins from the p1
orbital and the original d1 and d2 orbital of Ni. The
wavefunction depends on the parameter r = JK;1/JH :

|σ⟩l ∼ (1 + r + α) |σ, σ, σ⟩ − (r + α) |σ, σ, σ⟩ − |σ, σ, σ⟩ ,(4)

with σ = ± 1
2 . We used α(r) = [r2 + r + 1]1/2 and here

omitted the normalization factor, for simplicity (See SM

FIG. 2. The wave function of Zhang-Rice spin-1/2
states of the bilayer nickelates. The local d1, d2 orbitals
of Ni atoms surrounded by the four in-plane p orbitals. The
yellow, green, and magenta arrow is for the spin of the p1,
d1, and d2 orbital, respectively. (a) In the JK;1 ≫ JH limit,
the Zhang-Rice spin-1/2 state is a simple product state of
the Zhang-Rice singlet made by d1, p1 and the decoupled d2
orbital. (b) In the JK;1 ≪ JH limit, two d orbital forming
a spin triplet forms a spin 1/2 along with p1 orbitals. Here,
for simplicity, we illustrate only the |↑⟩, since |↓⟩ is just a
its time-reversal partner. (c) The three orbital contributions
in Sz

tot = 1
2

of |↑⟩ state. As JK;1/JH → +∞, the spin-half
state is dominated by the d2 orbital. Generically the state is
a combination of all three orbitals: p1, d1, and d2.

Sec.II). Also, σ = −σ, and |σ, σ1, σ2⟩ denotes the spin of
p1;l, d1;l, d2;l orbital respectively. A few remarks are as
follows. In the limit of JH ≪ JK;1, the state is simply
the tensor product of the Zhang-Rice singlet from only
d1, p1 orbitals and a decoupled spin-half from the d2 or-
bitals shown in Fig. 2(a). However, with a general JH ,
the three orbitals are highly entangled and should be con-
sidered together. For instance, in Fig. 2(c), we plot the
spin contributions of the net spin-1/2 from all three or-
bitals. The bipartite entropy between the d1, p1 orbitals
and the d2 orbital increases with increasing JH , reaching
its maximum values in the limit where JH ≫ JK;1 (See
SM), where we illustrate the state in Fig. 2(b).
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The state |σ⟩l is derived from solving the Hamilto-
nian in a single unit cell, next we should make the
states at two different sites i, j orthogonal. We just
call this state as |σ⟩i;l. This can be simply done by
replacing the p1 orbital in Eq.(4) with a wannierized
electron operator, c†i;l;σ = N ′ ∑

j B(i − j)p1;j;l;σ where
B(i−j) = 1

N

∑
k e

ik·(i−j)β(k) and β(k) = [1− 1
2 (cos kx+

cos ky)]
−1/2 which form orthogonal and complete sets

with {ci;l;σ, c†j;l′;σ′} = δi,jδl,l′δσ,σ′N ′2. Here, we use
N ′(r) = [2(r+α)2+2(r+α)+2]1/2/(r+α+1), monotonic
increasing function as increasing r, ranging [1.22, 1.41].
Then, we can turn to the electron picture in the remain-
ing part of the paper, which is more intuitive, through
using ci;l;σ. In this context, we have ni;c = 1− x, which
corresponds to the condition ni;p = x in the hole repre-
sentation.

Type-II t-J model.— Now we can see that the low en-
ergy model in the charge transfer regime is still the type
II t-J model [58]. The undoped Ni site is in the d8 with
spin-one, while the single hole d8L state corresponds to
the Zhang-Rice spin-half state above, which is an analog
of the d7 states in the Mott-Hubbard regime given that
the p1 orbital has the same crystal symmetry as the d1
orbital. Then, the wannierized orbital ci;l;σ can be pro-
jected in the 2 + 3 = 5 dimensional Hilbert space. We
now turn to the electron picture for simplicity. For a gen-
eral r = JK;1/JH , the electron operator of the p1 orbital
is written as,

ci;l;↑ = +
∏
j<i

(−1)nj

[
|↓⟩i;l ⟨−1|i;l +

1√
2
|↑⟩i;l ⟨0|i;l

]
,

ci;l;↓ = −
∏
j<i

(−1)nj

[
|↑⟩i;l ⟨1|i;l +

1√
2
|↓⟩i;l ⟨0|i;l

]
,

with the Jordan-Wigner string,
∏

j<i(−1)nj . The spin-
triplet states of d8 are |−1⟩l = d†1;l↓d

†
2;l;↓ |G⟩, |0⟩l =

1√
2
(d†1;l;↑d

†
2;l;↓ + d†1;l;↓d

†
2;l;↑) |G⟩ and |1⟩l = d†1;l;↑d

†
2;l;↑ |G⟩.

Note that da;l,σ is a hole-operator of d orbital and |G⟩ is
defined as vacuum as a 3d10 configuration.

Then, the charge-transferred type II t-J model written
in the electron picture is,

H = TK + Jss
∥

∑
l

∑
⟨ij⟩

s⃗i;l · s⃗j;l + Jdd
∥

∑
l

∑
⟨ij⟩

S⃗i;l · S⃗j;l

+ Jsd
∥

∑
l

∑
⟨ij⟩

(s⃗i;l · S⃗j;l + S⃗i;l · s⃗j;l) (5)

+ Jss
⊥

∑
i

s⃗i;t · s⃗i;b + Jdd
⊥

∑
i

S⃗i;t · S⃗i;b

+ Jsd
⊥

∑
i

(s⃗i;t · S⃗i;b + S⃗i;t · s⃗i;b) + V
∑
i

ni;tni;b,

with

TK = −t∥
∑

l,σ,⟨i,j⟩

c†i;l;σcj;l;σ − t⊥
∑
σ,i

c†i;t;σci;b;σ +H.c.,

The spin operators for the spin-1/2 state are
s⃗i;l = 1

2

∑
σσ′ |σ⟩i;l σ⃗σσ′ ⟨σ′|i;l. Meanwhile, the spin

operators for the spin-one moment are written as
S⃗d
i;l =

∑
α,β=−1,0,1 T⃗αβ] |α⟩i;l ⟨β|i;l. We have T x =

1√
2

0 1 0
1 0 1
0 1 0

 and T y = 1√
2

0 −i 0
i 0 −i
0 i 0

 in the Sz =

1, 0,−1 basis. V is the inter-layer repulsive density in-
teraction. The expressions for J⊥, J∥ in terms of the
microscopic parameters are provided with the derivation
in SM Sec.III. Additionally, we establish the relation-
ships Jss

⊥ = C(r)Jsd
⊥ = C(r)2Jdd

⊥ and Jss
∥ = C(r)AJsd

∥ =

C(r)2A2Jdd
∥ , where A ≃ 0.7705. Using the parameters

mentioned above, we have Jdd
∥ = 0.097eV, Jdd

⊥ =0.076eV,
and t∥ is in the range of 0.32 − 0.49eV. C(r) ranges
from 4/3 at r → 0 limit and 0 at r → ∞ limit. Here
r = JK;1/JH . The dependence of t∥(r) and C(r) are
provided in SM. In the Mott-Hubbard regime, we have
Jss
⊥ = 2Jsd

⊥ = 4Jdd
⊥ = 4t2⊥/U , and Jss

∥ = Jsd
∥ = 0,

Jdd
∥ = t2∥/U [53]. We stress that the differences in their

ratios do not alter the qualitative behavior significantly.
We highlight that even in the charge transfer regime,

the type-II t-J model still shows suppressed hopping be-
tween the in-plane p1 orbitals of the two layers, with
t⊥ ≃ 0, akin to the behavior observed in the Mott-
Hubbard regime. This can be validated by a simple
symmetry argument that since p1 and pz orbitals have
different symmetries, there is no direct coupling channel
between them at the lowest order. A finite t⊥ can only
be generated through virtual hopping to a pz orbital at
a different site and its value should be small. In the fol-
lowing we will show that a small t⊥ has no significant
effect and thus as a good approximation we can set it to
be zero.

Numerical simulations.— We perform the density ma-
trix renormalization group (DMRG) simulations applied
to the type-II t-J model described by Eq.(5) [60, 61]. We
consider the two-leg ladder configuration (Lz = 2, Ly =
1, Lx → ∞), rather than the full bilayer two-dimensional
cubic lattice, due to the well-known limitation of the
DMRG. In our simulations, we set t∥ = 1 and Jss

∥ = 0.1.
In Fig. 3, we present the spin gap varying the parame-
ters Jss

⊥ , t⊥, and the doping ratio. The convergence of
the DMRG results under the system size is also checked
an provided in the SM Sec.IV. The presence of a finite
spin gap indicates the emergence of the Luther-Emily
liquid phase [62] with power-law inter-layer pairing cor-
relations. The pairing gap gradually decreases with t⊥
because inter-layer pairing frustrates the t⊥ term. But
the pairing remains robust at small t⊥. In the bilayer
nickelate we believe t⊥ ≪ t and hence its effect should be
negligible. One of the remarkable features of the bilayer
type-II t-J model is the doping dependence of the pairing
gap. As presented in Fig. 3 (b), the pairing scale shows a
dome centered near x = 0.4− 0.5 in the presence of a re-
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FIG. 3. DMRG simulation results of the type-II t-J
model, Eq.(5) in the two-leg ladder at t∥ = 1, J∥

ss = 0.1

Here, we impose Jss
⊥ = 4

3
Jsd
⊥ = 16

9
Jdd
⊥ and Jss

∥ = 4
3
AJsd

∥ =
16
9
A2Jdd

∥ with A = 0.7705. (a) The t⊥ dependence of the spin
gap, ∆s = E(Sz = 1)−E(Sz = 0), of the type-II t-J model at
V = 0 and x = 0.5 with various J⊥

ss = 1, 1.5, 2, 3, 3.5. Here, we
use Lx = 40 and χ = 2400 for the simulation. The spin gap
monotonically decreases as increasing in the t⊥ in the large J⊥
limit. (b) The doping dependence of the spin gap at t⊥ = 0.1,
Jss
⊥ = 1 with various V = 0, 1, 2, 2.5. The superconducting

dome is exhibited in the BCS limit, where we increase V , and
the substantial spin gap remains even in x = 0.5. (c) The pair
correlation at t⊥ = 0.1 and x = 0.5 with various Jss

⊥ values.
It exhibits the power law decaying where the fitted power α is
denoted as the solid line. (d) The scaling of the entanglement
entropy and the correlation length ξ at x = 0.5 within the
infinite DMRG calculation. Here, we choose t⊥ = 0, 0.2, 0.4
and J⊥ = 2, 3. The extracted central charge c is carried by
the relation S = c

6
log ξ.

pulsion. This is due to the doping induced BCS to BEC
crossover[53]. Finally, we check the key characteristics of
Luther-Emily liquids, such as power-law pair correlation
functions and a central charge c = 1, in Figs. 3 (c-d). In
the main figure, we only illustrate the case with x = 0.5
relevant to the experiments, but the Luther-Emily liquid
phases are manifested in the broad range of x (See SM
Sec.IV).

Discussion.— Our theoretical proposal can provide a
potential scenario on the dome of the Tc versus pressure
in the experiment [63]. Increasing pressure should en-
hance tdp;z and thus the J⊥ term. Initially, Tc increasing
with the pressure due to the increase of the J⊥. How-
ever, when the pressure is larger than an optimal value
P∗, the hole prefers to stay in the pz orbital and then the
pairing is suppressed (see SM Sec.V). The shift from the
in-plane p1 orbital to the pz orbital is likely the origin of

the dome with pressure.
Our analysis can also be generalized to the trilayer

nickelates, La4Ni3O10 [46] (see SM Sec.VI) and a trilayer
version of the type II t-J model is the minimal model.
Now the model is very different from the models pro-
posed assuming Mott-Hubbard regime. For the trilayer
case both d1, d2 orbitals are assumed to be at fractional
filling and the mobile carriers are argued to be from both
orbitals [47, 49, 50]. In contrast, in the charge transfer
picture, both d1, d2 are still localized which just provide a
spin-one moment at each Ni site. Then the doped hole en-
ters the p1 orbital and the final model is still one-orbital
like, similar to the bilayer case. We leave to future to
analyze this trilayer model.

Conclusion.— In summary, we provide analytical and
numerical study for bilayer nickelates, La3Ni2O7 within
the charge transfer framework. Our primary discovery
is the identification of the Zhang-Rice spin-half state as
the dominant hole state. We emphasize that the type II
t-J model again serves as a minimal model for both the
bilayer and the trilayer nickelate. The physics is distinct
from the hole doped cuprates due to the importance of
strong inter-layer spin-spin coupling. This leads to an
optimal doping as large as 40 − 50% in the bilayer type
II t-J model in contrast to 20% in cuprate.
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I. SYMMETRY PROPERTIES OF THE CHARGE TRANSFER HAMILTONIAN

The charge transfer Hamiltonian enjoys D4h = D4 ⊗I point group symmetry defined at Ni i site. While the two d
orbitals, (d1, d2) are already one-dimensional irreducible representations of D4h, px,y orbitals living at the link of the
cubic lattice are not. To classify them as an symmetry representation, we first identify the symmetry actions of the
p orbitals. For example, under the D4 = {E, 2C4, C2, 2C

′
2, 2C

′′
2 }, one can show that

C4 : px;i± x
2 ;l

→ py;i± y
2 ;l
, py;i± y

2 ;l
→ −px;i∓ x

2 ;l
,

C2 : px;i± x
2 ;l

→ −px;i∓ x
2 ;l
, py;i± y

2 ;l
→ −py;i∓ y

2 ;l
,

C ′
2 : px;i± x

2 ;l
→ px;i± x

2 ;l
, py;i± y

2 ;l
→ −py;i∓ y

2 ;l
,

C ′′
2 : px;i± x

2 ;l
→ py;i± y

2 ;l
, py;i± y

2 ;l
→ px;i∓ x

2 ;l
,

Solving the eigenvalues of the above symmetry actions, we can find that the following linear combinations,

p1;i;l;σ =
1

2

[
px;i+ x̂

2 ;l;σ
− px;i− x̂

2 ;l;σ
− py;i+ ŷ

2 ;l;σ
+ py;i− ŷ

2 ;l;σ

]
, (S1)

p2;i;l;σ =
1

2

[
px;i+ x̂

2 ;l;σ
− px;i− x̂

2 ;l;σ
+ py;i+ ŷ

2 ;l;σ
− py;i− ŷ

2 ;l;σ

]
, (S2)

become one-dimensional representations with B1g, A1g representation. This can be checked by the character table in
Table S1. We tabulate the characters of the each orbitals and the irreducible representation. Here, g(u) denotes the
even (odd) under the inversion I.
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The symmetry allowed nearest neighbor hopping between d, p orbitals are given as

Hdp =
∑
l,σ

∑
⟨a;i,α;i′⟩

[
ta;i,α;i

′

dp d†a;i;l;σpα;i′;l;σ +H.c.
]
+
∑
σ

∑
i

[
tdp;z(d

†
2;i;t;σ − d†2;i;b;σ)pz;i;σ +H.c.

]
where i(i′) are sites of nickel (oxygen) atoms. The phase factors should be defined accordingly on the hopping terms,

t1;i,α;i
′

dp = tdp;1
∑

s={±1}

(−1)s[δα,xδi′,i+s x̂
2
− δα,yδi′,i+s ŷ

2
]

t2;i,α;i
′

dp = tdp;2
∑

s={±1}

(−1)s[δα,xδi′,i+s x̂
2
+ δα,yδi′,i+s ŷ

2
].

Substituting the Eqs.(S1-S2) into Hdp simply reduces to,

Hdp =
∑

i,l,a,σ

[
2tdp;ad

†
a;i;l;σpa;i;l;σ +H.c.

]
+

∑
i,σ

[
tdp;z(d

†
2;i;t;σ − d†2;i;b;σ)pz;i;σ +H.c.

]
which is introduced in the main-text.

Orbitals R E 2C4(z) C2 2C′
2 2C′′

2 I
d1;l, p1;l B1g 1 -1 1 1 -1 1

d2;l, p2;l A1g 1 1 1 1 1 1

d2;t − d2;b, pz A1u 1 1 1 1 1 -1

TABLE S1. The irreducible representation (R) and the character table of D4h point group.

II. ZHANG-RICE SPIN-HALF STATE WITH GENERAL JK , JH

In this section, we provide the energy analysis of possible d8L states with general values of JK , JH . In the strong
coupling limit JK , JH ≫ 1, we can consider the local Hamiltonian defined at each site, neglecting the hopping term,

H =
∑
l;a

2JK;a[s⃗
d
l;a · s⃗pl;a −

1

4
npl;a] +

∑
l

2JK;z[s⃗
d
l;2 · s⃗pz −

1

4
npz]−

∑
l

2JH [s⃗dl;1 · s⃗dl;2 +
1

4
], (S3)

where JK;a, JK;z is the Kondo coupling derived in main text, Eq.(3). Based on the parameters listed in Ref.[13], we
assume tdp;1 ≃ tdp;z > tdp;2 and ∆p;1 ≃ ∆z

p;2 ≃ ∆p;2, leading to the relation JK;1 ≈ 4JK;z > JK;2. There are three
possible states depending on the p orbital occupancy : (i) npl;1 = 1, (ii) npl;2 = 1, and (iii) npl;z = 1.

• npl;1 = 1 or npl;2 = 1 case: The local Hamiltonian is reduced into three-site Hamiltonian written in terms of
(pa;l, d1;l, d2;l),

H = 2JK;a[s⃗
d
l;a · s⃗pl;a −

1

4
]−

∑
l

2JH [s⃗dl;1 · s⃗dl;2 +
1

4
].

The ground states of the above Hamiltonian is the spin 1/2 state whose wave function is given by,

|↑⟩l =
1√

2[(r + α)2 + (r + α+ 1)]
[(1 + r + α)| ↓, ↑, ↑⟩ − (r + α)| ↑, ↓, ↑⟩ − | ↑, ↑, ↓⟩], (S4)

|↓⟩l =
−1√

2[(r + α)2 + (r + α+ 1)]
[(1 + r + α)| ↑, ↓, ↓⟩ − (r + α)| ↓, ↑, ↓⟩ − | ↓, ↑, ↓⟩]. (S5)

where |s0, s1, s2⟩ implies the spin of the pa, d1, d2 orbital respectively. Here, we use r = JK;a/JH and α(r) =√
r2 + r + 1. These states are called as Zhang-Rice spin-half state, and the schematic illustrations are provided

in Fig. S1. The wave function is obviously entangled by the three (p1, d1, d2) orbitals in the most range of r,
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except r = +∞. In this specific point r = +∞, the state becomes the tensor product of the Zhang-Rice singlet
only made by (p1, d1) and decoupled d2 orbitals. The subsystem entanglement entropy is obtained in Fig. S2(b),
manifesting its values is finite due to the entanglement of (p1, d1) and d2. The associated energy is obtained as,

EG = −[1 + r +
√
r2 + r + 1]JH , (S6)

introducing the dimensionless parameter, r = JK;a/JH .

• npz = 1 case: The local Hamiltonian is reduced into five-site Hamiltonian of (pz, d1;t, d1;b, d2;t, d2;b),

H =
∑
l

2JK;z[s⃗
d
l;2 · s⃗pz −

1

4
]−

∑
l

2JH [s⃗dl;1 · s⃗dl;2 +
1

4
].

The wave function |ψ⟩ of the ground states of the above Hamiltonian have four-fold degeneracy and are very
complicated. However, the important thing to note is the total spin of the state is Stot =

3
2 , i.e. S2

tot |ψ⟩ = 15
4 |ψ⟩,

and Sz
tot |ψ⟩ = ± 1

2 ,± 3
2 |ψ⟩, for any values of positive JK;z and JH . The associated ground state energy is obtained

as

Ez
G =

1

2
[−2− 3r −

√
4 + 8r + 9r2]JH , (S7)

with a dimensionless parameter, r = JK;z/JH ,

The above-hybridized states are illustrated in Fig. S1. We now compare those three energies, Eqs.(S6-S7), using
the fact JK;1 ≈ 4JK;z > JK;2. Obviously, E1

G(JK;1) < E2
G(JK;2) is established. Next, we compare the energy between

E1
G and Ez

G in Fig. S2 showing that E1
G(JK;1) < Ez

G(JK;z ≃ 4JK;1). Hence, we can conclude that the Zhang-Rice
spin-1/2 state, especially with p1 hole is the most stable state.

FIG. S1. Possible Zhang-Rice states of d8L electron configurations of the bilayer nickelates. (a) The spin 1/2 and
(b) spin 3/2 states are hybridized by intra-layer (p1, p2) orbital or inter-layer pz orbital of oxygen atoms. Note that here all of
the states are drawn in the hole description picture.

III. DERIVATION OF TYPE-II T-J MODEL FROM THE CHARGE TRANSFER HAMILTONIAN

In this section, we derive the type-II t-J model starting from the charge transfer Hamiltonian, Eq. (1). In particular,
we show all the spin-exchange couplings of the type-II t-J model, in terms of the original Hamiltonian. The spin-
exchange interaction of two nickel atoms can be derived by the fourth-order perturbation in the strong coupling limit.
We divide the charge-transfer Hamiltonian into the kinetic part, V = Hdp, and remaining part, H0 = H − V .

A. Derivation of J⊥

First, we show how the J⊥ terms are derived, exemplified by J⊥
sd, and the generalization into J⊥

ss, J
⊥
dd is straightfor-

ward. Due to the SU(2) symmetry of the Hamiltonian, it is enough to evaluate the coefficient of one of the components
of 1

2 (s
−
t S

+
b ) = 1√

2
|st = − 1

2 , sb = 0⟩ ⟨st = 1
2 , sb = −1| + · · · piece, not all s⃗t;i · S⃗b;i. There are six different processes

(A)-(F) contributing the s−t S
+
b , as illustrated in Fig.S3 (a),

⟨st = −1

2
, sb = 0|V RV RV RV |st =

1

2
, sb = −1⟩ = (A) + (B) + (C) + (D) + (E) + (F ), (S8)
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FIG. S2. (a) The JK/JH = r dependence of E1
G(r) and Ez

G(r). (b)Comparison of the ground states energy in
(JK;1, JK;z) plane. The blue (green) region indicates the phase space where p1 (pz) orbitals energetically favored, so an
additonal holes enter to p1 (pz) orbitals. Using the estimation JK;1 ∼ 4JK;z (red dashed line), we conclude that the Zhang-Rice
spin-1/2 state with p1 hole is more stable. (c) The bipartite entanglement entropy of |↑⟩, Eqs.(S4-S5), as a function
of r. Here, the entanglement entropy is evaluated by S = Trd1(ρ̂ log ρ̂), with the reduced density matrix, ρ̂ = Trd1,p[|↑⟩ ⟨↑|].
As r → +∞ limit, Zhang-Rice spin half state is just a tensor product of the singlet formed by the (d1, p1) and spin 1/2 of d2
orbital, and the entanglement between two subsystems goes to zero. However, in other value of r, the d2 orbital does not be
decoupled from d1, p1 orbitals, forming the Zhang-Rice spin half state together.

where R = Q/(E0 −H0) is the projection onto the subspace of all exited states. Here, Q = 1−P is a complementary
operator of the projection operator of the ground state of H0 where the doubly occupied states are forbidden.

With some tedious calculations, we find each component is given by

(A) =
tdp,z

(∆z
p;2 + JH)

⟨−1

2
|
t
⟨0|b V RV RV p

†
z;↑[

(1 + r + α)

N |sd1 =
1

2
, sc = −1

2
⟩
t
− 1

N |sd1 = −1

2
, sc =

1

2
⟩
t
] |−1⟩b

=
(tdp,z)

2

(∆z
p;2 + JH)(U + 2JH)

⟨−1

2
|
t
⟨0|b V RV d

†
2;b;↑[

(1 + r + α)

N |sd1
=

1

2
, sc = −1

2
⟩
t
− 1

N |sd1
= −1

2
, sc =

1

2
⟩]t |−1⟩b

=
−(tdp,z)

3

(∆z
p;2 + JH)2(U + 2JH)

⟨−1

2
|
t
⟨0|b V p

†
z;↓[(1 + r + α) |sd1

=
1

2
, sc = −1

2
⟩
t
− |sd1

= −1

2
, sc =

1

2
⟩
t
]
|0⟩b√
2

=
(tdp,z)

4

(∆z
p;2 + JH)2(U + 2JH)

√
2(1 + r + α)

N 2
= (D),

and

(B) =
(tdp,z)

2

2(∆z
p;2 + JH)2

⟨−1

2
|
t
⟨0|b V RV p

†
z;↓p

†
z;↑[

(1 + r + α)

N |sd1
=

1

2
, sc = −1

2
⟩
t
− 1

N |sd1
= −1

2
, sc =

1

2
⟩
t
] |sd1

= −1

2
⟩
b
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=
−(tdp,z)

3

2(∆z
p;2 + JH)3

⟨−1

2
|
t
⟨0|b V p

†
z;↓[

(1 + r + α)

N |sd1
=

1

2
, sc = −1

2
⟩
t
− 1

N |sd1
= −1

2
, sc =

1

2
⟩
t
] |spz

= −1

2
⟩ |0⟩b√

2

=
(tdp,z)

4

2(∆z
p;2 + JH)3

√
2(1 + r + α)

N 2
= (C) = (E) = (F ),

with α =
√
r2 + r + 1 and N =

√
2[(r + α)2 + (r + α+ 1)]. By putting everything together, J⊥

sd is obtained as,

J⊥
sd = C(r)

t4dp,z

(∆z
p;2 + JH)2

[
1

U2 + 2JH
+

1

∆z
p;2 + JH

]
, (S9)

with C(r) = 4(1 + r + α)/N 2, whose r dependence is illustrated in Fig. S3 (b). Similarly, we can show that

J⊥
dd =

t4dp,z

(∆z
p;2 + JH)2

[
1

U2 + 2JH
+

1

∆z
p;2 + JH

]
, (S10)

J⊥
ss = C(r)2

t4dp,z

(∆z
p;2 + JH)2

[
1

U2 + 2JH
+

1

∆z
p;2 + JH

]
, (S11)

where we have J⊥
ss = C(r)J⊥

sd = C(r)2J⊥
dd. Here we use JH = JH − U ′, ∆p;a = ϵp − ϵd;a, and ∆z

p;a = ϵp;z − ϵd;a.

A B C

E FD

0.0 0.5 1.0 1.5 2.0
0.4

0.6

0.8

1.0

1.2

FIG. S3. (a) All possible processes contributing to the spin exchange interaction upon the fourth-order
perturbation. The green (yellow) sphere represents an oxygen (nickel) atom. In (i, a, σ), i denotes the order of the process,
a = 1, 2 is for labeling da orbitals and σ is for the spin. These processes specifically contribute to the s−Ls

+
R, s−LS

+
R or S−

L S+
R

where L(R) denotes the left (right) nickel atom. (b) The JK/JH = r dependence of C(r) in Eqs.(S9-S11). In particular,
C(r) becomes 4

3
in the r → 0 limit.

B. Derivation of J∥

Next, we show the derivation of J∥ terms. There are two significant differences, compared to J⊥. First, there are
two kinds of hopping processes with tdp;1 and tdp;2. Second, the p orbital of the Zhang-Rice spin-half state can be
affected by the hoppings, since the intermediate-occupied oxygen is also shared by those states. For example, the
hopping process consisting of p†

x;i+ x̂
2 ;σ

eliminates the piece of the same component in ϕi;σ =
∑

j B(i− j)p1;j;σ = c†i;σ,

where B(i − j) = 1
N

∑
k e

ik·(i−j)β(k) and β(k) = [1 − 1
2 (cos kx + cos ky)]

−1/2. To be specific, consider the following
example,

p†
x;i+ x̂

2 ;σ
ϕ†i,σ′ = p†

x;i+ x̂
2 ;σ

 ∑
j∈{i,i+x̂}c

B(i− j)p†1;j,σ′ +
∑

j∈{i,i+x̂}

B(i− j)p†1;j,σ′

 = p†
x;i+ x̂

2 ;σ
ϕ
†
i,σ′ ,
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where we define the ϕ(p) as the ϕ(p), but excluding the px;i+x̂/2 piece,

p†1;i,σ′ =
1

2

[
−px;i− x̂

2 ;l;σ
− py;i+ ŷ

2 ;l;σ
+ py;i− ŷ

2 ;l;σ

]
= p†1;i,σ′ − 1

2
px;i+ x̂

2 ;l;σ
,

p†1;i+x̂,σ′ =
1

2

[
px;i+ 3x̂

2 ;l;σ − py;i+x̂+ ŷ
2 ;l;σ

+ py;i+x̂− ŷ
2 ;l;σ

]
= p†1;i,σ′ +

1

2
px;i+ x̂

2 ;l;σ
,

and

ϕ
†
i,σ′ = ϕ†i,σ′ − [

B(0)−B(1)

2
]p†x;i+ x

2 ;σ
.

Note that ⟨ϕ|ϕ⟩ ≃ 1− [B(0)−B(1)
2 ]2 ≃ 0.7705 ≡ A. Then, the next step is straightforward to consider all the possible

processes depicted in Fig S3 (a). After finishing all the calculations with ∆p;1 = ∆p;2, we obtained that

J
∥
dd =

∑
a,a′

t2dp;at
2
dp;a′

(∆p + JH)2

[
1

Ua′ + 2JH
+

1

∆p + JH

]
, (S12)

J
∥
sd = C(r)A

∑
a,a′

t2dp;at
2
dp;a′

(∆p + JH)2

[
1

Ua′ + 2JH
+

1

∆p + JH

]
, (S13)

J∥
ss = (C(r)A)2

∑
a,a′

t2dp;at
2
dp;a′

(∆p + JH)2

[
1

Ua′ + 2JH
+

1

∆p + JH

]
(S14)

Now, we have J
∥
ss = C(r)AJ∥

sd = C(r)2A2J
∥
dd. We stress this condition is generally satisfied without imposing

∆p;1 = ∆p;2.

C. Derivation of t∥

From the second order perturbation, we can derive the in-plane hopping term with and without spin dependence∑
l,σ,i,j −t∥;i,jc

†
i;l;σcj;l,σ. The main contribution can be classified as the effective O-hopping and spin exchange between

the Ni and O holes, similar as the case in cuprate [57]. We have that:

t∥;i,j =
(

2t2dp;1
3(U+U ′+JH−∆p)

+
JK;1

12
√
2

)
δij,NN/N 2(r)− 4JK;1λ

3N

∑
k β

−1
k e−ik·(ri−rj)/N 4(r), (S15)

in which δij,NN means that only nearest neighbor term is non-zero. λ is defined as
∑

k β
−1
k ≃ 0.96. Here, we used

N (r) = [2(r + α)2 + 2(r + α) + 2]1/2/(r + α + 1), a function as increasing r, which depends on r = JK;1/JH . The

function is monotonic increasing in the range of [
√

3
2 ,
√
2]. N is the number of the site. In our main text, we only

keep the nearest neighbor term of t∥;i,j , and denoted by t∥. The r dependnence is illustrated in Fig.S4.

IV. MORE DETAILED DMRG SIMULATION RESULTS

In this section, we provide additional DMRG calculation results, which haven’t been shown in the main text. Here,
we still use t∥ = 1 and Jss

∥ = 0.1. In Fig. S5, we have shown the t⊥ dependence with various interlayer repulsive
interaction strength V to demonstrate, that the non-monotonic decreasing region diminishes and eventually disappears
increasing V . In Fig. S6, we provide some DMRG simulation data at x = 0.2, for comparing the data provided in
the main text at x = 0.5 and showing that the key characteristic behaviors are similar. In Fig. S7, we provide the
convergence check under the system size of the spin-gap results through DMRG calculations.
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FIG. S4. The r dependence of t∥(r) and N (r) estimated by the parameters mentioned in the main-text. Note
that t∥ is plotted in the eV unit, and N is a dimensionless quantity.
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FIG. S5. DMRG simulation results of the type-II t-J model with Lz = 2, Ly = 1 at t∥ = 1, Jss
∥ = 0.1. (a,b) The

t⊥ dependence of the spin gap with various V = 0, 0.5, 1, 1.5, 2 at (a) x = 0.5 and (b) x = 0.2. Here, we choose t⊥ = 1, and
use Lx = 40 and χ = 2400 for simulation. The non-monotonically decreasing region is decreasing as increasing the repulsive
interaction where the system goes to the BCS limit.
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FIG. S6. DMRG simulation results of the type-II t-J model, with Lz = 2, Ly = 1 at t∥ = 1, Jss
∥ = 0.1. The doping

is fixed at x = 0.2 to compare the data at x = 0.5 provided in the main-text. At x = 0.2, the results exhibits the evidence
of the Luther-Emily liquid phases. (a) The pair correlation function at t⊥ = 0.1 and x = 0.2 shows the powe-law decaying
behaviours. (b) The entanglement entropy and the correlation length at x = 0.2. The fitted central charge is nearly c = 1.
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FIG. S7. The system size dependence of DMRG simulation results of the type-II t-J model with Lz = 2, Ly = 1
at t∥ = 1, Jss

∥ = 0.1 (a) t⊥ dependence of the spin gap with various J⊥ at x = 0.2. (b) Doping x dependence of the spin gap
with various V at J⊥ = 1 (χ = 2400).
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FIG. S8. (a) tdp;z dependence of E1
G − Ez

G per unit cell. There is a transition that hole prefers to stay from p1 to pz
at t∗dp;z = 2.50eV. Here, we used the parameter introduced in the main-text, tdp;1 = 1.56eV, tdp;2 = −0.75eV, tdp;z = 1.63eV,
Ua = 10eV, U ′ = 6eV, JH = 2eV, and ∆a = 9 eV. (b) tdp;z dependence of the binding energy EB per unit cell. In the
p1 dominant regime, the binding energy EB,1 is increasing, implying the rise of Tc under the pressure. Meanwhile in the pz
dominant regime, the binding energy EB,z tends to decrease under the pressure.

V. THE PRESSURE DEPENDENCE OF CRITICAL TEMPERATURE

In this section, we analyze the binding energy for predicting the critical temperature under changing the pressure.
Applying pressure effectively increases the hopping between pz and inplane d orbitals. Hence, according to our energy
estimations, we expect there is a crossover pressure, satisfying E1

G = Ez
G, as illustrated in Fig.S8 (a). At P < P∗, the

additional holes are occupied in p1 orbital, while at P > P∗, the pz orbital becomes dominant.
Then, we analyze the binding energy the estimate the critical temperature. For each regime of P < P∗ and P > P∗,

the binding energy is differently estimated, since the additional hole is occupied by p1 and pz respectively,

P < P∗ : E1
B = E[np1 = 1]− (E[np1 = 2] + E[np1 = 0])/2,

P > P∗ : Ez
B = E[npz = 1]− (E[npz = 2] + E[npz = 0])/2.

The pressure, (or equivalently tdp;z) dependence of the binding energy per unit cell, is illustrated in Fig. S8 (b).
In the regime where p1 dominates, the binding energy exhibits a positive trend, steadily increasing under pressure.
This arises from the stabilization of the two-hole state, occupied by p1 at each layer, which enhanced inter-layer spin
coupling by larger tdp;z. Conversely, in the regime where pz dominates, the binding energy demonstrates a negative
trend, decreasing under pressure. This stems from the fact that the two hole states occupied by one pz orbital blocks
the hopping between two layers of nickel, potentially leading the inter-layer spin coupling as zero.
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VI. DISCUSSION ON TRILAYER LA4NI3O10

In this section, we expand the theoretical framework of trilayer nickelates La4Ni3O10 in the charge-transfer regime.
According to the DFT data, the valence of the Ni atom of La4Ni3O10 is in the 3d7.33 configuration (Ni+2.67) with
the dx2−y2 orbital is close to one-third occupied n1 = 1/3 per site, while the dz2 orbital is nearly half-filled n2 ≈ 1
[47, 49, 50].

FIG. S9. The lattice structure and p, d orbitals of the bilayer Nickelates La4Ni3O10. The green (yellow) sphere
denotes Ni (O) atom, respectively. At each Ni atom, there are two d orbitals, d1, d2 at top/middle/bottom layers. At each O
atom at each layer, either px,py orbitals reside and can hybridize with the Ni atom at each layer. Meanwhile, the O atoms
living in the middle of the three layers have pz and should be shared by two Ni atoms at adjacent layers. In our effective
charge-transfer model, we focus on the 17 atoms consisting of 3 Ni and 14 O atoms.

A. Zhang-Rice spin-half state

We consider the trilayer cubic lattice with nickel dl;1, dl;2 orbitals and oxygen pl;1, pl;2 orbitals defined at each layer
l = t,m, b. The oxygen pl′;z orbitals are living between each layer with l′ = t, b (See Fig. S9). Now, in each unit cell,
we have to consider the total 17 sites of atoms consisting of three Ni atoms and fourteen O atoms. Starting from the
local trilayer version of charge-transfer Hamiltonian generalized from Eq.(1) in the main text, we again obtain the
Kondo Hamiltonian,

H =
∑

l=t,m,b

∑
a

2JK;a[s⃗
d
l;a · s⃗pl;a −

1

4
npl;a] +

∑
l=t,b

2JK;z[(s⃗
d
l;2 + s⃗dm;2) · s⃗pz −

1

2
npl;z]−

∑
l=t,m,b

2JH [s⃗dl;1 · s⃗dl;2 +
1

4
],(S16)

where JK;a, JK;z is expressed in Eq.(3) in the main-text. The only difference compared to the bilayer model is that
pz orbital now has a layer index. There are still three possible one-hole states depending on the p orbital occupancy
: (i) npl;1 = 1, (ii) npl;2 = 1, and (iii) npl;z = 1. For the first two cases (npl;1 = 1 or npl;2 = 1) with l = t,m, b, the local
Hamiltonian is

H = 2JK;a[s⃗
d
l;a · s⃗pl;a −

1

4
]−

∑
l′=t,m,b

2JH [s⃗dl′;1 · s⃗dl′;2 +
1

4
],

whose ground state energy is obtained as,

EG = −[2 + r +
√
r2 + r + 1]JH , (S17)

with a dimensionless parameter, r = JK;a/JH . For the last case (npl;z = 1) with l = t, b, the local Hamiltonian is,

H = 2JK;z[(s⃗
d
l;2 + s⃗dm;2) · s⃗pl;z −

1

2
]−

∑
l′=t,m,b

2JH [s⃗dl′;1 · s⃗dl′;2 +
1

4
],
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whose ground state energy is obtained as,

Ez
G =

1

2
[−4− 3r −

√
4 + 8r + 9r2]JH , (S18)

with a dimensionless parameter, r = JK;z/JH . The above results are just a constant shift by −JH from the Eqs.(S6-
S7), which leads to the same conclusion. Based on the parameters listed in Ref.[64], we assume tdp;1 ≃ tdp;z > tdp;2
and ∆p;1 ≃ ∆z

p;2 ≃ ∆p;2, leading to the relation JK;1 ≈ 4JK;z > JK;2. Using the fact JK;1 ≈ 4JK;z > JK;2, we
again have E1

G(JK;1) < E2
G(JK;2) and E1

G(JK;1) < Ez
G(JK;z ≃ 4JK;1). Hence, we can conclude that the Zhang-Rice

spin-1/2 state, especially with p1 hole is the most stable state even for the trilayer nickelates.

B. Trilayer layer Type-II t-J model

Then by taking the Zhang-Rice spin-half as the primary state of the d8L state and keeping a spin-triplet doublon
state of the d8 state, the minimal model of the hole-doped trilayer bilayer nickelates is the type-II t-J model [17, 58].
The trilayer type-II t-J model Hamiltonian is given by

H = HK +
∑

l=t,m,b

∑
⟨i,j⟩

[
J∥
sss⃗i;l · s⃗j;l + J

∥
sd(s⃗i;l · S⃗j;l + ·S⃗i;l · s⃗j;l) + J

∥
ddS⃗i;l · S⃗j;l

]
(S19)

+
∑
l=t,b

∑
i

[
J⊥
sss⃗i;l · s⃗i;m + J⊥

sd(s⃗i;l · S⃗i;m + S⃗i;l · s⃗i;m) + J⊥
ddS⃗i;l · S⃗i;m

]
+ V

∑
l=t,b

∑
i

ni;lni;m,

with

HK = −t∥
∑

l=t,m,b

∑
σ,⟨i,j⟩

c†i;l;σcj;l;σ − t⊥
∑
l=t,b

∑
σ,i

c†i;l;σci;m;σ +H.c.,

where the coefficients J∥, J⊥ are listed in Eqs.(S9-S14).
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