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Abstract—Quantum machine learning (QML) has the poten-
tial for improving the multi-label classification of rare, albeit
critical, diseases in large-scale chest x-ray (CXR) datasets due to
theoretical quantum advantages over classical machine learning
(CML) in sample efficiency and generalizability. While prior
literature has explored QML with CXRs, it has focused on
binary classification tasks with small datasets due to limited
access to quantum hardware and computationally expensive
simulations. To that end, we implemented a Jax-based framework
that enables the simulation of medium-sized qubit architectures
with significant improvements in wall-clock time over current
software offerings. We evaluated the performance of our Jax-
based framework in terms of efficiency and performance for
hybrid quantum transfer learning for long-tailed classification
across 8, 14, and 19 disease labels using large-scale CXR datasets.
The Jax-based framework resulted in up to a 58% and 95%
speed-up compared to PyTorch and TensorFlow implementations,
respectively. However, compared to CML, QML demonstrated
slower convergence and an average AUROC of 0.70, 0.73, and
0.74 for the classification of 8, 14, and 19 CXR disease labels. In
comparison, the CML models had an average AUROC of 0.77,
0.78, and 0.80 respectively. In conclusion, our work presents an
accessible implementation of hybrid quantum transfer learning
for long-tailed CXR classification with a computationally efficient
Jax-based framework.

Index Terms—Quantum Machine Learning, Quantum Transfer
Learning, Long-Tailed Classification, Multi-Label Classification,
Medical Imaging, Chest X-Ray

I. INTRODUCTION

Quantum machine learning (QML) has attracted recent
interest due to rapid improvements in hardware and QML
methods with theoretical quantum advantages over classical
machine learning (CML) methods [1]. While quantum advan-
tage typically refers to runtime improvements, potential ad-
vantages may also exist in sample efficiency, generalizability,
expressibility, and trainability [2]–[4]. These advantages are
particularly applicable for medical imaging tasks, where the
growing scale of chest x-ray (CXR) datasets, coupled with the
presence of rare, albeit critical, diseases labels results in deep
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learning (DL) models that are biased towards high-occurrence
labels [5], [6].

While other groups have explored QML for training CXR
DL models to detect diseases such as cardiomegaly, pneumo-
nia, and COVID-19, their approaches were focused on binary
classification tasks using small datasets that do not resemble
the current state of CML with medical images [7]–[9].

More specifically, multiple diseases may be present in a
patient simultaneously, thereby emphasizing the importance of
detecting all potential diseases with multi-label classification.
Furthermore, Bowles et al. [10] suggest that it is not appro-
priate to extrapolate QML results from small datasets to large
datasets.

The primary limitation of QML research beyond binary
classification is limited access to quantum hardware and the
large computational resources required for classical simu-
lation [11]. To that end, we developed a Jax-based soft-
ware framework to lower the computational requirements
for classical simulation of medium-sized qubit architectures
on workstation-level hardware. We evaluated the Jax-based
framework for long-tailed multi-label classification across 8,
14, and 19 disease labels using two large-scale CXR datasets.
We further compared the performance of QML with CML to
evaluate if the theoretical advantages of QML translate into
empirical success for these tasks [12]–[16].

Our contributions are two-fold:

1) We develop an open-source Jax-based software frame-
work for computationally efficient simulation of
medium-sized qubit architectures on workstation-level
hardware.

2) We evaluate the scalability of hybrid quantum transfer
learning for long-tailed multi-label classification tasks
with large-scale CXR datasets.

The relevant background for our study is provided in Section
II. Our methods are detailed in Section III. Implementation
details of our Jax-based framework are provided in Section
III-D. Our results are detailed in Section IV and discussed in
Section V.
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II. BACKGROUND

A. Chest X-Ray Classification

Chest X-Ray (CXR) is the most common medical imaging
study for detecting life-threatening diseases like cardiomegaly
and pneumonia [17]. Due to the high co-occurrence of findings
within a single CXR, the ability to simultaneously detect the
presence of multiple findings with multi-label classification is
crucial. As a result, numerous large-scale CXR datasets, which
contain hundreds of thousands of high-resolution images with
dozens of potential disease findings, have been curated to
facilitate the development of DL models for CXR classifica-
tion with expert-level performance [18]–[21]. These datasets
are predicted to increase in size and resolution faster than
improvements in hardware and software efficiency, as well as
the number of radiologists in the USA [5].

This rapid growth has led to an interesting problem where
the high occurrence of CXRs that are healthy or contain com-
mon findings, coupled with CXRs containing rare yet critical
findings, leads to a long-tailed distribution of disease labels
[6]. Training on such datasets often results in DL models with
performance that is biased towards high-occurrence labels.
This disparity can lead to incorrect predictions for patients
with rare long-tail diseases and disastrous downstream impli-
cations on patient health outcomes. The potential theoretical
advantages of QML could translate to improved performance
and efficiency in long-tailed CXR classifiers. Additionally,
QML has primarily been evaluated on comparatively simpler
classification problems such as binary or ternary classification
on artificial data distributions and benchmark datasets like
MNIST [7]–[10], [22]. Thus, research on QML and long-tailed
CXR classification can cooperatively benefit by using a more
challenging problem to better understand where QML stands
and how it can be potentially improved.

B. Quantum Transfer Learning

While there are methods to apply quantum computing to
CML subroutines [23], [24] and quantum implementations
of classical architectures [25]–[27], the variational quantum
circuit (VQC) has been extensively evaluated within and
outside medical imaging due to its theoretical properties,
simple implementation, and integration with backbone models
through transfer learning [28].

The VQC starts with n qubits in some initial state, often
prepared with data encoding methods, where classical data
is encoded as quantum states. A series of parameterized
quantum operations, such as rotation and entanglement gates,
are then applied to these states. Finally, data is read out
from quantum states into classical states. These circuits are
trained by performing gradient descent to minimize a loss
function of predictions obtained from postprocessing of the
measurements of the quantum gradient, and are sometimes
called “quantum neural networks” for this reason. Overall,
the VQC embeds classical data into an intermediate quantum
kernel, and projects quantum states back into classical data
[4].

The choice of circuit design (ansatz) is critical for VQC
performance. While VQCs tend to avoid exploding gradients
[29], they can be prone to barren plateaus [30]. Furthermore,
different ansatz also have a trainability and expressibility
trade-off [31], so the optimal ansatz for a classification prob-
lem must be carefully chosen. The design of the transferred
model may also be important regarding the trainability of the
model [32].

The abstraction of classical input and classical output with
VQCs enables hybrid classical-quantum models using transfer
learning [33]. The combination of a backbone model and clas-
sical preprocessing layers, followed by a VQC and classical
postprocessing layers, is collectively referred to as a Dressed
Quantum Circuit (DQC). While transfer learning potentially
obscures the impact of quantum layers, it reduces the compu-
tational resources required for training models with large-scale
datasets, and the qubit requirements for the intermediate scale
circuits necessary for multi-label classification.

C. Computational Overhead of Quantum Simulation

Prior work has indicated a need to scale up QML experi-
ments to larger scales to determine whether QML behavior is
consistent with smaller scales [10], [34]. While the ultimate
goal of quantum simulation is to demonstrate proof-of-concept
scalability to real quantum hardware, VQCs are highly sensi-
tive to quantum noise and errors [35], [36]. Work remains
to implement fault-tolerant quantum error correction [37],
and quantum error mitigation may be limited by theoretical
superpolynomial bounds on the number of samples needed to
estimate expectation values commonly used in VQC optimiza-
tion [38]. In the context of multi-label CXR classifiers, even
small levels of noise could result in incorrect classifications
and adversely impact patient health outcomes. This limits the
benefits of efficient noisy simulation [39], [40]. Thus, noiseless
(ideal) quantum simulation is currently the most reliable and
accessible approach to experimenting with QML.

However, the scalability of QML simulation is computation-
ally intensive because the number of neurons in the output
layer of DL models for multi-label classification is at least
the number of disease labels to be classified. Given a fixed
feature extraction backbone and a linear layer of size n for
classification, the scalability of computations is dependent on
matrix multiplications between the size of the final layer of the
feature extraction backbone and the size of the classification
head. While matrix multiplication is slightly less than cubic
in runtime complexity (O(nlog2 7) by Strassen’s algorithm),
since only a single dimension is variable (the length of the
classification head), the scalability of a multi-label CML
classifier is O(n). For DQCs, the number of qubits required
is at least the number of disease labels. Assuming a classical
preprocessing linear layer of n labels and an identically sized
classical postprocessing linear layer, the scalability of the
classical portion of the network is still O(n) by dropping
constant factors. However, a DQC with n qubits requires a
holding in memory a quantum state vector with 2n length [39].



TABLE I
LONG-TAILED DISTRIBUTION OF DISEASE LABELS FROM NIH-CXR-LT
AND MIMIC-CXR-LT BY DATA SPLIT AND SORTED BY OCCURRENCE.

Label NIH MIMIC
Train Val Test Total

Infiltration 12739 1996 5159 19894 1781
Effusion 7919 1663 3735 14586 14586
Atelectasis 7587 1272 2700 11559 14014
Nodule 4359 667 1305 6331 1309
Mass 3689 764 1329 5782 1006
Pneumothorax 2432 764 2106 5302 3282
Consolidation 2626 544 1497 4667 3232
Pleural Thickening 1998 485 902 3385 590
Cardiomegaly 1590 318 868 2776 14703
Emphysema 1327 272 917 2516 649
Edema 1283 269 751 2303 8444
Subcutaneous Emphysema 957 221 813 1991 572
Fibrosis 1138 183 365 1686 271
Pneumonia 806 173 452 1431 8242
Tortuous Aorta 598 49 95 742 547
Calcification of the Aorta 368 32 55 455 704
Pneumoperitoneum 214 33 69 316 136
Pneumomediastinum 88 22 143 253 176
Hernia 130 35 62 227 739

Thus, the memory usage and compute time of a multi-label
DQC classifier scales exponentially at a rate of O(2n)i.

Although the wall-clock time of quantum simulation may
deviate from this theoretical runtime analysis, the computa-
tional overhead of scalability in quantum systems have been
major limitations in the scalability of prior work in QML
inside and outside medical imaging. While experiments have
managed to achieve 16-qubit simulations using multiple GPUs
[42], [43], it should be possible to achieve this scale on a single
GPU, thereby lowering the computational barrier of entry to
QML research in medical imaging.

III. METHODS

A. Datasets

1) NIH-CXR-LT: The dataset consists of 19 disease labels
with n = 112, 120 frontal CXRs from 30,805 patients [6],
[18]. We use the provided training (70%, n = 78, 605),
validation (10%, n = 12, 535), and testing (20%, n = 21, 081)
splits to train multi-label QML models.

2) MIMIC-CXR-LT: The dataset consists of the same 19
disease labels as the NIH-CXR-LT dataset with n = 377, 110
CXRs from 65,379 patients [20]. We use the provided testing
split with lateral CXRs discarded (n = 48, 860) as our external
test set to evaluate model generalizability.

B. Classification Tasks

To evaluate the scalability of QML for multi-label classifica-
tion, we considered the following three sets of disease labels:

• CXR-8: Atelectasis, Cardiomegaly, Effusion, Infiltration,
Mass, Nodule, Pneumonia, and Pneumothorax.

iAn alternative approach to quantum simulation is tensor networks, which
are parallelizable and have linear memory scalability. However, finding the
optimal contraction path for a tensor network is NP-hard, thus tensor network
simulation still has fundamental scalability limits [41].

TABLE II
NUMBER OF PARAMETERS BY COMPONENT.

Component # Labels # Parameters

ResNet50 - 23,508,032

Classical Preprocess
8 16,392

14 28,686
19 38,931

Quantum Preprocess
8 24

14 42
19 57

Classical Postprocess
8 72

14 210
19 380

Fig. 1. Classical deep learning model. Image features are extracted with
ResNet50 and preprocessed with a linear layer before obtaining predictions.

• CXR-14: All labels from CXR-8, with the addition
of Consolidation, Edema, Emphysema, Fibrosis, Pleural
Thickening, and Hernia.

• CXR-19: All labels from CXR-14, with the addition of
Calcification of the Aorta, Pneumomediastinum, Pneu-
moperitoneum, Subcutaneous Emphysema, and Tortuous
Aorta.

The classification tasks were chosen based on the different
versions of the NIH dataset. The long-tailed distribution of
both datasets is provided in Table I.

C. Model Architecture

We implemented a DL model architecture consisting of a
feature extractor and a classification head. For the feature
extractor, we used an ImageNet pre-trained ResNet50 model
from Hugging Face [44]. For the classification head, we con-
sidered a classical and quantum approach. Parameter counts
for each model are provided in Table II.

1) Classical Deep Learning (CDL): After the feature ex-
tractor, we applied a classical preprocessing layer as the
classification head (Fig. 1). It consisted of a linear fully-
connected layer of size n, equal to the number of disease
labels, followed by sigmoid activation.

2) Dressed Quantum Circuit (DQC): After the feature
extractor, we applied a Dressed Quantum Circuit (DQC) as the
quantum classification head [10], [33] (Fig. 2). The quantum
circuit starts with n qubits in the 0-state of the computational
basis (|0⟩). Hadamard gates are applied to each qubit to obtain
a 50% superposition of |0⟩ and |1⟩ as follows:

H|0⟩ = 1

2
|0⟩+ 1

2
|1⟩ (1)



Fig. 2. Dressed quantum circuit model. Image features are extracted with ResNet50, preprocessed down to size with a linear layer, then embedded into the
quantum circuit with angle encoding applied to a 50/50 superposition of |0⟩ and |1⟩ after the Hadamard gate. Variational parameters (yellow) and CNOT
gates (white) are applied, and measurements are fed into the classical postprocessing layer to obtain predictions. Preprocessing layers are highlighted in blue,
variational quantum parameters in yellow, and postprocessing layers in orange.

The classification function of the DQC classifier f : Rm → Rn

is defined as follows:

ŷ = f(x; θ, win, wout) (2)
= fout(wout, fQ(θ, fin(win, x))) (3)

where fin : Rm → Rn is the classical preprocessing layers
with weights win ∈ Rm×n, fQ : Rn → Rn is the VQC
with depth d and trainable angles θij ∈ Rn×d, and fout :
Rn → Rn is the classical postprocessing layer with weights
wout ∈ Rn×n.

After the feature extractor, we apply a classical prepro-
cessing layer (a linear layer of size n), followed by tanh
activation and rescaling to

[
−π

2 ,+
π
2

]
. Each output of the

preprocessing layer is angle-embedded with a RY rotation
gate to its corresponding qubit. After the embedding, 3 layers
of parameterized RY gates followed by CNOT gates are
appliedii. Then, the noise-free expectation value of each qubit
is measured. The measurements are passed to a postprocessing
linear layer of size n. As the number of qubits is equal to
the number of labels, we apply sigmoid activation to the
postprocessing layer and omit a final classical linear layer.

D. Implementation

To shorten wall-clock training time, we used Jax [46], which
uses just-in-time (JIT) compilation to accelerate linear algebra
operations for deep learning and quantum simulation on GPUs.
Our implementation provides a QML pipeline for medical
image analysis that uses Jax and Pennylane [47] to reduce the
computational resources required to simulate medium-sized
qubit systems on workstation-level hardware.

We implemented the DL models using Flax [48] and the
following libraries from the Jax ecosystem [49]: Optax for
optimizersiii, Pix for image augmentationsiv, and Orbax for
checkpointingv. For quantum simulation, we used Pennylane
to easily experiment with different DL libraries. Pennylane
circuits were optimized using the default.qubit.jax

iiAlthough 3 layers were chosen arbitrarily, prior work has indicated a
potential lack of sensitivity to the number of layers for DQCs in binary
classification [45].

iiihttps://github.com/google-deepmind/optax/
ivhttps://github.com/google-deepmind/dm-pix/
vhttps://github.com/google/orbax/

Fig. 3. Dataloader implemented for experiments. Preprocessed images are
serialized, compressed, and cached on disk ahead of time. At runtime,
they are retrieved from the cache, decompressed, and deserialized. Image
augmentations occur at runtime. A SQLite database tracks the file paths of
the cached images.

device and the best differentiation method (backpropagation
on our hardware).

To avoid potential CUDA dependency conflicts, we im-
plemented a framework-agnostic multithreaded caching dat-
aloader that supports image preprocessing and augmentations
(Fig. 3). Images were preprocessed with the Hugging Face
AutoImagePreprocessor that was used to train the
ResNet50 backbone. The images were serialized with SafeTen-
sors [50] (a non-executable binary format), compressed with
Zstandard [51], and cached with Diskcache [52]. Image aug-
mentations were not cached and were performed dynamically
after retrieving the cached preprocessed image. The dataloader
was multithreaded using Joblib [53].

E. Benchmarks

Pennylane supports Jax, PyTorch, and TensorFlow by of-
floading quantum simulation and autodifferentiation to the
DL library’s operations. To determine the scale of our im-
plementation’s performance gains, we benchmark wall-clock
time (in s) of the training step of functionally equivalent
Jax, PyTorch, and TensorFlow implementations of the CDL
and DQC models. All models were JIT compiled except for
PyTorch due to lack of support for compiled quantum circuits.
For each DL library, we load a single batch of zero-images
and zero-labels (zero-vectors of the correct shape) into GPU



memory to eliminate potential I/O and concurrency effects. We
then perform 10 training steps to account for potential caching
and compilation steps that may affect runtimes. Finally, we
measure and compare the runtime of 30 additional training
steps.

F. Training Procedure

We trained CDL and DQC models on CXR-8, CXR-14, and
CXR-19 classification tasks using 5 random seeds. Backbone
weights were initialized from the pre-trained ResNet50 check-
point. Classical linear layer weights were randomly initialized
using the default method (Lecun normal [54]). Parameterized
RY gates of the DQC were initialized using a random uniform
distribution of [0, 2π]. Images were preprocessed ahead of time
by resizing to 256 pixels on the shortest side, center-cropping
to 224x224, and normalizing pixel values to ImageNet statis-
tics. Training batches were shuffled and augmented during
training with random horizontal flip (p = 0.5) and random
rotation (θ = ±15°) [55]. To ensure that CDL and DQC
models with the same random seed use the same order of
training examples, trials with the same random seed used the
same pseudorandom permutations and augmentations for the
training batches. Models were trained with a batch size of 32 to
avoid running out of GPU memory, and optimized to minimize
mean binary cross entropy (BCE) loss over all diseases labels
using Adam (learning rate = 1e-4). Early stopping was used
if validation loss did not improve after 5 epochs, with a
maximum of 50 training epochs. The best performing model
was determined by the model checkpoint with the lowest
validation loss.

Models were trained in parallel over 4 NVIDIA RTX
A6000 GPUs and Intel Xeon CPUs. All models used 4 CPU
threads, except for DQCs, which used 1 or 2 threads to
avoid running out of GPU memory. We used Python (version
3.12), CUDA (version 12), and other version-compatible li-
braries obtained from Conda-Forge. Our full open-source Jax-
based implementations, including further details on software
dependencies and versions, are available at https://github.com/
UM2ii/quantum-cxr.

G. Metrics and Statistical Analysis

To evaluate model trainability, we compared the conver-
gence of the CDL and DQC models using the training and vali-
dation BCE loss across each step. To evaluate the performance
of the CDL and DQC models, we measured the mean and
per-label area under the receiver operating characteristic curve
(AUROC) on the internal NIH and external MIMIC test sets
across the CXR-8, CXR-14, and CXR-19 classification tasks.
We compared the mean and per-label AUROCs of the CDL
and DQC models using paired t-tests. Statistical significance
was defined as p < 0.05.

To identify per-label performance trends across experiments,
we generate volcano plots of these p-values against the percent
difference in AUROC of CDL and DQC models, which is
defined as follows:

TABLE III
BENCHMARKED WALL-CLOCK RUNTIMES (IN S) BETWEEN TENSORFLOW,
PYTORCH, AND OUR JAX-BASED IMPLEMENTATION ACROSS CXR-8, AND

CXR-14, AND CXR-19 CLASSIFICATION TASKS FOR A ZERO-BATCH.

TensorFlow PyTorch Jax∗

CXR-8

CDL 0.06± 0.00 0.07± 0.00 0.06± 0.00
DQC 0.08± 0.00 0.13± 0.00 0.06± 0.00

CXR-14

CDL 0.06± 0.00 0.07± 0.00 0.06± 0.00
DQC 0.43± 0.00 0.18± 0.00 0.08± 0.00

CXR-19

CDL 0.06± 0.00 0.07± 0.00 0.06± 0.00
DQC 14.97± 0.01 1.89± 0.00 0.80± 0.00
∗ Our implementation.

% diff. AUROC = 2 ∗ AUROCCDL − AUROCDQC

AUROCCDL + AUROCDQC
(4)

More specifically, we produce scatter plots where each point
represents an experiment between CDL and DQC on the same
classification task, and the − log10(p-value) of the paired t-test
is plotted against the log2(% diff. AUROC). We include the
labels in CXR-8 and the additional labels added in CXR-14,
as these are present across multiple experiments.

IV. RESULTS

A. Benchmarks

Our benchmarks indicate that our Jax-based implementation
is the fastest for simulating DQC across all three classification
tasks when compared to functionally equivalent TensorFlow
and PyTorch implementations (Table III). Extrapolated to an
entire epoch of 2,454 batches:

• For CXR-8, our implementation takes 2.45 mins/epoch
and is 25% faster than TensorFlow (3.27 mins/epoch) and
54% faster than PyTorch (5.32 mins/epoch).

• For CXR-14, our implementation takes 3.27 mins/epoch
and is 81% faster than TensorFlow (17.59 mins/epoch)
and 56% faster than PyTorch (7.36 mins/epoch).

• For CXR-19, our implementation takes 32.72 mins/epoch
and is 95% faster than TensorFlow (612.27 mins/epoch)
and 58% faster than PyTorch (77.30 mins/epoch).

B. Model Trainability

We observed that across the CXR-8, CXR-14, and CXR-19
classification tasks, the DQC models had a slower convergence
rate compared to the CDL models, as shown in Figure 4.
This resulted in DQC models taking more than twice as many
epochs to converge with early stopping. Moreover, the DQC
models demonstrated a higher validation loss compared to
CDL models across CXR-8 (0.22 vs 0.21), CXR-14 (0.17 vs
0.15), and CXR-19 (0.13 vs 0.12) classification tasks.

https://github.com/UM2ii/quantum-cxr
https://github.com/UM2ii/quantum-cxr


Fig. 4. Training and validation loss between CDL and DQC models across CXR-8, CXR-14, and CXR-19 multi-label classification tasks.

C. Model Performance

When comparing the model performance (mean AUROC)
on the internal NIH test set, we observed that the CDL models
significantly outperformed the DQC models by 9.5% for CXR-
8 (0.70± 0.02 vs 0.77± 0.00, p = 0.005), by 6.6% for CXR-
14 (0.73± 0.02 vs 0.78± 0.00, p = 0.004), and by 7.8% for
CXR-19 (0.74 ± 0.03 vs 0.80 ± 0.00, p = 0.009). Figures 6,
8, and 10 illustrate the label-wise comparison in performance
between the CDL and DQC models.

When evaluating model generalizability on the external
MIMIC test set, we observed that DQC models had a signifi-
cantly lower mean AUROCs when compared to CDL models.
However, the difference in performance between the two
models was lower than the differences in the internal NIH
test set, with a difference of 4.5% for CXR-8 (0.65± 0.01 vs
0.68 ± 0.00, p = 0.009), 4.4% for CXR-14 (0.67 ± 0.01 vs
0.70± 0.00, p = 0.008), and 5.7% for CXR-19 (0.68± 0.01
vs 0.72± 0.00, p = 0.002). Figures 7, 9, and 11 illustrate this
comparative performance between the two models, stratified
by disease labels.

Our volcano plots (Figures 12 and 13) summarize per-
label performance trends across paired models for CXR-8 and
CXR-14 labels, respectively. Points above the dotted line are
considered significant (p < 0.05), and points farther to the
right have a higher (more positive) percent difference in AUC,
thus indicating a stronger advantage of CDLs over DQCs. We
observe that the 4 labels with the largest occurrence in the
NIH dataset show the most consistent trends:

• Infiltration had no significant % diff. AUROC except for
the CXR-8 task on the NIH test set.

• Effusion had significantly higher % diff. AUROC except
for the CXR-8 and CXR-19 tasks on the MIMIC test set.

• Atelectasis tended to exhibit the highest % diff. AUROC
among all labels. Although this difference was not sta-
tistically significant, it could potentially be considered
clinically significant.

• Nodule had significantly higher % diff. AUROC in DQCs
compared to CDLs on both test sets.

For CXR-14 labels on the NIH test set, every additional
label exhibited significantly higher % diff. AUROC, except
for Emphysema in the CXR-19 task. Conversely, for CXR-

Fig. 5. Mean AUROC between CDL and DQC models on NIH-CXR-LT and
MIMIC-CXR-LT test sets across CXR-8, CXR-14, and CXR-19 classification
tasks. (ns: p > 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001).

14 labels on the MIMIC test set, only Hernia exhibited
significantly higher % diff. AUROC for both CXR-14 and
CXR-19 tasks.

V. DISCUSSION

In this work, we developed an open-source Jax implemen-
tation of a QML framework for medical imaging that enables
long-tailed multi-label classification of CXRs. Although we
find that the DQC models do not outperform the CDL models
on our selected hyperparameters, the performance difference
was < 10% across all our experimental setups on both



Fig. 6. Mean per-label AUROC between CDL and DQC models on NIH-
CXR-LT test set for CXR-8 classification task, sorted by occurrence.
(ns: p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001).

Fig. 7. Mean per-label AUROC between CDL and DQC models on MIMIC-
CXR-LT test set for CXR-8 classification task, sorted by occurrence.
(ns: p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001).

internal and external test sets. We hope to shorten this gap
with improvements in theoretical understanding and empirical
utility of QML models.

Our benchmarks indicate that our Jax-based implementation
is faster than functionally equivalent PyTorch and TensorFlow
implementations for DQCs. If we further extrapolate from our
benchmarks, a 19-qubit DQC, which takes over 24 hours to
train on our hardware with Jax, would take over 48 hours on

Fig. 8. Mean per-label AUROC between CDL and DQC models on NIH-
CXR-LT test set for CXR-14 classification task, sorted by occurrence.
(ns: p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001).

Fig. 9. Mean per-label AUROC between CDL and DQC models on MIMIC-
CXR-LT test set for CXR-14 classification task, sorted by occurrence.
(ns: p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001).

PyTorch and over 2 weeks on TensorFlow. More generally, the
cost of adopting a Jax-based workflow may be easily offset
by these runtime improvements.

However, the wall-clock time of DQCs was higher than



Fig. 10. Mean per-label AUROC between CDL and DQC models on NIH-
CXR-LT test set for CXR-19 classification task, sorted by occurrence.
(ns: p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001).

Fig. 11. Mean per-label AUROC between CDL and DQC models on MIMIC-
CXR-LT test set for CXR-19 classification task, sorted by occurrence.
(ns: p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001).

CDLs due to a slow convergence rate of DQCs with the same
learning rate. We observed that the DQC models tended to
train up to the maximum epoch limit. This indicates that the
DQCs did not end up in a barren plateau in the loss landscape,

Fig. 12. Volcano plot of performance on CXR-8 labels across experiments.
Negative log10-transformed p-values of the paired t-tests for mean AUROC
of CDL and DQC are plotted against the log2-transformed % difference in
AUROC between CDL and DQC. The dashed line marks the significance
threshold (p < 0.05).

otherwise they would have stopped earlier. The models that
did stop early likely finished in a local minimum instead of a
global minimum. It is possible that with more training epochs,
the performance difference between CDL and DQC for CXR-
14 and CXR-19 could narrow further.

Given the high runtime and slow convergence rate of
DQCs, further scalability improvements are critical to follow-
up experiments. Parameter initialization could be optimized to
enable a more favorable initial training landscape [56]. While
Adam is a reliable optimizer, other optimizers could poten-
tially provide lower memory usage and faster convergence
[57]–[60]. While our batch size was chosen to fit models on



Fig. 13. Volcano plot of performance on the CXR-14 additional labels across
experiments. Negative log10-transformed p-values of the paired t-tests for
mean AUROC of CDL and DQC are plotted against the log2-transformed %
difference in AUROC between CDL and DQC. The dashed line marks the
significance threshold (p < 0.05).

a single GPU, the batch size could be tuned to larger sizes
through gradient accumulation. Mixed precision training could
also lower memory requirements and shorten training time.
Finally, using quantum simulation frameworks with additional
optimizations could result in further speedups [41], [61]–[64].

For model performance, we observe that both CDL and
QDC models were trainable and performed better than ran-
dom guessing on every label, but the DQC models fail to
outperform CDL on every label. This performance deviation
could be due to model overparameterization. While the VQC
adds a few parameters, the largest contribution of parameters
comes from the postprocessing classical layer. ResNet in
particular is already overparameterized for medical imaging
[55], so it is not guaranteed that adding additional parameters

would improve performance. It is also possible that quantum
circuits could bottleneck the convergence rate or induce a
regularizing effect during model training due to limitations
in data embedding and measurement layers. This could result
in “quantum utility” in other areas of machine learning.

Interestingly, the performance gap in mean AUROC be-
tween the CDL and DQC models narrows when testing
on MIMIC compared to NIH. We observed that more of
the per-label mean AUROC comparisons resulted in non-
significant differences between CDL and DQC models. There
are two potential confounders in the relatively better perfor-
mance of DQCs on MIMIC. First, poor generalizability across
both models was observed, which limits the applicability
of generalization-based arguments. Second, the demographic
distributions between NIH and MIMIC are known to differ.
Thus, the DQC may have learned certain demographic features
unrelated to disease states that are present in higher frequen-
cies in MIMIC vs NIH.

Our volcano plots indicate that labels with a higher oc-
currence in a data distribution may exhibit more consistent
performance trends across different sizes of models and clas-
sification tasks. However, these trends may be influenced by
demographic or imaging factors specific to each test set,
thus it is likely the unique imaging features of each label
that contribute to the individual classification challenges of
each label. Interestingly, DQC did not outperform CDL in
cardiomegaly and pneumonia, two diseases that have been
empirically successful with binary classification and QML [7],
[8]. This may be due to differences in the model architectures.
It’s possible that tuning the learning rate and number of layers,
using alternative backbones such as vision transformers [65],
and exploring alternative data encoding methods and quantum
circuit ansatz could further improve classification performance
for QML models.

Our results point to the need for hyperparameter exploration
to better understand the performance range and sensitivity
across hyperparameters. While it appears intuitive to use the
same hyperparameters for evaluating QML and CML models
in the name of fairness, based on our results, CML and
QML models are not guaranteed to perform the same due
to fundamental differences between quantum and classical
computation. Additional work is needed to determine if the
larger variance of DQC performance is an experimental artifact
or a fundamental property of DQC models. These follow-up
experiments are essential and nontrivial given the large search
space of hyperparameters [10], [66].

There are certain limitations to our work. 1) We focus on
ideal quantum simulation without presence of noise. 2) We
optimize our implementation to fit on a single GPU instead of
multiple GPUs. 3) We do not tune model hyperparameters. 4)
We focus on the more established Pennylane simulator instead
of newer simulators. We plan to explore these areas in future
work.



VI. CONCLUSION

Our novel Jax-based quantum machine learning framework
for long-tailed chest X-ray classification is scalable for up
to 19 qubits and disease labels. Our work is an exciting
step towards reducing the computational barrier to quantum
machine learning research for medical imaging applications,
and opens the door to both further runtime and performance
optimizations and characterization of QML behavior across
the hyperparameter space.
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