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ABSTRACT
We present several machine learning (ML) models developed to efficiently separate stars formed in-situ in Milky Way-type
galaxies from those that were formed externally and later accreted. These models, which include examples from artificial neural
networks, decision trees and dimensionality reduction techniques, are trained on a sample of disc-like, Milky Way-mass galaxies
drawn from the ARTEMIS cosmological hydrodynamical zoom-in simulations. We find that the input parameters which provide
an optimal performance for these models consist of a combination of stellar positions, kinematics, chemical abundances ([Fe/H]
and [𝛼/Fe]) and photometric properties. Models from all categories perform similarly well, with area under the precision-recall
curve (PR-AUC) scores of ≃ 0.6. Beyond a galactocentric radius of 5 kpc, models retrieve > 90% of accreted stars, with a sample
purity close to 60%, however the purity can be increased by adjusting the classification threshold. For one model, we also include
host galaxy-specific properties in the training, to account for the variability of accretion histories of the hosts, however this does
not lead to an improvement in performance. The ML models can identify accreted stars even in regions heavily dominated by the
in-situ component (e.g., in the disc), and perform well on an unseen suite of simulations (the Auriga simulations). The general
applicability bodes well for application of such methods on observational data to identify accreted substructures in the Milky
Way without the need to resort to selection cuts for minimising the contamination from in-situ stars.

Key words: Methods: numerical – Methods: data analysis – Galaxy: stellar content – Galaxy: kinematics and dynamics –
Galaxy: abundances – Galaxy: solar neighbourhood

1 INTRODUCTION

In a Λ cold dark matter (ΛCDM) cosmological model, large galaxies
like the Milky Way form through a hierarchical process, with smaller
structures merging progressively into larger ones (White & Rees
1978; Searle & Zinn 1978). In this framework, signatures of past
accretion and disruption events in the Galaxy are left imprinted in a
multi-dimensional parameter space, composed of positions, kinemat-
ics and chemical abundances of stars (e.g., Helmi 2020). From the
information gathered about tidal streams in this multi-dimensional
parameter space, one can reconstruct the assembly history of the
Milky Way (Freeman & Bland-Hawthorn 2002), i.e., determine the
timing of the accretion events, the masses of the progenitor galaxies,
their star formation histories or the orbital properties.

A multitude of methods have been devised to find tidal stellar
streams. Streams from massive accretions can be usually detected
from photometry, as they tend to be brighter and to be spatially ex-
tended. Those from low mass progenitors may sometimes appear as
coherent structures in physical space (i.e., in positions and veloci-
ties of stars), particularly if the accretions were recent (e.g., Bullock
& Johnston 2005; Johnston et al. 2008) or in a special geometry
(Johnston et al. 1996). Over longer dynamical timescales, however,
the streams tend to disperse due to phase-mixing (Tremaine 1999)
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and thus they become increasingly difficult to distinguish from back-
ground field stars. Information about them may be still retained in
the integrals of motion related to angular momenta and total ener-
gies of their orbits (see Binney & Tremaine 2008). Methods have
been devised to identify tidal streams as "clumps" in the energy (𝐸)
and angular momentum (𝐿𝑧) space (Helmi & White 1999; Gómez
et al. 2010), as these quantities are (quasi-)conserved through time.
Methods that rely on finding specific patterns of tidal streams in the
velocity space (Johnston et al. 2002; Gómez et al. 2010; Koppelman
& Helmi 2021), or in the angles, actions or frequencies (Bovy 2014;
McMillan & Binney 2008; Sanders & Binney 2016) have also been
used to identify streams in the Galaxy. However, many of these meth-
ods require knowledge of the gravitational potential of the Milky Way,
although more recent techniques, such as STREAMFINDER (Malhan
& Ibata 2018), do not rely on such assumptions.

Other parameters have also been used to improve the detection.
For example, methods based on match-filters that weigh the colour-
magnitudes of stars (Grillmair et al. 1995; Rockosi et al. 2002; Bal-
binot et al. 2011) have proven useful in the detection of new streams
(Shipp et al. 2019). More widely used are methods employing the
chemical abundances of stars, building on the expectation that stars
formed in a given progenitor share similar chemical “fingerprints”
even if their spatial and kinematical information has become phase-
mixed. In combination with 6D physical space parameters (positions
and kinematics), the principle of “chemical tagging” (Freeman &
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2 A. Sante et al.

Bland-Hawthorn 2002) has been applied successfully in the discov-
ery or characterisation of tidal debris (Helmi et al. 2018; Belokurov
et al. 2018; Koppelman et al. 2019; Kruĳssen et al. 2019; Das et al.
2020; Ji et al. 2020; Naidu et al. 2022; Horta et al. 2023), or in the
reconstruction of the early stages of the Milky Way (Belokurov &
Kravtsov 2023).

In the era of large Galactic surveys, such as Gaia, new methods
based on machine learning (ML) techniques have been developed
and have proven viable. Clustering algorithms, such as DBSCAN
(Ester et al. 1996) have been applied to chemo-dynamical data to
confirm existing discoveries or to reveal new ones (Koppelman et al.
2019; Borsato et al. 2020). An unsupervised learning method, called
VIA MACHINAE, was also developed, using conditional density esti-
mation and sideband interpolation to find local overdensities (Shih
et al. 2022). Veljanoski et al. (2019) developed a gradient boosted
trees model to identify halo stars based on astrometric and photomet-
ric data from the Gaia Universe Model Snapshot (Robin et al.
2012).

The discovery of new tidal streams is becoming increasingly more
difficult, in part due to current limitations in the current methods.
For example, many stream-finding methods assume that the halo is
mostly of accreted origin. This a reasonable assumption only for the
outer parts of the Galaxy (⪆ 20 kpc), which are less contaminated
by disc stars. Observations indicate that the stellar halo has a “dual
nature” (Carollo et al. 2007, 2010; Beers et al. 2012), where the
two components, accreted and in-situ, overlap over some distance.
Disentangling the two components is important in order to construct a
relatively clean sample of accreted stars on which to apply the stream
detection methods. The two components differ in spatial distribution,
kinematics and metallicity (Carollo et al. 2007); specifically, the
in-situ halo is more centrally concentrated than the accreted and
tends to have an overall rotating motion prograde with the disc,
whereas the orbits of accreted stars are more randomly distributed;
generally, the in-situ halo is also more metal-rich than the accreted.
This suggests that the two halo components could be, in principle,
clearly separated. In practice, however, most observational samples
include some selection criteria which are meant to minimise the
contamination from both the disc and in the situ halo.

The observational selection cuts usually relate to spatial location,
kinematics or chemistry (or a combination thereof). In some cases,
the criteria are purposefully conservative, for example, selecting stars
only on retrograde orbits to search for debris. This kinematical cut
has proven beneficial for the discovery of many substructures in the
solar neighbourhood (Koppelman et al. 2019), including a debris
from a massive progenitor, called Gaia Enceladus/Sausage (GES)
(Helmi et al. 2018; Belokurov et al. 2018), which merged with the
Galaxy ⪆ 8 − 9 Gyr ago. However, many tidal streams are predicted
to still remain hidden (Shipp et al. 2023). Therefore, relaxing the
selection criteria for observational samples could lead to more debris
discoveries, especially in the less explored regions of the Galaxy,
such as the heated stellar disc (Mackereth et al. 2019; Belokurov
et al. 2020).

The dual nature of stellar haloes is retrieved naturally in cosmo-
logical hydrodynamical simulations (Zolotov et al. 2009; McCarthy
et al. 2012; Tissera et al. 2013; Cooper et al. 2015; Pillepich et al.
2015; Monachesi et al. 2016; Pillepich et al. 2018; Brook et al. 2020).
However, these simulations are too general to inform the precise se-
lection cuts that can be applied to observations in the Milky Way,
as they model systems with a variety of different accretion histo-
ries none of which is expected to exactly match that of the Milky
Way. Moreover, depending on the implementation of sub-grid phys-
ical prescriptions, simulations may predict different properties for

the in-situ halo component. This is related to the different formation
channels of in-situ halo stars in simulations: either as stars ejected
from the galaxy disc, or formed within filaments of cold gas, or in
the wakes of stripped gas from infalling satellites.

Rather than using simulations to inform selection cuts, one can use
them to train ML models to separate the accreted from in-situ stars
more accurately and hopefully in a way which is sufficiently general
to apply to the observational data. ML provides an ideal framework
to find out the relations between objects belonging to different classes
by leveraging the information hidden in large datasets. This is partic-
ularly useful in those regions of the parameter space where the two
halo components overlap, for example, in the case of accreted stars
that overlap with the disc (e.g., Hawkins et al. 2015), or of the old,
in-situ halo stars that may overlap in metallicity with some of the
accreted substructure.

Several ML techniques have been developed recently to separate
the two components. For example, by analysing a Gaia mock cata-
log constructed from the FIRE simulations (Sanderson et al. 2020),
Ostdiek et al. (2020) trained an artificial neural network (ANN) to
classify accreted and in-situ stars based on 5D kinematics and then
fine-tuning the model on a Gaia DR2/ RAVE data set. This has
led to the discovery of a new substructure in the Milky Way, called
Nyx (Necib et al. 2020). Recently, Tronrud et al. (2022) developed
an ANN to separate accreted and in-situ stars, and trained it on the
chemical abundances and ages of stars in Auriga simulations (Grand
et al. 2017). A similar method has been developed by Trujillo-Gomez
et al. (2023) to classify accreted and in-situ globular clusters in the
E-MOSAICS simulations (Pfeffer et al. 2018), using as inputs 17 ob-
servable properties, including some of the associated host galaxies.

Rather than focusing on the description of a single methodology,
here we perform an extensive comparison of different ML algorithms,
in order to decide which ones are more suitable for the classifica-
tion of accreted and in-situ stars. We also include a wide range of
input parameters the models, chosen as stellar parameters which can
be directly observed from Milky Way surveys, such as positions,
kinematics, ages, chemical abundances ([Fe/H] and [𝛼/Fe]) and pho-
tometric properties. Our aim is to identify the optimal, data-driven
model that can automatically identify accreted stars in observational
samples of the Milky Way. The ML algorithms we consider can be
grouped broadly into three categories: ANNs, decision trees, and
dimensionality reduction methods. The ANNs and decision trees are
used for developing the classification models, whereas the dimen-
sionality reduction technique is used for visualising the data and
providing insights into the output of the models. As a benchmark
for comparison of models, we adopt an ANN model which resem-
bles the “Galactic Archaeology Neural Network” of Tronrud et al.
(2022). For training and testing the ML models, we use a sample
Milky Way-mass galaxies from the ARTEMIS simulations (Font et al.
2020), selected to be disc-like today, but with different accretion his-
tories. Since in simulations the origin of each star particle is already
known (i.e., whether it formed in-situ or was accreted), we can assess
the performance of the techniques more accurately than by testing
them on observations.

The paper is organised as follows. Section 2 provides a brief de-
scription of the ARTEMIS simulations and of the sample of disc-like
galaxies which are used for training and testing. The selection of the
physical parameters considered as inputs for the models is described
in Section 2.1 and Section 2.2. In Section 3 we present the ML meth-
ods; the metrics used for evaluating the classification are discussed in
Section 3.1, while the methods are described individually in Section
3.2, including a description of how we determine the optimal set of
input parameters (in Section 3.2.2). Section 4 includes a comparison
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of the performance of the ML models (Section 4.1) and shows how
the in-situ and accreted stars identified by these methods are sepa-
rated in a chemo-dynamical phase-space (Section 4.2); it also shows
how ML models may improve the detection of accreted stars in areas
omitted by observational selection cuts (Section 4.3); and illustrates
how the predictions of the models can be visualized with UMAP
(Section 4.4). In Section 5 we apply our ML methods on a different
suite of simulations (Auriga), to further test their performance. The
conclusions of our study are summarized in Section 6.

2 THE ARTEMIS SIMULATIONS

ARTEMIS is a suite of zoomed-in, high-resolution cosmological hy-
drodynamical simulations of 45 Milky Way-mass systems (Font et al.
2020, 2021) in a flat ΛCDM WMAP9 (Hinshaw et al. 2013) cos-
mological model, with the following parameters: Ωm = 0.2793,
Ωb = 0.0463, ℎ = 0.70, 𝜎8 = 0.8211 and 𝑛𝑠 = 0.972. The Milky
Way-mass systems have total masses ranging between 8 × 1011 <

𝑀200/M⊙ < 2 × 1012, where 𝑀200 is the mass enclosing a mean
density of 200 times the critical density of the Universe at present
time. The dark matter particle masses are 1.17 × 105 M⊙ℎ−1, the
initial gas particle masses are 2.23× 104 M⊙ℎ−1, and the (Plummer
equivalent) force resolution is 125 pc ℎ−1.

The simulations were run with the Gadget-3 code (Springel et al.
2005), including an updated hydrodynamical solver and subgrid
physical prescriptions developed for the EAGLE project (Schaye et al.
2015). The physical prescriptions for subgrid physics include metal-
dependent radiative cooling in the presence of a photo-ionizing UV
background, star formation, stellar and chemical evolution, formation
of supermassive black holes, and feedback from supernova, stellar
winds and active galactic nuclei (see Crain et al. 2015 and Schaye
et al. 2015 for details). The chemical enrichment model takes in ac-
count the mass loss from AGB stars, stellar winds and core collapse
supernovae and follows 11 element species. The heavy elements rel-
evant for our study, are Fe (produced mainly in Type Ia SNe) and Mg
(an 𝛼-element, produced in Type II SNe).

Font et al. (2020) also computed, in post-processing, the opti-
cal properties of the simulated galaxies in ARTEMIS. These include
luminosities, magnitudes and colours in various passbands, assum-
ing each star particle is an a single stellar population, by using the
PARSEC v1.2S + COLIBRI PR16 isochrones (Bressan et al. 2012;
Marigo et al. 2017) and a Chabrier (Chabrier 2003) initial mass
function. In this study we are mainly interested in Gaia photometric
properties, which were not computed originally. For this, we use the
available SDSS magnitudes and convert them to the Gaia 𝐺, 𝐺BP,
and 𝐺RP passbands equivalents, using the photometric relationships
from Busso et al. (2022).

The origin of each star particle (accreted/ in-situ) was determined
in post-processing. Here we use the labels from Font et al. (2020).
In brief, the redshift of formation is recorded for each star particle
during the simulation and in post processing the simulation snapshot
that this is closest to (in lookback time) was identified. If at the time
of its formation the star particle was gravitationally bound to the
main progenitor of the Milky Way-mass galaxy, it was labeled as
in-situ, otherwise, as accreted. Note that by this definition, stars that
are born from gas stripped from an infalling satellite, but inside the
main halo, are also labeled in-situ. This is the case only for a small
percentage of stars, however.

Since we aim to devise ML models suited for the Galactic obser-
vations, we focus our training and testing of models on a subset of
galaxies from ARTEMIS which have a disc-like component similar to

that of the Milky Way1. This ensures that there are sufficient exam-
ples in the learning set which encapsulate the distribution of accreted
and in-situ stars in a disc-like galaxy. For the disc-like selection cri-
teria, we use the kinematics, specifically the co-rotational parameter
𝜅co (Abadi et al. 2003; see also Font et al. 2020 and Dillamore
et al. 2022). Here we define it as 𝜅co =

∑30kpc
𝑟=0 𝐿𝑧 /

∑30kpc
𝑟=0 𝐿𝑧,𝑐𝑖𝑟𝑐 ,

where 𝐿𝑧 is the total stellar angular momentum along the 𝑧-axis,
and 𝐿𝑧,𝑐𝑖𝑟𝑐 is the total angular momentum of star particles with
the same energy but in a co-rotating circular orbit. For this compu-
tation we only consider star particles within an aperture of 30 kpc,
and impose a cut-off of 𝜅co ≥ 0.50 to select galaxies with the most
prominent disc components. This results in a sample of 16 galax-
ies listed in Table 1, together with their main physical properties:
the total accreted stellar fraction, the co-rotation parameter, the total
stellar mass, half -(stellar) mass radius, maximum circular velocity,
and average chemical abundances ([Fe/H] and [𝛼/Fe]).

Galaxies are further split into two sets: a training and a test dataset,
respectively. The training set is used to provide examples of accreted
and in-situ stars to the ML models, while the test dataset is used to
assess the classification performance. The test dataset is composed of
galaxies with an assembly history more similar (although not exactly
the same) to the one inferred for the Milky Way, specifically those
where the most massive accreted progenitor (MMAP) was accreted
more than 8 Gyr ago, and the stellar mass ratio of this MMAP to the
total stellar mass of the host is ≥ 0.4 (see figure 7 and Table A1 of
Dillamore et al. 2022 for details). The two datasets, comprising of 12
galaxies for training and 4 for testing, are listed separately in Table 1.

For each galaxy in the training dataset, we also reserve 20% of
stars2 for the validation dataset. This comprises data that are used
during the training routine for evaluating the neural networks on
unseen data and detecting overfitting, i.e., the modelling of the noise
contained in the training examples.

2.1 Stellar parameters as features

For training and testing of the ML models, each star particle is
described as a vector of physical parameters (also known as features)
which are expected to be relevant for the distinction between accreted
and in-situ stars. Although the simulations provide more information
on each star particle (including, e.g., the mass or the gravitational
potential), we focus only on stellar parameters which can be observed,
to facilitate future applications on survey data. These features are
divided into four categories, resembling (very broadly) the focus of
different types of observational Galactic surveys:

1 We note that, in an initial phase, we used for training simulated galax-
ies irrespective of their morphological type (i.e., both ellipticals and discs).
However, we found that the performance of models was significantly reduced
in this case, particularly when the training set was composed of mostly dif-
ferent morphological types than the testing set. Since here we are mainly
interested in optimising the performance of the ML models, we choose to use
a sub-sample composed of only disc-like systems. This restricts somewhat
the accretion histories that are included in the datasets to those that are more
quiescent. However, this approach is justified as: 1) the accretion history of the
Milky Way is partially known, and therefore we do not need to be completely
agnostic about this feature; 2) disc-like galaxies can form with a variety of
accretion histories (see, e.g., Font et al. 2017) and our disc-like subsample
covers a broad range of these scenarios.
2 Although our ML models are developed with the aim of applying them on
individual stars in the Galaxy, the simulations can only track star particles,
which are essentially individual single stellar populations (SSP). For brevity,
throughout the paper, we will refer to the star particles as ‘stars’.
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Galaxy 𝑓𝑎𝑐𝑐 𝑘co 𝑀∗ [1010 M⊙ ] 𝑟1/2 [kpc] 𝑣𝜃MAX [kms−1 ] ⟨ [Fe/H] ⟩ ⟨ [𝛼/Fe] ⟩

Training dataset

G01 0.14 0.60 3.64 4.86 199 -0.14 0.19
G15 0.11 0.61 3.57 5.88 170 -0.16 0.22
G17 0.10 0.69 3.74 7.26 198 -0.21 0.25
G18 0.22 0.59 2.78 4.38 184 -0.15 0.20
G19 0.04 0.67 2.57 4.92 177 -0.16 0.24
G23 0.11 0.56 2.87 2.77 197 -0.07 0.21
G24 0.11 0.55 3.63 3.90 185 -0.16 0.22
G25 0.18 0.63 2.57 5.52 172 -0.24 0.26
G27 0.21 0.57 2.57 5.40 160 -0.19 0.22
G38 0.04 0.81 2.97 8.46 176 -0.13 0.20
G40 0.16 0.64 2.02 4.50 155 -0.15 0.20
G44 0.12 0.63 4.28 5.22 204 -0.27 0.31

Test dataset

G29 0.08 0.65 2.95 2.60 210 -0.08 0.18
G30 0.28 0.55 2.12 4.20 172 -0.10 0.23
G34 0.05 0.78 2.76 6.20 183 -0.16 0.21
G42 0.13 0.65 2.10 3.10 174 -0.18 0.25

Table 1. Sample of disc-like galaxies in ARTEMIS selected based on their co-rotation parameter, 𝜅co. These galaxies are separated into two datasets used for
training and test the performance of the ML models, respectively. The columns are: 1) galaxy label; 2) fraction of accreted stellar component (defined as the
mass fraction of accreted star particles over the total stellar mass (in-situ + accreted); 3) co-rotational parameter; 4) the total stellar mass; 5) half stellar mass
radius (defined as the radius enclosing 50% of the total stellar mass); 6) maximum circular velocity; 7) average [Fe/H] abundance; 8) average [𝛼/Fe] abundance,
where 𝛼 is tracked by Mg abundance. Apart for the fraction of accreted stars, all quantities are computed within 30 kpc from the centre of the MW-mass galaxy.

• Positions and kinematics. For many Milky Way stars, positions
and velocities are readily available, e.g., from Gaia and RAVE. Ac-
creted stars are expected to differ from in-situ ones both in terms
of their locations and of their overall motions. Accreted stars extend
much further out into the halo where they tend to appear as kinemat-
ically cold tidal streams, and their orbits tend to be more randomly
distributed, whereas the in-situ stars are more prominent in the in-
ner region of a galaxy (Font et al. 2011), follow a more flattened
distribution, and tend to have a prograde rotation with the disc (Mc-
Carthy et al. 2012). Therefore, for positions, we choose as features
the Galactocentric radius in the plane of the disc, 𝑅, and the distance
perpendicular to the plane of the disc, 𝑧, while for kinematics mea-
sures we use the rotational velocity in the plane of the disc, 𝑣 𝜃 , and
the velocity dispersion in the plane perpendicular to the disc, 𝜎.

• Chemical abundances. Chemical abundances are related to the
star formation history of the associated progenitors (Freeman &
Bland-Hawthorn 2002). Here we focus on the stellar metallicities,
defined as [Fe/H], and on the [𝛼/Fe] abundances, where 𝛼 is tracked
by Mg. We expect stars of accreted origin to have, on average, lower
[Fe/H] and higher [Mg/Fe] values than those in-situ.

• Stellar ages. Stellar ages, 𝜏, can also be used in tandem with
the kinematic and chemical properties of stars to trace populations
formed in the same galactic environment (Helmi 2020). [Fe/H] val-
ues are expected to correlate well with ages and they are often used
as proxies for the latter. Old accreted stars are also expected to have
higher [𝛼/Fe] abundances due to the short, bursty star formation
episodes in their parent dwarf galaxies at high redshift (Robertson
et al. 2005). In addition, ages can provide complementary informa-
tion about the rate of chemical enrichment at different epochs (e.g.,
Hawkins et al. 2014).

• Photometry. Tidal streams from different disrupted satellite
galaxies are expected to stand out in terms of their surface bright-
ness; specifically, the brightness of a stream tends to correlate with

the stellar mass of its dwarf progenitor (Font et al. 2006b; Johnston
et al. 2008; Gilbert et al. 2009; Cooper et al. 2010). Similarly, ac-
creted stars can also be distinguished from in-situ stars in terms of
their photometric properties. Accreted debris tends to be fainter than
the in-situ component, due to its lower mass and larger spatial extent.
For photometric properties, we choose the absolute magnitude in the
Gaia G passband, MG, and the colour evaluated in the 𝐺BP and 𝐺RP
passbands, BP − RP. We note, however, that our results are not de-
pendent to the specific Gaia passbands or survey. These photometric
properties also correlate with stellar ages (which be inferred from
colour-magnitude diagram fitting, e.g., Gallart et al. 2005), thus of-
fering an alternative to direct age measurements, which are usually
more difficult to obtain.

To summarise, we choose as possible input features for ML models
the following stellar parameters:

{𝑅, 𝑧, 𝑣 𝜃 , 𝜎, [Fe/H], [𝛼/Fe], 𝜏, MG, BP − RP}.

As described later, in Section 3.2.2, the ML models ultimately in-
clude an optimal set of features, which provides the best performance
for our benchmark model. The optimal set is the same as the set of
parameters above, but excluding the stellar ages (𝜏), for which the
benchmark model is able to retrieve the information from the other
parameters, mainly from [Fe/H] and [𝛼/Fe].

2.2 Galaxy-specific features

In addition to stellar features, one of our models (see 3.2.4) includes
a set of galaxy-specific features, devised to account for the accretion
histories of MW-mass hosts. These are listed in Table 1, and comprise
of: the stellar mass half-radius, the co-rotational parameter, the total
stellar mass, the maximum circular velocity, and the average [Fe/H]
and [𝛼/Fe] abundances of the respective MW-mass galaxy.

MNRAS 000, 1–20 (2023)



ML for accreted vs in-situ classification 5

In general, we expect galaxies that experienced more massive
mergers to have less well-defined stellar discs (e.g., smaller sizes,
lower 𝜅co) and also tend to be more massive. Additionally, we ex-
pect that systems with higher masses would be more more chemically
enriched (higher ⟨[Fe/H]⟩ and lower ⟨[𝛼/Fe]⟩). Therefore, some indi-
cation about the accretion histories can be inferred from the present-
day properties of stellar populations in the MW-mass hosts (see also
Grimozzi et al. 2024).

We note that, although the merger histories of the simulated galax-
ies are already known (e.g., in the form of merger trees , or the prop-
erties of the MMAPs), we choose not to use this type of information
and focus instead on observable parameters, as we do in the case of
star particle features. In Section 4.1 we discuss the performance of
models with and without these galaxy-specific features.

3 MACHINE LEARNING MODELS

To devise an appropriate ML model for our task, we need to address
two challenges: i) to identify ML models which can learn effectively
the underlying patterns in the data; and ii) to determine the input
parameters that optimize the performance of these models.

For the first task, we consider models representative of two main
families of supervised ML methods, namely Artificial Neural Net-
works (ANNs) and decision trees. From the ANN type, we consider
a feedforward model called a multilayer perceptron (MLP). Given
the relatively small number of features that describe the accreted and
in-situ stars, we choose to consider shallower architectures than the
ones selected in Tronrud et al. (2022), so as to limit the risk of over-
fitting. We then augment this MLP model with domain inputs, i.e.,
we include additional galaxy-specific features. With the extended set
of features, both stellar and galaxy-specific, we aim to mitigate the
potential decrease in the performance caused by the variability in-
troduced by the specific assembly histories of galaxies. For the same
purpose, we also consider the transformational machine learning
(TML) technique (Olier et al. 2021). From the category of deci-
sion tree-like systems, we consider the eXtreme Gradient Boosting
(XGBoost) model (Chen & Guestrin 2016).

To better visualise the dataset used for training the models, as well
as to understand the functioning of these models, we use the Uniform
Manifold Approximation and Projection (UMAP) dimensionality re-
duction technique (McInnes et al. 2018a). This method consists of
mapping the accreted and in-situ stars into a new, lower-dimensional
plane while maintaining the global and local structures; thus, stars
are clustered in structures which make relations hidden in physical
space more visually evident.

ANNs have been investigated recently for this task (Ostdiek et al.
2020; Tronrud et al. 2022; Trujillo-Gomez et al. 2023), and are
commonly used in astrophysics, e.g., for the classification of tran-
sients and variable stars (Jayasinghe et al. 2019; Agarwal et al.
2020; Chen et al. 2022), of quasars (Nakoneczny et al. 2019; Clarke
et al. 2020; Nakoneczny et al. 2021), or of galaxies (Traven et al.
2017; Domínguez Sánchez et al. 2018; Huertas-Company & Lanusse
2023). XGBoost is also commonly used, with many applications in
Galactic studies (e.g., Anders et al. 2023). To our knowledge, models
like TML or UMAP are investigated for the first time here for an
astrophysical problem.

For the task of determining the optimal set of features, we start with
a wide range of physical stellar parameters (described in Section 2.1)
and determine which combination provides the best performance
(Section 3.2.2) for our benchmark model (Section 3.2.1). The implicit
assumption in our approach is that the optimal set of features would

be the same for any type of ML model adopted. We then compare
the classification performances of different models using the same
(fixed) set of features.

In the following, we describe the metrics used for evaluating the
classification performance of models (Section 3.1). The model im-
plementations are described separately in Section 3.2, where we
also provide some technical background on each of them. Otherwise
specified, we will make use of common ML terminology.

The training and implementation of the ANNs is performed us-
ing the TensorFlow (Abadi et al. 2015) library. The XGBoost and
UMAP methods are developed using the xgboost (Chen & Guestrin
2016) and umap (McInnes et al. 2018b) python packages, respec-
tively.

3.1 Performance metrics

In the development of all models we adopt a supervised learning
approach. In supervised models, the mapping between features and
prediction is learned by providing a set of example-label pairs. Fur-
thermore, the model parameters are tuned to minimise the difference
between the prediction and the actual class (the label) as quantified
by an objective function. The separation of the accreted versus in-
situ stars can be thought as a binary classification problem, where
the positive class is represented by the accreted stars and the neg-
ative class by the in-situ. A ML model achieves this by applying a
sequence of mathematical operations and tunable parameters to map
the properties of stars to a value of either 0 or 1, representing the
negative and positive classes, respectively.

For the ANN and decision tree models, the prediction for a given
star is represented by the output, which is a value between 0 and
1 and measures the probability of the star belonging to the positive
(accreted) class. In both cases, a star is classified as accreted if its
prediction is greater than a threshold value. The optimal performance
of a classifier may occur at a different threshold value for different
models, especially in problems with highly imbalanced datasets, such
as ours where accreted stars comprise, on average, 10% of the overall
stellar content of a galaxy. We therefore explore also the effect of
changing threshold values on the performance of our models (see
Section 4.2).

Here use the usual performance metrics, namely the precision (𝑃)
and recall (𝑅) of a model. These are used to compare the perfor-
mances of various models, but also to identify the optimal set of
stellar features. 𝑃 represents also the purity of the sample of accreted
stars, while 𝑅 characterises the completeness of the sample. By def-
inition, these two parameters correspond to the number of correctly
and mis-predicted accreted stars, respectively:

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
and 𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
,

where 𝑇𝑃, 𝐹𝑃, and 𝐹𝑁 are the number of true positives (i.e., stars
that are correctly classified as accreted), false positives (in-situ stars
which are misclassified as accreted), and false negatives (accreted
stars which are misclassified as in-situ), respectively.

Because the precision and recall values of both ANNs and decision
tree-based models vary based on the different classification thresh-
olds, with some thresholds favouring some models over the others,
we also use as metric the area under the precision-recall curve, PR-
AUC. This metric is more robust across models as it accounts for the
precision and recall values evaluated on a range of thresholds com-
mon to all models. A random classifier would return a PR-AUC score
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equal to the fraction of accreted stars in the test dataset, whereas a
perfect classification algorithm would have a PR-AUC score of 1.

We have elected not to employ the accuracy metric, defined as the
overall fraction of correctly classified stars, due to its shortcomings
for highly imbalanced cases. For example, in galaxies with accreted
fractions of≈10% (a typical value), a classifier which always predicts
stars as being in-situ would have an accuracy of ≈90% even though
it failed to identify any accreted stars.

Aside from the common ML metrics, we also compare the models
in terms of how well they fare in terms of astrophysical diagnostics.
These are not metrics per se, however, they are useful to help un-
derstand whether the models are able to grasp the ‘physics’ behind
the data. We expect that a model that is able to learn (or mimic) the
physical processes behind the origins of the two populations would
be less precise exactly in those regions of the parameter space where
the properties of the two populations are similar (for example, stars
that were born in the early phases of the galaxy formation are old,
metal-poor, more 𝛼-enhanced, and move on less ordered orbits, re-
gardless of whether they were born in-situ or accreted). A model that
cannot learn the physical patterns may still have a good performance,
however its mis-classifications may be distributed more randomly in
physical space. The three diagnostics used here, are:

• [𝛼/Fe] – [Fe/H] plane. Accreted stars tend to be located in the
high [𝛼/Fe], low [Fe/H] region of the plane, while disc and in-situ
halo stars generally have lower [𝛼/Fe] and higher [Fe/H] values.

• Toomre diagram, which is the distribution of rotational velocity,
𝑣 𝜃 , versus the dispersion velocity 𝜎. In this plane, the disc and the
in-situ halo stars have high 𝑣 𝜃 and low 𝜎, whereas accreted stars do
not have a preferred direction of motion, and generally have high 𝜎.

• 𝐸 − 𝐿𝑧 distribution. As these parameters are quasi-conserved
for a given infalling satellite, stars belonging to different disrupted
progenitor would appear as “clumps” in this plane. These clumps are
likely to be more distinct in the upper part of the plane, which is
associated with late accretions. The in-situ halo stars, and the disc,
are located on the region with positive 𝐿𝑧 .

3.2 Supervised ML models

3.2.1 The benchmark model

For our analysis, we build a benchmark model to: i) investigate the
most informative set of stellar properties that can distinguish accreted
from in-situ stars, i.e., the optimal set of features; ii) to compare the
performance of different ML algorithms trained on this optimal set.

Our benchmark model is similar to the Galactic Archaeology Neu-
ral Network (GANN) model of Tronrud et al. (2022). This is an MLP
(see Section 3.2.3) comprised of an input layer, a batch normalization
layer, four hidden layers of 64, 256, 64, and 32 neurons, and an output
layer with one neuron, resulting in a total of 35521 trainable param-
eters. We also use the same activation functions as in the GANN
model in the corresponding layers. In the following, we refer to this
configuration of layers and neurons as the benchmark architecture.

The model is first trained on a set of stellar features compris-
ing ages, [Fe/H] and [𝛼/Fe], as in the GANN model. Following the
same approach as in GANN, the chemical abundances are expressed
linearly (rather than the more conventional logarithmic form) and
normalised by the correspondent solar values. However, unlike in
GANN, we choose not to include the hydrogen fraction with [Fe/H],
given that the information about the former can be implicitly recon-
structed by the network from the latter. As for GANN, our benchmark
model is trained on an equal number of accreted and in-situ stars.
There are other differences from the GANN model also. One is that

Figure 1. PR-AUC scores for the precision-recall curves for the models
obtained training the benchmark architecture using different combinations
of features. The feature categories are: positions and kinematics (labelled
’kin’), [Fe/H] and [𝛼/Fe] abundances (’chem’), ages, and Gaia magnitudes
and colours (’phot’).

we train the model only on stars within 𝑟 ≤ 50 kpc from the centres of
galaxies, as beyond this radius the distribution of stars is overwhelm-
ingly of accreted origin (this is also valid for the other models). More
significantly, we only include example stars from the main halo,
whereas Tronrud et al. (2022) include also those from present-day
satellites, to augment the samples of accreted stars. Moreover, they
adopt a strategy of drawing equal number of stars from satellites in
different mass ranges, in order to increase the number of examples
of stars from objects which contribute fewer stars (i.e., the low-mass
dwarfs). In choosing to train only on existing debris, our benchmark
model has a slightly lower performance than that of GANN, however
the training data represents a closer match to what one would expect
from observations.

3.2.2 The optimal set of stellar features

With the benchmark architecture, we proceed to compare the classifi-
cation performance using different combinations of stellar features as
inputs, to determine the optimal set for the models. We consider the
stellar properties described in Section 2.1, which we divide into four
categories: positions and kinematics (𝑅, 𝑧, 𝑣 𝜃 , 𝜎), chemical abun-
dances ([Fe/H], [𝛼/Fe]), ages (𝜏) and photometry (MG, BP − RP).
For brevity, these are also referred to as ’kin’, ’chem’, ’age’ and
’phot’, respectively.

We then train the benchmark architecture with different combina-
tions of these four categories and evaluate the classification perfor-
mance on stars from the validation dataset. The results are shown in
Fig. 1. On their own, positions and kinematics (kin) give a PR-AUC
score of 0.57, which is significantly higher than than the score for
[Fe/H] and [𝛼/Fe] (chem), PR-AUC 0.38. This suggests that spa-
tial distribution and kinematics are more informative than chemical
abundances. In combination, kin + chem perform somewhat better
than kin alone, with a PR-AUC score of 0.63, which suggests that
the two categories provide complementary information. Adding ages
to positions and kinematics improves the performance of the model
compared to just adding chemistry (PR-AUC scores 0.66 for kin +
age versus 0.63 for kin + chem). Similarly, adding ages to positions,
kinematics and chemistry improves the score compared to not adding
ages (PR-AUC of 0.71 for kin + chem + age compared to 0.63 for
kin + age). Interestingly, photometry adds slightly more information
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than the ages, to both positions and kinematics (PR-AUC scores 0.69
for kin + phot versus 0.66 for kin + age), or chemistry categories
(PR-AUC scores 0.45 for chem + phot versus 0.42 for chem + age). A
possible explanation for this is that photometry is implicitly related
to both the ages and metallicities of stars.

Overall, the best performance is provided by kin + chem + phot
(PR-AUC score of 0.72), therefore excluding ages. We therefore as-
sign the corresponding input parameters, namely:

{𝑅, 𝑧, 𝑣 𝜃 , 𝜎, [Fe/H], [𝛼/Fe], MG, BP − RP}.

as the optimal set features for further training and comparison of the
other ML models.

We note, however, that the combinations kin + phot + age and kin +
phot have classification performances which are very close to that of
the optimal combination. This suggests that ML models could also be
trained on reduced information, for example on just positions, kine-
matics and photometry, without a significant drop in performance.
In fact, this may be a preferred option for observations, given that
photometry is usually more readily available than spectroscopy.

3.2.3 Multilayer perceptron

A MLP is a type of ANN consisting of multiple layers of intercon-
nected artificial neurons, or perceptrons. The architecture typically
comprises an input layer, one or more hidden layers, and an output
layer. Each neuron receives input signals from neurons in the previ-
ous layer and computes a weighted sum based on internal, tunable
parameters describing the importance of the single inputs. Before
being forwarded to the next layer, the result is passed to a non-linear
activation function to allow the learning of non-linear relations be-
tween inputs and outputs. During the training process, the weights
connecting the neurons are updated to minimise the error, as esti-
mated by an objective function, between the predicted and actual
class through an optimisation algorithm.

The benchmark model described earlier is also an MLP. However,
because the classification between accreted and in-situ stars is in-
ferred from a small number of features, we consider also shallower
architectures than the one used in the benchmark model. Specifically,
we explore architectures comprised of one hidden layer of 10, 50,
and 100 neurons, and two hidden layers with 50 neurons in each.
In total, these four MLPs have 101, 501, 1001, and 3051 trainable
parameters, respectively. In comparison, the benchmark architecture
contains 35777 parameters.

We train the MLPs with various architectures on the optimal set
of input features (described in Section 3.2.2), as was done for the
benchmark model. We adopt the same activation functions and opti-
misation algorithm for all cases. For the outputs of the neurons in the
hidden layers, we apply a Scaled Exponential Linear Unit (SELU)
function (Klambauer et al. 2017), while for the neuron in the output
layer we apply a sigmoid function, to ensure the prediction is in the
range 0 − 1. The trainable parameters are updated using the Adam
(Kingma & Ba 2014) optimisation algorithm on the error between
predictions and labels estimated by the binary cross-entropy function.
The training on the optimal set of features of the four MLP plus the
benchmark architectures is done for a maximum of 100 epochs3, with
an adaptive learning rate4 halving when the value of the objective
function stops decreasing for more than 5 epochs.

3 An epoch is a complete pass of the MLP through all the examples in the
training dataset.
4 The learning rate is the constant of proportionality relating the gradient of

Figure 2. Comparison between the precision-recall curves obtained training
the benchmark architecture and shallower ANNs on the optimal set of features
(see Section 3.2.2).

Fig. 2 shows a comparison of the classification performances of all
these architectures, based on the PR-AUC score evaluated on the test
dataset. All MLPs have similar performances, with PR-AUC scores
ranging from 0.578 (1 hidden layer, 10 neurons model) to 0.591 (1
hidden layer, 100 neurons model). Despite the significantly larger
number of trainable parameters, the benchmark architecture (0.584)
outperforms only the shallowest model. The model with 1 hidden
layer and 50 neurons, and the one with 2 hidden layers of 50 neurons
each, have PR-AUC score of 0.589 and 0.590, respectively. As the
architecture comprising 1 hidden layer with 100 neurons returns the
highest PR-AUC score (0.591), we considered it for the rest of the
analysis (hereafter denoted as MLP).

3.2.4 Multilayer perceptron with galaxy features

The study of Tronrud et al. (2022) suggests that MLP models may be
biased towards specific assembly histories. This result is expected,
especially when the training set does not contain sufficient types of
accretion histories. We find a similar result when we train a MLP
model on a single galaxy. As expected, the model performs better
when the stars belong to the same galaxy. Table 2 shows the classifica-
tion performances of these MLP models represented by the PR-AUC
scores. The models are trained on the optimal set of features using
accreted and in-situ examples from one galaxy (listed in the left-most
column) and tested on another galaxy (listed in the top row). Where
the galaxy pairs are the same, we only use the stars in the validation
dataset. On a galaxy basis (i.e., column-by-column analysis in the
table), the best classification performance is always associated to the
model explicitly trained on the galaxy it is tested on.

This result is a consequence of the unique assembly history of
each galaxy, where the properties of the progenitors, e.g., their infall
times, orbits, and masses, imprint a specific characteristic in the
stellar properties (features) of accreted stars. For instance, in galaxies
where the MMAP was accreted at early times the accreted stars are
mostly rich in 𝛼-elements and are more phase-mixed; conversely, in
galaxies with a late MMAP, the accreted stars tend to be more 𝛼-poor

the objective function and the associated change in the trainable parameters
of the MLP.
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G01 G15 G17 G18 G19 G23 G24 G25 G27 G38 G40 G44

G01 0.68 0.60 0.52 0.66 0.44 0.60 0.59 0.45 0.81 0.48 0.76 0.66
G15 0.54 0.77 0.48 0.67 0.58 0.62 0.67 0.44 0.74 0.62 0.66 0.66
G17 0.58 0.64 0.62 0.62 0.62 0.70 0.61 0.47 0.73 0.59 0.67 0.71
G18 0.55 0.66 0.45 0.76 0.46 0.50 0.65 0.46 0.78 0.48 0.74 0.57
G19 0.54 0.67 0.47 0.64 0.74 0.71 0.66 0.44 0.73 0.62 0.66 0.65
G23 0.57 0.67 0.52 0.62 0.69 0.82 0.61 0.44 0.76 0.62 0.63 0.72
G24 0.52 0.66 0.43 0.67 0.48 0.56 0.78 0.45 0.79 0.53 0.75 0.61
G25 0.47 0.43 0.44 0.58 0.44 0.46 0.39 0.61 0.62 0.32 0.46 0.58
G27 0.48 0.49 0.35 0.63 0.25 0.36 0.47 0.42 0.88 0.53 0.76 0.50
G38 0.51 0.62 0.47 0.63 0.45 0.50 0.52 0.45 0.77 0.76 0.70 0.65
G40 0.47 0.43 0.33 0.63 0.16 0.29 0.43 0.39 0.78 0.29 0.83 0.46
G44 0.57 0.64 0.55 0.63 0.64 0.65 0.63 0.46 0.78 0.58 0.73 0.83

Table 2. PR-AUC scores for the MLP models trained on accreted and in-situ examples from the galaxy in the left-most column, and tested on the galaxies listed
in the top row. Where the galaxy label is the same, stars in the validation dataset were considered.

and more spatially coherent (Font et al. 2006a). Consequently, the
MLP model learns the details of the unique imprint of the assembly
history of a given galaxy leaves in its distribution of accreted stars.

We note, however, that some models are able to identify a purer
and more complete sample of accreted stars in other galaxies than the
one they had been trained on. Again, this can be directly related to a
difference in assembly histories as some galaxies (e.g., G27) have a
neater distinction between the accreted and in-situ populations.

To account for the variability in the properties of accreted stars
in different systems, we could choose to use a conglomeration of
galaxies in the training set, as in the dataset described in Section
2. However, this model would still underperform if applied onto a
galaxy whose assembly history is not represented in the training set.
In ML terminology, the performance degradation of a model trained
on a source distribution (“domain”) when applied to a statistically dif-
ferent target one is referred to as “domain shift” (Quiñonero-Candela
et al. 2009). Since our aim is to create a model capable of general-
ising across different assembly histories, we retrain the MLP model
by providing additional information about the galaxy from which
the example stars are taken from. These additional input features are
global properties of host MW-mass galaxies, measured within an
aperture of 30 kpc. This approach has the advantage of providing
information about the accretion history of the host galaxy, without
given the model any a priori knowledge of which stars were accreted.
The galaxy-specific input features are described in Section 2.2 and
are listed in Table 1.

3.2.5 Transformational machine learning

As an alternative method to mitigate the domain shift problem, we
consider the TML technique of Olier et al. (2021). In this framework,
each data point is described by a vector of predictions obtained from
an ensemble of base models. While using a common set of features,
the base models are sequentially trained on different examples to
perform different tasks. This representation of the data is used as an
input to a new model, which combines the prior information encoded
in the base models.

Before the implementation of the TML approach, we trained an
MLP model (see Section 3.2.3) on each galaxy in the training dataset.
Because of the differences in the assembly histories of these galaxies,
learning to classify the accreted stars is considered by the model to
be a specific task for each galaxy. The resulting ensemble of MLPs
is then used to derive a predictive description of all the stars in the
training dataset. These 12D vectors are then passed as inputs to a

single-layer ANN with 100 neurons. During training, the internal
parameters of the base MLP models are held constant, while the
parameters from the neural network which combines the predictions
are allowed to update. Also, to avoid any data leakage, the predictions
of a base model on the stars used for the training are set to 0.

3.2.6 XGBoost

A decision tree is a ML algorithm based on a tree-like structure.
It begins with a root node representing the entire dataset and re-
cursively splits the data into smaller subsets (branches) based on
feature values. The endpoint of a branch is called a leaf and contains
the model prediction. In this work, we combine many decision tree
models trained on the same dataset using the gradient boosting ma-
chine (GBM) method (Friedman 2001). Following this algorithm, a
decision tree is created to separate accreted and in-situ stars by pre-
dicting their classification label as a continuous score between 0 and
1. Then, a new decision tree is added to predict the error between the
predicted and actual labels (here, as for the MLP model, estimated
by the binary-loss function). The prediction from the new model is
then added to the initial predictions to make a more accurate clas-
sification. This continues for an arbitrary number of iterations, with
each new model sequentially added and trained to minimise the error
of the whole ensemble.

Here we implement a GBM with decision tree models using the
XGBoost (Chen & Guestrin 2016) method. This algorithm is par-
ticularly suitable for large datasets as the ensemble of models is
built in parallel rather than serially. Moreover, it includes L1 and
L2 regularization techniques to control over-fitting. The number of
base models in the ensemble and the number of splits in each tree are
decided using the optuna5 hyperparameter optimisation framework.

3.2.7 UMAP

The UMAP method (McInnes et al. 2018a) is a dimensionality re-
duction technique, such as Principal Component Analysis, with the
advantage that the obtained dimensions can be non-linearly related to
the starting ones. We apply this method in order to find relations, or
identify possible structures within the accreted and in-situ examples
that may exist in the training and test datasets. Given the specificity

5 https://optuna.org/
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Figure 3. Precision and recall values at different classification thresholds for
the models. The metrics were evaluated considering all the stars in the test
dataset.

of this method, we use it only for visualising the data, and therefore
we do not include it in our classification performance comparison.

Assuming the data are uniformly distributed on a locally connected
Riemannian manifold, the algorithm constructs a fuzzy topological
structure of it in a 8D parameter space and maps it into a lower
dimensional space with the closest equivalent structure. UMAP can
be used in a supervised way by providing the labels of the classes into
which the data are separated. This ensures that both the global and
class-specific structures of the data are retained while maximising
their separation in the new embedding.

Here we train a UMAP model to reduce the 8D parameter space
defined by the optimal set of stellar features into a 2D plane, where
the separation between the accreted and in-situ training examples is
maximised. Because of the high-computational resources required by
this method, we consider only a subset of examples from each galaxy,
which consists of all the accreted examples and an equal amount of
the in-situ ones. This results in a statistically significant number
of examples from each galaxy. To investigate potential differences
between the structures of the training and test datasets, we use the
same UMAP model to project all the test examples into the 2D plane.
A discussion of the results of this UMAP embedding is provided in
Section 4.4.

4 MODEL COMPARISON

4.1 Classification performance

With the optimal set input features, we proceed to compare the classi-
fication performance of our models, MLP, MLP with galaxy features,
TML and XGBoost, in separating the two classes of stars. We eval-
uate all models on the test dataset, and compare the classification
performances using the PR-AUC scores. We also assess the purity
and completeness of the retrieved accreted samples using the preci-
sion and recall metrics at the optimal threshold value. To ensure a fair
comparison, for each model we consider the threshold associated to
the highest value of the harmonic mean between precision and recall
(i.e., the F1-score). The resulting fiducial thresholds are shown in
Table 3.

Model Threshold F1-score

MLP 0.33 0.67
MLP + 0.31 0.63galaxy features
TML 0.24 0.62
XGBoost 0.33 0.68

Table 3. Fiducial classification threshold values for the models. Each value
is associated to the highest F1-score calculated based on the precision and
recall values on the validation dataset.

Fig. 3 shows the comparison between these four models, plus the
benchmark model. For the latter, we use the reduced set of features
described in Section 3.2.1. This figures shows that all four models
perform significantly better than the benchmark, which indicates the
importance of adding more input parameters, in this case from the
kinematical and photometric properties of the stars. The MLP, TML
and XGBoost models perform similarly on the test dataset, with PR-
AUC scores of 0.59, 0.57, and 0.59 respectively. The TML model
does not provide any improvement over the MLP, which implies that
there is not enough variance among the single MLPs in the ensemble.

The MLP model with added galaxy-specific features gives a PR-
AUC score of 0.57, which is worse than the one of the MLP model
and the one calculated on validation data (0.64). This suggests that
the galaxy-specific features favour the learning of specific patterns
in the data, leading to overfitting, rather than learning the distinction
between the accreted and in-situ classes in those features. This could
be due to redundancies in the set of galaxy-specific features (which,
unlike the stellar features, have not been optimised). For example,
information gained from galaxy stellar masses may be very similar to
that inferred from ⟨[Fe/H]⟩, as MW-mass systems follow the stellar
mass – metallicity scaling relation. Also, the information gained from
the overall rotation of stars (i.e., 𝜅co) may overlap with that obtained
from the sizes of galaxies. In the future, we aim to investigate whether
an optimal set of galaxy-specific features exists, particularly one that
will increase the performance above the model without any such
features. Alternatively, it could be that the galaxy properties used
for this task are not representative of the specific accretion histories.
In this case, one may opt, instead, to use parameters more directly
related to the merger histories, for example the properties of the
MMAPs. This will be investigated in a future study.

Table 4 shows a galaxy-by-galaxy comparison of all five models
based on the 𝑃 and 𝑅 values evaluated at the fiducial classifica-
tion thresholds. Confirming what was found previously, MLP, TML
and XGBoost have similar performances for every test galaxy, con-
sistently retrieving > 50% of accreted stars with similar purity. In
general, the TML model retrieves a larger sample of accreted stars
than the single MLP, with only a minor decrease in precision.

Overall, despite belonging to different families of ML methods,
the MLP, TML and XGBoost models show similar performances,
suggesting that the same underlying relations between stellar proper-
ties and their origin are learned from the data. This is an encouraging
result for further applications.

4.2 Model comparison on physical diagnostics

So far, we have shown that all ML models trained on the optimal
features perform similarly well, which is remarkable given that ac-
creted stars comprise only a small fraction of the total stellar budget.
However, despite the similar overall performance, the models may
still perform differently in certain regions of the physical param-
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Model G29 G30 G34 G42
𝑃 𝑅 𝑃 𝑅 𝑃 𝑅 𝑃 𝑅

benchmark 0.15 0.98 0.45 0.91 0.09 1.00 0.21 0.97
MLP 0.47 0.64 0.59 0.57 0.35 0.65 0.54 0.54

MLP + 0.54 0.59 0.56 0.56 0.41 0.55 0.50 0.63galaxy features
TML 0.46 0.73 0.58 0.55 0.32 0.72 0.54 0.60

XGBoost 0.49 0.70 0.58 0.58 0.36 0.68 0.54 0.58

Table 4. Comparison of the precision and recall values evaluated on the test dataset at the fiducial thresholds for the ML models.

eter space covered by the accreted/in-situ stars. If the models are
truly able to extract the physical properties of the two stellar pop-
ulations, we expect that they will perform better in regions where
the two populations are clearly distinct in physical parameters (e.g.,
kinematics, or metallicity) and less well in regions where these prop-
erties overlap. To investigate this possibility, we map the distribution
in a chemo-dynamical parameter space of false positives (in-situ stars
misclassified as accreted) and of false negatives (accreted stars mis-
classified as in-situ) in different models. In Section 3.1 we introduced
several physically-motivated chemo-dynamical diagnostics, such as
the Toomre diagram, or the [𝛼/Fe] – [Fe/H] and 𝐸−𝐿𝑧 planes, which
we use here to evaluate how well can the models identify accreted
stars in these parameter spaces.

Fig. 4 shows the distribution of the FPs in the entire test galaxy
set in the [𝛼/Fe] – [Fe/H] plane (top row) and in the Toomre diagram
(bottom row), for four models: MLP, MLP+galaxy features, TML
and XGBoost, respectively. Each panel has a corresponding set of
top and side sub-panels, in which we compare the probability density
functions of the FPs (shown in yellow) with that of the accreted stars
(red), and of the in-situ stars (blue) in the training set. This figure
shows that the FPs tend to be located in regions of the parameter space
with low rotational velocities (𝑣 𝜃 ≃ 0) and lower metallicities ([Fe/H]
< −1), which are regions dominated by accreted stars. This indicates
that the models can learn to identify accreted stars as typically more
metal-poor and characterised by more chaotic motion, which are
properties expected for this category. However, models find it more
difficult to identify in-situ stars in this chemo-dynamical region. This
behaviour is seen across all four models, which indicates that they all
learn similar physical patterns for accreted stars. This result suggests
that the similar classification performances of the models, found
earlier, are in fact physically motivated.

Similarly, in Fig. 5 we investigate the distribution of FNs in the
same chemo-dynamical parameter space. This figure shows that,
although the MLP, TML and XGBoost models retrieve the majority
of the accreted stars in the test galaxies (see Table 4), some accreted
stars are still missed, despite them having relatively distinct motions
and chemical abundance distributions from those of the in-situ stars
(compare, again, the yellow, red and blue probability distribution
functions). All models present a similar behaviour in this respect, as
was the case for FPs. We note here, too, that the FNs represent only a
small fraction of the total number of stars, with 𝑓FN ≈ 5− 7% across
different models.

The mis-classification in the case of FNs is likely due to the in-
situ stars greatly outnumbering the accreted stars in the examples
available to these models. To elucidate this, we also investigate the
spatial location of the FNs. For the MLP, TML and XGBoost models,
we find that the majority of mis-classified accreted stars (76%, 77%
and 73%, respectively) lie within a galactocentric radius of 5 kpc.
This suggests that the models tend to identify more accurately the

stars originating from late accretions, which are generally located in
the outer regions of galaxies, while struggling to retrieve the stars
that originate from early accretion events and which are now fully
phase-mixed in the inner region. A possible solution to improving
the classification of models can be provided by data augmentation
techniques, which can be used to generate a higher number of accreted
stars in the training sets in the inner region. Outside the 5 kpc range,
the MLP, TML and XGBoost models identify 93%, 94%, and 91%
of the accreted stars in the test dataset, with a precision of 0.57, 0.56,
and 0.59 at the fiducial classification threshold, respectively.

Furthermore, since the XGBoost model has a built-in degree of
explainability, it can be used to determine more quantitatively the
contribution of each input feature during the classification. Specifi-
cally, at each decision node, it is possible to calculate the information
gain from a given feature by subtracting the impurity (i.e., a measure
of the entropy in the tree) before and after the splitting. The informa-
tion gain of a specific feature in the XGBoost model can be estimated
by averaging over all trees in the ensemble. Fig. 6 shows that the ro-
tational velocity (𝑣 𝜃 ) and the distance from the centre of the galaxy
(𝑅) are the most important parameters for distinguishing between
the accreted and in-situ stars in this model. Surprisingly, [𝛼/Fe] has
a significantly lower information gain. Given the high importance
of the [Fe/H] parameter, it is possible that the model considers the
information provided by [𝛼/Fe] as redundant. Therefore, although
the abundance of 𝛼-elements can be used to characterise individual
accreted substructures, the information from [Fe/H] may be sufficient
to remove the in-situ background.

We note that the model performances reported here depend on the
chosen classification threshold. For example, for the MLP model, the
average purity of the accreted stars sample at the fiducial threshold
is ≃ 50% (see Table 4). Purer samples can be obtained by increasing
the classification threshold, however, this is done at the cost of com-
pleteness. This is shown in Fig. 7, where we plot the predictions of
this model in the 𝐸 − 𝐿𝑧 plane, for different threshold values (0.25,
0.5 and 0.75, respectively). Here 𝐸 denotes the total energy of a star,
composed of the sum of kinetic and potential energy, while colours
indicate the stellar mass fraction of accreted stars, as predicted by
the model. The results are shown individually, for the four galaxies
in the test dataset. The regions of the accreted components which are
identified with more confidence by the models are those in the upper
parts of the energy spectrum, which represent mostly stars originat-
ing from late accretions. These regions are dominated by clumpy
structures which correspond to tidal debris not yet fully mixed with
the rest of the halo.

This result is encouraging and indicates that ML models are sen-
sitive to physical patterns in the data, and may be used in the future
to not only identify the bulk of accreted stars in the halo, but also
to find individual tidal streams. Adjusting the classification thresh-
old could provide an advantage compared with traditional methods
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Figure 4. Distribution of the FPs in the test set in the [𝛼/Fe] – [Fe/H] plane (top row) and in the Toomre diagram (bottom row). Columns from left to right
correspond to the MLP, MLP+galaxy features, TML and XGBoost models, respectively. For each panel, the top and side sub-panels show the probability density
function of the FP distributions (yellow) and of the accreted (red) and in-situ (blue) training examples. For each model, we also show the FP fraction ( 𝑓𝐹𝑃) of
the total number of stars in the test dataset. The metrics are evaluated at the fiducial threshold values listed in Table 3.

Figure 5. Same as in Fig. 4, but for the accreted stars mis-classified as in-situ, i.e., the false negatives.
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Figure 6. Information gain values describing the importance of the input
features used by the XGBoost model to distinguish between accreted and
in-situ stars.

of selecting halo stars which are fixed (see next section), whereas
ML models can be customised to provide the most appropriate sam-
ples for different types of analysis. For instance, the identification of
accreted substructures in integrals-of-motion space requires a sam-
ple of high purity to avoid the identification of spurious clusters,
whereas a characterisation of substructures based on a large number
of chemical abundances may be conducted at a lower purity, as the
contamination of in-situ stars can be more easily identified. In this
case, the model would represent a pre-processing step for reducing
the number of stars to analyse.

4.3 The ML performance in separating components versus
observational cuts

Observational studies of accreted substructures in the Milky Way of-
ten focus on regions dominated by halo stars, for example away from
the disc. For instance, halo stars are often identified by imposing cuts
in the stellar rotational velocities, vertical distances above or below
the disc plane, metallicities, or a combination thereof. These cuts
are physically motivated, however they may exclude also accreted
structures embedded in or near the disc. In the previous sections, we
have shown that ML methods are able to identify accreted stars even
in the regions which are dominated by in-situ stars (the fractions of
FPs and FNs are low even in the disc). This suggests that it may
be feasible to apply them directly on the observational data, without
making recourse to specific selection cuts. To investigate this pos-
sibility, we choose a few representative examples of selection cuts
from the literature, and compare the composition of accreted ver-
sus in-situ stellar distributions in these cases with the corresponding
distributions predicted by the ML models6.

Specifically, we consider three examples of selection criteria for
halo stars in the Galactic Solar neighbourhood: i) a cut in velocity,
|𝑽 − 𝑽𝑳𝑺𝑹 | > 210 km s−1 (Helmi et al. 2018; Koppelman et al.
2018; Lövdal et al. 2022), where the velocity of the Local Standard
of Rest is 𝑽𝑳𝑺𝑹 = 232 km s−1 (McMillan 2017); ii) a selection
in the [Fe/H] - 𝑣 𝜃 plane, used by Myeong et al. (2018) to remove
the disc stars in order to find accreted substructures in the halo,

6 We note that, in the analysis of observations, these types selection cuts
are just a first step, and further algorithms are applied to the samples to
identify accreted substructure/tidal streams, e.g., HDBSCAN, or k-means. As
already mentioned, the motivation of this exercise is to investigate whether ML
methods could discover more accreted stars in the regions that are typically
overlooked by observational methods.

namely imposing [Fe/H] < −0.5 and 𝑣 𝜃 < 150 km s−1; and iii)
a kinematic selection used by Massari et al. (2019) to construct a
sample of accreted globular clusters, by imposing 𝜀 > 0.5, where
𝜀 = 𝐿𝑧/𝐿𝑧,𝑐𝑖𝑟𝑐 (the latter was used for larger regions of the Galaxy,
however we adapt it here for the Solar neighbourhood).

For this comparison, we focus on the Solar neighbourhood regions
in the simulations, which are defined as ring tori with a minor radii
of 2.5 kpc. The major radii of the tori are determined on a galaxy-
by-galaxy basis, by multiplying the Solar radius in the Milky Way
(assumed here to be 8 kpc) with the ratios between the disc-scale
lengths of the simulated galaxies and the scale-length of the thin disc
of the Milky Way, taken as 3.6 kpc (Bovy et al. 2012). This accounts
for the differences in size between the disc of the Milky Way and the
discs of the simulated galaxies.

We apply the three selection criteria above on the four galaxies
from the test dataset (G29, G30, G34 and G42) and label stars as
accreted or in-situ according to these cuts. In doing this, we assume
that halo stars in the Solar neighbourhoods are the equivalent of stars
of accreted origin, and disc stars are equivalent to those formed in-
situ. Note that, while these selection criteria are designed to exclude
most of the stars of in-situ origin, the real compositions are a mixture
of accreted and in-situ, both in and outside the cut-out regions. The
fractions of accreted stars in these two regions vary from galaxy-
to-galaxy, and also on the type of selection cut that is applied. The
fractions of accreted stars in the disc-like regions are very small,
although the accreted stars in these regions are likely to be represen-
tative of early merger events (i.e., mostly old, metal-poor stars). The
labels assigned by these cuts are then compared with the true labels
obtained from simulations, and we compute the equivalents of FPs
and FNs.

We then apply the ML models on the simulated Solar neighbour-
hoods in the test galaxies (this time, without any selection cuts)
to predict the accreted stars in these regions. As before, we use the
models trained on the optimal set of features. For the sake of concise-
ness, we only present here the results for the MLP, but note that the
XGBoost and TML models have similar classification performances.

In Fig. 8 we compare the distributions in the [𝛼/Fe] – [Fe/H] plane
of accreted and in-situ stars in the Solar neighbourhood regions pre-
dicted by the three selection criteria and by the MLP model. A similar
comparison is shown in Fig. 9 for the distributions in the Toomre di-
agram. Both figures illustrate the difference in complexity between
the two approaches, with the MLP model being able to provide a
closer description of the true distribution of accreted stars in the
chemo-dynamical space for all the test galaxies. This result is ex-
pected, considering that traditional observational methods are based
on the assumption of a simple disc-halo dichotomy. For example,
the selection cut of Myeong et al. (2018), which assumes a distinct
dichotomy in terms of [Fe/H], over-predicts the number of accreted
stars the [𝛼/Fe] – [Fe/H] space compared with the other methods that
do not employ a [Fe/H] cut (see Fig. 8). Overall, the MLP retrieves
the accreted stars most accurately, compared with all the selection
cut methods. This is the case not only in the overall distribution of
accreted stars in the chemical abundance space, but also in terms
of the number of accreted stars (compare, for example, the accreted
fractions, 𝑓𝑎𝑐𝑐 , in the corresponding panels for each galaxy in Fig. 8).

Likewise, since all selection cuts employ some type of 𝑣 𝜃 thresh-
old, they all under-perform compared with the MLP model (see
Fig. 9). The criterion of Massari et al. (2019), which allows for the
inclusion of counter-rotating stars in the disc, gives a closer descrip-
tion of the distribution of stars in the Toomre diagram than the other
two selection criteria, although it still provides a very simplified ver-
sion of the true distribution of the two populations. As in the case for
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Figure 7. The distribution in the 𝐸 − 𝐿𝑧 plane of the accreted sample retrieved by the MLP model, at different classification thresholds (left to right panels),
for each of the galaxy in the test dataset (top to bottom rows corresponding to galaxies G29, G30, G34, and G42, respectively.). The completeness (𝑅) of the
retrieved sample is also reported. The distribution is colour-coded by the actual fraction of accreted stars as defined by the simulation label.

Halo (Accreted) G29 G30 G34 G42
selection criterion 𝑃 𝑅 𝑃 𝑅 𝑃 𝑅 𝑃 𝑅

Helmi et al. (2018) |𝑽 − 𝑽𝑳𝑺𝑹 | > 210 kms−1 0.24 0.82 0.44 0.82 0.18 0.71 0.45 0.59
Myeong et al. (2018) [Fe/H] < −0.5 ∧ 𝑣𝜃 < 150 kms−1 0.16 0.99 0.31 0.99 0.04 1.00 0.26 0.99
Massari et al. (2019) 𝜀 > 0.5 0.25 0.69 0.44 0.65 0.18 0.62 0.46 0.55

MLP (0.33, fiducial) 0.35 0.57 0.52 0.45 0.24 0.70 0.48 0.34
MLP (0.10) 0.23 0.97 0.44 0.95 0.13 0.99 0.45 0.91
MLP (0.75) 0.72 0.02 0.89 0.02 0.60 0.02 0.71 0.01

Table 5. Comparison of the purity (𝑃) and completeness (𝑅) of the sample of accreted stars retrieved by using observational selection cuts (top three rows) and
by the MLP model (bottom three rows) evaluated at different thresholds, in the simulated Solar neighbourhoods of galaxies G29, G30, G34 and G42.

chemical abundances, the MLP model is able to retrieve the overall
patterns in the kinematical distribution of the two stellar populations,
in all four test galaxies.

Table 5 includes the purity (𝑃) and completeness (𝑅) of the samples
of accreted stars retrieved by the MLP model, using three different
classification thresholds (the fiducial value of 0.33, 0.10 and 0.75).
These metrics are compared with the equivalent P and R values com-

puted using the labels inferred from the three selection cuts versus the
true labels from simulations. All values are computed for the Solar
neighbourhoods in each of the four galaxies in the test data set. At
the fiducial threshold, the MLP model retrieves the purest samples of
accreted stars for all test galaxies. When the classification threshold
is lowered to 0.10, the model identifies consistently more than 90%
of the accreted stars, while maintaining a precision level very similar
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Figure 8. The [𝛼/Fe] – [Fe/H] distribution, colour-coded by the fraction of accreted stars, 𝑓𝑎𝑐𝑐 for stars in the simulated Solar neighbourhoods. From top to
bottom, the rows correspond to galaxies G29, G30, G34, and G42, respectively. In the columns, the accreted stars are defined by: 1) the simulation label; 2-4)
the observational selection criteria; 5) the label predicted by the MLP model. In each panel, we show the actual (column 1) and predicted (columns 2-5) overall
fractions of accreted stars in the simulated Solar neighbourhoods.

to the purest sample retrieved by the selection criteria. Only the se-
lection performed in the [Fe/H] - 𝑣 𝜃 plane identifies more accreted
stars than the MLP model at this threshold. However, the correspond-
ing accreted samples are considerably more contaminated by in-situ
stars. As the classification threshold is increased, progressively purer
samples of accreted stars are retrieved, however, at the expense of
completeness. When the threshold is set to 0.75, the MLP model is
able to create samples of accreted stars, on average, twice as purer as
the ones obtained through the observational selection criteria.

In addition to being more accurate in identifying the accreted stars
than the selection cuts, the MLP model also retrieves fewer stars
labelled accreted (on average, 2 times fewer than using the selection
cuts). This makes it less computationally expensive, especially when
applied on large observational datasets. This could be the preferred
methodology for the initial processing of observational data to use
for subsequent analysis, for example using clustering algorithms to
identify tidal stellar streams.

4.4 Visualisation of accreted and in-situ structures with UMAP

Further insights on the behaviour of the ML models can be obtained
from the distribution of accreted and in-situ stars in a 2D plane con-
structed by the UMAP model. Through the UMAP algorithm, stars
with similar properties are pulled together, revealing structures which
may be hidden in the usual spatial or chemo-dynamical parameter
spaces.

In Fig. 10 we show the distribution of the training and test examples
obtained using the UMAP model. The 2D planes are colour-coded
based on the fraction of accreted stars, using the simulation labels
(left and middle panels) and the predictions of the MLP model (right
panel), respectively. As before, the MLP model is considered rep-
resentative of all ML models. The training distribution indicates a
clear separation between the accreted and in-situ stars. The accreted
stars appear to be clustered in two main regions: the smallest cluster
comprises stars located outside 𝑅 ≃ 15 kpc, while the other in-
cludes stars with a broader range of properties, which are also more
gradually-changing. The stars in this second cluster typically have
high velocity-dispersions and low [Fe/H] abundances. The in-situ
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Figure 9. Same as in Fig. 8, but showing results for the distributions of accreted stars in the Toomre diagram.

stars appear to be mostly clustered in an L-shaped region charac-
terised by high-rotational motions. Smaller clusters of in-situ stars
with specific features are also present in this plane. For instance,
the top cluster in this figure is comprised of young, metal-rich stars,
located in the inner region of the galaxy; while the right-most cluster
is composed of stars orbiting in the plane of the disc, but at large
distances from the centre of the galaxy.

In Fig. 11 we show the distribution of the training data, colour-
coded by each of the stellar properties in the optimal set of input
parameters. All properties are presented as normalised values. The
same structures are observed in the distribution of the test examples
once projected in the UMAP-defined space (central panel, Fig. 10);
however, the largest region of the accreted stars shows a significant
contamination of in-situ examples. This seems to suggest that some
in-situ stars in the test dataset have stellar parameters that resemble
those in the accreted examples from the training dataset. As expected,
these are the examples which the ML models struggle to associate to
either the accreted or the in-situ classes (as shown in the right panel
in Fig. 10), and which comprise the majority of the misclassified
stars (in both the FP and FN cases). Moreover, the MLP predictions
in the largest accreted region appear to follow a gradient as the
model outputs progressively higher probabilities of being accreted,
for stars occupying the higher parts of this region. In Fig. 11 a

similar, although much shallower, gradient is observed in the 𝑅-plot,
suggesting that the accreted stars from late mergers are identified
with higher probabilities by the model, as already concluded from
Fig. 5.

5 TESTING THE MODELS ON THE AURIGA
SIMULATIONS

We further test the performance of our models with an independent
dataset, drawn from the Auriga simulations (Grand et al. 2017).
This allows us to investigate whether there are any biases introduced
in our models due to training only on the ARTEMIS simulations, and
to test the classification performance of the models outside their
development environment. For this purpose, we use the “level 3” set
of six publicly available galaxies7 from the entire Auriga sample:
Au6, Au16, Au21, Au23, Au24 and Au27. These are also disc galaxies
of Milky Way mass, with total masses ranging between 1.04−1.74×
1012 M⊙ and disc-to-total ratios, 𝐷/𝑇 , ranging from 0.63 to 0.83
(Grand et al. 2017).

The simulations were run with the hydrodynamical code AREPO

7 https://wwwmpa.mpa-garching.mpg.de/auriga/data.html

MNRAS 000, 1–20 (2023)



16 A. Sante et al.

Figure 10. Distribution of stars in the training (left panel) and test (central and right panel) datasets in the parameter space defined by UMAP to maximise the
separation between the accreted and in-situ populations. Colours represent the fraction of accreted stars in each region of the plane, as defined by the simulation
labels (left and central panels) and by the predictions of the MLP model (right panel).

Figure 11. UMAP projections of the distribution of accreted and in-situ examples in the training data, colour-coded by the value of the corresponding physical
parameters from the optimal set of features, used as input to the UMAP model. All values are normalised.

(Springel 2010), which includes physical subgrid prescriptions (Vo-
gelsberger et al. 2013) that are significantly different from those im-
plemented in the EAGLE code which was used for ARTEMIS. Further-
more, these simulations have somewhat higher numerical resolution
than ARTEMIS, with dark matter particle masses of ∼ 4 × 104 M⊙
and baryonic masses of ∼ 5 × 103 M⊙ , respectively. However, we
find that the simulated galaxies in Auriga have similar spatial dis-
tributions of in-situ of accreted stars as in the ARTEMIS (not shown
here). The level of differences in the spatial distributions between
galaxies drawn from these two suites of simulations is comparable
with the differences seen between galaxies from the same suite.

We apply the same ML models on these six systems and test their
performance. First, we divide the sample into a training and a test
dataset, setting aside a fraction of stars in the training dataset for
validation purposes. Galaxies Au6 and Au21 experienced the most

massive merging events with mass ratios of 0.54 and 0.53 (Grand
et al. 2018), respectively, and were thus selected for the test dataset.
The rest of the galaxies in the sample (Au16, Au23, Au24, and Au27)
were used to provide training examples to the models.

Fig. 12 shows how the ANNs and decision-tree models perform
when developed on the Auriga data. The MLP, MLP+galaxy features
and the TML models have a slightly better classification performance
than XGBoost. This may be caused by a missed optimisation of the
XGBoost hyper-parameters (as we use the the same hyper-parameters
tuned for the ARTEMIS data). Alternatively, there could be more com-
plex non-linear relations between the features describing the accreted
stars which are better modelled by the ANNs. Nevertheless, similarly
to what it was found for ARTEMIS, all these four models have a sim-
ilar classification performance. This is encouraging, as it suggests
that the models are able to extract the relevant relationships between
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Figure 12. Precision (𝑃) and recall (𝑅) at different classification thresholds
for the benchmark model, MLP, MLP+ galaxy features, TMP and XGBoost,
trained on stars from six Auriga galaxies. The metrics are evaluated consid-
ering all stars in galaxies Au6 and Au21.

the accreted and in-situ stars, regardless of the type of simulation
they were developed on. The benchmark model shows an improved
performance compared to the ARTEMIS analogue (PR-AUC score of
0.45 versus 0.36) suggesting a clearer chemical distinction between
accreted and in-situ stars in the Auriga galaxies. Nevertheless, the
benchmark model returns samples of the lowest purity compared to
the other models developed in Auriga, showing that, as for ARTEMIS,
the addition of kinematic and photometric information improves sig-
nificantly the classification.

The MLP, MLP+galaxy features and the TML models share a simi-
lar classification performance, with PR-AUC scores of 0.59, 0.60, and
0.62, respectively, while the XGBoost model shows a drop in perfor-
mance (0.53). These scores are similar to those found for ARTEMIS,
which are 0.59 (MLP), 0.55 (MLP+galaxy features), 0.57 (TML),
0.59 (XGBoost), respectively (see Section 4).

We perform an additional test, whereby the models developed on
the training dataset from ARTEMIS are applied on the Auriga test
dataset, and vice versa (purple lines and orange dots in Fig. 13,
respectively). This allows us to further investigate the robustness of
the models. We also compare the performance of criss-crossing the
simulations with the performance of using sets from the same type of
simulation (shown by orange lines for ARTEMIS models and purple
dots for the Auriga ones in Fig. 13).

Interestingly, when the models trained onAuriga are applied to the
test data from ARTEMIS, the classification performance drops drasti-
cally. The same is observed when the models trained on the ARTEMIS
data are applied to the Auriga test data. The lack of consistency in
the classification performance of the model can be explained in terms
of both data and model complexity.

Differences in the code, physical model, or the numerical resolu-
tion of the two simulations inevitably result in a domain shift between
the two datasets; consequently, the models trained and tested on dif-
ferent simulations show a drop in classification performance. Domain
adaptation techniques, such as described in Ćiprĳanović et al. (2020),
could be explored to develop models that can maintain a consistent
classification performance when applied across simulations or on

Figure 13. Comparison of the classification performance of models trained
on ARTEMIS and tested on Auriga, and vice versa (orange lines). Included
are also the performance of models trained and tested on data from the same
simulation (purple lines).

observational data. Models with a high level of complexity can be
affected by overfitting as they capture simulation-specific patterns
while learning the distinction between accreted and in-situ stars.
Combined with domain shift, overfitting leads to more drastic per-
formance drops. As shown in Fig. 13, this is the case of the XGBoost
model, which has sufficient complexity to extract external patterns
from the data, being effectively fine-tuned on the set of simulations
it is trained on. The MLP with galaxy features model also performs
better on the simulation it is trained on. This can be due to the galaxy-
specific properties may be affected by the different galaxy formation
models used in ARTEMIS and Auriga simulations. For the MLP and
TML methods, the models developed on ARTEMIS data have a better
out-of-sample classification performance then their Auriga coun-
terparts. Despite being similar in size, the ARTEMIS training dataset
comprises a larger number of assembly histories leading to a wider
variety of accreted star properties learned by the models.

Fig. 13 shows that the MLP model trained on ARTEMIS data is the
only model that maintains a consistent classification performance
across the two simulations. This is probably due to its simpler model
architecture, which makes it less sensitive to overfitting, as well as
to the larger sample of assembly histories in the ARTEMIS training
set (12 galaxies versus 4 in the Auriga set). Because of its more
consistent performance when applied to an entirely different set of
simulations, the MLP model is perhaps better suited to be applied on
entirely unseen data, such as observational data from the Milky Way.

6 CONCLUSIONS

In this study we have investigated the performance of different ML
models in separating accreted from in-situ stars in Milky Way-mass
galaxies, using data from the ARTEMIS simulations. We developed
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and compared models based on ANN and decision trees algorithms
and compared the performance of these models using the usual per-
formance metrics and other physically-motivated diagnostics.

The main conclusions of this study are as follows:

• We find that the optimal set of stellar features for the models
includes a combination of positions and kinematics (𝑅, 𝑧, 𝑣 𝜃 , 𝜎),
photometry (𝑀𝐺 , 𝐵𝑃 − 𝑅𝑃), and chemical abundances ([𝛼/Fe] and
[Fe/H]). A similar classification performance is found with a slightly
reduced set of features, including positions, kinematics and photom-
etry (Fig. 1).

• All ML models investigated here have good classification per-
formances (Fig. 3). Moreover, MLP, TML, and XGBoost perform
similarly well also in terms of the distribution of FPs and FNs in a
chemo-dynamical parameter space (Figs. 4 and 5). The majority of
mis-classified accreted stars are within a 5 kpc radius from the centres
of the test galaxies. However, the models perform reasonably well in
the regions dominated by in-situ stars (e.g., the disc), and typically,
the fractions of FPs and FNs are only a few percent. In the outer
regions of galaxies, the MLP, TML, and XGBoost models retrieve
more than 90% of the accreted stars with an accuracy close to 60%,
at the fiducial thresholds. These results are remarkable, given that
these models belong to different families of ML methods, suggesting
that the similar underlying patterns related to accreted and in-situ
stars are learned in all cases. Similar patterns are also retrieved by
the UMAP dimensionality reduction method (Figs. 10 and 11).

• Of all models investigated here, MLP is less sensitive to perfor-
mance drops due to domain shift related to the specificity of accretion
history of any given galaxy, and could be the preferred option to use
on observational data. However, developing an ML model that is able
to learn the galaxy-specific properties (namely, the accretion histories
of galaxies) remains a challenge. We have found that adding aver-
age galaxy properties, such as stellar masses or metallicities, to the
set of input features does not improve the classification performance
(specifically, the MLP+galaxy features model), and on the contrary,
it leads to overfitting (Fig. 3). Also, combining the predictions of
multiple models using ensemble learning (i.e., the TML model) does
not provide an improvement, and more complex domain adaptation
techniques may be needed to address this issue.

• As shown by the importance gain in the XGBoost model, the
parameters which provide the most accurate distinction between the
two populations are: the rotational velocity (𝑣 𝜃 ), the galactocentric
distance in the plane of the disc (𝑅), and the [Fe/H] abundance
(Fig. 6).

• The purity (𝑃) of the sample of accreted stars retrieved by the
models can be increased by adjusting the classification threshold
(Fig. 7), however this comes at the cost of completeness (𝑅). The
accreted stars identified more accurately by the models have chemo-
dynamical properties associated with late accretions, and are located
in the outer regions of galaxies. This suggests that adjusting the
classification threshold of ML models can also be used to identify
tidal streams in the outer halo.

• We also compared the performance of the ML models ver-
sus imposing common observational selection cuts (either in space,
kinematics or chemistry) to separate accreted stars from those formed
in-situ. We have found that ML models outperform in purity these
more traditional methods (Figs. 8 and 9). Therefore, ML models
may be applied directly on observational data without the need of
additional selection criteria. Thus, they may help in the search for
accreted substructures even in the regions dominated by the disc.

• Finally, we have tested the models on a different suite of cos-
mological simulations (namely, on Auriga), to evaluate their perfor-

mance on unseen data (Figs. 12 and 13). In general, we find that
the models perform similarly well on Auriga as on ARTEMIS, which
suggests that they may be also suitable to be applied on other types
of previously unseen data, for example, on observations. Of all the
models, XGBoost has the least performance on an unseen dataset,
possibly because it uses more detailed properties, which differ be-
tween the two sets of simulations. In contrast, the MLP appears to
be using more broadbrush properties that are relevant to the overall
trends between features. These results highlight the importance of
testing not only of different ML models, but of different training sets
as well.

Our study has shown that ML methods can efficiently separate
accreted from in-situ stars in galaxies like the Milky Way. These
methods perform optimally with a combination of kinematics and
chemical abundances, and can improve the detection of accreted
substructures in regions of the Galaxy that are highly dominated
by in-situ stars, and which have not been fully explored to date for
identifying substructure. A wealth of high precision data are already
available for millions of Milky Way stars, from both astrometric ob-
servations, e.g. with Gaia (Gaia Collaboration et al. 2018, 2023),
and spectroscopic measurements of chemical abundances, from sur-
veys such as APOGEE (Majewski et al. 2017), GALAH (De Silva
et al. 2015), LAMOST (Zhao et al. 2012), WEAVE (Dalton et al.
2014) or 4MOST (de Jong et al. 2019). ML methods such as the ones
developed here can be directly deployed on this combined, multi-
dimensional parameter space to help in the discovery of accreted
substructures.
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