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Abstract

Light dark matter with flavor-violating couplings to fermions may be copiously produced in the

laboratory as missing energy from decays of SM particles. Here we study the effective Lagrangian

of a light dark vector with generic dipole or vector couplings. We calculate the resulting two-body

decay rates of mesons, baryons and leptons as a function of the dark vector mass and show that

existing experimental limits probe UV scales as large as 1012 GeV. We also derive the general RGEs

in order to constrain the flavor-universal UV scenario, where all flavor violation arises radiatively

proportional to the CKM matrix.

1 Introduction

In recent years light new particles interacting very weakly with the Standard Model (SM) have gained

increased interest. The so far negative results on searches for heavy particles above the electroweak

scale at the LHC and high-intensity experiments have increased the interest in less explored scenarios,

with additional degrees of freedom beyond the SM with masses at sub-GeV scales. Such particles can

be motivated by dynamics addressing the Strong CP Problem (in case of the QCD axion) or the origin

of neutrino masses (in case of sterile neutrinos), but probably the main motivation is the possibility

that such light particles could be connected to the origin of particle dark matter (DM) [1].

In this context a popular scenario is the dark photon [2, 3], which is either itself DM or is the only

mediator (“Vector Portal”) between the SM and a hidden “dark sector”, which contains one or several

DM particles [4, 5], see Ref. [6] for a review. The term “dark photon” usually refers to a light vector

particle coupled to the SM only via kinetic mixing or dipole operators and that is often taken as the
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only new degree of freedom. Instead, the term Z ′
is typically reserved for the vast model space of

theories of gauged U(1)′ extensions of the SM, where also a complete Higgs sector for U(1)′ breaking
is explicitly present, besides additional matter needed for anomaly cancellation, see, e.g., Ref. [7]

for a classification. While the Z ′
vector boson is often taken to be heavy, with a mass much above

the electroweak (EW) scale, this particle can also be much lighter. The resulting coupling patterns

are often related to the underlying UV symmetries, see, e.g., Refs. [8–11], and can leave imprints in

low-energy phenomenology/anomalies in current data, e.g., in (g−2)µ [12] or in low-energy QCD [13].

Beyond perturbative models, light vector particles can also be in the spectrum of light resonances of

low-energy, dark strongly coupled sectors, see, e.g., Ref. [14]. To encompass all these cases, we employ

in the current work the term “light dark vector” (LDV), which is a massive vector boson with mass

much below the EW scale, and sufficiently suppressed couplings to SM particles such that it is stable

on collider scales. For the purpose of low-energy phenomenology we leave its UV origin unspecified.

While constraints on light particles have been extensively studied in the context of colliders, beam-

dump experiments, astrophysics, and cosmology, their phenomenology at precision flavor experiments

has so far received less attention (see Ref. [15, 16] for early studies). Even if flavor-violating couplings

may be considered more model-dependent than flavor-diagonal couplings, they can provide for

an efficient production of light invisible particles from decays of SM leptons, mesons or baryons.

Interestingly, direct searches at laboratory experiments for such two-body decays with missing energy

have the potential to probe enormously large scales, as the relevant Lagrangian interactions can be

dimension-five, instead of dimension-six as in the case of heavy New Physics. For example, in models

with sufficiently light invisible bosons like the QCD axion, precision flavor experiments are sensitive to

scales as large as 1012GeV fromK → π+invis. searches at NA62 [17], 1010GeV from µ→ e+invis.
searches at MEG-II [18, 19], Mu3e [20], Mu2e or COMET [21], and 108GeV for b→ d/s transitions at
Belle II [22].

1

The aim of the current work is to systematically study the flavor phenomenology of light dark

vector particles (LDVs), both in the quark and the lepton sectors. We restrict the discussion to invisible

particles, since after all the main (only) motivation for these particles is the observed DM abundance,

and we have in mind scenarios where either the LDV is itself stable on cosmological scales or promptly

decays to stable DM particles. This analysis includes scenarios where the LDVs are just sufficiently

long-lived to appear as missing energy. This is particularly justified for vector particles lighter than

the electron, as their decay into two photons is forbidden by the Landau–Yang theorem [26, 27]. As

we shall discuss, the resulting limits on flavor-violating interactions can be as strong as in the axion

case, which is not unexpected due to the Goldstone-boson equivalence theorem. In light of past and

ongoing experimental searches, it is thus important to systematically study the phenomenological

differences between light dark scalars and vectors originating from their distinct helicity and coupling

structure.

Earlier works have focused on the case of flavor-violating dipole couplings of a massless dark

photon in µ→ e and s→ d transitions [6, 28–32], or considered general interactions and masses, but

using only the available experimental limits on three-body decays to neutrinos to study limits from

s → d and b → s transitions [16]. Here instead we consider the case of a light vector particle with

generic mass and either dipole or minimal couplings to SM fermions. We work within the framework

of a general effective-field-theory (EFT) approach and consider all possible quark flavor-violating

transitions except those involving the top quark (where constraints are very weak), and all possible

lepton flavor-violating (LFV) transitions. We also discuss the decays of polarized leptons, which play an

important role in separating signal from SM background. We derive bounds in the general parameter

1

For the flavor phenomenology of the QCD axion and light invisible axion-like particles see Refs. [16, 18, 22–25].
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plane of light-vector mass and the appropriate flavor-changing coupling by comparing theoretical

predictions for the decay rates to the experimental bounds from various flavor factories, such as

NA62 [33, 34], BaBar [35, 36], CLEO [37], Belle II [38, 39], BES III [40], and TWIST [41]. Whenever not

available (as in the case of, e.g., B → K/K∗/π + invis. or D → π + invis. decays), we derive model-

independent limits on the two-body decay rate as a function of the invisible particle mass by recasting

experimental data on the three-body decay with two invisible neutrinos. Finally, we also discuss the

scenario where the light vector has only flavor-universal couplings to SM fermions in the UV, so that

all quark flavor-changing effects in the IR are induced radiatively by the Cabibbo–Kobayashi–Maskawa

(CKM) matrix, satisfying the paradigm of Minimal Flavor-Violation (MFV) [42, 43]. For this analysis

we derive the relevant renormalization-group equations (RGEs) for both dipole and minimal couplings,

and use our results to convert limits on the flavor-changing interactions into limits on flavor-diagonal

couplings.

This work is organized as follows. In Section 2 we define our basic setup by providing the effective

Lagrangian for dipole and minimal (vector) interactions of the LDV. The resulting phenomenology

is studied in the subsequent sections, separately for the quark (Section 3) and lepton (Section 4)

sectors, where we present our main results, the model-independent bounds on generic flavor-violating

LDV couplings as a functions of its mass. In Section 5 we use these constraints to derive bounds

on flavor-universal UV couplings with either dipole or vector interactions from RG-induced flavor

violation. We conclude in Section 6. Many technical details are deferred to appendices: Appendix C

contains the details and results of our recast of two-body flavor-violating decays with missing energy

for generic masses of the invisible particles (extending the analysis for a massless invisible particle in

Ref. [22]). Appendix D contains the bounds on flavor-violating couplings in the chiral L/R basis (as

opposed to the V/A basis in Section 3 and 4). The complete set of RGEs relevant for Section 5 is given in

Appendix B, and Appendix E contains the full expressions of two-body decay rates of mesons, baryons,

and polarized leptons, for a generic mass for the light vector. We have also collected the hadronic

matrix elements entering the numerical analysis in Appendix E.1. Finally, Appendix A contains a

discussion of the EFT description of flavor-violating vector couplings and their possible UV origin.

2 Setup

We extend the SM by a new, neutral, massive vector boson V ′
µ with a small massmV ′ , which arises

either by spontaneous symmetry breaking of, e.g., a U(1)′ gauge symmetry or by the Stueckelberg

mechanism [44–46]. Here we focus on the case where this mass is much below the electroweak scale,

and the light dark vector (LDV) is either stable on collider scales or decays into stable invisible particles.

The most general interactions of the LDV with the SM fermions can be parametrized using an

EFT approach, by considering the most general operators that respect the unbroken part of the SM

gauge group, SU(3)c×U(1)em. Here we focus on flavor-violating interactions written without loss of

generality in the fermion-mass basis. We can further assume that a possible kinetic mixing between the

photon and the LDV, i.e., ∝ ϵAµV ′
µ, has been diagonalized such that V ′

µ is also in the mass-eigenstate

basis. This diagonalization can be performed equally well for a massless V ′
µ (cf. Ref. [29]), and the

difference with respect to the massive case is merely that for massless vectors there remains an

unphysical ambiguity in the choice of “mass-eigenstate” basis, due to the presence of an unbroken

SO(2) symmetry of the free Lagrangian. Thus our setup applies equally well to the “massless dark

photon” considered in Ref. [29] in the limit ofmV ′ → 0.
Below the EW scale the lowest dimensional interactions of the LDV are described by two classes of

operators: dipole and vector interactions. Firstly, we consider flavor-violating, dimension-five dipole

3



interactions of the form

LD = −1

4
V ′
µνV

′µν +
m2
V ′

2
V ′
µV

′µ +
1

Λ
V ′
µν f iσ

µν
(
CD
ij + iCD5

ij γ5
)
fj , (2.1)

where V ′
µν = ∂µV

′
ν − ∂νV

′
µ is the LDV field strength, σµν = i

2 [γ
ν , γν ], and i ̸= j denote SM quark or

lepton flavors. Λ is the UV-completion scale of the associated dipole couplings CD
ij and CD5

ij , which

are hermitian matrices in flavor space,

(
CD
ij

)∗
= CD

ji and
(
CD5
ij

)∗
= CD5

ji .

Secondly, we consider flavor-violating couplings of the LDV to SM vector and axial-vector currents.

Naively these are dimension-four interactions below the EW scale. However, such flavor-violating

couplings violate U(1)′ gauge invariance (flavor-violating currents are not conserved), and thus must

be proportional to some power of the U(1)′-breaking order parameter, which we take as the vacuum

expectation value (VEV) in the dark sector. Therefore, the flavor-violating vector couplings are actually

dimension-five or higher, depending on the underlying UV model. In perturbative UV completions the

lowest possible scaling is proportional to a single power of the dark VEV, which upon including the dark

gauge coupling becomes the LDV massmV ′ . Normalizing by some UV scale Λ, the flavor-violating
vector interactions are

LV = −1

4
V ′
µνV

′µν +
m2
V ′

2
V ′
µV

′µ +
mV ′

Λ
V ′
µ f iγ

µ
(
CV
ij + CV5

ij γ5
)
fj , (2.2)

where again i ̸= j denote SM quark or lepton flavors and the vector couplings CV
ij and CV5

ij are

hermitian matrices in flavor space,

(
CV
ij

)∗
= CV

ji and
(
CV5
ij

)∗
= CV5

ji .

By choosing a scaling that is linear in mV ′/Λ, we ensure that the growth of amplitudes with

longitudinally polarized LDVs in initial and/or final states ∝ E/mV ′ as mV ′ → 0 is cancelled by

the mV ′ dependence in the interaction. This leads to finite amplitudes in the mV ′ → 0 limit (see

Refs. [16, 47–50] for related discussions), which are just the amplitudes with the corresponding

Goldstone bosons as initial/final states. An explicit example for a UV model that provides this linear

scaling is provided by Froggatt–Nielsen type models [51], discussed in Appendix A. However, the

linear scaling with mV ′ is only one possibility. For example, in UV models in which SM fermions

do not carry U(1)′ charges the scaling can be quadratic in the dark VEV, as the coefficients involve

additional powers of the U(1)′ breaking scale v′, ∝ mV ′v′/Λ2
. An explicit realization of this scenario

is also discussed in Appendix A.

The interactions in Eq. (2.1) and (2.2) can also be written in the chiral basis, which is more suited to

match explicit UV models. In this basis

LD =
1

Λ
V ′
µν f iσ

µν
(
CDL
ij PL + CDR

ij PR

)
fj ,

LV =
mV ′

Λ
V ′
µ f̄iγ

µ
(
CVL
ij PL + CVR

ij PR

)
fj ,

(2.3)

where CDL
ij = (CDR

ji )∗, CVL
ij = (CVL

ji )∗, CVR
ij = (CVR

ji )∗ and the relations between the “V/A” and the

“L/R” bases are

CD
ij =

1

2

(
CDL
ij + CDR

ij

)
=

1

2

((
CDR
ji

)∗
+ CDR

ij

)
, CV

ij =
1

2

(
CVL
ij + CVR

ij

)
, (2.4)

CD5
ij =

i

2

(
CDL
ij − CDR

ij

)
=
i

2

((
CDR
ji

)∗ − CDR
ij

)
, CV5

ij =
1

2

(
CVR
ij − CVL

ij

)
. (2.5)

Above the EW scale the operators must be expressed in a manifestly SU(2)L × U(1)Y invariant

manner. For LV this is directly the case after embedding the left- and right-handed fermions in the
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j i
P

V ′

P ′

CD,V
ij

j i
P

V ′

V

CD(5),V(5)
ij

j i

B

V ′

B′

CD(5),V(5)
ij

Figure 1: Illustrative Feynman diagrams with a flavor-violating qj → qi transition in two-body decays

of type P → P ′ + V ′
, P → V + V ′

, and B → B′ + V ′
, in the left, middle, and right panel,

respectively.

corresponding SU(2)L doublets and singlets, respectively. Instead, the dipole operators in LD require

an additional Higgs insertion, making them dimension-six operators

LD6 =
1

Λ2
6

V ′
µν

(
F iHC

D
ijσ

µνPRfj + h.c.

)
, (2.6)

with Fi and fj denoting here SU(2)L doublets and singlets, respectively, and H → H̃ , depending on

the fermion sector and the hypercharge conventions. The matching to LD is provided by identifying

Λ6 =
√
vΛ, where v = 174GeV is the Higgs VEV.

In the following we derive bounds on the flavor-violating couplings in Eq. (2.1) and (2.2) from

hadronic and leptonic decays with missing energy in the final state. This discussion is unaffected by

other possible interactions of the LDV with SM fields, in particular flavor-diagonal couplings, as long

as these couplings are sufficiently small to ensure that the LDV is invisible on collider scales.

For massive LDVs neither the flavor-violating dipole (Eq. (2.1)) nor the vector (Eq. (2.2)) interac-

tions are UV complete. The UV completion depends on the origin of the mass for the LDV and the

corresponding (highly model-dependent) radial mode required for the unitarity of the theory. In

turn this implies that unless the complete dark Higgs sector of the theory is specified, there exist

perturbative unitarity constraints on the couplings of the LDV, similar to the unitarity constraints from

WW →WW scattering in the Higgs-less SM. We briefly note that, as long as the flavor bounds are

applicable, i.e., LDV masses in the kinematically allowed region, unitarity of 2 → 2 scattering poses
constraints on the corresponding couplings that are weaker than those limits by order of magnitudes.

We thus refrain from elaborating upon these constraints in the current work. For the case of unitarity

bounds on massless fermions with flavor-diagonal couplings coupled to transversely polarized vectors

see, e.g., Ref. [52]. The more general case including massive fermions with flavor-violating couplings

to LDVs will be presented in Ref. [53].

3 Quark Phenomenology of Light Dark Vectors

In this section we derive bounds on the flavor-violating couplings CD(5)
ij in Eq. (2.1) and CV(5)

ij in

Eq. (2.2) for the quark-flavor transitions: s→ d, b→ s, b→ d, and c→ u. We employ the following

three types of two-body decays containing the LDV as an invisible final state
2

• P → P ′ + V ′
: pseudoscalar meson to pseudoscalar meson and LDV,

• P → V + V ′
: pseudoscalar meson to vector meson and LDV,

2

Three-body decays and neutral meson mixing typically give weaker constraints, e.g., for example LHCb constraints on

B(s) → µµa cannot compete with Belle II limits [54].
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• B → B′ + V ′
: baryon to baryon and LDV.

Figure 1 shows representative Feynman diagrams for the three types of decays.

Appendix E contains the analytical expressions for the corresponding decays rates (including the

dependence onm′
V ); the relevant form factors are collected in Appendix E.1. Comparing the decay

rates to the experimental upper limits on the branching ratios, we set upper bounds on the couplings in

theV/A basis
3
of Eq. (2.1) and Eq. (2.2), i.e. on the set {CD

ij , CD5
ij , CV

ij , CV5
ij }. The limits are determined

as a function of the LDV mass, with range 0 ≤ m2
V ′ ≤ (mI −mF)

2 ≡ m2
V ′

max
depending on the

masses of the initial,mI, and final,mF, states of the decay at hand. Crucially, the form factors depend

on the LDV mass and it is, therefore, essential to consider the full form-factor parametrization for an

accurate analysis.

The available theoretical and experimental information is summarized in Table 1, wherewe collect the

references for the form factors and relevant experimental limits. Often the experimental collaborations

do not provide limits on two-body decays with missing energy. Yet, in some cases there is enough

information to extract this bound from available data. We indicate this case by a subindex “r” in the

last column of the table, and either use existing recasts in the literature or perform our own recast,

e.g., to find a bound on B → π/K/K∗ + invis. from BaBar data on the corresponding three-body

decays [35, 36], see Appendix C for details.

Concretely we use our recast for B → K(∗) + invis. only for LDV masses above 3GeV. Note that

we can recast only the experimental results of the BaBar collaboration and cannot use the newer Belle

measurements, since the Belle collaboration does not provide the event count as a (binned) function

of the missing-momentum distribution. We use existing recasts for B → ρ + invis. decays from
LEP [55, 56], B → K + invis. decays from Belle II [39, 57] (this recast is limited to masses below

mV ′ = 3GeV), B → K∗ + invis. decays from BaBar [36, 57] (below mV ′ = 3GeV). For invisible

baryon decays for which there is no analysis, we derive limits using the total lifetime from the PDG [58]

after subtracting all observed channels as in Ref. [22].

For the bound based onD → π + invis. decays we use the result of Ref. [22] formV ′ ≈ 0, obtained
from recasting CLEO data on D → (τ → πν)ν [37]. We also perform a recast of these data for LDV

masses up tomV ′ ≈ 0.5GeV (which is the upper range of the CLEO data set), assuming the efficiency

in all bins to be the same as for mV ′ ≈ 0. Note that recasting BES III data [59] on D → πνν gives

weaker constraints [22], although this result does not use the full experimental information. It would be

interesting if BES III would provide an explicit two-body recast of their full data set. The collaboration

actually does this for the case of two-body hyperon decays Λc → p+ invis., albeit only for “massless”

invisible particles. Their signal region in fact covers invisible masses up to 316 MeV, and leads to

limits that are much stronger than the ones obtained by saturating the total Λc lifetime [22]. As a

conservative limit, to be replaced by a dedicated experimental analysis, we multiply their limit for the

massless case by a factor 1/2 (since close to the endpoint of the signal region half of the signal events

are lost due to energy resolution). We use the resulting bound BR(Λc → pV ′) < 1.6× 10−4
for LDV

masses up to 316 MeV, and take lifetime limits above 316 MeV. We notice that a search for the decay

D → π +X would not suffer from two-body SM backgrounds in contrast to hyperon decays, where

Λc → p+ γ contributes to the signal of a massless X , if the photon is missed.

To set constraints on the couplings {CD
ij , CD5

ij , CV
ij , CV5

ij } we consider dipole (LD) and vector

interactions (LV) separately, and turn on a single coupling at a time. We use the theory predictions in

Appendix E together with the form factors in Table 1 (see also Appendix E.1) to calculate the decay rates

as a function of the couplings and the LDVmass. The rates are then compared to the experimental limits

to obtain the bounds in the mass–coupling plane. We include statistical and systematic uncertainties as

3

In Appendix D we show the bounds in the L/R basis.
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Quark Transition Hadronic Process Form Factors Experimental Limit

s→ d

K+ → π+ + V ′
[60, 61] NA62 [17, 33, 34]

Σ+ → p+ V ′
[32, 62–64] BES III [65], Lifetimer[22, 58]

Ξ− → Σ− + V ′
[32, 62–64] Lifetimer[22, 58]

Ξ0 → Σ0 + V ′
[32, 62–64] Lifetimer[22, 58]

Ξ0 → Λ + V ′
[32, 62–64] Lifetimer[22, 58]

Λ → n+ V ′
[32, 62–64] Lifetimer[22, 58]

B+ → K+ + V ′
[66, 66] BaBarr [36], Belle IIr [39, 57]

b→ s B → K∗ + V ′
[66, 66] BaBarr [36, 57]

Λb → Λ + V ′
[67, 67] Lifetimer[22, 58]

B+ → π+ + V ′
[66, 68] BaBarr [35]

b→ d B → ρ+ V ′
[66, 66] LEPr [55, 56]

Λb → n+ V ′
[67, 69] Lifetimer [22, 58]

c→ u
D+ → π+ + V ′

[70, 71] CLEOr [22, 37]

Λc → p+ V ′
[72, 72] BES III [40], Lifetimer [22, 58]

Table 1: Overview of considered hadron decays with invisibles in the final state. The first column

shows the underlying quark-flavor transition, the second the specific hadronic process. The relevant

vector and dipole form factors are taken from the references in the third column. The last column

contains the references for the experimental upper limits on the respective branching ratios. A

subindex “r” indicates that a recast of experimental data was needed, see text and Appendix C for

details.

follows. For the theory predictions we only use the systematic uncertainties associated with hadronic

form factors (these are the most relevant ones), while the treatment of uncertainties of experimental

limits depend on their nature: for decays where the experimental collaborations provide two-body

interpretations (or a theory recast exists), we add the experimental and form-factor uncertainties in

quadrature. In the case where we performed our own two-body recast (as described in Appendix C) we

treat theory uncertainties as Gaussian uncertainties smearing the expectation values of the underlying

Poisson probability distribution functions.

Our results are summarized in Figures 2 and 3 in which we show the lower bounds on the effective

inverse coupling Λ/Cij for given LDV massmV ′ . The plots are organized according to the underlying

flavor transition, i.e, s → d, b → s, b → d, and c → u and we separate dipole {CD
ij , CD5

ij } (Figure 2)
and vector couplings {CV

ij , CV5
ij } (Figure 3). Each plot shows the bound on a single coupling for a

given quark-flavor transition, with each line corresponding to a particular hadronic decay, excluding

the region below. Note that P → P ′ + V ′
decays are only sensitive to {CD

ij and CV
ij} couplings, which

follows from parity conservation of the strong interactions and the Lorentz structure of the form

factors (see Appendix E.1). Also note that dipole operators are dimension-six above the electroweak

scale, so in fact the actual UV scale probed is Λ6 =
√
vΛ in all transitions.

3.1 Dark Dipole Interactions

s → d Transitions The bounds on the dipole couplings {CD
sd, CD5

sd } are set byK → π+ invis. and
hyperon decays, cf. Table 1 and Figure 2. For the two-body decayK → π + invis. we use the bound

7



provided by the NA62 collaboration [34]. For baryon decays there is an upper limit from BES III [65]

on the decay Σ+ → p+invis.with a massless invisible. We estimate the potential reach for this search

by extending it to larger invisible masses by assuming that the same experimental limit is valid for the

whole kinematic range. This is indicated by a dashed orange line. For all other baryon searches, we

set upper limits on branching ratios indirectly as in Ref. [22] by subtracting the measured branching

fractions for all relevant hyperon decay channels from unity. Due to this rather weak limit,K → π
sets a much more stringent constraint than hyperon decays, limiting the UV scale Λ/CD

ij to be at least

of the order 1011GeV. Note however that the search for Σ+ → p+ invis. strenghtens the upper limit

by two orders of magnitude compared to the conservative limit estimated with the total lifetime, and

thus, out of all baryon decays, it yields the strongest limit of order 107GeV on the scale Λ/CD
ij .

Nevertheless baryon decays with missing energy are important for two reasons. The decays to

pseudoscalar, such as K → π, are only sensitive to the {CD
ij , CV

ij} couplings. Thus baryon decays

are crucial to constrain the axial coupling Λ/CD5
ij (of the order of a few ×107GeV), as there are no

two-body decays to vector particles in s→ d transitions. Moreover, the decay rates of pseudoscalar

processes are proportional to the LDV mass for the dipole interaction LD (cf. Eq. (E.12)), and thus

only baryon decays can constrain CD
ij for small LDV masses. This can be see in Figure 2 (upper left

panel), where the bounds on CD
sd from hyperon decays dominate for LDV masses ofmV ′ ≈ 0 yielding

a limit of O(107GeV) on the axial coupling Λ/CD5
ij . This provides a strong motivation for explicit

direct searches targeting baryon decays with invisible final states.

b → s Transitions The limits on the dipole couplings {CD
bs,CD5

bs } are set by B-meson decays

B → K/K∗ + invis. and baryon decays Λb → Λ + invis. The limits from the B-meson decays are

obtained from our own recast of BaBar data (cf. Appendix C), except for B+ → K+ + invis. for LDV
masses mV ′ < 3GeV where we use the recast in Ref. [57] of the recent Belle II measurement of

B+ → K+νν [39]. We also use the recast in Ref. [57] of the BaBar measurement of B → K∗νν [36]

below LDV masses of 3 GeV. The limit on unobserved Λb decays such as Λb → Λ + invis. is obtained
by comparing the SM prediction for the total lifetime with the experimental one inferred from all

observed channels, ascribing the difference to the allowed value for the two-body invisible decay [22].

As for s→ d transitions, decays to pseudoscalar mesons such as B+ → K+
can neither constrain the

axial coupling CD5
bs , nor CD

bs for very small LDV masses. Otherwise, however, they do dominate over

the constraint from Λb → Λ.
In contrast to s→ d transitions, there is also a decay with vector mesons in the final-state,B → K∗

,

which constrains both the CD
bs and the CD5

bs couplings in the entire LDV mass range, if kinematically

allowed. Hence,B → K∗
decays are complementary toB → K decays in constraining Λ/CD

bs, setting

limits on the UV scale of the order 108GeV, and also dominate the bounds on Λ/CD5
bs of similar size,

up to a small region where this channel is kinematically closed and Λb → Λ decays set the strongest

limit, of the order 107GeV. Note that there is an upper limit of order 108GeV on Λ/CD
bs at around

mV ′ ≈ 2GeV coming from B → K + V ′
decays [57], due to a 2.8σ excess in the latest Belle II

measurement of B+ → K+νν [39].

b → d Transitions The bounds on the dipole couplings {CD
bd,CD5

bd } are obtained from B-meson

decays B → π/ρ+ invis. and baryon decays Λb → n+ invis. The limit on B → π decays is obtained

from our recast of BaBar data (cf. Appendix C), while a limit on B → ρ decays from LEP data [55]

has been derived in Ref. [56]. Analogously to b→ s transitions, the pseudoscalar decay B → π does

neither constrain the axial coupling CD5
bd nor CD

bd for small LDV masses, while the decay to vector

mesons B → ρ does. Thus the two meson decays are complementary in setting limits on Λ/CD
bd, of

8



the order of 108GeV, while B → ρ dominates the bounds on the limits on Λ/CD5
bd of similar size,

except for LDV masses above the kinematic threshold where Λb → n decays take over, constraining

UV scales up to 107GeV.

c → u Transitions Finally, the constraints on the dipole couplings {CD
cu,CD5

cu } are set by D →
π + invis. and the baryonic process Λc → p+ invis. For D → π and LDV massesmV ′ ≲ 0.5GeV,

we performed a recast of the CLEO data set (analogous to the B-decay recasts in Appendix C). The

result is shown as a solid, blue line in the bottom panel of Fig. 2. CLEO has only collected data up to

masses ofmV ′ ≈ 0.5GeV, but we also show the potential bound that could be obtained above this

mass by extrapolating the bound for massless invisible particles [22] to the whole kinematic range,

which we indicate by a dashed blue line.

For Λc → p we show two limits in the bottom panel of Fig. 2: solid, orange lines denote the

bound obtained from simply saturating the total Λc lifetime, i.e., BR(Λc → p+ V ′) < 1, while the
green line indicates the 95% CL bound obtained from the BES III [40] result for “massless” invisible

particles, BR(Λc → p + V ) < 8.0 × 10−5
at 90% CL, which in fact covers invisible masses up to

316MeV and are multiplied by a factor 1/2, see the discussion in the beginning of this section. We

estimate the potential reach for a search extending to larger invisible masses by assuming that the same

experimental limit below 316MeV is also valid above, and indicate this extrapolation by a dashed,

green line. We observe that the strongest limits on Λ/CD
cu are set by the BES III search for a “massless”

LDV in Λc → p decays, which are valid formV ′ ≲ 316MeV and are of the order of 107GeV. Between

316MeV ≲ mV ′ ≲ 500MeV a limit of similar size is obtained from D → π decays, recasting CLEO

data onD → (τ → πν)ν. The only available limit on LDV masses above 0.5GeV arises from the total

Λc lifetime, which sets limits of order 105GeV. Naively extrapolating the limits from CLEO onD → π
and BES III on Λc → p decays to higher LDV masses instead suggests that present bounds could be

strengthened by two orders of magnitude, if BES III would either analyze the available searches for

Λc → p decays with extended signal regions, or use available data on D → πνν to set a limit on the

two-body decay.

Currently only Λc → p decays are capable to set constraints on the axial coupling Λ/CD5
cu , of the

order of 105GeV and 107GeV for LDV masses above and below 316MeV, respectively. Besides

extending the search for Λc → p+ V ′
to higher LDV masses, this also motivates dedicated searches

for other processes such as D → ρ+ invis. or Ds → K∗ + invis. at current or future experiments.
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Figure 2: Lower limits on quark-flavor violating dipole couplings Λ/|CD
ij | (left column) and Λ/|CD5

ij |
(right column) of the LDV for s → d, b → s, b → d, c → u transitions @95% CL(s). See text for

details.
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3.2 Dark Vector Interactions

s → d Transitions The limits on the vector couplings {CV
sd, CV5

sd } are shown in Figure 3. As

for dipole couplings, the relevant constraints arise from K → π and hyperon decays, see Table 1.

Analogous to the dipole case, the limit from BES III on the decay Σ+ → p + invis. for a massless

invisible is tentatively assumed to be valid for the whole kinematic range. The limit on the scale is

indicated by a dashed orange line. K → π decays dominate the limits on Λ/CV
sd, restricting UV scales

up to 1012GeV, but cannot constrain the axial coupling Λ/CV5
sd , where hyperon decays set the only

available bounds of the order of 107GeV. All limits are non-vanishing when the LDV mass is taken

to zero, which is due to the choice of the prefactor in LV linear in the LDV mass, see Eq. (2.2). This

corresponds to the gauge-less limit where the longitudinal polarization of the LDV is essentially a

Goldstone boson. With this scaling the flavor-violating decay is similar to the SM decay t → Wb,
which also remains finite in the gauge-less g → 0 limit, since the top quark dominantly decays to

the charged Goldstone Higgs, which couples only via Yukawas to the quarks. Different choices for

the prefactor, corresponding to specific UV completions, would result in bounds that would vanish in

the limit of massless LDVs, with a LDV mass dependence that can obtained by rescaling the limits

presented here.

b → s Transitions The constraints on the vector couplings CV
bs, CV5

bs are obtained from B-meson

decays B → K/K∗ + invis. and the baryonic decays Λb → Λ + invis. B+ → K+
sets the strongest

constraint on Λ/CV
bs of the order of 10

8GeV, but cannot constrain the axial coupling Λ/CV5
bs . Here the

dominant constraints are set by B → K∗
decays, also of the order of 108GeV, apart from the region

where this channel is kinematically closed and Λb → Λ takes over and sets limits on the UV scales

up to 106GeV. Again there is an upper limit of order 1012GeV on Λ/CV
bs at aroundmV ′ ≈ 2GeV

coming from B → K + V ′
decays [57], due to a 2.8σ excess from the latest Belle II measurement of

B+ → K+νν [39].

b → d Transitions The bounds on the vector couplings CV
bd, CV5

bd arise from B-meson decays

B → π/ρ+invis. and the baryonic decays Λb → n+invis.. Analogously to b→ s transitionsB → π
decay sets the strongest constraint on Λ/CV

bd of the order of 10
8GeV, while Λ/CV5

bd is limited to about

the same values byB → ρ decays, up to LDV masses at the kinematic threshold where Λb → n decays

dominate the bound of order 106GeV.

c → u Transitions Finally, the bounds on the vector couplings CV
cu, CV5

cu are set by the decays

D → π + invis. and Λc → p+ invis.Meson decays D → π dominate the bound on Λ/CV
cu of order

108GeV, while only baryon decays Λc → p can constrain the axial coupling Λ/CV5
cu at order 105

and 107GeV, using the total lifetime and the extrapolation of the BES III measurement, respectively,

analogous to the dipole case. Again, it would be interesting if BES III could extend their search for

Λc → p+ V ′
to higher invisible masses, as this is expected to strengthen the present bound on the UV

scale by two orders of magnitude.

11



0.00 0.05 0.10 0.15 0.20 0.25
1

10

10
2

10
3

10
4

10
5

10
6

0.00 0.05 0.10 0.15 0.20 0.25 0.30

1

10

10
2

0 1 2 3 4 5
1

10

10
2

10
3

0 1 2 3 4 5
1

10

10
2

0 1 2 3 4 5
1

10

10
2

0 1 2 3 4 5
1

10

10
2

0.0 0.5 1.0 1.5 2.0

10
-1

1

10

10
2

0.0 0.5 1.0 1.5 2.0

10
-1

1

10

10
2

Figure 3: Lower limits on quark-flavor violating vector couplings Λ/|CV
ij | (left column) and Λ/|CV5

ij |
(right column) of the LDV for s → d, b → s, b → d, c → u transitions @95% CL(s). See text for

details.
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LFV Transition Experimental Limit

µ→ e TWIST [41], Jodidior [18, 73]

τ → e Belle II [38]

τ → µ Belle II [38]

Table 2: The LFV transitions relevant for the two-body decays ℓ→ ℓ′ + V ′
and the corresponding

relevant experimental measurements. The subindex “r” indicates that a recast of experimental data

was needed.

4 Lepton Phenomenology of Light Dark Vectors

In this section we present the bounds on the flavor-violating couplings in Eq. (2.1) and (2.2) from LFV

decays ℓ → ℓ′ + V ′
for lepton-flavor transitions µ → e, τ → e, and τ → µ. There are three main

differences to the quark-sector analysis: i) there is no hadronic input required, ii) the total decay rates

only depend on the combination |CD
ij |2 + |CD5

ij |2 and |CV
ij |2 + |CV5

ij |2, and iii) for the case of µ→ e
transitions one can profit from polarization in order to suppress SM background from Michel decays.

This allows us to distinguish between CV
ij and CV5

ij using the angular distribution of the outgoing

electron.

Concretely, for µ→ e we restrict the discussion to three benchmark scenarios, depending on the

angular dependence of the differential two-body LFV decay rate in the limit ofme = mV ′ = 0

dΓ(µ→ e+ V ′)

d cos θ
∝ (1 +A cos θ) , (4.1)

where θ is the angle between the outgoing electron momentum and the muon polarization. We

distinguish three benchmark cases: isotropic decays (A = 0), “V−A” structure A = −1, and “V+A”

structure A = +1. Clearly polarization does not help to distinguish an LFV signal from the SM

background for the SM case A = −1. Thus one can only rely on the monochromatic electron as the

signal, which leads to weaker bounds than in the other cases A = 0,+1 [18]. Interestingly, many

proposals have been put forward to look for this decay at present and future high-luminosity muon

facilities [18–21], which are sensitive also to invisible LDVs. We take present constraints on LFV

transitions from the references indicated in Table 2, and compare them to the predictions for (polarized)

lepton decay rates calculated in Appendix E.5.

µ → e Transitions The bounds from µ → e + invis. decays on dipole and vector couplings are

shown in Fig. 4. We derive them employing constraints from experiments conducted at TRIUMF, both

by the TWIST collaboration [41] in 2015 (left panel) and Jodidio et al. [73] in 1986 (right panel). For

the latter, we use the recast of Ref. [18]. The three curves in Fig. 4 show the bounds for the three

benchmark scenarios for chiral structures, corresponding to CD
eµ = 0 or CD5

eµ = 0 for A = 0, and

CD
eµ = ±iCD5

eµ for A ≈ ±1 in the upper panel, while in the lower panel they correspond to CV
eµ = 0

or CV5
eµ = 0 for A = 0, and CV

eµ = ±CV5
eµ for A ≈ ±1. For couplings that are not aligned to the SM,

i.e., not “V −A”, the dominant constraints on LDVs lighter than about 5 MeV are set by the Jodidio

experiment, which limits UV scales of the order of 1010GeV. Heavier LDVs are constrained only by

TWIST, setting limits of the order of few ×109GeV. LDVs with “V −A” couplings are constrained
by TWIST with bounds of the same order, exceeding the corresponding Jodidio limits also in the

light-mass regime.
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Figure 4: Upper panel: Lower limits on the dipole coupling for µ → e transitions Λ/|CD
eµ| from

TWIST [41] (left panel) and Jodidio et al. [18, 73] (right panel). The bounds are shown for three

different choices forCD5
eµ , corresponding to different angular distributions of the electron momentum,

cf. Eq. (4.1): isotropic decay (A = 0), alignment to SM decay “V−A” (A = −1) and “V+A” (A = +1).
Lower panel: same for the vector coupling Λ/|CV

eµ|. See text for details.

τ → µ/e Transitions The limits from Belle II on τ → µ/e+ invis. decays constrain τ → e and
τ → µ transitions according to Fig. 5, where we shows the bounds on the dipole Λ/CD

τℓ (left panel)

and vector couplings Λ/CV
τℓ (right panel). Constraints on the axial couplings Λ/CD5

τℓ and Λ/CV5
τℓ are

at the same level, as the difference is suppressed by mℓ/mτ , cf. Appendix E.5. Bounds for τ → e
and τ → µ transitions are comparable, limiting UV scales of the order of few ×107GeV for dipole

couplings, and few ×106GeV for vector couplings.

5 Flavor-violating LDVs from the Renormalization Group

In this section we study the phenomenologically interesting scenario in which LDV interactions with

the SM are flavor-universal in the UV theory, so that flavor-violating couplings are generated only

from the SM flavor violation via the renomalization-group evolution. We start right below the UV scale

Λ—taken to be much above the electroweak scale—and consider SU(2)L × U(1)Y invariant vector

and dipole interactions of the V ′
to the SM. For vector couplings see the trivial SU(2)L × U(1)Y

generalization of Eq. (2.3) and for dipole couplings see Eq. (2.6). We align possible new sources of

flavor-violation of the V ′
with the flavor violation in the SM by taking the vector couplings to be flavor-

universal, i.e., proportional to the identity matrix in flavor space, and by taking the dipole couplings to

be proportional to the SM Yukawas. In both cases they are flavor diagonal in the mass basis, such that

flavor-changing interactions with the V ′
are only induced by the renormalization-group evolution to
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Figure 5: Upper panel: Lower limits on the dipole (left panel) and vector (right panel) couplings for

τ → e transitions Λ/|CD
τe|, Λ/|CV

τe| from Belle II [38]. Lower panel: same for τ → µ transitions

Λ/|CD
τµ|, Λ/|CV

τµ|. Constraints on the axial couplings Λ/|CD5
τℓ | and Λ/|CV5

τℓ | are essentially of the

same size, as the difference is suppressed bymℓ/mτ , cf. Appendix E.5.

the EW scale and always proportional to the CKM matrix. Flavor-violating couplings in the IR thus

follow the paradigm of minimal flavor violation (MFV) [42].

We do not explicitly consider kinetic mixing between the U(1)′ LDV and the U(1)Y boson, as it

leads only to a shift in the flavor-universal LDV couplings after diagonalising the photon kinetic terms.

By working in this basis, our results also apply to models with kinetic mixing, upon re-defining the

flavor-universal couplings.

We discuss separately the case of dipole and vector couplings in Section 5.1 and 5.2, respectively.

5.1 Dipole interactions

In the interaction basis, the dipole interactions of the LDV with SM fermions are given by (cf. Eq. (2.6))

Lint ⊃ −
(
QYuH̃uR +QYdHdR + h.c.

)
+

1

Λ2
6

V ′
µν

(
QCD

u σ
µνH̃uR +QCD

d σ
µνHdR + h.c.

)
,

(5.1)

with the SM Yukawa matrices Yf , f = u, d, and arbitrary 3 × 3 matrices CD
f . The one-loop RG

equations for the couplings CD
f and the Yukawa matrices Yf are listed in Appendix B. For the UV

universal setup that we consider, the initial conditions at the UV scale Λ6 are

CD
d

∣∣
µ=Λ6

= cDd Yd
∣∣
µ=Λ6

, CD
u

∣∣
µ=Λ6

= cDu Yu
∣∣
µ=Λ6

, (5.2)
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i− j 2− 1 1− 2 2− 3 3− 2 1− 3 3− 1

(CDR
u )i ̸=j/Λ λ5y2byc λ5y2byc λ2y2byt λ2y2byt λ3y2byt λ3y2byt

(CDR
d )i ̸=j/Λ λ5y2t ys λ5y2t ys λ2y2t yb λ2y2t yb λ3y2t yb λ3y2t yb

Table 3: Parametric size of leading flavor-violating contributions at low-energy in the UV universal

scenario for dipole couplings, cf. Eq. (5.3). Here λ ≈ 0.23 denotes the Wolfenstein parameter and

yf = mf/v are SM Yukawas couplings. Up-quark transitions (first line) are proportional to the

high-scale coupling cDd , down-quark transitions (second line) are proportional to the high-scale

coupling cDu , and all entries are multiplied by v/Λ2
6 log(Λ6/µ)/(16π

2).

with cDf ∈ C. By solving the RGE at leading-logarithmic accuracy and subsequently rotating to the

mass basis for the quarks we find the low-energy dipole couplings in the L/R notation of Eq. (2.3)

with f = u, d to be
4

1

Λ
CDR
u (µ) =

v

Λ2
6

(
cDu Ŷu −

1

16π2

(
3cDu ŶuŶ

†
u Ŷu − cDd VCKMŶdŶ

†
d V

†
CKM

Ŷu

)
log(Λ6/µ)

)
,

1

Λ
CDR
d (µ) =

v

Λ2
6

(
cDd Ŷd −

1

16π2

(
3cDd ŶdŶ

†
d Ŷd − cDu V

†
CKM

ŶuŶ
†
uVCKMŶd

)
log(Λ6/µ)

)
,

(5.3)

where VCKM is the CKM matrix, and Ŷf = mf/v are the diagonal SM Yukawas. The left-handed

couplings CDL
f are related to the ones in Eq. (5.3) by hermitian conjugation, CDL

f = (CDR
f )†. Note that

indeed flavor off-diagonal entries are generated in both the up- and the down-quark sector at one-loop.

They are proportional to the CKM matrix and the UV coupling of the other sector, i.e., CDR
u ∝ cDd

and CDR
d ∝ cDu . Carrying out the matrix multiplications, one can identify the numerically leading

contribution to a given flavor transition. We show these leading contributions in Table 3 for both

sectors.

Using these results, we determine the experimental limits on the high-scale couplings cDd and

cDu in Eq. (5.2) from the limits on two-body meson decays discussed in Section 3. Note that the

renormalization scale µ is set to the EW scale since below there is no Yukawa running.

As expected from the high-level of flavor suppression inherent to the setup, the resulting bounds are

very mild and often weaker than the constraints from perturbative unitarity. For this reason we only

display in Fig. 6 (left panel) the strongest bounds, which come from B → K∗
and require Λ6 ∼ TeV

for cDu = 1 (for cDd = 1 the limit on Λ6 is far below the electroweak scale and is therefore not shown).

5.2 Vector interaction

In the interaction basis, the vector interactions of the LDV with the SM fermions are given by (cf.

Eq. (2.3))

Lint ⊃ −
(
QYuH̃uR +QYdHdR + h.c.

)
+ V ′

µ

(
QCV

Qγ
µQ+ uRC

V
u γ

µuR + dRC
V
d γ

µdR
)
, (5.4)

with SM Yukawa matrices Yf , f = u, d, and arbitrary hermitian 3× 3 matrices CV
X with X = Q, u, d.

The one-loop RG equations for the couplings CV
X and the Yukawa matrices Yf are listed in Appendix B.

4

Since the couplings at the UV scale Λ6 are aligned to the SM Yukawa matrices, a correction from the Yukawa RGE, given

in Appendix B, must be included.
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Figure 6: Lower limits on the UV scale in the UV universal scenario for dipole (left panel) and vector

couplings (right panel), only showing the strongest constraints. See text for details.

For the UV universal setup that we consider in this section, the boundary conditions at the UV scale Λ
are

CV
Q(Λ) = cVQ 13 , CV

u (Λ) = cVu 13 , CV
d (Λ) = cVd 13 . (5.5)

with cVX real numbers.

By solving the RGE at leading-logarithmic accuracy and subsequently rotating to the mass basis for

the quarks, we find the low-energy vector couplings in the L/R notation of Eq. (2.3) to be(mV ′

Λ

)
CVL
u (µ) = cVQ13 −

1

16π2

((
cVQ − cVu

)
ŶuŶ

†
u +

(
cVQ − cVd

)
VCKMŶdŶ

†
d V

†
CKM

)
log(Λ/µ) ,(mV ′

Λ

)
CVL
d (µ) = cVQ13 −

1

16π2

((
cVQ − cVu

)
V †
CKM

ŶuŶ
†
uVCKM +

(
cVQ − cVd

)
ŶdŶ

†
d

)
log(Λ/µ) ,(mV ′

Λ

)
CVR
u (µ) = cVu 13 −

1

8π2
(
cVu − cVQ

)
Ŷ †
u Ŷu log(Λ/µ) ,(mV ′

Λ

)
CVR
d (µ) = cVd 13 −

1

8π2
(
cVd − cVQ

)
Ŷ †
d Ŷd log(Λ/µ) , (5.6)

where VCKM is the CKM matrix and Ŷf = mf/v, f = u, d are the diagonal SM Yukawas. Note that the

couplings of right-handed interactions CVR
u ,CVR

d are always flavor diagonal, while flavor-violating

terms in the IR are induced in the left-handed interactions CVL
u , CVL

d proportionally to cVQ − cVu
and cVQ − cVd . Therefore, if the UV couplings are also universal among the different sectors, i.e.,

cVQ = cVu = cVd , there is no flavor violation in the IR at one-loop, as in this case the LDV actually

couples to the baryon-number current, which is conserved at tree-level inducing flavor violation only

at two-loop [74].

We now discuss this fact in more detail, before turning to the limits. One can rewrite the interactions

in Eq. (5.4) for the case of flavor-universal UV boundary conditions in Eq. (5.5) in terms of the tree-level

conserved (but anomalous) U(1)B current JµB =
∑

i

(
Q̄iγ

µQi + ūRiγ
µuRi + d̄Riγ

µdRi
)
, and the

two non-conserved currents JµNd =
∑

i d̄Riγ
µdRi, and J

µ
Nu =

∑
i ūRiγ

µuRi. As all currents are not
conserved beyond tree-level, we take their coefficients to be proportional to the LDV mass

Lint ⊃ −
(
QYuH̃uR +QYdHdR + h.c.

)
+
mV ′

Λ
V ′
µ

[
CV
BJ

µ
B + CV

NdJ
µ
Nd + CV

NuJ
µ
Nu

]
, (5.7)

Matching to Eqs. (5.4) and (5.5) gives

mV ′

Λ
cVB = cVQ ,

mV ′

Λ
cVNd = cVd − cVQ ,

mV ′

Λ
cVNu = cVu − cVQ . (5.8)
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i− j 2− 1 3− 2 3− 1

(CVL
u )i ̸=j λ5y2t λ2y2t λ3y2t

(CVL
d )i ̸=j λ5y2b λ2y2b λ3y2b

Table 4: Parametric size of leading flavor-violating contributions to the low-energy vector couplings

of V ′
in the UV universal scenario, cf. Eq. (5.6). Here λ ≈ 0.23 denotes the Wolfenstein parameter.

Up-quark transitions (first line) are proportional to the high-scale coupling cVu − cVQ = cVNu, down-

quark transitions (second line) are proportional to the high-scale coupling cVd − cVQ = cVNd, and all

entries are multiplied by log(Λ/µ)/(16π2).

At the one-loop level there is no flavor violation proportional to CV
B . However, flavor violation does

arises due to the non-conserved currents and is thus proportional to the difference of couplings cVQ−cVu
and cVQ − cVd . Rewriting Eq. (5.6) in terms of the UV coefficients cVB, c

V
Nd, c

V
Nu with the proper LDV

mass scaling gives finally(mV ′

Λ

)
CVL
u (µ) =

mV ′

Λ

[
cVB13 +

1

16π2

(
cVNuŶuŶ

†
u + cVNdVCKMŶdŶ

†
d V

†
CKM

)
log(Λ/µ)

]
,(mV ′

Λ

)
CVL
d (µ) =

mV ′

Λ

[
cVB13 +

1

16π2

(
cVNuV

†
CKM

ŶuŶ
†
uVCKM + cVNdŶdŶ

†
d

)
log(Λ/µ)

]
,(mV ′

Λ

)
CVR
u (µ) =

mV ′

Λ

[(
cVB + cVNu

)
13 −

1

8π2
cVNuŶ

†
u Ŷu log(Λ/µ)

]
,(mV ′

Λ

)
CVR
d (µ) =

mV ′

Λ

[(
cVB + cVNd

)
13 −

1

8π2
cVNdŶ

†
d Ŷd log(Λ/µ)

]
, (5.9)

The numerically leading contributions to a given (hermitian) flavor transition in left-handed interac-

tions are shown in Table 4 for both sectors. We display the resulting bounds on Λ in the right panel of

Fig. 6 for cVNu = 1 (there is no constraint from cVNd at one-loop), which are of order Λ ≥ 103TeV for

K → π transitions. These limits are weakened by about an order of magnitude for LDV masses above

mK −mπ , where the dominant constraint comes from B → K transitions. In dashed green, we also

show the limits coming from the flavor-violating contribution that is induced at the two-loop level by

the coupling of the LDV to the anomalous baryon current JµB . The corresponding limit on the scale Λ
has been obtained by rescaling the result forK → π of Fig. (1) from Ref. [74], giving Λ ≥ 3.5TeV for

cVB = 1 and cVNu = cVNd = 0. This is about three orders of magnitude weaker than the limit one obtains

if the LDV also couples to currents that are not conserved at tree-level, i.e., taking cVNu = cVNd = 1.

6 Summary and Conclusions

In this work we have systematically studied the flavor phenomenology of light dark vectors (LDVs).

We have restricted our analysis to scenarios where the LDV is directly linked to dark matter, and is

either itself invisible or promptly decays to invisible particles, such that the LDV appears as missing

energy. Working in the context of a general EFT, we have considered both flavor-violating dipole

(see Eq. (2.1)) and vector couplings (see Eq. (2.2)) of the LDV to SM fermions. We have calculated the

resulting predictions for the decay rates of mesons, baryons, and polarized leptons as a function of

the LDV mass, see Section E. These predictions were compared to the experimental limits on various

hadronic processes (Table 1) and LFV transitions (Table 2). For B → π/K/K∗
decays experimental
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limits from B-factories are only available for three-body decays with two invisible neutrinos, so we

have recasted available data to obtain bounds on the two-body decay with missing energy as a function

of the LDV mass, see Fig. 7. The resulting limits on general vector and dipole interactions of the

LDV are summarized in Figs. 2 and 3 for the quark sector, and in Fig. 4 and 5 for the lepton sector.

Vector couplings are at least dimension-five operators, which results in very stringent limits on the

UV scale, reaching up to 1012GeV inK → π decays, 108GeV in B- and D-meson decays, 109GeV
in µ→ e decays, and 107GeV in τ → µ/e decays. Bounds on dipole couplings are weaker, if viewed

as dimension-six operators above the EW scale, but they still probe UV scales of order 106GeV in

K → π and µ → e decays. Importantly, all channels will be improved by present or near-future

experiments, such as NA62, Belle II, BES III, MEG-II or Mu3e. We have also discussed a scenario where

couplings in the UV are flavor-universal, so that quark-flavor violation is only induced radiatively

through the CKM matrix. For this analysis we derived the relevant renormalization-group equations

(RGEs) for both dipole and minimal couplings in Appendix B, and used our previous results to convert

limits on flavor-changing interactions into limits on flavor-diagonal couplings, see Figure. 6.

To summarize, the aim of this work is to stress the importance of flavor-violating transitions for

light, dark-matter searches, which is copiously produced in the lab as missing energy in decays of SM

particles. Here we focused on the LDV as part of a dark sector, and showed that present constraints

from precision flavor experiments already probe UV scales as large as 1012GeV. This underlines the

important role of present and next-generation flavor factories in hunting down dark matter in the

laboratory.
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A UV Motivation of Vector Couplings

In this section we motivate the scaling behavior of the flavor-violating vector coupling in the La-

grangian of Eq. (2.2), both by EFT considerations and explicit UV-complete models. In perturbative UV

completions, the scaling is at least linear in the dark U(1)′ breaking scale, and we will provide two

example scenarios: one that gives linear and one that gives quadratic scaling. We begin with the EFT

discussion of the latter.

A.1 EFT Discussion forQuadratic scaling

For the EFT approach it is convenient to consider the coupling to the Goldstone boson G in the gauge-

less limit, rather than the coupling of the dark vector V ′
µ itself. They are related by the Goldstone-boson

Equivalence Theorem, which states that at sufficiently high energies, or equivalently sufficiently small

dark vector massesm′
V , the vector boson coupling is dominated by its longitudinal polarization, which

in the small m′
V limit becomes the Goldstone boson. Thus one can work out the couplings of the

Goldstone boson and recover the relevant vector-boson couplings by replacing ∂µG→ −mV ′V ′
µ in

the interaction Lagrangian.
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We, therefore, consider the case where the dark U(1)′ gauge group is spontaneously broken by

some (SM singlet) scalar field S with charge +1 under the U(1)′. We take the gauge-less limit, so that

G is a true Goldstone boson, contained in S according to

S =
v′√
2
exp
(
iG/v′

)
, (A.1)

where v′/
√
2 is the (real) VEV that breaksU(1)′, connected to the dark vector mass bymV ′ = g′v′, and

we have ignored the radial mode that obtains its mass around v′. This mode, together with all UV fields

are taken to be much heavier than the electroweak scale, so that in the IR there is only the SM and the

Goldstone boson G ⊃ S, which is formally invariant under global U(1)′ transformations treating S as

a spurion with charge +1. Note that one can always realize such a scenario by making g′ sufficiently

small. Writing down the general EFT for this setup, it is clear that if SM fields are not charged under

U(1)′, the possible couplings of the Goldstone to SM fields must involve the same powers of S†

and S. The first such bilinear that gives a non-trivial combination containing the Goldstone is then

S†
↔
∂ µS ⊃ iv′∂µG. This implies that, e.g., right-handed down quarks can only couple to the Goldstone

at the level of dimension-six operators only

L EFT

quadratic
⊃ cij

Λ2
(iS†↔∂ µS)

(
dRiγ

µdRj
)
= −cij

Λ2
v′∂µG

(
dRiγ

µdRj
)
, (A.2)

where Λ is the UV scale and in general there is flavor violation in the (hermitian) EFT coefficients,

ci ̸=j ̸= 0. The coupling of the dark vector in this setup is then recovered by ∂µG→ −mV ′V ′
µ, so is

given by

L EFT

quadratic
⊃ cij

v′m′
V

Λ2
V ′
µ

(
dRiγ

µdRj
)
. (A.3)

This analysis demonstrates that the interactions of dark vectors with SM fields that are neutral under

the U(1)′ scale at least asm′
V /Λ× v′/Λ. In particular they involve an additional factor of the U(1)′

breaking scale as compared to Eq. (2.2). Below we will confirm this expectation in an explicit UV

model, see Section A.3.

A.2 EFT Discussion for Linear scaling

In order to have dark-vector couplings with a linear scaling in the U(1)′ breaking scale, one necessarily
has to charge SM fields under U(1)′. In this case the vector boson couples directly to the charged fields

via the dimension-four operator, e.g., for right-handed down quarks

Llinear ⊃ g′V ′
µ

(
dRγ

µXddR
)
. (A.4)

where Xd is the diagonal U(1)′ charge matrix. To see how off-diagonal entries are generated, one

has to rotate to the mass basis, which is governed by the Yukawa couplings. It is clear that there is

no flavor violation if Xd is universal, i.e., proportional to the identity matrix. If instead charges are

non-universal, the mass matrix cannot be generic at the renormalizable level, i.e., it does not yield

realistic fermion masses without breakingU(1)′. Therefore, insertions of S or S†
have to be considered

to obtain realistic fermion masses.

Restricting for simplicity to two generations, and charging only dR1 with charge +1, i.e., Xd =
Diag(1, 0),XQ = XH = 0, the full Yukawa matrix requires higher-dimensional operators to have full

rank

LEFT

linear
⊃ −yiQiHdR2 − zi

S†

Λ
QiHdR1 + h.c. (A.5)
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Thus the down-quark Yukawa matrix is given by

Yd =

(
z1ϵ y1
z2ϵ y2

)
with ϵ =

v′√
2Λ

(A.6)

We can ignore here the Goldstone in S, since we already have the coupling of the gauge field in Eq. (A.4),
which leads to flavor-violating couplings with V ′

after rotating to the mass basis. Nevertheless we can

also reproduce this coupling with the same arguments as above: in the gauge-less limit, we rescale

dR1 → dR1e
iG/v′

, which removesG from the Yukawa sectors. Ignoring chiral anomalies, this rescaling

only affects the kinetic terms, as it is a local U(1)′ transformation

L EFT

linear
⊃ idR1/∂dR1 → −∂µG

v′
dR1γ

µdR1 , (A.7)

which reproduces Eq. (A.4) upon ∂µG→ −mV ′Vµ = −g′v′Vµ.
We are left to diagonalize the Yukawa matrix Yd in Eq. (A.6), or rather Y †

d Yd, in order to find the

mixing matrix Vd of right-handed down quarks, defined as V †
QYdVd = Y diag

d . In the limit when ϵ≪ 1,
one has

Vd ≈
(

1 z2/y2ϵ
−z2/y2ϵ 1

)
, (A.8)

where we have set y1 = 0 without loss of generality. Rotating the dark-vector couplings in Eq. (A.4)

to the mass basis defined by dR → VddR gives finally

Llinear ⊃ g′V ′
µ

(
dRγ

µV †
dXdVddR

)
= g′V ′

µ(V
∗
d )1i(Vd)1j

(
dRiγ

µdRj
)
, (A.9)

so that indeed off-diagonal couplings are generated proportional to g′(V ∗
d )11(Vd)12 ∼ g′ϵ ∼ m′

V /Λ.
To summarize, we have demonstrated that vector interactions of dark vectors can indeed be pro-

portional to a single power of the U(1)′ breaking, and thus scale with the dark-vector mass as in

Eq. (A.4), if SM fermions have non-universal U(1)′ charges. This situation is quite generic in models

where SM Yukawa hierarchies are explained by non-anomalous abelian flavor symmetries, for example

simple U(1)F Froggatt-Nielsen models [51], see e.g. Refs. [7] for examples of such models without

extra heavy fermions to cancel anomalies. It is well-known how to build UV completions for such

models [75, 76], and below in Section A.4 we will present an illustrative example.

A.3 Explicit UV Model forQuadratic scaling

We first construct an explicit renormalizable model for the scaling of vector interactions in Eq. (2.2)

quadratic in the dark U(1)′ breaking scale. We restrict the discussion for simplicity to the down-quark

sector with two generations. The field content is summarized in Table 5, and is clearly anomaly-free.

Qi dRi H S ψLi ψRi

SU(2)L 2 1 2 1 1 1

U(1)Y 1/6 −1/3 1/2 0 −1/3 −1/3

U(1)′ 0 0 0 1 −1 −1

Table 5: Field content of a renormalizable model featuring quadratic scaling. We restrict the discussion

to the down-quark sector with two generations for SM quarks and heavy vector-like fermions ψLi,

ψRi, with i = 1, 2 carrying U(1)′ charges in addition to the scalar S.
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The Lagrangian reads

L = Lkinetic + LYukawa + Lscalar + L
int-V ′ , (A.10)

with standard kinetic terms for all fields and

LYukawa = −Y d
ijQiHdRj −mψψLiψRi − αijψLidRjS

† + h.c. (A.11)

L
int-V ′ = −g′V ′

µ

(
ψLiγ

µψLi + ψRiγ
µψRi

)
, (A.12)

Lscalar = m2
H |H|2 +m2

S |S|2 − λH |H|4 − λS |S|4 − λHS |H|2|S|2 . (A.13)

For a suitable choice of parameters, the last part in Lscalar gives a vacuum expectation value to S,
⟨S⟩ = v′/

√
2, which sets the mass of the dark vector boson to

mV ′ = v′g′ , (A.14)

and induces a mixing between chiral quarks, dR, and vector-like fermions, ψ, from the mixing term

in LYukawa. In the limit of mψ ≫ v′ ≫ v we can integrate out the vector-like fermions using their

equations of motion neglecting their kinetic terms

ψRi = −αij
mψ

dRjS
† , ψLi = 0 . (A.15)

Plugging this back into kinetic terms and Lint lead to the EFT

Lint ⊃ −g′V ′
µ

S†S

m2
ψ

Cij
(
dRiγ

µdRj
)
+
S†S

m2
ψ

Cij
(
idRi/∂dRj

)
+
Si∂µS

†

m2
ψ

Cij
(
dRiγ

µdRj
)
, (A.16)

where Cij = (α†α)ij . Next we integrate out the radial mode by substituting S with the Goldstone

parametrization in Eq. (A.1) and use the definition of the dark-vector mass to find

Lint ⊃ −V ′
µ

mV ′v′

2m2
ψ

Cij
(
dRiγ

µdRj
)
+

(v′)2

2m2
ψ

Cij
(
idRi/∂dRj

)
+ ∂µG

v′

2m2
ψ

Cij
(
dRiγ

µdRj
)
, (A.17)

recovering the gauge-invariant
5
combination V ′

µ−∂µG/m′
V . Without loss of generality we can assume

that Y d
ij is diagonal, so that we are already in the mass basis. Nevertheless, we do need to re-diagonalize

the kinetic terms due to the second term in Eq. (A.17) induced in the EFT. In the limit of v′ ≪ mψ

this is readily achieved by the rescaling dRi → dRi − (v′)2/(4m2
ψ)CijdRj . This leads to additional

small corrections of O(1/m4
ψ) to the final dark-vector couplings, which can be neglected, such that

the leading couplings from the first term in Eq. (A.17) remain

Lquadratic = −mV ′v′

2m2
ψ

CijV
′
µ

(
dRiγ

µdRj
)
. (A.18)

These couplings are indeed quadratic in v′ and are in general flavor violating, Ci ̸=j ̸= 0. This matches

to the EFT term in Eq. (A.3) upon identifying Cij/m
2
ψ = −2cij/Λ

2
.

5

In our conventions V ′
µ → V ′

µ + ∂µβ/g
′
, S → exp(iβ)S, G→ G+ βv′, ψ → exp(−iβ)ψ.
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A.4 Explicit UV Model for Linear scaling

We now construct an explicit renormalizable model for the minimal scaling of vector interactions in

Eq. (2.2) proportional to a single power of the dark-vector mass. These types of models are motivated

by scenarios addressing the SM flavor puzzle with non-anomalous abelian horizontal symmetries, see

e.g. Ref. [7]. We restrict the discussion for simplicity to the down-quark sector with two generations.

The field content is summarized in Table 6, and is not anomaly-free. However, we can always introduce

further suitably charged chiral fermions in the right-handed up- and charged-lepton sector in order

to cancel color and electromagnetic anomalies, respectively. Note that ψR and dR2 carry the same

quantum numbers.

Qi dR1 dR2 H S ψL ψR

SU(2)L 2 1 1 2 1 1 1

U(1)Y 1/6 −1/3 −1/3 1/2 0 −1/3 −1/3

U(1)′ 0 1 0 0 1 0 0

Table 6: Field content of a renormalizable model featuring linear scaling. We restrict the discussion

to the down-quark sector with two generations for SM quarks and one family of heavy vector-like

fermions ψL, ψR uncharged under U(1)′.

The Lagrangian reads

L = Lkinetic + LYukawa + Lscalar + L
int-V ′ , (A.19)

with standard kinetic terms for all fields and

LYukawa = −yiQiHdR2 − ziQiHψR −mψψLψR − αψLdR1S
† + h.c. (A.20)

L
int-V ′ = g′V ′

µdR1γ
µdR1 , (A.21)

Lscalar = m2
H |H|2 +m2

S |S|2 − λH |H|4 − λS |S|4 − λHS |H|2|S|2 , (A.22)

where we have simply defined ψR to be that field having a mass term with ψL. This already gives

Eq. (A.4) and the first term in Eq. (A.5) from the EFT discussion, so it only remains to show that

integrating out ψL, ψR induces the second term in Eq. (A.5). The equations of motion for the heavy

fermions read, neglecting kinetic terms

ψL = − zi
mψ

QiH , ψR = − α

mψ
dR1S

† , (A.23)

and, therefore, the resulting EFT Lagrangian term is

Llinear ⊃
ziα

mψ
QiHdR1S

† . (A.24)

This indeed reproduces Eq. (A.5) with the identification of the UV scale asΛ = −mψ/α. The remaining

calculation follows the EFT discussion, which shows that in these type of UVmodels the flavor violating

couplings to V ′
scale indeed linearly withmV ′/Λ.
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B Renormalization Group Equations

In this appendix we collect our results for the renormalization group equations relevant for the

SU(2)L × U(1)Y interactions of the LDV with SM quarks as discussed in Section 5. Since in the

current work we focused on the case of the UV universal scenario, in which flavor-violation originates

only from the SM CKM matrix, we present here only the one-loop RGEs proportional to Yukawa

couplings. However, in what follows the matrices CD
u , C

D
d CV

Q , C
V
u , and C

D
d are generic matrices in

flavor space, i.e., we have not assumed any alignment with the SM Yukawas. The relevant terms in the

Lagrangian are the SM Yukawa interaction, the dipole, and the vector interactions with the LDV. They

respectively read:

LYukawa = −QYuH̃uR −QYdHdR + h.c. , (B.1)

LDipole =
1

Λ2
V ′
µν

(
QCD

u σ
µνH̃uR +QCD

d σ
µνHdR + h.c.

)
, (B.2)

LVector = V ′
µ

(
QCVQγ

µQ+ uRC
V
u γ

µuR + dRC
V
d γ

µdR
)
. (B.3)

The one-loop RGEs for Yukawa running read [77]

16π2
dYu
d lnµ

=
3

2

(
YuY

†
uYu − YdY

†
d Yu

)
+ ncTr

[
YuY

†
u + YdY

†
d

]
Yu ,

16π2
dYd
d lnµ

=
3

2

(
YdY

†
d Yd − YuY

†
uYd

)
+ ncTr

[
YuY

†
u + YdY

†
d

]
Yd ,

(B.4)

with nc = 3 denoting the number of colors. The one-loop running of the Yukawas is relevant for the

dipole analysis because the RG-evolved Yukawas contribute to the flavor-violating couplings upon

rotation to the quark mass-eigenstates at the EW scale [78].

For the one-loop RGE of the dipole couplings proportional to the SM Yukawas we find

16π2
dCD

u

d lnµ
=

5

2
YuY

†
uC

D
u − 3

2
YdY

†
dC

D
u − CD

d Y
†
d Yu + 2CD

u Y
†
uYu

+ ncTr
[
YuY

†
u + YdY

†
d

]
CD
u ,

16π2
dCD

d

d lnµ
=

5

2
YdY

†
dC

D
d − 3

2
YuY

†
uC

D
d − CD

u Y
†
uYd + 2CD

d Y
†
d Yd

+ ncTr
[
YuY

†
u + YdY

†
d

]
CD
d .

(B.5)

For the one-loop RGE of the vector couplings proportional to the SM Yukawas we find

16π2
dCV

Q

d lnµ
= −YuCV

u Y
†
u − YdC

V
d Y

†
d +

1

2

(
YuY

†
u + YdY

†
d

)
CV
Q +

1

2
CV
Q

(
YuY

†
u + YdY

†
d

)
,

16π2
dCV

u

d lnµ
= −2Y †

uC
V
QYu + Y †

uYuC
V
u + CV

u Y
†
uYu ,

16π2
dCV

d

d lnµ
= −2Y †

dC
V
QYd + Y †

d YdC
V
d + CV

d Y
†
d Yd .

(B.6)
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C Recast of Experimental Limits
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Figure 7: Upper 95% CLs limits on the two-body branching ratios B → K/K∗/π+ V ′
, as a function

of the missing massmmiss =
√
q2, obtained by recasting the experimental three-body searches at

BaBar [35, 36], see text for details.

Experimental collaborations often provide only limits on the P → P ′ + invisible branching ratios

in terms of the three body decay P → P ′νν, as a function of the squared invariant mass of the

di-neutrino system q2. In order to get the experimental limits on the two body decays P → P ′V , we

use the event count nB per q2-bin information, if provided by the experimental collaborations. Only

the BaBar experiment [35, 36] provides all information needed to perform a recast for two-body decays

B → K/K∗/π + V . For B → K(∗)
and dark-vector massesmV ′ < 3GeV, we use the sophisticated

recast of Ref. [57], otherwise we estimate upper limits on the Wilson coefficients in terms of the CLs

method as explained below.

For a given Wilson coefficient C , the number of signal events s in a q2-bin i is given as

s = BRiP→P ′(C)×Ntot × ϵi , (C.1)

where Ntot is the total number of P mesons and ϵi the efficiency associated to bin i. Further,

BRiP→P ′(C) denotes the branching ratio of P → P ′
within the q2-bin i. The s + b likelihood

is then given as a Poisson distribution in the number of signal plus background events. The efficiency

ϵi and total number of P mesons Ntot are included as global observables associated to auxiliary

measurements. The uncertainty on the signal, assumed to be Gaussian, is given by the NP theoreti-

cal prediction and is dominated by the form-factor uncertainty. The systematic uncertainty on the

background is implemented as a Gaussian distribution. With this in mind, we denote the likelihood

as L(x|C, ν) with x being the outcome, i.e., the observed data, C the parameter of interest, i.e., the

Wilson coefficient, and ν the nuisance parameters. As a test statistics tC , we choose a one-sided profile
likelihood. Note that the parameter of interest is actually |C|2 since the branching ratio only depends

on |C|2 as we only consider one coupling at a time. The p-value pC of the s+ b hypothesis for a given
value of the Wilson coefficient C is then given by

pC =

∞∫
tobsC

f(tC |C, ˆ̂ν(C)) dtC , (C.2)

where tobsC denotes the value of the test statistics for the observed data, f denotes the pdf of the test

statistics tC , and ˆ̂ν(C) are the values of the nuisance parameter that maximise the likelihood for a
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given C . The α% CLs limit on the Wilson coefficient is then given by the value of C such that

pC
p0

= 1− α

100
, (C.3)

where p0 denotes the p-value of the background only hypothesis. In order to evaluate Eq. (C.2), one

needs the pdf f of the test statistics tC for which we use the ROOT toolkit RooStats in order to sample

the distribution by means of a Monte Carlo method.

Taking the BR(P → P ′V ) as a parameter of interest instead of the Wilson coefficient C , we
can determine a model independent limit BRexp(P → P ′V ) on the two body branching ratios, see

Figure 7.

D Limits in the L/R Basis

In this appendix we present bounds on the couplings in the L/R basis {CDR
ij , CDL

ij , CVR
ij , CVL

ij }, which
are obtained from the limits in the V/A basis (discussed in Section 3 and 4)) using Eq. (2.4). As the

decay rates are symmetric with respect to CL ↔ CR
the bounds on both couplings are the same.

D.1 Quark Dipole Interactions
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Figure 8: Upper limits on quark-flavor violating dipole couplings Λ/|CDL
ij |, for s→ d, b→ s, b→ d

and c→ u transitions. Bounds on Λ/|CDR
ij | are identical.
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D.2 Quark Vector Interactions
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Figure 9: Upper limits on quark-flavor violating vector couplings Λ/|CVL
ij |, for s→ d, b→ s, b→ d

and c→ u transitions. Bounds on Λ/|CVR
ij | are identical.
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Figure 10: Upper panel: Lower limits on the dipole (left panel) and vector (right panel) couplings

for τ → e transitions Λ/|CDL(R)
τe |, Λ/|CVL(R)

τe | from Belle II [38]. Lower panel: same for τ → µ

transitions Λ/|CDL(R)
τµ |, Λ/|CVL(R)

τµ |.

E Two-body decays to Light Dark Vectors

p−→ p′
−→

−→
q

{P,B, ℓ}

V ′

{P ′,V, B′, ℓ′}

Figure 11: Two-body decays {P,B, ℓ} → {P ′,V, B′, ℓ′} + V ′
. The blob represents the non-

perturbative QCD effects for the hadronic decays.

In this appendix we present the full expressions for the two-body decays to a LDV that enter our

analysis, namely

• P → P ′ + V ′
: pseudoscalar meson to pseudoscalar meson and LDV,

• P → V + V ′
: pseudoscalar meson to vector meson and LDV,

• B → B′ + V ′
: baryon to baryon and LDV,

• ℓ→ ℓ′V ′
: lepton to lepton and LDV.
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For the hadronic processes illustrative Feynman diagrams are shown in Figure 1, while throughout

this appendix we define the two-body kinematics for all decays as in Figure 11, namely as

SM(p) → SM
′(p′) + V ′(q) (E.1)

with q = p− p′ and q2 = (p− p′)2 = m2
V ′ . In the next subsection we collect the parametrization of

all the relevant form factors for the hadronic processes considered, and in the subsequent subsections

we present the expressions for the rates. The numerical values for the form-factors are always taken

from the most recent work referenced.

E.1 Form Factors

P → P ′ + V ′

For these decays the hadronic matrix elements for the vector and axial-vector currents read [66]

⟨P ′(p′)|q′γµq|P (p)⟩ = (p+ p′)µfPP
′

+ (q2) + (p− p′)µfPP
′

− (q2) ,

⟨P ′(p′)|q′γ5γµq|P (p)⟩ = 0 .
(E.2)

The corresponding matrix elements for tensor and pseudo-tensor currents read [66]

⟨P ′(p′)|q′σµνq|P (p)⟩ =
2

mP +mP ′

(
p′µpν − p′νpµ

)
fPP

′
T (q2) ,

⟨P ′(p′)|q′σµνγ5q|P (p)⟩ =
2i

mP +mP ′
ϵµνρσp′ρpσf

PP ′
T (q2) ,

(E.3)

where here and throughout we use the ϵ0123 = −ϵ0123 = +1 convention for the Levi-Civita tensor.

P → V + V ′

For the pseudoscalar decays to two vectors with V denoting the vector-meson, the hadronic matrix

element for the vector and axial-vector currents are parametrized as [66]

⟨V(p′, λ)|q′γµ (1∓ γ5) q|P (p)⟩ = Pµ1 V1(q
2)± Pµ2 V2(q

2)± Pµ3 V3(q
2)± PµPVP (q

2) , (E.4)

where λ denotes the polarization of V . The kinematic functions read

PµP = i(ϵ∗ ·q)qµ , Pµ1 = 2ϵµαβγϵ
∗αp′βqγ ,

Pµ2 = i
[(
m2
P −m2

V
)
ϵ∗µ − (ϵ∗ ·q)

(
p′ + p

)µ]
, Pµ3 = i(ϵ∗ ·q)

[
qµ − q2

m2
P −m2

V
(p′ + p)µ

]
, (E.5)

where ϵ∗µ = ϵ∗µ(p
′, λ) denotes the polarization vector of the outgoing V . The scalar form factors can be

further parametrized as

VP (q2) =
−2mV
q2

A0(m
2
V ′) , V1(q

2) =
−V (q2)

mP +mV
, V2(q

2) =
−A1(q

2)

mP −mV
,

V3(q
2) =

mP +mV
q2

A1(q
2)− mP −mV

q2
A2(q

2) ≡ 2mV
q2

A3(q
2) ,

(E.6)

with A3(0) = A0(0), which ensures finite matrix elements at q2 = 0, i.e., for massless LDV.
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The corresponding matrix elements for tensor and pseudo-tensor currents read [66]

⟨V(p′, λ)|q′σµνq|P (p)⟩ = −iϵ∗αTαµν(q2) ,

⟨V(p′, λ)|q′σµνγ5q|P (p)⟩ =
1

2
ϵ∗αϵµνρσT

αρσ(q2) ,
(E.7)

where

Tαµν(q2) = ϵαµνβ
[(
pβ + p′β − qβ

m2
P −m2

V
q2

)
TPV
1 (q2) + qβ

m2
P −m2

V
q2

TPV
2 (q2)

]
+

2pα

q2
ϵµνβγpβp

′
γ

(
TPV
2 (q2)− TPV

1 (q2) +
q2

m2
P −m2

V
TPV
3 (q2)

)
.

(E.8)

For vanishing momentum transfer q2 = 0, i.e., massless LDV, the scalar form-factors satisfy

TPV
1 (0) = TPV

2 (0) ≡ T , (E.9)

while the contribution proportional to T3(0) vanishes.

B → B′ + V ′

For the baryon decays the matrix elements for vector and axial-vector currents are parametrized

by [67, 69, 72]

⟨B′(p′)|q′γµq|B(p)⟩ = uB′(p′)

(
f1(q

2)γµ − i
f2(q

2)

mB
σµνq

ν +
f3(q

2)

mB
qµ

)
uB(p) ,

⟨B′(p′)|q′γµγ5q|B(p)⟩ = uB′(p′)

(
g1(q

2)γµ − i
g2(q

2)

mB
σµνq

ν +
g3(q

2)

mB
qµ

)
γ5uB(p) ,

(E.10)

with uB(p) and uB′(p′) the spinor functions for B and B′
respectively. For Λ decays the values of the

form factors are taken from [67, 69, 72], while for hyperon decays they are taken from [62–64].

The corresponding matrix elements for tensor and pseudo-tensor currents have the form [32, 79]

⟨B′(p′)|q′σµνq|B(p)⟩ = gBB
′

T uB′(p′)σµνuB(p) ,

⟨B′(p′)|q′σµνγ5q|B(p)⟩ = i

2
gBB

′
T ϵµναβuB′(p′)σαβuB(p) ,

(E.11)

which is an approximation valid form2
V ′ = 0, which we use for the hyperon decays. For the baryon

Λb → Λ, Λb → n, and Λc → p decays we use the available full parametrization, given by [67, 72]

⟨B′(p′)|q′iσµνqνq|B(p)⟩ = uB′(p′)

(
fTV
1 (q2)

mB

(
γµq2 − qµ/q

)
− fTV

2 (q2)iσµνqν

)
uB(p) ,

⟨B′(p′)|q′iσµνqνγ5q|B(p)⟩ = uB′(p′)

(
fTA1 (q2)

mB

(
γµq2 − qµ/q

)
− fTA2 (q2)iσµνqν

)
γ5uB(p) .

Having collected all hadronic input used in the analysis we next present the full expressions for the

two-body rates. We show separately the contributions from dipole and vector interactions with the

LDV, c.f. Eqs. (2.1) and (2.2). For brevity we drop the argument in all form factors since it is always

q2 = m2
V ′ in two-body decays. To shorten the expression we also introduce the notations

κx ≡ m2
x/M

2
and λxy ≡ (1− κx − κy)

2 − 4κxκy ,

withmx indicating the mass of the final-state particle x andM the mass of the decaying particle.
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E.2 Partial width for P → P ′ + V ′

The partial width for the decay P → P ′ + V ′
with an underlying q → q′ flavor-changing transition is

given respectively for dipole and vector interaction by

Γ(P → P ′V ′)
∣∣∣
D
=
κV ′m3

P

4πΛ2

λ
3/2
P ′V ′

(1 +
√
κP ′)2

|fPP ′
T |2|CD

q′q|2 , (E.12)

Γ(P → P ′V ′)
∣∣∣
V
=

m3
P

16πΛ2
λ
3/2
P ′V ′ |fPP

′
+ |2|CV

q′q|2 , (E.13)

Note that due to the parity conservation of strong interactions the rate is independent of the axial

couplings CV5
ij and CD5

ij . Therefore, P → P ′ + V ′
decays are only sensitive to the CV(D)

ij couplings.

In the {L,R} basis, these decays are sensitive to both CDL(R)
ij ,CVL(R)

ij couplings.

In the limit for massless LDV, the leading inmV ′ contributions to the decay rates read

lim
mV ′→0

Γ(P → P ′ + V ′)
∣∣∣
D
=
m2
V ′mP

4πΛ2
(1−

√
κP ′)3 |fPP ′

T |2|CD
q′q|2 , (E.14)

lim
mV ′→0

Γ(P → P ′ + V ′)
∣∣∣
V
=

m3
P

16πΛ2
(1− κP ′)3 |fPP ′

+ |2|CV
q′q|2 . (E.15)

While the rate originating from dipole interactions vanishes in the massless limit, the contribution of

the vector interaction remains constant due to the linear scalingmV ′/Λ introduced and discussed in

Eq. (2.2).

E.3 Partial width for P → V + V ′

The partial width for the decay P → V + V ′
with an underlying q → q′ flavor-changing transition is

given respectively for dipole and vector interaction by

Γ(P → V + V ′)
∣∣∣
D
=

m3
P

2πΛ2
λ
1/2
VV ′

(
AD|CD

q′q|2 +AD5|CD5
q′q|2

)
,

Γ(P → V + V ′)
∣∣∣
V
=
m3
Pκ

2
V ′

8πΛ2
λ
1/2
VV ′

(
AV|CV

q′q|2 +AV5|CV5
q′q|2

)
,

(E.16)

with the coefficients AX given by

AD = |TPV
1 |2λVV ′ , (E.17)

AD5 = |TPV
2 |2

8κV (1− κV)
2 + κV ′ (1 + 3κV)

2 − 2κ2V ′(1 + 3κV) + κ3V ′

8κV

+ |TPV
3 |2λ2VV ′

κV ′

8κV(1− κV)2
− Re(TPV

2 TPV∗
3 )λVV ′

κV ′(1 + 3κV − κV ′)

4κV(1− κV)
, (E.18)

AV = |V |2 λVV ′(
1 +

√
κV
)2 , (E.19)

AV5 = |A1|2
κ3V ′ − 2κ2V ′(1 + 3κV) + κV ′(1 + 3κV)

2 + 8(1− κV)
2κV

8κV
(
1−√

κV
)2

+ |A3|2
λ2VV ′

2κV ′ (1− κV)
2 +Re(A1A

∗
3)

√
1 + κV

2
√
κV (1− κV)

2λVV ′ (1− κV ′ + 3κV) . (E.20)

31



In the limit of a massless LDV, the decay rates reduce to

lim
mV ′→0

Γ(P → VV ′)
∣∣∣
D
=

m3
P

2πΛ2
(1− κV)

3 |T |2
(
|CD
q′q|2 + |CD5

q′q|2
)
,

lim
mV ′→0

Γ(P → VV ′)
∣∣∣
V
=

m3
P

16πΛ2
(1− κV)

3

(
|A3|2|CV5

q′q|2 +
2κV ′ |V |2(√
κV + 1

)2 |CV
q′q|2

)
,

(E.21)

which illustrates that the sensitivity to CV
q′q weakens for very light LDVs.

E.4 Partial width forB → B′ + V ′

For baryon decays B → B′ + V ′
with an underlying q → q′ transition the contribution to the partial

width from the dipole and vector interaction read

Γ(B → B′V ′)
∣∣∣
D
=

m3
B

4πΛ2
λ
1/2
B′V ′

[ (
|fTV

1 |2Â−
D1 + |fTV

2 |2Â−
D2 + Â−

D12Re(f
TV
1 fTV∗

2 )
)
|CD
q′q|2

+
(
|fTA1 |2Â+

D1 + |fTA2 |2Â+
D2 + Â+

D12Re(f
TA
1 fTA∗

2 )
)
|CD5
q′q|2

]
,

Γ(B → B′V ′)
∣∣∣
V
=

m3
B

16πΛ2
λ
1/2
B′V ′

[ (
|f1|2Â−

V1 + |f2|2Â−
V2 + Â−

V12Re(f1f
∗
2 )
)
|CV
q′q|2

+
(
|g1|2Â+

V1 + |g2|2Â+
V2 + Â+

V12Re(g1g
∗
2)
)
|CV5
q′q|2

]
,

(E.22)

with the kinematic coefficients

Â±
D1 = κV ′

(
κ2B′ + κB′ (κV ′ − 2)± 6

√
κB′κV ′ − 2κ2V ′ + κV ′ + 1

)
,

Â±
D2 = 2κ2B′ − κB′ (κV ′ + 4)± 6

√
κB′κV ′ − κ2V ′ − κV ′ + 2 ,

Â±
D12 = 6κV ′ (

√
κB′ ∓ 1) (1 + κB′ ± 2

√
κB′ − κV ′) ,

Â±
V1 = (1 + κB′ ± 2

√
κB′ − κV ′) (1 + κB′ ∓ 2

√
κB′ + 2κV ′) ,

Â±
V2 = κV ′ (1 + κB′ ± 2

√
κB′ − κV ′) (2 + 2κB′ ∓ 4

√
κB′ + κV ′) ,

Â±
V12 = 6κV ′ (κB′ ± 2

√
κB′ − κV ′ + 1) (

√
κB′ ∓ 1) .

In the limit of a massless LDV, the rates reduce to

lim
mV ′→0

Γ(B → B′V ′)
∣∣∣
D
=

m3
B

2πΛ2
(1− κB′)3

[
|fTV

2 |2|CD
q′q|2 + |fTA2 |2|CD5

q′q|2
]
,

lim
mV ′→0

Γ(B → B′V ′)
∣∣∣
V
=

m3
B

16πΛ2
(1− κB′)3

(
|f1|2|CV

q′q|2 + |g1|2|CV5
q′q|2

)
.

(E.23)

For hyperon decays we use the form factor parametrization of Eq. (E.11), valid formV ′ = 0. Nonethe-
less, we consider a massive LDV for the kinematics for completeness. The decay rate reads

Γ(B → B′V ′)
∣∣∣
D
=

m3
B

4πΛ2
λ
1/2
B′V ′(g

BB′
T )2

(
Â−

D|C
D
q′q|2 + Â+

D|C
D5
q′q|2

)
, (E.24)

with the kinematic coefficients

Â±
D = (κB′ ± 2

√
κB′ − κV ′ + 1) (2κB′ ∓ 4

√
κB′ + κV ′ + 2) . (E.25)
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In the limit of a massless LDV, the rate reduces to

lim
mV ′→0

Γ(B → B′V ′)
∣∣∣
D
=

m3
B

2πΛ2
(1− κB′)3 |gBB′

T |2
(
|CD
q′q|2 + |CD5

q′q|2
)
. (E.26)

For a fully polarized initial B, the differential width read

dΓ(B → B′V ′)

d cos θ

∣∣∣∣
D

=
m3
B

8πΛ2
λ
1/2
B′V ′

[
(
|fTV

1 |2Â−
D1 + |fTV

2 |2Â−
D2 + Â−

D12Re(f
TV
1 fTV∗

2 )
)
|CD
q′q|2

+
(
|fTA1 |2Â+

D1 + |fTA2 |2Â+
D2 + Â+

D12Re(f
TA
1 fTA∗

2 )
)
|CD5
q′q|2

− 2λ
1/2
B′V ′ cos θ

(
B̂D11Im(fTV

1 fTA∗
1 ) + B̂−

D12Im(fTV
1 fTA∗

2 )

+B̂D22Im(fTV
2 fTA∗

2 ) + B̂+
D12Im(fTV

2 fTA∗
1 )

)
Re(CD

q′qC
D5∗
q′q )

− 2λ
1/2
B′V ′ cos θ

(
B̂D11Re(f

TV
1 fTA∗

1 ) + B̂−
D12Re(f

TV
1 fTA∗

2 )

+B̂D22Re(f
TV
2 fTA∗

2 ) + B̂+
D12Re(f

TV
2 fTA∗

1 )
)
Im(CD

q′qC
D5∗
q′q )

]
,

dΓ(B → B′V ′)

d cos θ

∣∣∣∣
V

=
m3
B

32πΛ2
λ
1/2
B′V ′

[
(
|f1|2Â−

V1 + |f2|2Â−
V2 + Â−

V12Re(f1f
∗
2 )
)
|CV
q′q|2

+
(
|g1|2Â+

V1 + |g2|2Â+
V2 + Â+

V12Re(g1g
∗
2)
)
|CV5
q′q|2

− 2λ
1/2
B′V ′ cos θ

(
B̂V11Re(f1g

∗
1) + B̂+

V12Re(f2g
∗
1)

+B̂−
V12Re(f1g

∗
2) + B̂V22Re(f2g

∗
2)
)
Re(CV

q′qC
V5∗
q′q )

+ 2λ
1/2
B′V ′ cos θ

(
B̂V11Im(f1g

∗
1) + B̂+

V12Im(f2g
∗
1)

+B̂−
V12Im(f1g

∗
2) + B̂V22Im(f2g

∗
2)
)
Im(CV

q′qC
V5∗
q′q )

]
,

(E.27)

with the kinematic coefficients

B̂D11 = κV ′ (κB′ + 2κV ′ − 1) , B̂D22 = 2κB′ + κV ′ − 2, B̂±
D12 = −κV ′ (3

√
κB′ ± 1) ,

(E.28)

B̂V11 = κB′ + 2κV ′ − 1, B̂V22 = κV ′ (2κB′ + κV ′ − 2) , B̂±
V12 = κV ′ (3

√
κB′ ± 1) .

(E.29)
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In the limit of a massless LDV, the rate reduces to

lim
mV ′→0

dΓ(B → B′V ′)

d cos θ

∣∣∣∣
D

=
m3
B

4πΛ2
(1− κB′)3

[
|fTV

2 |2|CD
q′q|2 + |fTA2 |2|CD5

q′q|2

+ 2 cos θ
(
Im(fTV

2 fTA∗
2 )Re(CD

q′qC
D5∗
q′q ) + Re(fTV

2 fTA∗
2 )Im(CD

q′qC
D5∗
q′q )

) ]
,

lim
mV ′→0

dΓ(B → B′V ′)

d cos θ

∣∣∣∣
V

=
m3
B

32πΛ2
(1− κB′)3

(
|f1|2|CV

q′q|2 + |g1|2|CV5
q′q|2

+ 2 cos θ
(
Re(f1g

∗
1)Re(CV

q′qC
V5∗
q′q )− Im(f1g

∗
1)Im(CV

q′qC
V5∗
q′q )

) )
.

(E.30)

E.5 Polarized lepton distributions and rates ℓ → ℓ′ + V ′

Next we consider the decays ℓ→ ℓ′ + V ′
for the case in which lepton-flavor violating dipole or vector

interactions with the LDV are present. In this case there is experimental sensitivity to the polarization

of the initial lepton by the measurement of the angular distribution of the angle θ, defined as the angle
between the polarization vector of ℓ and the three-momentum of ℓ′. For the different LDV interactions

we find for the differential width of a fully polarized initial ℓ

dΓ(ℓ→ ℓ′V ′)

d cos θ

∣∣∣∣
D

=
m3
ℓ

8πΛ2
λ
1/2
ℓ′V ′

[
(ÃD

+ + ÃD
−)
∣∣CD

ℓ′ℓ

∣∣2 + (ÃD
+ − ÃD

−)
∣∣CD5

ℓ′ℓ

∣∣2
+ ÃD

θ cos θ · Im(CD
ℓ′ℓC

D5∗
ℓ′ℓ )

]
,

dΓ(ℓ→ ℓ′V ′)

d cos θ

∣∣∣∣
V

=
m3
ℓ

32πΛ2
λ
1/2
ℓ′V ′

[
(ÃV

+ + ÃV
−)
∣∣CV

ℓ′ℓ

∣∣2 + (ÃV
+ − ÃV

−)
∣∣CV5

ℓ′ℓ

∣∣2
+ ÃV

θ cos θ · Re(CV
ℓ′ℓC

V5∗
ℓ′ℓ )

]
,

(E.31)

with the kinematic coefficients

ÃD
+ = 2 (1− κℓ′)

2 − κV ′ (1 + κℓ′)− κ2V ′ , ÃV
+ = (1− κℓ′)

2 + κV ′ (1 + κℓ′)− 2κ2V ′ ,

ÃD
− = −6

√
κℓ′κV ′ , ÃV

− = −6
√
κℓ′κV ′ , (E.32)

ÃD
θ = 2λ

1/2
ℓ′V ′ (2− 2κℓ′ − κV ′) , ÃV

θ = 2λ
1/2
ℓ′V ′ (1− 2κV ′ − κℓ′) .

In the limit of massless LDV, the polarized differential two-body rate reduces to

lim
mV ′→0

dΓ(ℓ→ ℓ′V ′)

d cos θ

∣∣∣∣
D

=
m3
ℓ

4πΛ2
(1− κℓ′)

3
(∣∣CD

ℓ′ℓ

∣∣2 + ∣∣CD5
ℓ′ℓ

∣∣2 + 2 cos θ · Im(CD
ℓ′ℓC

D5∗
ℓ′ℓ )

)
lim

mV ′→0

dΓ(ℓ→ ℓ′V ′)

d cos θ

∣∣∣∣
V

=
m3
ℓ

32πΛ2
(1− κℓ′)

3
(∣∣CV

ℓ′ℓ

∣∣2 + ∣∣CV5
ℓ′ℓ

∣∣2 + 2 cos θ · Re(CV
ℓ′ℓC

V5∗
ℓ′ℓ )

)
.

(E.33)

Finally, after integrating over θ and averaging over the initial- and final-state polarizations, the total

decay rates read

Γ(ℓ→ ℓ′V ′)
∣∣∣
D
=
λ
1/2
ℓ′V ′m3

ℓ

4πΛ2

(∣∣CD
ℓ′ℓ

∣∣2 (ÃD
+ + ÃD

−) +
∣∣CD5

ℓ′ℓ

∣∣2 (ÃD
+ − ÃD

−)
)
, (E.34)
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∣∣2 (ÃV
+ + ÃV

−) +
∣∣CV5

ℓ′ℓ

∣∣2 (ÃV
+ − ÃV

−)
)
, (E.35)

which in the limit of massless LDVs reduces to

lim
mV ′→0

Γ(ℓ→ ℓ′V ′)
∣∣∣
D
=

m3
ℓ

2πΛ2
(1− κℓ′)

3
(∣∣CD

ℓ′ℓ

∣∣2 + ∣∣CD5
ℓ′ℓ

∣∣2) ,
lim

mV ′→0
Γ(ℓ→ ℓ′V ′)

∣∣∣
V
=

m3
ℓ

16πΛ2
(1− κℓ′)

3
(∣∣CV

ℓ′ℓ

∣∣2 + ∣∣CV5
ℓ′ℓ

∣∣2) . (E.36)
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