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Revisiting RGBT Tracking Benchmarks from the
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Abstract—RGBT tracking draws increasing attention due to its
robustness in multi-modality warranting (MMW) scenarios, such
as nighttime and bad weather, where relying on a single sensing
modality fails to ensure stable tracking results. However, the
existing benchmarks predominantly consist of videos collected
in common scenarios where both RGB and thermal infrared
(TIR) information are of sufficient quality. This makes the data
unrepresentative of severe imaging conditions, leading to tracking
failures in MMW scenarios. To bridge this gap, we present a new
benchmark, MV-RGBT, captured specifically in MMW scenarios.
In contrast with the existing datasets, MV-RGBT comprises more
object categories and scenes, providing a diverse and challeng-
ing benchmark. Furthermore, for severe imaging conditions of
MMW scenarios, a new problem is posed, namely when to fuse, to
stimulate the development of fusion strategies for such data. We
propose a new method based on a mixture of experts, namely
MoETrack, as a baseline fusion strategy. In MoETrack, each
expert generates independent tracking results along with the
corresponding confidence score, which is used to control the
fusion process. Extensive experimental results demonstrate the
significant potential of MV-RGBT in advancing RGBT tracking
and elicit the conclusion that fusion is not always beneficial, espe-
cially in MMW scenarios. Significantly, the proposed MoETrack
method achieves new state-of-the-art results not only on MV-
RGBT, but also on standard benchmarks, such as RGBT234,
LasHeR, and the short-term split of VTUAV (VTUAV-ST). More
information of MV-RGBT and the source code of MoETrack will
be released at https://github.com/Zhangyong-Tang/MoETrack.

Index Terms—RGBT tracking, modality validity, benchmarks,
information fusion, mixture of experts

I. INTRODUCTION

Visual object tracking is a hot topic in computer vision,
aiming to predict the location and size of an object throughout
a video sequence, starting from its initial state specified in
the first frame [1], [2], [3]. Recent studies have identified
the limitations of using only visible sensors, leading to a
growing interest in integrating auxiliary modalities such as
thermal infrared (TIR) [4], depth [5], event [6], and language
[7]. This trend has propelled multi-modality tracking into
the spotlight. RGBT tracking, in particular, has emerged as
a popular topic due to the complementary characteristics of
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RGB and TIR modalities. For instance, RGB data is sensitive
to changing illumination conditions, whereas TIR data is not
[8]. Conversely, TIR data lacks colour information which is
typically contained in RGB data [9]. In other words, compared
to the reliance on a single modality, RGBT tracking offers
distinct advantages, helping to stabilise the tracking, especially
when one modality encounters significant challenges, such as
thermal crossover and over-exposure. These severe imaging
conditions are referred as multi-modality warranting (MMW)
scenarios in this work.

Thanks to the rapid development of RGB and TIR sensors,
various RGBT tracking benchmarks have been proposed, such
as GTOT [10], RGBT210 [11], RGBT234 [12], LasHeR [4],
and VTUAV [13], accelerating the research in the domain.
However, a statistical analysis of these benchmarks, which
involves sampling 20% of the videos at random to deter-
mine whether they are captured under MMW scenarios or
not, indicates that almost all the videos are collected under
common scenarios, presenting no critical imaging condition
challenges. This observation indicates that these benchmarks
are unrepresentative of MMW scenarios and by implication,
the advantages of combining RGB and TIR modalities have
not been fully investigated. Furthermore, the robustness of
existing methods in MMW scenarios remains unexplored,
leading to unreliable recommendations when deploying RGBT
trackers in practical applications.

To address the above issues and rectify the deficiencies of
the current benchmarks, we propose a new benchmark for
RGBT tracking, which solely contains data collected in MMW
scenarios. Since one modality is usually non-informative in
MMW scenarios, as exemplified in Figure 1(c), the proposed
benchmark, MV-RGBT, aims to draw more attention to modal-
ity validity. Essentially, MV-RGBT can be futher divided
into two subsets: MV-RGBT-RGB and MV-RGBT-TIR. For
example, the RGB modality is unseen in the nighttime, and
such videos belong to MV-RGBT-TIR since the TIR modality
provides unaffected perception of target, and vice versa. This
categorisation allows us to consider the effectiveness of the
solutions in a compositional manner, enabling an in-depth
analysis and providing insights for future developments. More
discussions are provided in Sec. V-F.

Furthermore, the frequent presence of non-informative data
in MMW scenarios prompts us to delve into the necessity
of multi-modality information fusion, posing the problem of
when to fuse, as aggregating irrelevant data may be unhelpful
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or even harmful. While designing a classifier to gauge data
validity at the image level might be the most straightforward
solution, the scarcity of data for training such classifiers
precludes this option. Consequently, our approach focuses
on the decision level. We note that non-informative data
tends to produce coarse bounding box predictions under the
widely-used tracking-by-detection paradigm, as illustrated in
Figure. 1(d). At the same time, one of the imaging modalities
may be competent in tracking the target on its own. Thus,
our approach generates in parallel separated RGB, TIR, and
fused modality predictions. Methodologically, the proposed
approach deploys a Mixture of Experts, including the RGB,
TIR, and RGBT experts, dubbed as MoETrack. During infer-
ence, each expert provides a bounding box prediction along
with the corresponding confidence score. The final prediction
is controlled by the confidence score, which determines when
to fuse. Specifically, if the RGBT expert produces the highest
score, the corresponding bounding box results will be selected,
indicating that fusion is considered beneficial and vice versa.

In summary, the main contributions of this work include:

e A new benchmark dataset, MV-RGBT, is collected to
make it representative of MMW scenarios. Furthermore,
videos in the dataset can be categorised according to the
modality informativeness into two subsets, MV-RGBT-RGB
and MV-RGBT-TIR, facilitating an in-depth analysis of the
tracking methods in a compositional way.

e A new problem, when to fuse, is introduced to develop a
reliable fusion strategy, as in MMW scenarios multi-modality
information fusion may be counterproductive.

e A new fusion method, MoETrack, is proposed, involving
three tracking heads (experts). It offers a more flexible way
to deal with both the RGB- and TIR-specific challenges by
adaptively switching the tracking prediction to the one from
the most reliable expert.

e Extensive experiments demonstrate that MoETrack defines
new state-of-the-art results on several benchmarks, including

MV-RGBT, RGBT234, LasHeR, and VTUAV-ST.

II. RELATED WORK
A. RGBT Tracking Benchmarks

With the popularity of RGB and TIR sensors, several RGBT
tracking benchmarks have been proposed. As shown in Table
I, there are 7 popular RGBT tracking benchmarks, including
GTOT [10], RGBT210 [11], RGBT234 [12], LasHeR [4],
VTUAV [13], VOT-RGBT2019 [14], and VOT-RGBT2020
[15]. Among them, GTOT [10] stands out as the pioneering
benchmark, comprising 50 video pairs. However, in the deep
learning era, this is of a very limited size for comprehensive
evaluation. To address this, RGBT210 [11] is proposed with
210 video pairs. Furthermore, it is extended by including
videos in more scenes, such as hot days, forming a new bench-
mark named RGBT234 [12]. VOT-RGBT2019 [14] and VOT-
RGBT2020 [15] are subsets of RGBT234, but with different
benchmarking strategies. VOT-RGBT2019 employs a re-start
strategy when a tracking failure is detected. However, during
evaluation, the location, where the tracker fails, affects the final
performance, which is considered unreasonable. Hence, the re-
start strategy is replaced in VOT-RGBT2020 with a multi-start
strategy, executing the tracker from multiple fixed anchors.
LasHeR [4] is another benchmark proposed together with a
large-scale training set and contains 245 video pairs captured
in 15 scenes. Unlike the above benchmarks collected from a
human or surveillance perspective, VTUAV [13] collects data
from an unmanned aerial vehicle (UAV). Its short-term split
consists of 176 video pairs, with an average length of 3500
frames.

Howeyver, as shown in Table I, it is evident that the data from
the aforementioned benchmarks are predominantly collected
in common scenarios, which markedly differ from the multi-
modality warranting (MMW) scenarios discussed when high-
lighting the advantages of RGBT tracking. Our MV-RGBT
benchmark bridges this gap by ensuring that all the videos



TABLE I
A COMPARISON BETWEEN EXISTING RGBT TRACKING BENCHMARKS AND THE PROPOSED MV-RGBT BENCHMARK.

Num.  Avg. Max. Total =~ Modality .

Benchmarks Seq. Frame Frame Frame  Validity Resolution ~ Category  Scene
GTOT [10] 50 157 376 7.8k X 384x288 9 6
RGBT210 [11] 210 498 4140  104.7k X 630x460 22 8
RGBT234 [12] 234 498 4140  116.7k X 630x460 22 8
VOT-RGBT2019 [14] 60 334 1335 40.2k X 630x460 13 5
VOT-RGBT2020 [15] 60 334 1335 40.2k X 630x460 13 5
LasHeR-test [4] 234 900 12862  22.0k X 630x460 19 15
VTUAV-test-st [13] 176 3588 25295  63.1k X 1920x1080" 13 10
Ours(MV-RGBT) 122 737 2113 89.9k v 640x480 36 19
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Fig. 2. (a) The statistics of the MV-RGBT benchmark and (b) a brief introduction of the key-point-based alignment.

are collected in MMW scenarios. Additionally, based on the
specific challenges unique to each modality, MV-RGBT is
divided into RGB and TIR components. This division allows
for a detailed analysis in a compositional manner, facilitating
a more comprehensive assessment of the contribution of each
modality and their fusion for more nuanced deployment of
RGBT trackers.

B. Multi-Modality Information Fusion

As a key element in RGBT tracking, the fusion of the multi-
modality information is always crucial for a high-performance
tracker. According to the location where the fusion happens,
existing fusion strategies can be divided into pixel- [16],
feature- [17], [18], [19], [20], [21], [22], [23], [24], [25],
and decision-level [26], [27], [13] methods. Pixel-level fusion
involves a fusion in the image domain, necessitating perfectly
aligned multi-modality data. However, this constraint limits the
attention of the research community paid to this level of fusion.
Consequently, feature-level and decision-level fusion methods
have become more popular. At the feature level, information
fusion is implemented at a high-dimensional semantic space,
offering a more comprehensive multi-modality perception at
the expense of increased computational resources [28], [17],
[20], [19], [25], [22]. On the other hand, decision-level fusion
strategies typically utilise the intermediate tracking results
produced by each modality, embedded in a low-dimensional
task-related space [26], [13]. Compared to the trackers relying
on feature-level fusion, decision-level fusion methods often
exhibit higher efficiency, while maintaining comparable per-
formance.

However, regardless of the level at which the fusion block is
placed, existing methods integrate multi-modality information

at every frame. Despite their promising performance, there
has been a notable lack of discussion of this strategy. We
argue that this strategy is sub-optimal in Sec. V. For example,
qualitatively, in MMW scenarios, one of the modalities often
encounters severe challenges, making it non-informative, and
potentially even causing the injection of harmful information.
In such situations, the adoption of standard fusion strategy
warrants further assessment. Therefore, a new problem when
to fuse is addressed to enhance the effectiveness of multi-
modality information fusion.

In the light of this, we develop a new RGBT tracking
method with multiple tracking heads. Each of them provides a
distinct prediction and therefore they act as different experts,
referred to as RGB, TIR, and RGBT experts, based on their
inputs. Subsequently, an expert selection strategy forms our
decision-level fusion block, with the final choice opting for
fusion-based tracking only if fusion is deemed crucial.

III. NEw BENCHMARK: MV-RGBT
A. Data Collection

Since the objective is to address the inconsistency between
the data in current benchmarks and MMW scenarios, where
the utilisation of multi-modal data is critical for a stable
tracking system, MV-RGBT is totally captured in MMW
scenarios. As depicted in Figure 1(c), our fundamental idea is
to identify MMW scenarios. In MMW scenarios, one modality
typically suffers significant challenges specific to its physical
properties [4], while the other remains relatively unaffected.
Therefore, in MV-RGBT, the challenges are categorised as
RGB-specific and TIR-specific: (1) Bad weather: This refers

U1t is obtained by super-resolution.
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Fig. 3. Pipeline of the proposed MoETrack. Considering three experts, RGB, TIR, and RGBT, a comparison of confidence scores is conducted to maintain

the final prediction.

to conditions where the visibility of RGB channels is severely
impacted, such as heavy foggy days. (2) Extreme illumination:
This occurs when objects are not visible during nighttime or
overexposure. (3) TIR truncation: TIR radiation is unable to
penetrate transparent objects, such as water surfaces or glass.
(4) TIR reflection: Coexistence of different TIR radiations for
the same objects, especially when objects are near reflective
surfaces like mirrors. (5) TIR background clutter: Inanimate
objects that remain in the same space for an extended period
tend to blend with the environment, such as the umbrellas used
outdoors on rainy days.

Following the aforementioned principles, a platform
equipped with a TIR sensor (FLIR BOSON PIUS 640 2) and
an RGB sensor (Intel RealSence Depth camera D456 %) is
assembled for data collection. As shown in Table I, MV-RGBT
comprises 122 multi-modal video pairs. The average and
maximum video lengths are 737 and 2113 frames, respectively.
In total, MV-RGBT consists of 89.9k frame pairs with a
resolution of 640x480. Furthermore, the objects in MV-RGBT
come from 36 different classes, and the videos are captured in
19 distinct scenes, rendering them more diverse than the other
publicly available benchmarks. Specific details are shown in
Figure 2(a).

B. Data Annotation and Alignment

MV-RGBT benefits from meticulous annotation efforts by
several researchers in the field of visual object tracking.
Notably, the provided rectangle-formatted annotations strictly
enclose only the visible parts of objects. In cases where objects
are completely unseen or occluded, all values of rectangle
are set to 0. For the alignment of different modalities, the
widely recognised key-point-based algorithm, LoFTR [29], is
employed. However, when LoFTR fails to provide satisfactory
results, manually annotated key points are utilised, as depicted
in Figure 2(b), ensuring accurate alignments between different
modalities of each frame. Ultimately, the entire MV-RGBT
benchmark undergoes strict quality checks to ensure high-
quality annotations throughout.

Zhttps://www.flir.co.uk/products/boson-plus/
3https://www.intelrealsense.com/

C. Evaluation Metrics
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Similar to other tracking benchmarks, as presented in Eq.
(1), the intersection over union (IoU) between the ground
truth bounding box g, , and predicted bounding box p, ; is
calculated for evaluation, as well as the ¢2 distance (Dis)
between the centre of these bounding boxes, g;; . and p; ; .
The subscript j denotes the j-th video and ¢ means the index
of the frame. c signifies ‘centre’. ¢ and m denote the frames
contained in the sequence and videos contained in the entire
benchmark, respectively. thy and th;, represent the thresholds
for calculating the success rate sr and precision rate pr. That
means IoU and the centre distance are first averaged across all
frames within each sequence, and then across all sequences.
Later, in order to provide a comprehensive evaluation, multiple
thresholds are employed and the results under each threshold
are recorded. Consequently, the area under curve (AUC) is
reported as the final score, which is displayed in Figure 5.
Notably, for absent frames, if there exists a prediction, the
outputs of the IoU(-) and Dis(-) functions are both 0. However,
if the absence is predicted, these outputs are set to 1.

IV. NEW SOLUTION: MOETRACK

A. RGBT Tracking

Given the ¢-th multi-modality frame pair X; r¢p and X ¢,
the goal of an RGBT tracker is to obtain the bounding box
prediction of the current frame:

p; = f(Xi,Tgb§Xi,tir§ 0, ¢)7 )

where f(-) denotes the tracker with offline-learned parameters
6. Notably, ¢ represents the weights used for multi-modality
information fusion, which is typically employed in every
frame.



B. MoETrack

After collecting the data in MMW scenarios, as depicted in
Figure 1(c), the loss of information in one modality inspires us
to reconsider the necessity of fusion, leading to our discussion
on when to fuse. In response, MoETrack is developed with
multiple tracking heads with each of them acting as an expert.
The appropriate selection of one of these experts generates the
best prediction of the tracked object.

Network Overview: As illustrated in Figure 3, the multi-
modality frame pair X; .4, and X; 4, are firstly divided into
patches and then transferred into tokens. Since the spatial
structure is broken during tokenisation, a learnable positional
embedding is further introduced, whose outputs X]Z < g and
XP<, € R¥*4 form the inputs of the transformer-based back-
bohe, where k is the number of tokens and d denotes the length
of each token. As to the backbone, the ViT-base provided
by [1] is employed, containing n = 12 standard transformer
encoders. Additionally, for both RGB and TIR branches, the
backbone is shared and their corresponding outputs X?)Tgb and
X!, € RF*? also share the same dimensions. After that, they
are combined as the fused feature X?yrgbt € R¥*4_ which is
then transferred into the task-related space through a tracking
head. However, it merely acts like the RGBT expert in our
design of mixture of experts and the fusion is simply defined
by an element-wise addition. Hence, other two tracking heads
are adopted for X ?7,4 gp and X f,m., serving as the RGB and TIR
experts, respectively. Later, the final prediction p, is provided
by the expert with the highest confidence score. Notably,
the maximum score of the classification map serves as a
confidence measure in our work, as it is widely used as a
reliability measurement in the tracking field [26], [13].

In this manner, with adaptive selection implemented, the
RGBT tracking paradigm introduced in Eq. (2) evolves into a
new one:

[ (Xirgh; 0),if mc = cspgp;
J(Xi v gp; Xi tir; 05 @), if mC = cSpgpy; 3)
f(Xi,tiT; 0), if mc = CStirs

p; =

where c¢s,.gp, CStir, and csygp: denote the confidence scores
of RGB, TIR, and RGBT experts, respectively. mc =
max(CSygp, CSsiry CSrgpr) 1S obtained as the maximum score.
Therefore, the selection should intuitively reflect whether
fusion is necessary or not, which naturally supports our further
discussion on when to fuse.

Network Training: In our design, the backbone is finetuned
and the other parameters are trained from scratch according
to the gradients from multiple experts. Basically, each expert
is assigned a tracking loss [ to ensure specialisation and [ is
calculated by following [24]. The final loss is computed by
averaging all the expert losses:

loss = (l'r‘gb + ltir + lrgbt)/?)» (4)

where l,.gp, ltir, and l.gp: represent the loss for RGB, TIR,
and RGBT experts, respectively.

V. EXPERIMENTS
A. Implementation Details

The implementation of our MoETrack is executed on a
platform equipped with an NVIDIA RTX 3090Ti GPU card.
ViT-256 is employed as the backbone and it is finetuned
by AdamW with gradients learned from the training split of
LasHeR [4]. The learning rate is initialised at 7.5e-5 and drops
to one-tenth of the current value for every 10 epochs. The
batch size is set to 32.

B. Evaluation Data and Metrics

The effectiveness of the proposed method, MoETrack, is
verified on the proposed MV-RGBT benchmark as well as
several publicly available benchmarks, including GTOT [10],
RGBT234 [12], LasHeR [4], and VTUAYV [13]. Since the MV-
RGBT is thoroughly introduced in the main file, the details of
other benchmarks are displayed in the following paragraphs.

GTOT is an early published RGB-T dataset, including 7.8K
image pairs. The evaluation metrics are precision rate (PR)
and success rate (SR). PR measures the percentage of frames
with the distance between centres of the predicted and ground
truth bounding box below a threshold, 5 in this benchmark. SR
represents the ratio of frames being tracked with the overlap
between the predicted and ground truth bounding box above
Zero.

RGBT234 contains 234 and 116.7K multi-modal video and
frame pairs, respectively. This benchmark employs the same
evaluation metrics with GTOT.

LasHeR is a large and widely-used benchmark in the RGB-
T field, and its testing split consists of 245 video pairs. PR,
SR and the normalised precision rate (NPR) are used for
benchmarking. NPR [43] is a modified version of PR since
PR can be easily affected the image resolution and the size
of the ground truth bounding box. It should be noted that the
threshold of PR in LasHeR is 20. However, only PR ans SR
are involved in this work, as the comparison of PR always
produces the same conclusion with that of NPR.

VTUAV is a benchmark collected by drones. Basically, it
has both the long-term and short-term splits. However, since
almost all the competitive methods are short-term trackers,
only the comparison on the short-term split (VTUAV-ST) is
provided in the main file. VTUAV-ST contains 176 videos,
with an average length of 3500 frames. On this benchmark,
we also use the PR and SR as evalution metrics.

C. Quantitative Analysis

To provide a comprehensive evaluation of our method,
the experiments are carried out on our MV-RGBT and four
existing benchmarks, including GTOT [10], RGBT234 [12],
LasHeR [4], and VTUAV-ST [13]. We compare MoETrack
with 22 advanced trackers in Table II. According to the ta-
ble, MoETrack demonstrates promising performance on these
benchmarks and new state-of-the-art records are established
on RGBT234, LasHeR, VTUAV-ST, and MV-RGBT.

As illustrated in Table II, on GTOT, our method achieves PR
and SR results of 93.6% and 78.4%, respectively. Compared to



TABLE 11
QUANTITATIVE RESULTS ON GTOT, RGBT234, LASHER, AND VTUAV-ST.

Method Venue GTOT RGBT234 LasHeR VTUAV-ST FPS

PR/% 1 SR/% 1 PR/% 1 SR/% 1 PR/% 1 SR/% 1 PR/% 1 SR/% 1 T

FSRPN [14] ICCVW2019 89.0 69.5 71.9 52.5 - - 65.3 54.4 -
mfDiMP [18] ICCYW2019 83.6 69.7 84.6 59.1 44.7 343 67.3 55.4 10.0
DAFNet [30] ICCVW2019 89.1 71.6 79.6 54.4 44.8 31.1 62.0 45.8 20.0
CAT [31] ECCV2020 88.9 71.7 80.4 56.1 45.0 31.4 - - 20.0
CMPP [32] CVPR2020 92.6 73.8 82.3 57.5 - - - 1.3
MANet++ [33] TIP2021 88.2 70.7 80.0 55.4 46.7 31.4 - 25.0
JMMAC [34] TIP2021 90.2 73.2 79.0 57.3 46.7 31.4 - - 4.0
ADRNet [35] 1ICV2021 90.4 73.9 80.7 57.0 - - 62.2 46.6 25.0

MFGNet [36] TMM2022 88.9 70.7 783 53.5 - - - - -
DMCNet [37] TNNLS2022 90.9 73.3 83.9 59.3 49.0 355 - - 2.3
APFNet [28] AAAI2022 90.5 73.7 82.7 57.9 50.0 36.2 N B 1.3
ProTrack [38] ACMMM2022 - - 78.6 58.7 50.9 42.1 - - 30.0
MIRNet [39] ICME2022 90.9 74.4 81.6 58.9 - - - - 30.0
HMFT [13] CVPR2022 91.2 74.9 78.8 56.8 - - 75.8 62.7 30.2
LANet [40] TMM2023 91.3 75.1 79.5 58.4 53.8 43.1 - - 21.7
ECMD [41] CVPR2023 90.7 73.5 84.4 60.1 59.7 46.7 - - 30.0
QAT [42] ACMMM2023 91.5 75.5 88.4 64.3 64.2 50.1 80.1 66.7 22.0
ViPT [24] CVPR2023 91.4 76.3 83.5 61.7 65.1 52.5 - - 39.0
TBSI [23] CVPR2023 91.5 759 87.1 63.8 69.2 55.6 - 36.0
CAT++ [21] TIP2024 91.5 73.3 84.0 59.2 50.9 35.6 - - 14.0
BAT [22] AAAI2024 90.9 76.3 86.8 64.1 70.2 56.3 81.8 67.4 15.0
GMMT [25] AAAI2024 93.6 78.5 87.9 64.7 70.7 56.6 82.8 68.5 20.0
SETrack 91.7 76.6 87.1 64.4 71.7 57.2 82.7 68.7 25.0
MoETrack-TIR 64.3 56.3 76.5 54.0 59.8 47.4 51.7 412 25.0
MOoETrack-RGB 84.9 68.9 81.6 60.7 62.4 50.2 76.1 65.7 25.0
MOoETrack-RGBT 92.9 77.7 87.5 64.8 71.7 57.5 82.9 69.1 25.0
MoETrack 93.6 78.4 88.1 65.1 72.1 57.8 83.6 69.5 23.0

the best-performing tracker GMMT [25], our method exhibits
the same performance on PR and a slight degradation (0.1%)
on SR. On RGBT234, our method performs the best on SR
(65.1%) and the second on PR (88.1%). Regarding LasHeR,
again, our method ranks first on PR and SR, achieving 72.1%
and 57.8%, respectively. To further demonstrate the generali-
sation capability of our method, evaluations on VTUAV-ST are
conducted, as its data is collected from a different perspective
compared to the training set [13]. On VTUAV-ST, our method
performs the best in terms of PR and SR, reaching 83.6% and
69.5%, respectively.

Furthermore, according to Table II, several advanced track-
ers are included for benchmarking on our benchmark, MV-
RGBT. The results are reported in Figure 5 (upper figures) and
our method shows more recognisable advantages. Specifically,
the results on PR and SR are 51.4% and 67.6%, respectively.
Compared to the second-place tracker, GMMT, our method has
improvements of 2.3% and 2.2% on PR and SR, highlighting
the effectiveness of our method.

In addition, visualisations of tracking results are provided
in Figure 4, which intuitively explain the superiority of our
approach.

D. Ablation Study

Table II and Figure 5 report the ablation study of combining
multiple experts. Basically, consistent with other methods, the
variant with only the fused branch is involved, dubbed as
SETrack. Furthermore, in our method, the performance of each
expert is also provided. The experts for RGB, TIR, RGBT
branches are referred to as MoETrack-RGB, MoETrack-TIR,
and MoETrack-RGBT, respectively.

Firstly, through the comparison between SETrack and MoE-
Track, continuous improvements can be found on all bench-
marks, which strongly demonstrates the superiority of our
method. In addition, utilising the results from the same branch,
MoETrack-RGBT also exceeds SETrack on all benchmarks.
This is attributed to the extra losses for the RGB and TIR
branches. In this way, enhanced RGB and TIR features can
be obtained, which further produces boosted fused features for
the RGBT expert, leading to improved performance. However,
on MV-RGBT, MoETrack-RGBT performs slightly worse than
SETrack on SR but better on PR. This is mainly because
MV-RGBT focuses more on the timing of fusion, which
makes the enhanced RGB and TIR features less significant. It
also confirms that MV-RGBT concentrates more on modality
validity, which is consistent with our motivation.

Besides, compared to other variants, MoETrack-RGB and
MoETrack-TIR always show significantly worse performance
than SETrack and MoETrack-RGBT, which verifies the supe-
riority of integrating multi-modality data for RGBT tracking.

E. Self Analysis

Since the superiority of the proposed method has been
demonstrated, more analysis of the proposed benchmark, MV-
RGBT, and the new problem when to fuse are provided in this
section.

Significance of MV-RGBT: This is introduced both quan-
titatively and qualitatively.

Quantitatively, the statistics displayed in Table I show that
MV-RGBT is the most diverse benchmark, encompassing the
largest number of object categories and scenes. Additionally,
observations from Table II and Figure 5 indicate that the
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QUANTITATIVE RESULTS ON GTOT, RGBT234, LASHER, AND
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Fig. 5. Qualitative analysis on MV-RGBT.

TABLE III
QUALITATIVE ANALYSIS OF THE BENCHMARKS.

PR/% GTOT  RGBT234 LasHeR  VTUAV-ST MV-RGBT
MoETrack-RGBT 92.9 875 71.7 82.9 65.3
MoETrack-RGB 84.9 81.6 62.4 76.1 44.0
MoETrack-TIR 64.3 76.5 59.8 51.7 39.7
(1I-TIR/RGBT)/% 1 30.8 (3) 12.6 (5) 16.6 (4) 37.4 (2) 39.3 (1)
(1-TIR/RGB)/% | 24.3 (4) 6.2 (2) 42 (1) 32.1 (5) 9.8 (3)
mRank | 3.5 35 2.5 3.5 2

tracking performance on our benchmark is notably lower
than that on other benchmarks. This suggests that MV-RGBT
presents greater challenges than existing benchmarks, thereby
fostering the advancement of RGBT tracking.

SR/% GTOT RGBT234 LasHeR VTUAV-ST MV-RGBT
MoETrack-RGBT ~ 77.7 64.8 57.5 69.1 49.1
MoETrack-RGB  68.9 60.7 50.2 65.7 34.8
MoETrack-TIR 56.3 54.0 474 412 29.5
(I-TIRRGBT)/% 1 276 16.7 17.6 40.4 40.0
(I-TIR/RGBY/% | 183 11.1 5.6 374 153
mRank | 35 35 25 35 25

Qualitatively, Table III presents the gap between the worst
single-modal (TIR) tracker and the multi-modality (RGBT)
tracker, as well as the gap between RGB and TIR trackers in
terms of PR. Generally, a larger score for the former indicates
that the benchmark can better showcase the significance of
aggregating multi-modality information, while a lower score
for the latter suggests that different modalities are more
balanced. Based on these observations, an averaged ranking,
mRank, is computed as a comprehensive indicator. Through
the analysis on PR, MV-RGBT ranks first and a similar
analysis on SR is provided in the Table IV, where MV-RGBT
and LasHeR are equally measured as the best. Therefore,
in terms of the joint evaluation of modality balance and
multi-modality significance, MV-RGBT emerges as the most
balanced benchmark, showing great potential to accelerate the
research in RGBT tracking.

Besides, according to the challenges introduced in Sec.
II-A, MV-RGBT can be further divided into two parts, MV-
RGBT-RGB and MV-RGBT-TIR. Videos suffering extreme
illumination and bad weather belong to the second part, as
the effectiveness of the RGB modality is critically influenced,
while the remaining videos form the first part. This implies
that each part has different dominating modalities, allowing



for a new approach to analysis, which is discussed in Sec.
V-F.

When to Fuse: As for the discussion on when to fuse,
it is crucial to first clarify why it should be highlighted.
Accordingly, the results obtained on MV-RGBT-RGB and M V-
RGBT-TIR are shown in the lower part of Figure 5, with
a focus on the variants MoETrack-RGBT, MoETrack-RGB,
and MoETrack-TIR. On MV-RGBT-RGB, MoETrack-RGB
shows better performance than MoETrack-RGBT, indicating
that fusion may not be necessary since MoETrack-TIR per-
forms poorly. Additionally, on MV-RGBT-TIR, MoETrack-
TIR achieves the best result while MoETrack-RGB performs
the worst. These findings reflect that compared to a single
modality, the fusion of multi-modality information is not
always beneficial, prompting a further discussion on when to
fuse.

In this paper, based on the combination of multiple experts,
the discussion of when to fuse is transferred to the selection
among these experts. Fusion is considered necessary if the
results from the RGBT expert are chosen, and vice versa. Fig-
ure 6 shows the selection results on three videos, visualising
the choice in each frame and the ratio of selected frames
for each expert. In the second example from MV-RGBT,
where the RGB modality is affected by heavy fog, leading
to the object being unseen in the RGB data, the TIR tracking
results are consistently more reliable than those obtained by
the RGB expert throughout the sequence. After involving the
RGBT expert, the selection switches to the RGBT expert for
12% of all the frames. This is attributed to that the offline-
trained and parameter-fixed model makes it hard to have the
correct choice for every frame. Nevertheless, results from the
TIR expert are predominantly chosen, indicating that multi-
modality information fusion may be unnecessary in MMW
scenarios. The same conclusion can be drawn from the first
example. On the contrary, in the third example from common
scenarios, the reliabilities of the RGB and TIR experts are
nearly the same throughout the video (0.42 & 0.58), indicating
a slight gap between these two experts. This further indicates
that both modalities are informative for the tracking task.
After combination, the RGBT branch has further enhanced
features, which explains the phenomenon that the results from
the RGBT expert dominate the decision in this video. It means
integrating multi-modality information in common scenarios is
helpful, as the features from different modalities can mutually
reinforce each other for performance boosting.

In conclusion, densely applying the multi-modality fusion
proves beneficial in common scenarios, where the data of ex-
isting benchmarks is collected. However, in MMW scenarios,
where a single modality alone may not adequately support the
tracking task in practical applications, indiscriminate fusion
may not only be unhelpful but could also prove detrimental,
as indicated by our results.

FE. Compositional Analysis for Algorithms

The proposed benchmark, MV-RGBT, can be stratified
into two parts, MV-RGBT-RGB and MV-RGBT-TIR. In the
former, data predominantly relies on the RGB modality, while

Input: RGB & TIR

Expert: RGB & TIR Expert: RGB & TIR & RGBT

1.00 0.70
| = e e e o

0.00
0.00

0.00 0.00

1.00
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Fig. 6. Analysis for proposed new problem when to fuse.

the latter exhibits higher-quality data for the TIR modality.
This stratification motivates us to conduct a compositional
analysis, evaluating the performance of methods on RGB and
TIR subsets separately. Figure 5 presents the overall (upper
figures) and partial results (lower figures) at the same time.
On MV-RGBT-RGB, BAT [22] and ViPT [24] outperform
MoETrack, SETrack, and GMMT [25]. However, their perfor-
mance drastically deteriorates on MV-RGBT-TIR, only better
than MoETrack-RGB. In contrast, MoETrack, SETrack, and
GMMT have a more balanced performance across both MV-
RGBT-RGB and MV-RGBT-TIR subsets, thus explaining their
overall excellence in evaluation. Furthermore, the superior per-
formance of MoETrack, SETrack, and GMMT underscores the
importance of a balanced design for each modality, suggesting
a promising direction for future studies.

G. Efficiency Analysis

The efficiency analysis is provided in Table II, revealing
that an optimal balance between the performance and com-
putational efficiency is exhibited in our method. Compared
to ViPT, our method consumes more time (23 FPS), which
is owed to applying the complicated transformer architec-
ture to both RGB and TIR branches. However, our method
consistently outperforms ViPT across all the benchmarks.
Moreover, when compared to other state-of-the-art trackers
such as GMMT and BAT, our method demonstrates superior
efficiency while maintaining better performance.

Besides, adopting multiple experts brings a slight decrease
in efficiency, albeit with consistent improvements across all
benchmarks. In our design, compared to SETrack, two CNN-
based tracking heads and a comparison of the confidence
scores are executed in extra. The former is lightweight and
therefore causes a slight reduction in efficiency (A=2FPS).
The latter expends neglectable time since it only involves
fetching the maximum value among three scalars. Despite this
minor efficiency trade-off, the adoption of multiple experts
leads to improved performance across all the benchmarks, with
particularly notable enhancements observed on MV-RGBT.



H. Beyond RGBT Tracking

Basically, one of the key contributions of this work lies
in the demonstration that fusion is not always necessary
for multi-modality tasks and a detailed discussion is carried
out on RGBT tracking. However, our insight is not limited
to a specific area and has a broader applicability beyond
RGBT tracking. It can be extended to various multi-modality
tasks, such as RGBD/RGBE tracking and RGBT detection.
Moreover, by leveraging the benchmark proposed in this work,
researchers can directly conduct comprehensive evaluations
and analyses to ascertain the efficacy of fusion strategies in
RGBT detection, which is supposed to facilitate the develop-
ment of more robust multi-modality detection systems.

VI. CONCLUSION

With the awareness of the inconsistency between the exist-
ing benchmarks and the multi-modality warranting (MMW)
scenarios where the advantages of multi-modality information
are most pronounced, we presente a diverse and challenging
benchmark, namely MV-RGBT, by ensuring all the data in
MMW scenarios. In this way, the inconsistency is removed and
the evaluation in MMW scenarios can be executed, thereby
providing more reliable suggestions for the deployment of
RGBT trackers in practical applications. Besides, a further
division of MV-RGBT enables a compositional analysis of
existing methods, revealing the advantages of multi-modality
balanced designs for achieving higher overall performance in
RGBT tracking.

Additionally, inspired by widely-appeared invalid data in
MMW scenarios, a new problem when fo fuse is posed
and discussed by devising a new MoETrack method with
multiple experts. Through building new state-of-the-art records
on RGBT234, LasHeR, VTUAV-ST, and MV-RGBT, the su-
periority of MoETrack is demonstrated and the extensive
experiments also indicates that when the information in both
modalities are of good quality, the fused results are always
more reliable. On the contrary, when one modality contains
non-informative data, fusion not only has a large potential to
be unnecessary but could also degrade performance.
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