
Re-visiting Skip-Gram Negative Sampling: Dimension
Regularization for More Efficient Dissimilarity Preservation in

Graph Embeddings
David Liu

Northeastern University

Boston, USA

liu.davi@northeastern.edu

Arjun Seshadri

Amazon

San Francisco, USA

aseshadr@stanford.edu

Tina Eliassi-Rad

Northeastern University

Boston, USA

t.eliassirad@northeastern.edu

Johan Ugander

Stanford University

Stanford, USA

jugander@stanford.edu

ABSTRACT
A wide range of graph embedding objectives decompose into two

components: one that attracts the embeddings of nodes that are

perceived as similar, and another that repels embeddings of nodes

that are perceived as dissimilar. Because real-world graphs are

sparse and the number of dissimilar pairs grows quadratically with

the number of nodes, Skip-Gram Negative Sampling (SGNS) has

emerged as a popular and efficient repulsion approach. SGNS repels

each node from a sample of dissimilar nodes, as opposed to all

dissimilar nodes. In this work, we show that node-wise repulsion is,

in aggregate, an approximate re-centering of the node embedding

dimensions. Such dimension operations are much more scalable

than node operations. The dimension approach, in addition to being

more efficient, yields a simpler geometric interpretation of the re-

pulsion. Our result extends findings from the self-supervised learn-

ing literature to the skip-gram model, establishing a connection

between skip-gram node contrast and dimension regularization.

We show that in the limit of large graphs, under mild regularity

conditions, the original node repulsion objective converges to opti-

mization with dimension regularization. We use this observation

to propose an algorithm augmentation framework that speeds up

any existing algorithm, supervised or unsupervised, using SGNS.

The framework prioritizes node attraction and replaces SGNS with

dimension regularization. We instantiate this generic framework

for LINE and node2vec and show that the augmented algorithms

preserve downstream performance while dramatically increasing

efficiency.

1 INTRODUCTION
Graph embedding algorithms use the structure of graphs to learn

node-level embeddings. Across unsupervised and supervised graph

embedding algorithms, their loss functions serve the two roles of

preserving similarity and dissimilarity. Nodes that are similar in

the input graph should have similar embeddings, while dissimilar

nodes should have dissimilar embeddings [4]. The push and pull of

the similarity and dissimilarity objectives are key: in the absence

of a dissimilarity objective, the loss would be minimized by em-

bedding all nodes at a single embedding point, a degenerate and

useless embedding. Often, enforcing dissimilarity is much more

expensive than similarity, owing to the generally sparse nature

of graphs and the number of pairs of dissimilar nodes growing

quadratically with the size of the graph. Enforcing dissimilarity is

also complex for graphs because graph data frequently have miss-

ing edges or noise [18, 31]. In this paper, we show that while many

past works have focused on explicitly repelling pairs of dissimilar

nodes, the repulsion can be replaced with a regularization of the

embedding dimensions. The dimension-based approach improves

both scalability and representation quality.

The skip-gram (SG) model is one of the most popular approaches

to graph embeddings [1, 28] and can be decomposed into preserving

similarity and dissimilarity. Further, skip-gram negative sampling

(SGNS) is the dominant method to efficiently approximate dissimi-

larity preservation. Instead of repelling all pairs of dissimilar nodes,

SGNS repels only a sample of dissimilar nodes per pair of similar

nodes. SGNS is utilized in LINE [24] and node2vec [9], for instance,

and has been shown to yield strong downstream performance in

practice. However, several analytical issues with SGNS have also

been identified. First, SGNS approximates the original loss function

but also introduces a bias by re-scaling the relative importance of

preserving similarity and dissimilarity [21]. Second, with SGNS, in

the limit as the number of nodes in the graph approaches infinity,

the similarities among embeddings diverge from the similarities

among nodes in the graph [7]. Although SGNS has been used to

learn both graph and word embeddings [16, 17], we focus on the

graph context because, for graph embeddings in particular, SGNS

remains a popular method for preserving dissimilarity [5].

In this paper, we propose a change in perspective and show that

node repulsion in the SG model can be achieved via dimension

centering. We draw inspiration from recent advances in the self-

supervised learning (SSL) literature, which show an equivalence

between sample-contrastive learning and dimension-contrastive

learning [2, 8]. Sample-contrastive learning explicitly repels dissim-

ilar pairs while dimension-contrastive learning repels the dimen-

sions from each other. The findings from the SSL literature allow us

to directly re-interpret the spectral graph embedding loss function,

for example, as achieving dissimilarity by imposing orthogonality

among the embedding dimensions. In the case of spectral embed-

dings, repelling all pairs of nodes is exactly equal to repelling all

pairs of dimensions, which is much more scalable given that the

number of dimensions is much less than the number of nodes.

ar
X

iv
:2

40
5.

00
17

2v
1

 [
cs

.L
G

]
 3

0
A

pr
 2

02
4

Liu et al.

The known parallels between sample and dimension contrast,

however, do not suggest whether SG loss functions can be also re-

interpreted from the dimension perspective. In this paper, we begin

by characterizing the degenerate embedding behavior when the

dissimilarity term is removed altogether. We prove that, under mild

initialization conditions, when only positive edges are considered,

the embeddings collapse into a lower dimensional space, which

also commonly occurs in self-supervised learning [12]. However,

as the dimensions approach collapse, the dissimilarity term also

approaches a dimension regularizer that centers the embeddings

around the origin. Our findings show that while the dissimilarity

term in the SG loss is not itself a dimension regularizer, when

the term is most needed to counteract the similarity attraction,

dissimilarity preservation can be achieved via regularization.

We operationalize the dimension-based replacement with an

algorithm augmentation. We augment existing algorithms using

SGNS by making two modifications. First, the augmentation priori-

tizes the similarity-preservation component, disregarding dissimi-

larity when possible. This is also desirable because, in real-world

graph data, the lack of similarity between two nodes does not nec-

essarily suggest the two nodes are dissimilar; it is also possible that

data are missing or noisy [18, 31]. Second, when the embeddings

begin to collapse after optimizing only for similarity preservation

for a fixed number of epochs, our augmentation repels nodes from

each other using a dimension regularizer that aims to re-center the

embeddings about the origin.

In summary, our contributions are as follows:

(1) In Section 2, we introduce a framework that maps node

repulsion to dimension regularization. We show that in-

stead of shortcutting the full skip-gram loss function with

SGNS and repelling a sample of pairs, the negative func-

tion can be approximated with a dimension regularization

inducing origin-centered embeddings. We prove that as the

need for node repulsion grows, optimizing the regularizer

converges to optimizing the skip-gram loss. This frame-

work extends the equivalence between sample-contrastive

objectives and dimension regularization established in self-

supervised learning.

(2) In Section 3 we introduce a generic algorithm augmentation

that replaces SGNS with dimension regularization for any

existing skip-gram embedding algorithm. We instantiate

the augmentation for node2vec and LINE, reducing the

repulsion complexity from O(𝑛) to O(𝑑) per epoch.
(3) In Section 4 we present empirical evaluations of our aug-

mented LINE and node2vec algorithms. Our results show

that replacing SGNS with dimension regularization greatly

reduces runtime while also improving performance on

transductive link prediction. We also show that dimension

regularization especially outperforms baselines when graph

connectivity is high in a synthetic example, when the blocks

in a stochastic block model (SBM) are less distinguishable.

2 FROM NODE REPULSION TO DIMENSION
REGULARIZATION

In this section, we introduce our loss decomposition framework

where a function 𝑃 operationalizes similarity preservation and a

Table 1: Notations used in this paper.

Symbol Meaning
𝐺,𝑉 , 𝐸 Graph 𝐺 with vertices 𝑉 and edges 𝐸

𝑛,𝑚 number of nodes and edges respectively

𝑑 number of embedding dimensions

𝑁 , 𝑃 negative and positive loss functions

𝑆 similarity matrix ∈ R𝑛×𝑛
𝑋 node embedding matrix ∈ R𝑛×𝑑
𝑋𝑖 𝑖𝑡ℎ row of 𝑋 , as a column vector

𝑋. 𝑗 𝑗𝑡ℎ column of 𝑋 , as a column vector

𝑃𝛼 Probability distribution with parameter 𝛼

𝑘 number of negative samples per positive update

𝜂 learning rate

𝐷𝑥 diagonal matrix where 𝑥 is the diagonal

C the constriction of the embeddings (Def. 2.1)

®1, 1 a vector and matrix of all ones, respectively.

“negative" function 𝑁 achieves dissimilarity preservation. We then

show that instead of optimizing negative functions with costly node

repulsions, we can instead optimize via dimension regularization.

Crucially, we show in Subsection 2.2 we show that when node

repulsion is needed, the negative function in the skip-gram loss can

be optimized via dimension regularization.

Using notation introduced in Table 1, the decomposition is as

follows: given an embedding matrix 𝑋 ∈ R𝑛×𝑑 and a similarity

matrix 𝑆 ∈ {0, 1}𝑛×𝑛 , where 𝑆𝑖 𝑗 = 1 if nodes 𝑖 and 𝑗 are similar, a

generic graph embedding loss function 𝐿(𝑋, 𝑆) can be written as:

𝐿(𝑋, 𝑆) = 𝑃 (𝑋, 𝑆) + 𝑁 (𝑋, 𝑆) . (1)

The decomposition in Equation (1) applies to nearly all unsu-

pervised graph embedding objectives as well as many supervised

learning objectives, where supervision is provided in the form of

node labels. In the recent graph embedding survey by Chami et al.

[5], the decomposition applies to all unsupervised methods except

for Graph Factorization [1], which does not include a negative func-

tion𝑁 . Examples of popular decomposable loss functions are matrix

reconstruction error (e.g., spectral embeddings) as well as softmax

(e.g. node2vec [9] and LINE [24]). The decomposition also applies

to supervised methods that regularize for graph structure (𝛽 > 0

as defined in Chami et al. [5]), such as Neural Graph Machines [3]

and Planetoid [27].

In the context of graphs, performing gradient descent on the

negative example loss 𝑁 is a costly operation as the gradient repels

all pairs of nodes, resulting in O
(
𝑛2

)
time complexity. In this paper,

we build on the argument that the costly node-wise operation can

be replaced with a more efficient dimension-wise operation. Op-
timizing from the dimension perspective also yields a geometric

interpretation. This interpretation is illustrated in Figure 1.

Below, we will map the two dominant negative functions found

in graph embedding algorithms to dimension regularizations. The

two loss functions are spectral loss functions and skip-gram loss

functions. The mapping of spectral loss functions to dimension

covariance regularization directly ports over a result from the self-

supervised learning literature on non-contrastive learning [2, 8].

Our novel contribution is a mapping from the skip-gram loss to a

Re-visiting Skip-Gram Negative Sampling: Dimension Regularization for More Efficient Dissimilarity Preservation in Graph Embeddings

Negative Function

Squared Loss
N = ##! "

#

e.g. spectral
∇% complexity: &((#)

Skip-Gram Loss
% = Σ$% log .(−#$#%!)

e.g. LINE, node2vec
∇% complexity: &((#)

Dimension
Covariance

Regularization

 N = #!# "
#

∇% complexity: &(0#)

Skip-Gram Negative
Sampling

 N =
∑! $"!~$" log ((−+!+"%)

∇% complexity: &(1()

Dimension Mean
Regularization

 N = .!0 #

∇% complexity: &(0)

bypass

Step 1:
Random Initialization

Step 2:
Positive Updates

origin

Step 3: Dimension
Mean Regularization

Step 4:
Positive Updates

B)

Two-Block SBM Graph

Node Repulsion
Dimension Regularization

Equality
Approximation

Figure 1: Nearly all unsupervised andmany supervised graph
embedding loss functions define a “negative" function that
repels embeddings of dissimilar nodes. We show that in-
stead of repelling pairs of nodes (orange), which is costly, the
negative function in the popular skip-gram (SG) loss can be
approximated with a dimension regularizer. The regularizer
penalizes non-zero dimension means and is efficient given
that 𝑑 ≪ 𝑛. This result complements the duality between
squared-loss and dimension covariance established in the
self-supervised learning literature.

regularizer that induces origin-centered dimensions. Proof for all

propositions below are included in Appendix A.

2.1 Dimension Regularization for Spectral
Embeddings

In the case of Adjacency Spectral Embeddings (ASE) [6], which

are equivalent to taking the leading eigenvectors of the adjacency

matrix, the matrix 𝑆 is the adjacency matrix𝐴 ∈ {0, 1}𝑛×𝑛 . For con-
venience, we define 𝑃 and 𝑁 for an individual node 𝑖 , where the full

function simply sums over all nodes (e.g.,𝐿 (𝑋, 𝑆) = ∑
𝑖∈𝑉 𝐿 (𝑋, 𝑆, 𝑖)):

𝐿𝐴𝑆𝐸 (𝑋, 𝑆, 𝑖) = ∥𝑆𝑖 − 𝑋𝑋𝑖 ∥22, (2)

𝑃𝐴𝑆𝐸 (𝑋, 𝑆, 𝑖) = −2
∑︁

𝑗∈{ 𝑗 ′ |𝑆𝑖 𝑗 ′=1}
𝑋𝑇
𝑖 𝑋 𝑗 + ∥𝑆 ∥2𝐹 , (3)

𝑁𝐴𝑆𝐸 (𝑋, 𝑆, 𝑖) = ∥𝑋𝑋𝑖 ∥22 . (4)

On one hand, performing gradient descent on 𝑁𝐴𝑆𝐸 can be in-

terpreted as repelling all pairs of embeddings where the repulsion

magnitude is the dot product between embeddings. If 𝜂 is a learning

rate and 𝑡 is the step count, the embedding for node 𝑖 is updated as:

𝑋 𝑡+1
𝑖 = 𝑋 𝑡

𝑖 − 2𝜂
∑︁
𝑖′∈𝑉

(
𝑋𝑇
𝑖 𝑋𝑖′

)
𝑋𝑖′ ∀𝑖 ∈ 𝑉 . (5)

The same negative function can also be written as a dimension

covariance regularization:

Proposition 2.1. 𝑁𝐴𝑆𝐸 is equivalent to the regularization func-
tion ∥𝑋𝑇𝑋 ∥2

𝐹
which penalizes covariance among dimensions.

With Proposition 2.1, we can re-interpret the gradient descent

updates in Equation (5) as collectively repelling dimensions. The

gradient update can now be written in terms of dimensions:

𝑋 𝑡+1
. 𝑗 = 𝑋 𝑡

. 𝑗 − 2𝜂
∑︁

𝑗 ′∈[𝑑]

(
𝑋𝑇
.𝑗𝑋. 𝑗 ′

)
𝑋. 𝑗 ′ ∀𝑗 ∈ [𝑑] . (6)

2.2 Dimension Regularization for Skip-Gram
Embeddings

We now introduce a dimension-based approach for skip-gram em-

beddings. For skip-gram embeddings, the similarity matrix is de-

fined such that 𝑆𝑖 𝑗 = 1 if node 𝑗 is in the neighborhood of 𝑖 . For

first-order LINE, the neighborhood for node 𝑖 is simply all nodes

connected to 𝑖 whereas for node2vec, the neighborhood is defined

as all nodes reached via a biased random walk initiated at 𝑖 . The

skip-gram (SG) loss functions can be decomposed as:

𝐿𝑆𝐺 (𝑋, 𝑆, 𝑖) = −
∑︁
𝑗∈𝑉

𝑆𝑖 𝑗 log𝜎

(
𝑋𝑇
𝑖 𝑋 𝑗

)
+ (1 − 𝑆𝑖 𝑗) log𝜎

(
−𝑋𝑇

𝑖 𝑋 𝑗

)
,

(7)

𝑃𝑆𝐺 (𝑋, 𝑆, 𝑖) = −
∑︁

𝑗∈{ 𝑗 ′ |𝑆𝑖 𝑗 ′=1}
log𝜎

(
𝑋𝑇
𝑖 𝑋 𝑗

)
, (8)

𝑁𝑆𝐺 (𝑋, 𝑆, 𝑖) = −
∑︁

𝑗∈{ 𝑗 ′ |𝑆𝑖 𝑗 ′=0}
log𝜎

(
−𝑋𝑇

𝑖 𝑋 𝑗

)
. (9)

Our goal is to map 𝑁𝑆𝐺 to a dimension regularization. Recall

that this work is motivated by the fact that the purpose of 𝑁𝑆𝐺

is to prevent the similarity 𝜎

(
𝑋𝑇
𝑖
𝑋 𝑗

)
from increasing for all 𝑖, 𝑗 ;

without𝑁𝑆𝐺 , trivial embedding solutions can emerge thatmaximize

similarity for all pairs of nodes, not just similar pairs.

To measure the onset of the degenerate condition in which all

pairs of nodes are similar, we define the constriction C of a set of

embeddings to be the minimum dot product between any pair of

nodes:

Definition 2.1 (Constriction). The constriction C ∈ (0, 1) of an
embedding matrix 𝑋 is defined as: C = min𝑖, 𝑗∈𝑛×𝑛 𝜎

(
𝑋𝑇
𝑖
𝑋 𝑗

)
.

Geometrically, the embedding constriction is maximized when

embeddings are radially squeezed and growing in magnitude, that

is, collapsed. Proposition 2.2 states that if we remove 𝑁𝑆𝐺 alto-

gether and the embeddings are initialized with sufficiently small

norm and learning rate, the degenerate collapse will inevitably

arise during the course of gradient descent. In the context of graph

neural networks, Proposition 2.2 provides conditions under which

embedding oversmoothing is guaranteed. In Appendix A.2.1, we

validate Proposition 2.2 by showing that embeddings inevitably

collapse if only attraction updates are applied for various synthetic

sparse graphs.

Proposition 2.2. As the Euclidean norm of the initial embed-
dings and the learning rate approach zero, then for any constriction
threshold 𝑐 ∈ (0,∞) there exists a time step 𝑡 such that after applying
gradient descent on 𝑃𝑆𝐺 for 𝑡 epochs the constriction C ≥ 𝑐 .

The proof sketch for Proposition 2.2 is as follows: as the embed-

dings are initialized closer to the origin, gradient descent on 𝑃𝑆𝐺
approaches gradient descent on the matrix completion loss func-

tion: ∥1𝑆>0 ⊙
(
®1®1𝑇 − 1

2
𝑋𝑋𝑇

)
∥2
𝐹
, where 1 is the indicator matrix

for whether entries of 𝑆 are positive. From Gunasekar et al. [10],

Liu et al.

gradient descent implicitly regularizes matrix completion to con-

verge to the minimum nuclear solution; this implicit regularization

drives all dot products to be positive, not just pairs of embeddings

corresponding to connected nodes.

Now, we show that as constriction increases, performing gradi-

ent descent on 𝑁𝑆𝐺 approaches optimizing a dimension regularizer.

That is, when repulsion is most needed and the embeddings ap-

proach collapse due to similarity preservation, repulsion can be

achieved via regularization.

First, we map 𝑁𝑆𝐺 to an “all-to-all" node repulsion. While 𝑁𝑆𝐺

only sums over negative node pairs (𝑖, 𝑗 where 𝑗 is not in the neigh-

borhood of 𝑖), for large, sparse graphs we can approximate 𝑁𝑆𝐺

with the objective 𝑁 ′
𝑆𝐺

which sums over all pairs of nodes:

𝑁 ′𝑆𝐺 = −
∑︁
𝑖, 𝑗

log𝜎

(
−𝑋𝑇

𝑖 𝑋 𝑗

)
. (10)

Proposition 2.3 states that if the embedding norms are bounded

and the constriction C > 0, then, in the limit of 𝑛, the difference

between the gradient of 𝑁 ′
𝑆𝐺

and 𝑁𝑆𝐺 approaches zero.

Proposition 2.3. If all embeddings have norms that are neither
infinitely large or vanishingly small and the embedding constriction
C > 1/2, then, as the number of nodes in a sparse graph grows to
infinity, the gradients of ∇𝑁𝑆𝐺 and ∇𝑁 ′

𝑆𝐺
converge:

lim

𝑛→∞

∥∇𝑁 ′
𝑆𝐺
− ∇𝑁𝑆𝐺 ∥2𝐹

∥∇𝑁𝑆𝐺 ∥2𝐹
= 0, (11)

where a graph is sparse if |𝐸 | is 𝑜 (𝑛2).

For a single node 𝑖 , performing gradient descent on Equation

(10) results in the following update:

𝑋 𝑡+1
𝑖 =

(
1 − 𝜂𝜎

(
∥𝑋 𝑡

𝑖 ∥
2

))
𝑋 𝑡
𝑖 − 𝜂

∑︁
𝑖′∈𝑉

𝜎

((
𝑋 𝑡
𝑖

)𝑇
𝑋 𝑡
𝑖′

)
𝑋 𝑡
𝑖′ . (12)

The right-hand term in the gradient update repels node 𝑖 from

all other nodes where the repulsion is proportional to the similarity

between the node embeddings. In Proposition 2.4, we show a con-

nection between minimizing 𝑁 ′
𝑆𝐺

and centering the dimensions at

the origin. For intuition, observe that if all pairs of nodes are highly

similar, the gradient update in Equation (12) is approximately equal

to subtracting the column means scaled by a constant (2𝜂

(
𝑋𝑇 ®1

)
).

This is equivalent to performing gradient descent on a dimension

regularizer that penalizes non-zero dimension means,

𝑅(𝑋) = ∥𝑋𝑇 ®1∥2
2
. (13)

We formalize the connection between the negative function 𝑁 ′
𝑆𝐺

and origin-centering in the following proposition:

Proposition 2.4. Let 𝑅 be the dimension regularizer defined in
Equation (13) that penalizes embeddings centered away from the
origin and 𝑛 ≫ 𝑑 . Then, as the constriction increases beyond zero,
the difference between performing gradient descent on 𝑅 versus 𝑁 ′

𝑆𝐺
vanishes.

We note that our result establishing a connection between the

skip-gram loss and origin-centered dimensions is analogous to the

finding in Wang and Isola [25] connecting the InfoNCE loss with

embeddings uniformly distributed on unit hyperspheres.

2.2.1 Comparison with Skip-Gram Negative Sampling. Skip-gram
negative sampling (SGNS) offers an efficient stochastic approxi-

mation to the gradient update in Equation (12). Furthermore, the

SGNS proceedure provides a tunable way to bias the gradients—via

non-uniform sampling—in a manner that has been seen to empiri-

cally improve the utility of the resulting embedding in downstream

tasks [16]. Instead of repelling node 𝑖 from all other 𝑛 − 1 nodes,
SGNS repels 𝑖 from a sample of 𝑘 nodes where the nodes are sam-

pled according to a distribution 𝑃𝛼 over all nodes, optimizing the

following objective:

𝑁𝑆𝐺𝑁𝑆 (𝑋, 𝑆, 𝑖) = −𝑘E𝑗 ′∼𝑃𝛼
[
log𝜎

(
−𝑋𝑇

𝑖 𝑋 𝑗 ′
)]
, (14)

where the expectation is estimated based on 𝑘 samples.

In aggregate, SGNS reduces the gradient time complexity from

O
(
𝑛2

)
to O (𝑘𝑛). With Proposition 2.4, instead of reducing the

number of pairwise embedding repulsions, we focus on dimension

operations, reducing the time complexity from linear in 𝑛 to linear

in 𝑑 .

As mentioned, SGNS embeddings can be tuned by the choice of

the non-uniform sampling distribution, where in graph embedding

contexts the distribution 𝑃𝛼 is typically sampling nodes propor-

tional to their degree
𝛼
, with 𝛼 = 3/4. An optimization-based intu-

ition for this choice is that a degree-based non-uniform distribution

prioritizes learning the embeddings of high-degree nodes, but we

emphasize that the specific choice of 𝛼 = 3/4 is typically motivated

directly based on improved empirical performance in downstream

tasks.

While beyond the scope of the present work, we briefly note that

our dimension regularization framework is immediately amenable

to introducing an exactly analogous tuning opportunity. We can

simply replace the regularization in Equation (15) with

𝑅(𝑋 ; ®𝑝) = ∥𝑋𝑇 ®𝑝 ∥2
2
, (15)

where ®𝑝 is a normalized weight vector that biases the negative

update in exact correspondence to the probabilities of each node in

𝑃𝛼 . In our later simulations, we focus our efforts on the uniform

case of ®𝑝 = ®1, i.e., the regularizer in Equation (15).

3 ALGORITHM AUGMENTATION TO
REPLACE SGNS

We now propose a generic algorithm augmentation framework

that directly replaces SGNS with dimension regularization. We

instantiate this algorithm augmentation for LINE and node2vec

but note that the framework is applicable to any graph embedding

algorithm using SGNS.

Our augmentation modifies existing algorithms using SGNS in

two ways. First, the augmentation prioritizes the positive function

𝑃 , that is preserving similarity when possible. Not only does pri-

oritizing observed edges increase efficiency, but it is also desirable

given the fact that real-world graph data frequently have missing

edges [18, 31]. We prioritize the observed edges by defaulting to

performing gradient descent on 𝑃 .

The second augmentation replaces SGNS with gradient descent

on 𝑅, a dimension regularizer that induces mean-centered dimen-

sions, as introduced in Equation (13). The regularizer directly re-

places repelling nodes embedding from negative samples, and, if

Re-visiting Skip-Gram Negative Sampling: Dimension Regularization for More Efficient Dissimilarity Preservation in Graph Embeddings

the embeddings exhibit high constriction after repeated gradient

updates to 𝑃 , ∇𝑅 approximates ∇𝑁 ′
𝑆𝐺

as established in Proposition

2.4.

Taken together, the algorithm augmentation framework can be

summarized as:

𝑋 𝑡+1 =

{
𝑋 𝑡 − 𝜂∇𝑃𝑆𝐺

(
𝑋 𝑡

)
𝑡%𝑛negative ≠ 0,

𝑋 𝑡 − 𝜂
[
∇𝑃𝑆𝐺

(
𝑋 𝑡

)
+ 𝜆∇𝑅

(
𝑋 𝑡

)]
𝑡%𝑛negative = 0,

(16)

where 𝜆 is the regularization hyperparameter, 𝑛negative controls

the frequency of performing gradient descent on 𝑅, and 𝜂 is the

learning rate.

Figure 2 visualizes our algorithm augmentation with a toy sto-

chastic block model, where we compare SGNS and dimension regu-

larization side-by-side. In both cases, we begin by randomly initial-

izing embeddings around the origin and then repeatedly (over 100

epochs) attracting the embeddings of similar nodes. The attraction

drives the embeddings away from the origin and causes the two

blocks to remain entangled. Then, we apply a repulsion force, using

SGNS in the top row and dimension mean regularization in the

bottom row, which pulls the embeddings back to the origin. In the

case of dimension regularization, once we resume applying posi-

tive updates, the embeddings for the two blocks begin to separate,

indicating effective repulsion.

3.1 Instantiation for LINE and node2vec
In Algorithm 1 we include the pseudo-code for the augmented

versions of augmented LINE and node2vec, utilizing the framework

in Equation (16). The commented out pseudo-code corresponds

to the old negative update code that is removed and replaced by

the new negative update code. The below implementation also

optimizes the embeddings through batches of positive edges.

Algorithm 1 Augmented LINE and node2vec

Input: 𝐺,𝑛, 𝑑, 𝑝, 𝑞, num_batches, batch_size, 𝜆, 𝜂, 𝑛negative

𝑋 0 ← random_initialization(𝑛,𝑑)
𝑤𝑎𝑙𝑘𝑠 ← run_random_walks(𝐺, 𝑝, 𝑞)
for 𝑡 ∈ {1, . . . , num_batches} do

𝑋 𝑡+1 ← 𝑋 𝑡

for 𝑗 ∈ {1 · · · batch_size} do
𝑖, 𝑗 ← sample_uniform_pair(𝑤𝑎𝑙𝑘𝑠)
𝑋 𝑡+1
𝑖
← 𝑋 𝑡

𝑖
+ 𝜂𝜎

(
−⟨𝑋 𝑡

𝑖
, 𝑋 𝑡

𝑗
⟩
)
𝑋 𝑡
𝑗

⊲ positive update

𝑋 𝑡+1
𝑗
← 𝑋 𝑡

𝑗
+ 𝜂𝜎

(
−⟨𝑋 𝑡

𝑖
, 𝑋 𝑡

𝑗
⟩
)
𝑋 𝑡
𝑖

for 𝑗 ′ ∈ sample (𝑃𝛼 , 𝑘) do ⊲ old negative update

𝑋 𝑡+1
𝑖
← 𝑋 𝑡

𝑖
− 𝜂𝜎

(
−⟨𝑋 𝑡

𝑖
, 𝑋 𝑡

𝑗 ′ ⟩
)
𝑋 𝑡
𝑗 ′

𝑋 𝑡+1
𝑗 ′ ← 𝑋 𝑡

𝑗 ′ − 𝜂𝜎
(
−⟨𝑋 𝑡

𝑖
, 𝑋 𝑡

𝑗 ′ ⟩
)
𝑋 𝑡
𝑖

end for
end for
if idx % 𝑛negative == 0 then ⊲ new negative update

for 𝑗 ∈ {1, . . . , 𝑑} do
𝑋 𝑡+1
. 𝑗
← 𝑋 𝑡

. 𝑗
− 𝜆

𝑛

∑
𝑖 𝑋𝑖 𝑗 ®1

end for
end if

end for

LINE and node2vec differ in their implementation of the random-

walk generation function. For LINE, the function simply returns

the edge set 𝐸. For node2vec, the function returns the set of all node

and neighbor pairs (

{
𝑖, 𝑗 |𝑆𝑖 𝑗 = 1

}
) where neighbors of 𝑖 are nodes

encountered on a biased random walk starting at 𝑖 . The parameters

𝑝, 𝑞 control the bias of the random walk, as specified in Grover and

Leskovec [9].

4 EVALUATION
In this section, we present our evaluation of augmented LINE and

augmented node2vec where SGNS has been replaced with dimen-

sion regularization via Algorithm 1. We show that on a variety of

real-world networks, the augmented algorithms achieve better link-

prediction results while also reducing training runtime. We also

compare the augmented algorithms to baselines in which the nega-

tive function has been removed completely; while these baselines

perform well on real-world networks, we show that they rely on

low levels of connectivity to sustain link-prediction performance.

4.1 Evaluation Methodology
We evaluate the augmented algorithms on a downstream link-

prediction task where the two evaluation metrics are Precision@𝑘

and Transductive Precision@𝑘 . Both are detailed below:

Precision. (In-Sample). After training an algorithm on a graph 𝐺

and obtaining an embedding matrix 𝑋 , the precision@𝑘 for a single

node 𝑖 is the fraction of the top-k nodes most similar to node 𝑖 that

are connected to 𝑖 . Similarity between two nodes is defined as the

dot product of their embeddings. The precision for the whole graph

is the average node precision for all nodes with degree at least 𝑘 .

We refer to precision as in-sample precision since it is a measure of

how much the embeddings overfit to the edges they are trained on.

In all of our experiments, we set 𝑘 = 10.

Transductive Precision. (Out-of-Sample). We also measure the

link-prediction precision for the embeddings on a hold-out set of

edges. Before training the embeddings, we uniformly randomly

split 𝐸 into 𝐸train and 𝐸test following a 70 − 30 split. Let 𝑉 ′ be
the set of nodes in the largest connected component induced by

𝐸train. Then, we define train and test graphs 𝐺train = (𝑉 ′, 𝐸train)
and 𝐺test = (𝑉 ′, 𝐸test). The transductive precision is the precision

of embeddings trained on 𝐺train but evaluated on 𝐺test. Similar to

the previous section, we refer to transductive precision as out-of-

sample precision because it is a measure of how much embeddings

generalize to unseen edges.

Baselines. We compare the augmented algorithms against (un-

altered) LINE and node2vec, which we call the Vanilla baselines.

In addition, we compare against baselines in which the negative

function has been removed entirely, which we call the Positive Only
baselines. We use these baselines to demonstrate that the embed-

dings collapse in practice without a negative function. We also

analyze both the unnormalized and normalized Positive Only em-

beddings as past work has shown that normalizing embeddings

improves downstream performance [26].

Hyperparameters. The two hyperparameters for the augmented

algorithms are 𝜆, themultiplicative regularization factor, and𝑛negative,

Liu et al.

Step 1:
Random Initialization

Step 2:
Positive Updates (100 epochs)

origin

Step 3: Dimension
Mean Regularization

Step 4:
Positive Updates (50 epochs)

Two-Block SBM Graph

Step 1:
Random Initialization

Step 2:
Positive Updates (100 epochs)

origin

Step 3:
 Negative Sampling

Step 4:
Positive Updates (50 epochs)

N
eg

at
iv

e
Sa

m
pl

in
g

D
im

en
si

on

R
eg

ul
ar

iz
at

io
n

origin origin

origin origin

Figure 2: We use a toy two-block SBM example to summarize how we bypass skip-gram negative sampling with dimension
regularization. We introduce an algorithm augmentation that prioritizes attracting embeddings of similar nodes together (Step
2), where similarity is the sigmoid of embedding dot products. Eventually, to prevent all pairs of embeddings from becoming
similar, the dimension regularization re-centers the embeddings around the origin, increasing node contrast (Step 3). Attraction
updates are then again repeatedly applied, but the blocks are more distinguishable post regularization (Step 4).

Table 2: Graph datasets used in our study.

Graph Type 𝑛 𝑚

Wikipedia Language 4.8K 93K

Facebook Social 4.0K 88K

Protein-Protein Biological 3.9K 39K

ca-HepTh Citation 8.6K 25K

LastFM Social 7.6K 28K

where a regularization update is performed once ever 𝑛negative
epochs. We perform a hyperparameter grid search over 𝜆 ∈ {0.5,
1, 5, 25, 50, 75, 100} and 𝑛negative ∈ {1, 10, 100, 1000}. For each
graph and vanilla algorithm, we select the hyperparameter configu-

ration that maximizes the transductive precision. Unless otherwise

noted, the augmented algorithm evaluation results all correspond

to the optimal hyperparameter configuration, which we provide in

Appendix B.4 and obtain from a grid search.

Datasets. The datasets used for evaluation are listed in Table 2.

We chose five real-world datasets spanning a variety of domains

[14]. For all of the graphs, if there are multiple connected compo-

nents we keep only the largest. The statistics in Table 2 characterize

the largest connected component.

4.2 Results
Our results answer three fundamental questions:

Q1: How well do the augmented algorithms perform on link pre-
diction tasks relative to the original algorithms?

Figure 3 shows that the augmented embeddings, on average,

achieve higher out-of-sample transductive precision values than

their vanilla counterparts. In contrast, Figure 4 shows that aug-

mented embeddings achieve lower in-sample precision values. The

figures suggest that the augmented embeddings better generalize

to unseen edges, whereas the vanilla embeddings overfit to the

training dataset and struggle to generalize well. A notable case is

the Wikipedia graph, where replacing SGNS with dimension regu-

larization yields a 12-fold increase in transductive precision. The

improved performance of dimension regularization can be attrib-

uted to reduced overfitting on the training dataset, as witnessed

by the fact that on average, in-sample Precision@𝑘 decreased by

36.7% for LINE and 15.4% for node2vec across the five graphs.

The Positive Only baselines perform well both in-sample and out-

of-sample at times, but do not do so consistently, as seen in the cases

of LastFM and Wikipedia. As we show later in the results section,

this inconsistency is due to the strong performance dependence of

the Positive Only baselines on the underlying graph structure.

Q2: How much of a runtime speedup does dimension regularization
provide over SGNS?

Figure 5 shows that for both LINE and node2vec, replacing SGNS

with dimension regularization significantly reduces runtime while

preserving transductive precision. On average, replacing SGNS

with dimension regularization decreased the runtime by 64% for

LINE and 83% for node2vec. The light orange points in Figure 5

show the runtime and downstream performance for the augmented

algorithms across all hyperparameter configurations while the dark

orange points denote the best-performing configurations. As ex-

pected, completely removing the negative function results in the

lowest runtime; thus the Positive Only baselines serve as lower

bounds on the augmented algorithms’ runtimes. For the node2vec

runtime comparison, we use code provided in Grover and Leskovec

[9] to generate the random walks and implement batched gradi-

ent descent in Python, as detailed in Algorithm 1 to create a level

playing fieldwith node2vec II. In practice, an optimized C implemen-

tation of our method would be even faster, much like node2vec’s

speedup of the gradient descent step achieved via the gensim pack-

age. We include additional implementation details in Appendix

B.2.

Q3: For which types of graphs does dimension regularization out-
perform all baselines?

We further investigate the limits of completely removing the

negative function altogether and show that the inconsistency of

Re-visiting Skip-Gram Negative Sampling: Dimension Regularization for More Efficient Dissimilarity Preservation in Graph Embeddings

LastFM Facebook ca-HepTh Protein-Protein Wikipedia
Graph Name

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sd
uc

tiv
e

Pr
ec

isi
on

@
10

Transductive Precision@10 Comparison for LINE
LINE (original)
LINE (positive only)
LINE (positive only, normalized)
LINE II

LastFM Facebook ca-HepTh Protein-Protein Wikipedia
Graph Name

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sd
uc

tiv
e

Pr
ec

isi
on

@
10

Transductive Precision@10 Comparison for node2vec
node2vec (original)
node2vec (positive only)
node2vec (positive only, normalized)
node2vec II

Figure 3: On unseen edges, the augmented algorithms (LINE
II and node2vec II) yield transductive precisions comparable
to that of the original algorithms, exceeding in certain cases.
This improvement is seen most clearly in the cases of the
Protein-Protein, Wikipedia, and LastFM graphs. The Positive
Only Normalized baseline performs quite well but the per-
formance relative to the baseline is not consistent, such as
in the case of Protein-Protein and Wikipedia.

the Positive Only baselines stems from its performance dependence

on graph connectivity. We hypothesize that when the graph has

low connectivity the initialization randomness allows nodes to be

embedded near neighbors without collectively collapsing. At high

connectivity however, collapse occurs.

We construct an experiment in which we measure transductive

precision as the between-block edge probability in a Stochastic

Block Model (SBM) is gradually increased. We define a two-block

SBM where 𝑛 = 200 and the within-block edge probability 𝑝 is 0.2.

Then, we gradually increase the between-group edge probability 𝑞

until 𝑝 = 𝑞.

Figure 6 shows that for low values of 𝑞 relative to 𝑝 , all of the

algorithms are able to to outperform a random baseline where top-

𝑘 predictions are uniform samples over 𝑉 . When 𝑞/𝑝 and graph

connectivity is low, the blocks are more distinguishable and link-

prediction is an easier task. However, as 𝑞/𝑝 increases, the Positive
Only performance quickly drops off whereas the augmented al-

gorithm performance is more robust. We conclude that as graph

connectivity increases, the Positive Only baseline is more prone to

collapse. We do see that normalization does mitigate the collapse.

LastFM Facebook ca-HepTh Protein-Protein Wikipedia
Graph Name

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

@
10

Precision@10 Comparison for LINE
LINE (original)
LINE (positive only)
LINE (positive only, normalized)
LINE II

LastFM Facebook ca-HepTh Protein-Protein Wikipedia
Graph Name

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

@
10

Precision@10 Comparison for node2vec
node2vec (original)
node2vec (positive only)
node2vec (positive only, normalized)
node2vec II

Figure 4: The above figure shows that the augmented algo-
rithms, on average, perform less well on in-sample precision
than the original LINE and node2vec algorithms. One expla-
nation is that the dimension regularization prevents over-
fitting on the known edges. The Positive Only Normalized
baseline performs well on in-sample precision because the
algorithm exclusively trains on edge data and the normaliza-
tion prevents the embeddings from collapsing.

Finally, as expected, when 𝑝 = 𝑞, none of the embeddings outper-

form the random baseline as the SBM becomes an Erdös-Rényi

graph.

In Appendix C, we provide more fine-grained empirical evalua-

tion which supplements the results shown here. Namely, analyze

whether replacing SGNS with dimensionality reduction benefits

or harms specific types of nodes and show that there are not dis-

cernable correlations between node feature and link-prediction

performance changes. We also demonstrate that our regularization

is capable of re-weighting nodes, just as in SGNS, as discussed in

(15).

5 RELATEDWORKS
In this section, we review the popular use of SGNS within graph

embeddings and distinguish SGNS from the recent body of literature

on negative sampling for self-supervised learning. Our algorithm

augmentation is similar in spirit to the growing body of literature

on non-contrastive learning, which we also review below.

Liu et al.

4 6 8 10 12
Runtime (min)

0.0

0.1

0.2

0.3

0.4

0.5

Tr
an

sd
uc

tiv
e

Pr
ec

isi
on

@
10

LastFM

2 3 4 5 6 7
Runtime (min)

0.0

0.1

0.2

0.3

0.4

0.5

Tr
an

sd
uc

tiv
e

Pr
ec

isi
on

@
10

Facebook

4 6 8 10 12 14
Runtime (min)

0.0

0.1

0.2

0.3

0.4

0.5

Tr
an

sd
uc

tiv
e

Pr
ec

isi
on

@
10

ca-HepTh

2 3 4 5 6
Runtime (min)

0.0

0.1

0.2

0.3

0.4

0.5

Tr
an

sd
uc

tiv
e

Pr
ec

isi
on

@
10

Protein-Protein

2 3 4 5 6 7 8 9
Runtime (min)

0.0

0.1

0.2

0.3

0.4

0.5

Tr
an

sd
uc

tiv
e

Pr
ec

isi
on

@
10

Wikipedia

Tranductive Precision vs. Training Time for Variations of LINE
LINE (original) LINE (positive only) LINE (positive only, normalized) LINE II

5 10 15 20 25 30 35
Runtime (min)

0.0

0.1

0.2

0.3

0.4

0.5

Tr
an

sd
uc

tiv
e

Pr
ec

isi
on

@
10

LastFM

2 4 6 8 10 12 14
Runtime (min)

0.0

0.1

0.2

0.3

0.4

0.5

Tr
an

sd
uc

tiv
e

Pr
ec

isi
on

@
10

Facebook

10 20 30 40
Runtime (min)

0.0

0.1

0.2

0.3

0.4

0.5

Tr
an

sd
uc

tiv
e

Pr
ec

isi
on

@
10

ca-HepTh

2 4 6 8 10 12 14
Runtime (min)

0.0

0.1

0.2

0.3

0.4

0.5

Tr
an

sd
uc

tiv
e

Pr
ec

isi
on

@
10

Protein-Protein

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Runtime (min)

0.0

0.1

0.2

0.3

0.4

0.5

Tr
an

sd
uc

tiv
e

Pr
ec

isi
on

@
10

Wikipedia

Tranductive Precision vs. Training Time for Variations of node2vec
node2vec (original) node2vec (positive only) node2vec (positive only, normalized) node2vec II

Figure 5: The above figure shows the training time and link-prediction performance for each algorithm on each graph. Compared
to both vanilla LINE and node2vec (grey circle), our augmentation (orange star) maintains transductive precision while greatly
reducing runtime. The results for our augmentation correspond with the optimal hyperparameter configuration; In Appendix
B.2 we include runtime results for all configurations as well as details of our runtime evaluation methodology.

5.1 Skip-Gram Negative Sampling
SGNS was introduced in word2vec by Mikolov et al. [16] as an

efficient method for learning word embeddings. While the softmax

normalization constant is costly to optimize, Mikolov et al. [16]

modeled SGNS after Noise Contrastive Estimation (NCE) which

learns to separate positive samples from samples drawn from a noise

distribution. SGNS has since been adopted for graph representation

learning where it is utilized in both unsupervised [9, 19, 24] and

supervised skip-gram models [27].

In practice, the negative samples are drawn proportional to some

function of node degrees, where many works raise the degree to the

3/4 power [9]. Yang et al. [29] study the proper noise distribution in

the graph setting and propose sampling negative samples to balance

downstream performance while minimizing the Noise Contrastive

Estimation loss. This results in negative sample distributions that

are positively but sub-linearly correlated with the positive sample

distribution.

At the same time, there are many known limitations of SGNS.

Rudolph et al. [21] place SGNS embeddings within the framework of

Exponential Family Embeddings and note that SGNS downweights

the magnitude of the negative update and leads to biased embed-

dings, relative the gradients of the non-sampled objective. Second,

Davison and Austern [7] examine the limiting distribution of em-

beddings learned via SGNS and show that the distribution decouples

from the true sampling distribution in the limit. Last, it has also been

shown that the optimal noise distribution and the corresponding

parameters can vary by dataset [29].

We would also like to note that while the motivations are similar,

SGNS differs from the negative sampling that has arisen in the self-

supervised learning literature [20]. In self-supervised learning, the

negative samples are generally other nodes in the training batch.

5.2 Non-contrastive Self-Supervised Learning
Energy BasedModels in self-supervised learning are a unified frame-

work for balancing similarity and dissimilarity [13]. As in our de-

composition, energy-based models ensure that similar pairs have

low energy and dissimilar pairs have high energy. Within energy-

based models, there has been more focus across both vision and

graph representation learning on contrastive models, which ex-

plicitly repel dissimilar pairs [11, 15, 30, 32]. However, given the

computational complexities of pairwise contrast, there is a growing

body of work on non-contrastive graph representation learning

methods [22, 23]. Non-contrastive methods only use positive sam-

ples but then regularize to enforce dissimilarity. Shiao et al. [22]

show that in certain cases, non-contrastive graph representation

learning methods achieve comparable downstream performance

while greatly reducing training time.

Recent works have shown that certain non-contrastive methods

are simply efficient approaches to performing contrastive learning

[8]. That said, these works specifically analyze the squared-loss

term and there are no existingworks, to our knowledge, establishing

a connection between skip-gram loss and non-contrastive methods.

Re-visiting Skip-Gram Negative Sampling: Dimension Regularization for More Efficient Dissimilarity Preservation in Graph Embeddings

10 1 100

q / p

0

2

4

6

8

10

12

14
Pe

rc
en

ta
ge

 C
ha

ng
e

Re
la

tiv
e

to
 R

an
do

m
Transductive Precision@10 Relative to Random Link Prediction for LINE

LINE (original)
LINE (positive only)
LINE (positive only, normalized)
LINE II

10 1 100

q / p

0

2

4

6

8

10

12

14

16

Pe
rc

en
ta

ge
 C

ha
ng

e
Re

la
tiv

e
to

 R
an

do
m

Transductive Precision@10 Relative to Random Link Prediction for node2vec
node2vec (original)
node2vec (positive only)
node2vec (positive only, normalized)
node2vec II

Figure 6:While removing node repulsion altogether occasion-
ally performed well for the real-world graphs, the Positive
Only baselines rely on low graph connectivity to perform
well. We construct a two-block SBM experiment in which the
ratio of the between-block edge probability 𝑞 and the within-
block probability 𝑝 is gradually increased. The figure above
shows transductive precision relative to a uniform random
baseline. When 𝑞/𝑝 is low, the blocks are well-separated and
link-prediction performance is high whereas when 𝑝 = 𝑞, we
expect no difference between any algorithm and the uniform-
random baseline. In between, the augmented algorithm is
most robust to increases in graph connectivity.

6 CONCLUSION
In this work, we provide a new perspective on dissimilarity preser-

vation in graph representation learning and show that dissimilarity

preservation can be achieved via dimension regularization. Our

main theoretical finding shows that when node repulsion is most

needed and embedding dot products are all increasing, the differ-

ence between the original skip-gram dissimilarity loss and a regular-

izer that induces origin-centered dimensions vanishes. Combined

with the efficiency of dimension operations over node repulsions,

dimension regularization bypasses the need for SGNS. We then in-

troduce a generic algorithm augmentation that prioritizes positive

updates, given that real-world graph data often contain missing

edges [31], and when node repulsion is needed, utilizes dimension

regularization instead of SGNS. Our experimental results show that

the augmented versions of LINE and node2vec preserve the link-

prediction performance of the original algorithms while reducing

runtime by over 60%. In fact, for several real-world graphs, remov-

ing dissimilarity preservation altogether performswell; however for

synthetic graphs with high connectivity, our augmentation clearly

outperforms baselines.

Liu et al.

REFERENCES
[1] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski,

and Alexander J. Smola. 2013. Distributed large-scale natural graph factorization.

InWWW’13. ACM, New York, NY, USA, 37–48.

[2] Adrien Bardes, Jean Ponce, and Yann LeCun. 2022. VICReg: Variance-Invariance-

Covariance Regularization for Self-Supervised Learning. In ICLR’22.
[3] Thang D. Bui, Sujith Ravi, and Vivek Ramavajjala. 2018. Neural Graph Learning:

Training Neural Networks Using Graphs. In WSDM’18. ACM, New York, NY,

USA, 64–71.

[4] Jan Niklas Böhm, Philipp Berens, and Dmitry Kobak. 2022. Attraction-Repulsion

Spectrum in Neighbor Embeddings. JMLR 23, 95 (2022), 1–32.

[5] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Mur-

phy. 2022. Machine Learning on Graphs: AModel and Comprehensive Taxonomy.

JMLR 23, 89 (2022), 1–64.

[6] Donniell E. Fishkind Daniel L. Sussman, Minh Tang and Carey E. Priebe. 2012.

A Consistent Adjacency Spectral Embedding for Stochastic Blockmodel Graphs.

J. Amer. Statist. Assoc. 107, 499 (2012), 1119–1128.
[7] Andrew Davison and Morgane Austern. 2023. Asymptotics of Network Embed-

dings Learned via Subsampling. JMLR 24, 138 (2023), 1–120.

[8] Quentin Garrido, Yubei Chen, Adrien Bardes, Laurent Najman, and Yann LeCun.

2022. On the duality between contrastive and non-contrastive self-supervised

learning. In ICLR’23.
[9] Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable Feature Learning for

Networks. In KDD. Association for Computing Machinery, New York, NY, USA,

855–864.

[10] Suriya Gunasekar, Blake Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur,

and Nathan Srebro. 2017. Implicit regularization in matrix factorization. In

NIPS’17 (Long Beach, California, USA). Curran Associates Inc., Red Hook, NY,

USA, 6152–6160.

[11] Yeonjun In, Kanghoon Yoon, and Chanyoung Park. 2023. Similarity Preserving

Adversarial Graph Contrastive Learning. In KDD’23. ACM, New York, NY, USA,

867–878.

[12] Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. 2022. Understanding

Dimensional Collapse in Contrastive Self-supervised Learning. In ICLR’23.
[13] Yann LeCun, Sumit Chopra, Raia Hadsell, Marc’Aurelio Ranzato, and Fu Jie

Huang. 2007. Energy-Based Models. In Predicting Structured Data. The MIT

Press.

[14] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[15] Wen-Zhi Li, Chang-DongWang, Hui Xiong, and Jian-Huang Lai. 2023. HomoGCL:

Rethinking Homophily in Graph Contrastive Learning. In KDD’23. ACM, New

York, NY, USA, 1341–1352.

[16] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed Representations of Words and Phrases and their Compositionality.

In NIPS’13. Curran Associates, Inc.

[17] David Mimno and Laure Thompson. 2017. The strange geometry of skip-gram

with negative sampling. In EMNLP’17. ACL, Copenhagen, Denmark, 2873–2878.

[18] M. E. J. Newman. 2018. Network structure from rich but noisy data. Nature
Physics 14, 6 (June 2018), 542–545.

[19] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning

of social representations. In KDD’14. ACM.

[20] Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. 2021.

Contrastive Learning with Hard Negative Samples. In ICLR’21.
[21] Maja Rudolph, Francisco Ruiz, Stephan Mandt, and David Blei. 2016. Exponential

Family Embeddings. In NIPS’16. Curran Associates, Inc.

[22] William Shiao, Zhichun Guo, Tong Zhao, Evangelos E. Papalexakis, Yozen Liu,

and Neil Shah. 2023. Link Prediction with Non-Contrastive Learning. In ICLR’23.
[23] William Shiao, Uday Singh Saini, Yozen Liu, Tong Zhao, Neil Shah, and Evan-

gelos E. Papalexakis. 2023. CARL-G: Clustering-Accelerated Representation

Learning on Graphs. In KDD’23. ACM, New York, NY, USA, 2036–2048.

[24] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. LINE: Large-Scale Information Network Embedding. InWWW. Interna-

tional World Wide Web Conferences Steering Committee, Republic and Canton

of Geneva, CHE, 1067–1077.

[25] Tongzhou Wang and Phillip Isola. 2022. Understanding Contrastive Represen-

tation Learning through Alignment and Uniformity on the Hypersphere. In

ICML’20.
[26] JiachengXu andGregDurrett. 2018. Spherical Latent Spaces for Stable Variational

Autoencoders. In EMNLP’18. ACL, Brussels, Belgium, 4503–4513.

[27] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. 2016. Revisiting

semi-supervised learning with graph embeddings. In ICML’16. JMLR.org, 40–48.

[28] Zhen Yang, Ming Ding, Tinglin Huang, Yukuo Cen, Junshuai Song, Bin Xu,

Yuxiao Dong, and Jie Tang. 2024. Does Negative Sampling Matter? A Review

with Insights into its Theory and Applications. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2024), 1–20.

[29] Zhen Yang, Ming Ding, Chang Zhou, Hongxia Yang, Jingren Zhou, and Jie Tang.

2020. Understanding Negative Sampling in Graph Representation Learning. In

KDD’20. ACM, New York, NY, USA, 1666–1676.

[30] Zhen Yang, Tinglin Huang, Ming Ding, Yuxiao Dong, Rex Ying, Yukuo Cen,

Yangliao Geng, and Jie Tang. 2023. BatchSampler: Sampling Mini-Batches for

Contrastive Learning in Vision, Language, and Graphs. In KDD’23. Association
for Computing Machinery, New York, NY, USA, 3057–3069.

[31] Jean-Gabriel Young, George T Cantwell, and M E J Newman. 2021. Bayesian

inference of network structure from unreliable data. Journal of Complex Networks
8, 6 (03 2021).

[32] Yifei Zhang, Yankai Chen, Zixing Song, and Irwin King. 2023. Contrastive

Cross-scale Graph Knowledge Synergy. In KDD’23. ACM, New York, NY, USA,

3422–3433.

http://snap.stanford.edu/data

Re-visiting Skip-Gram Negative Sampling: Dimension Regularization for More Efficient Dissimilarity Preservation in Graph Embeddings

A PROOFS
A.1 Proof for Proposition 2.1

Proof. Recall that the Frobenius norm of a matrix is equivalent

to the trace of the corresponding Gram matrix:

𝑁𝐴𝑆𝐸 (𝑋, 𝑆) = ∥𝑋𝑋𝑇 ∥2𝐹 (17)

= Tr

(
𝑋𝑋𝑇

(
𝑋𝑋𝑇

)𝑇)
(18)

= Tr

(
𝑋𝑋𝑇𝑋𝑋𝑇

)
(19)

= Tr

(
𝑋𝑇𝑋𝑋𝑇𝑋

)
(20)

= Tr

((
𝑋𝑇𝑋

) (
𝑋𝑇𝑋

)𝑇)
(21)

= ∥𝑋𝑇𝑋 ∥2𝐹 , (22)

□

where the 4th line follows from the cyclic property of the trace.

A.2 Proposition 2.2
Proof. From gradient descent, we know that 𝑋𝑇

𝑖
𝑋 𝑗 increases

toward infinity for all 𝑖, 𝑗 ∈ 𝐸; however, to show that 𝑋𝑇
𝑖
𝑋 𝑗 in-

creases for all 𝑖, 𝑗 , we show that the cosine similarity for all pairs of

embeddings approaches 1. We characterize the embedding dynam-

ics in two phases: in the first phase (alignment), the embeddings

are initialized near the origin and then converge in direction; then,

in the second phase (asymptotic), the embeddings asymptotically

move away from the origin while maintaining alignment.

Phase 1: alignment. The gradient update rule for 𝑃𝑆𝐺 is:

𝑋 𝑡+1
𝑖 = 𝑋 𝑡

𝑖 + 𝜂
∑︁

𝑗∈𝑁 (𝑖)
𝜎

(
−(𝑋 𝑡

𝑖)
𝑇𝑋 𝑡

𝑗

)
𝑋 𝑡
𝑗 (23)

Because the embeddings are initialized sufficiently small, the sig-

moid function can be approximated linearly via a first-order Taylor

expansion:

𝜎 (𝑧) ≈ 1

2

+ 1

4

𝑧 (24)

In this case, the update rule becomes:

𝑋 𝑡+1
𝑖 ≈ 𝑋 𝑡

𝑖 + 𝜂
∑︁

𝑗∈𝑁 (𝑖)

(
1 − 1

2

(
(𝑋 𝑡

𝑖)
𝑇𝑋 𝑡

𝑗

))
𝑋 𝑡
𝑗 (25)

The above gradient is equivalent to performing gradient descent

on:

𝑃 ′𝑆𝐺 = ∥1𝑆>0 ⊙
(
®1®1𝑇 − 1

2

𝑋𝑋𝑇

)
∥2𝐹 (26)

From Gunasekar et al. [10], gradient descent for matrix completion

is implicitly regularized to yield the minimum nuclear norm (lowest

rank) stationary point. In the case where𝐺 is connected, minimizing

the nuclear norm implies that gradient descent on (26) causes 𝑋𝑋𝑇

to approach 2®1®1𝑇 , and thus the dot products between all pairs of

embeddings increases and C → 2.

Phase 2: Asymptotic. For constriction values 𝑐 ≤ 2, the proof is

complete after Phase 1. On the other hand, for constriction val-

ues 𝑐 > 2, we can complete the proof by showing that following

alignment, characterized as positive dot products for all pairs of em-

beddings, constriction monotonically increases with each gradient

descent epoch. We show the monotonic increase in embeddings via

induction. For any pair of embeddings 𝑋 𝑡
𝑖
and 𝑋 𝑡

𝑗
, the dot product

after a single gradient descent epoch is:〈
𝑋 𝑡+1
𝑖 , 𝑋 𝑡+1

𝑗

〉
=
©«𝑋 𝑡

𝑖 + 𝜂
∑︁

𝑘∈𝑁 (𝑖)
𝜎

(
(𝑋 𝑡

𝑖)
𝑇𝑋 𝑡

𝑘

)
𝑋 𝑡
𝑘

ª®¬
𝑇

©«𝑋 𝑡
𝑗 + 𝜂

∑︁
𝑘∈𝑁 (𝑗)

𝜎

(
(𝑋 𝑡

𝑗)
𝑇𝑋 𝑡

𝑘

)
𝑋 𝑡
𝑘

ª®¬
(27)

At time step 𝑡 ′, the constriction C > 0, thus, once all of the dot

products are expanded, we have

〈
𝑋 𝑡+1
𝑖

, 𝑋 𝑡+1
𝑗

〉
=

〈
𝑋 𝑡
𝑖
, 𝑋 𝑡

𝑗

〉
+𝐶 , where

𝐶 > 0. Thus the dot product between any pair of embeddings strictly

increases at time step 𝑡 ′ + 1. By definition, the constriction remains

positive, so by induction, we have shown that for all 𝑡 > 𝑡 ′, the
constriction is monotonically increasing. □

A.2.1 Supplemental Figures. Figure 7 provides a high-level sum-

mary of the proof for Proposition 2.2. In the beginning, the embed-

dings are initialized with norm ≤ 𝑏 ≤
√
2. Then, the embeddings

converge in direction given that near the origin, the gradient of 𝑃𝑆𝐺
is the gradient of a matrix completion problem. Further, gradient

descent for matrix completion near the origin is implicitly regular-

ized to yield the lowest rank solution, hence a convergence in the

embedding direction. Thereafter, once the dot products between all

pairs of nodes are positive in the “Asymptotic" phase, C becomes

monotonically increasing.

We also empirically validate Proposition 2.2 in Figure 8. We ini-

tialize Erdös-Rényi graphs (𝑛 = 100) of various densities, randomly

initialize the embeddings around the origin, and then apply the

positive-only update rule in (23). Figure 8 shows that even when

the edge density is 0.05, the constriction eventually becomes mono-

tonically increasing.

A.3 Proof for Proposition 2.3
Proof. Let us define the matrix of embedding similarities as

𝐾 = 𝜎

(
𝑋𝑋𝑇

)
. Then, the gradient of 𝑁 ′

𝑆𝐺
is:

∇𝑁 ′𝑆𝐺 = 2𝐾𝑋 (28)

If 1𝑆==0 is the indicator matrix where entry 𝑖, 𝑗 is one if 𝑆𝑖 𝑗 = 0,

then the gradient of ∇𝑁𝑆𝐺 is:

∇𝑁𝑆𝐺 = (1𝑆==0 ⊙ 𝐾)𝑋 (29)

The numerator in the proposition can be upper bounded as:

∥∇𝑁 ′𝑆𝐺 − 𝑁𝑆𝐺 ∥2𝐹 =

𝑛∑︁
𝑖=1

 ∑︁
𝑗 ′∈{ 𝑗 |𝑆𝑖 𝑗>0}

𝜎

(
𝑋𝑇
𝑖 𝑋 𝑗 ′

)
𝑋 𝑗 ′

2
2

(30)

≤
𝑛∑︁
𝑖=1

|{ 𝑗 |𝑆𝑖 𝑗 > 0}|𝛽max (31)

≤ 𝑚𝛽max (32)

Where in the above, 𝛽max is a constant and the upper bound on

embedding norm squared and𝑚 is the number of non-zero entries

in 𝑆 .

Liu et al.

! = #

Initialization Phase 1: Alignment Phase 2: Asymptotic

! = # ! = #

∇%!" ≈ ∇ '⊙ 2	 − ,,# $
%

Matrix completion is implicitly
regularized to be low rank so

,,# &' → 2	∀	/, 1

!!"!# → ∞	∀	&, (! = 2

Figure 7: High-level overview of proof for Proposition 2.2, which guarantees embedding collapse when only attraction updates
are applied. In the beginning the embeddings are initialized near the origin, all with norm at most 𝑏. Then, in Phase 1, attraction
update rule is approximately gradient descent for matrix completion; given that the latter is implicitly regularized to yield
low-rank solutions the embeddings converge in direction. In the second phase, the embeddings asymptotically distance away
from the origin in the same direction.

0 250 500 750 1000 1250 1500 1750 2000
Gradient descent steps (t)

0

2

4

6

8

Co
ns

tri
ct

io
n

Constriction of Positive-Only Embeddings of Erdos-Renyi Graphs
p = 0.05
p = 0.1
p = 0.2
p = 0.5

Figure 8: To empirically validate Proposition 2.2, we instan-
tiate Erdös-Rényi networks (𝑛 = 100) and learn embeddings
by only applying the attraction update. The figure shows
that for various graph densities, the Constriction eventually
becomes monotonically increasing.

Now we lower bound the denominator. The gradient can be

expanded as:

∥∇𝑁𝑆𝐺 ∥2𝐹 =

𝑛∑︁
𝑖=1

 𝑛∑︁
𝑗

1𝑆𝑖 𝑗==0𝐾𝑖 𝑗𝑋 𝑗

2
2

(33)

We can lower bound the norm of the sum by replacing 𝑋 𝑗 with the

projection of 𝑋 𝑗 onto 𝑋𝑖 :

∥∇𝑁𝑆𝐺 ∥2𝐹 =

𝑛∑︁
𝑖=1

 𝑛∑︁
𝑗

1𝑆𝑖 𝑗==0𝐾𝑖 𝑗𝑋 𝑗

2
2

(34)

≥
𝑛∑︁
𝑖=1

 𝑛∑︁
𝑗

1𝑆𝑖 𝑗==0𝐾𝑖 𝑗

(
𝐾𝑖 𝑗

∥𝑋𝑖 ∥

) (
𝑋𝑖

∥𝑋𝑖 ∥

) 2
2

(35)

Because the dot product between all pairs of embeddings is assumed

to be positive, the norm of the sum is at most the sum of the norms:

∥∇𝑁𝑆𝐺 ∥2𝐹 ≥
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗

1𝑆𝑖 𝑗==0

(
𝐾𝑖 𝑗

∥𝑋𝑖 ∥

)
4

(36)

≥
(
C2
𝛽max

)
2 (
𝑛2 −𝑚

)
(37)

where above𝑚 is the number of non-zero entries of 𝑆 .

Combining the bounds on the numerator and denominator to-

gether, we have:

∥∇𝑁 ′
𝑆𝐺
− ∇𝑁𝑆𝐺 ∥2𝐹

∥∇𝑁𝑆𝐺 ∥2𝐹
≤
𝛽3
max

C4
𝑚

𝑛2 −𝑚
(38)

The left term is a constant given the assumption on constriction

and non-vanishing or infinite embedding norms. Further, because

the graph is sparse (𝑚 is 𝑜
(
𝑛2

)
), the second term goes to zero as

𝑛 →∞. □

A.4 Proposition 2.4
A.4.1 Lemma for Proof of Proposition 2.4.

Lemma A.1. Call 𝑓 (𝑥) = log(1 + exp(𝑥)). We show that both
𝑓 (𝑥) − 𝑥 ≤ exp(−𝑥) and |∇𝑥 (𝑓 (𝑥) − 𝑥) | ≤ exp(−𝑥), i.e. have
vanishing exponential tails.

Proof. First, note that log(𝑥) ≤ 𝑥−1. Since 𝑒−𝑥 (1+𝑒𝑥) = 1+𝑒−𝑥 ,
we have,

log(𝑒−𝑥 (1 + 𝑒𝑥)) ≤ (1 + 𝑒−𝑥) − 1
log(1 + exp(𝑥)) − 𝑥 ≤ exp(−𝑥)

𝑓 (𝑥) − 𝑥 ≤ exp(−𝑥),

where the first line applies the bound on log(𝑥) to the equality, the

second line organizes terms, and the third applies the definition of

𝑓 (𝑥). Now we have ∇𝑥 (𝑓 (𝑥) − 𝑥) = 𝜎 (𝑥) − 1. For this,

𝜎 (𝑥) − 1 = −1
1 + exp(𝑥) ≥

−1
exp(𝑥) = − exp(−𝑥).

Re-visiting Skip-Gram Negative Sampling: Dimension Regularization for More Efficient Dissimilarity Preservation in Graph Embeddings

Where the inequality follows reducing the value of the denominator.

This concludes the proof. □

A.4.2 Proof for Proposition 2.4.

Proof. As in the proof for Proposition 2.3, let us define the

similarity matrix 𝐾 = 𝜎

(
𝑋𝑋𝑇

)
.

The gradient for 𝑁 ′
𝑆𝐺

, defined in Equation (10), is:

∇𝑋𝑁 ′𝑆𝐺 = 2𝐾𝑋 (39)

The constriction C is the minimum value of the matrix K. From

lemma A.1, we know that as constriction increases, the difference

between 1 and each of the entries of𝐾 vanishes exponentially. Thus,

there is a vanishing difference between
1

2
∇𝑋𝑁 ′𝑆𝐺 and 1𝑋 , where 1

is the 𝑛 × 𝑛 all-ones matrix. Note that 1𝑋 is also the gradient of the

dimension regularizer 𝑅 introduced in (13). Putting these together

we have:1
2

∇𝑋𝑁 ′𝑆𝐺 − ∇𝑅
2
2

=

(𝜎 (
𝑋𝑋𝑇

)
− 1

)
𝑋

2
2

(40)

≤
𝑛∑︁
𝑖=1

 𝑛∑︁
𝑗=1

(
𝜎

(
𝑋𝑇
𝑖 𝑋 𝑗

)
− 1

)
𝑋 𝑗

2

(41)

≤
𝑛∑︁
𝑖=1

©«
𝑛∑︁
𝑗=1

(
𝜎

(
𝑋𝑇
𝑖 𝑋 𝑗

)
− 1

)
2

∥𝑋 𝑗 ∥2
ª®¬ (42)

≤
(
𝑛

𝑒C

)
2

𝛽max (43)

In the above, 𝛽max is a constant and corresponds to the maximum

embedding norm among all embeddings in 𝑋 .

Thus, as constriction C increases, the difference between the

gradient of
1

2
𝑁 ′
𝑆𝐺

and 𝑅 vanishes exponentially. By extension, the

difference between gradient descent on 𝑁 ′
𝑆𝐺

with a step-size of

𝜂 and gradient descent on 𝑅 with a step-size of 2𝜂 vanishes with

increasing C. □

B EXPERIMENTAL METHODOLOGY
B.1 Graph Generation and Pre-processing
For all of the graph datasets listed in Table 2, we discarded all

components except for the largest connected component. For the

SBM graphs used in Figure 6, the number of nodes was fixed at

1000, the number of blocks was fixed at 10, and the in-group edge

probability 𝑝 was fixed at 0.2.

B.2 Runtime Evaluation
We perform batched gradient descent for both LINE II and node2vec

II. In both cases, we construct batches of positive pairs where each

batch consists of 1000 pairs. The number of batches is 5𝑛, where 𝑛

is the number of nodes in the graph.

To determine the runtime of vanilla node2vec, we utilized the

Grover and Leskovec [9] code to generate the random walks but

then performed the positive and negative updates in Python instead

of using gensim which is implemented in C. This created a level

playing field to compare against our augmentation which is imple-

mented purely in Python. To simulate the random walks, we used

the simulate_walks function in the Grover and Leskovec [9] code,

where we sampled 10 random walks of length 80 for each node

in the graph. It is important to note that for all of the precision

and transductive precision vanilla node2vec results, we utilized

the gensim embeddings generated by the Grover and Leskovec [9]

code. We confirmed that the node2vec embeddings we generated

for the runtime evaluation yielded similar precision results as the

gensim embeddings.

All of our experiments were written in Python and executed on

machines with Intel Xeon E5-2690 CPUS, 2.60 GHz, 30 MB of cache.

B.3 Initialization
For almost all algorithms, we uniformly randomly initialize the

embeddings 𝑋 init
in (0, 1/(𝑑))𝑛×𝑑 . The only exception is for the

Positive Only baselines, which are most stable when we initial-

ize the embeddings 𝑋 init
uniformly in (−1/(2𝑑), 1/(2𝑑))𝑛×𝑑 , but

ultimately still collapse.

B.4 Hyperparameters
The two hyperparameters for our algorithm augmentation are the

regularization coefficient 𝜆 and the epoch parameter 𝑛negative. We

perform a hyperparameter grid search over 𝜆 ∈ {0.5, 1, 5, 25, 50, 75,
100} and 𝑛negative ∈ {1, 10, 100, 1000} and select the values of 𝜆 and
𝑛negative that achieve the highest transductive link-prediction per-

formance, for each graph and original algorithm. Table 3 provides

the optimal hyperparameters.

Table 3: Optimal hyperparameters

Graph Original Algorithm 𝜆 𝑛negative

LastFM node2vec 100 1

LastFM LINE 100 1

Facebook node2vec 100 1

Facebook LINE 100 1

ca-HepTh node2vec 100 1

ca-HepTh LINE 100 1

Protein-Protein node2vec 100 1

Protein-Protein LINE 100 1

Wikipedia node2vec 1 100

Wikipedia LINE 1 100

We note that if the regularization update is performed too often

(small 𝑛negative) and 𝜆 is large, the embeddings can diverge; specif-

ically, instead of re-centering around the origin, the embeddings

overshoot the origin and “reflect" about the origin, growing in mag-

nitude each time. In our experiments, the embeddings produced

numerical overflows when 𝜆 = 100 and 𝑛negative ≤ 10 for the Face-

book and Protein-Protein graphs; the Wikipedia graph embeddings

overflowed when 𝑛negative = 1 and 𝜆 = 100.

B.5 Transductive Precision
To calculate the transductive precision metric, we begin by splitting

the original graph edge set into training and test edge sets, follow-

ing a 70/30 split. The training graph is then the largest connected

component induced by the training edge set. The embeddings are

trained on the training graph and then evaluated on the test graph,

Liu et al.

which has the same node set as the training graph. The transductive

precision@k value is then the average transductive top-k precision

among all nodes with at least one neighbor in the test graph; for

nodes with degree less than 𝑘 in the test graph, we set 𝑘 = 𝑑 , where

𝑑 is the test degree of the node. When calculating the precision

for a single node, all edges present in the training set are excluded

from the top-k selection process.

C SUPPLEMENTAL EVALUATION
Runtime vs. Performance. Figure 5 only shows the augmented al-

gorithm’s results using the optimal hyperparameter configurations,

so in Figure 9 we include the runtime results for all hyperparame-

ter configurations, as denoted by the orange Xs. The runtime for

our augmentation decreases as 𝑛negative increases as the regular-

ization update is performed less frequently; when 𝑛negative = 1000,

the runtime is similar to the runtime for the positive-only base-

lines as nearly only positive updates are provided. For the LastFM,

Facebook, ca-HepTh, and Protein-Protein graphs, the optimal hy-

perparameter configurations set 𝑛negative = 1 so the runtime for the

optimal configuration is higher than that for most configurations

while remaining less than the vanilla algorithm runtimes. Only for

the Wikipedia graph does the optimal configuration yield a runtime

comparable to the positive-only baselines.

To supplement the transductive precision results, Figure 10 char-

acterizes all algorithms based on average link-prediction AUC-ROC.

The AUC-ROC for a single node is calculated by taking the test-

set edges as ground truth labels (1 for neighbors and 0 for non-

neighbors) and the dot products between embeddings as prediction

scores. The results in Figure 10 confirm the transductive precision

results and show that our augmentation reduces runtime while

preserving downstream performance.

Performance vs. Node Features. SGNS traditionally samples nodes

with probability proportional to 𝑑3/4 where 𝑑 is the degree of the

node. Because our dimension regularization augmentation defaults

to treating nodes uniformly, it is important to assess whether there

are correlations between node features and downstream perfor-

mance. For instance, do low-degree nodes perform better under our

augmentation compared to SGNS? Figures 11 and 12 plot down-

stream performance as a function of node degree, triangle count,

and clustering coefficient. Overall, the relationship between node

features and downstream performance is quite similar across the

algorithms; the main exception, as noted previously, is that for

the Wikipedia graph, our augmentation as well as the normalized

positive-only baseline perform best. The lack of differences among

algorithms is surprising and suggests that for these networks sam-

pling negative samples proportional to 𝑑3/4 performs similarly as

sampling uniformly.

Re-weighting Nodes. As discussed in subsection 2.2.1, our aug-

mentation is also capable of a flexible weighting of nodes when

performing repulsion just as SGNS offers this flexibility. While all

other empirical evaluations of our augmentation weights nodes

uniformly (using (13) over (15)), in Figure 13 we apply a weight of

𝑑3/4 to each node as done in traditional SGNS. Figure 13 shows that

while our augmentation offers flexible re-weighting, the alterna-

tive weighting yields results that are very similar to the uniform

weighting results shown in the paper.

Re-visiting Skip-Gram Negative Sampling: Dimension Regularization for More Efficient Dissimilarity Preservation in Graph Embeddings

4 6 8 10 12
Runtime (min)

0.0

0.1

0.2

0.3

0.4

0.5

Tr
an

sd
uc

tiv
e

Pr
ec

isi
on

@
10

LastFM

2 3 4 5 6 7
Runtime (min)

0.0

0.1

0.2

0.3

0.4

0.5

Tr
an

sd
uc

tiv
e

Pr
ec

isi
on

@
10

Facebook

4 6 8 10 12 14
Runtime (min)

0.0

0.1

0.2

0.3

0.4

0.5

Tr
an

sd
uc

tiv
e

Pr
ec

isi
on

@
10

ca-HepTh

2 3 4 5 6
Runtime (min)

0.0

0.1

0.2

0.3

0.4

0.5

Tr
an

sd
uc

tiv
e

Pr
ec

isi
on

@
10

Protein-Protein

2 3 4 5 6 7 8 9
Runtime (min)

0.0

0.1

0.2

0.3

0.4

0.5

Tr
an

sd
uc

tiv
e

Pr
ec

isi
on

@
10

Wikipedia

Tranductive Precision vs. Training Time for Variations of LINE
LINE (original) LINE (positive only) LINE (positive only, normalized) LINE II

Figure 9: To supplement Figure 3, this figure shows the runtime and transductive precision for all hyperparameter configurations
of our augmentation algorithm. The optimal configuration is still denoted by the orange star but all other configurations are
denoted by orange Xs. The non-optimal hyperparameter configurations yield faster training times but also worse performance.

4 6 8 10 12
Runtime (min)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sd
uc

tiv
e

AU
C-

RO
C

LastFM

2 3 4 5 6 7
Runtime (min)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sd
uc

tiv
e

AU
C-

RO
C

Facebook

4 6 8 10 12 14
Runtime (min)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sd
uc

tiv
e

AU
C-

RO
C

ca-HepTh

2 3 4 5 6
Runtime (min)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sd
uc

tiv
e

AU
C-

RO
C

Protein-Protein

2 3 4 5 6 7 8 9
Runtime (min)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sd
uc

tiv
e

AU
C-

RO
C

Wikipedia

Tranductive AUC-ROC vs. Training Time for Variations of LINE
LINE (original) LINE (positive only) LINE (positive only, normalized) LINE II

5 10 15 20 25 30 35
Runtime (min)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sd
uc

tiv
e

AU
C-

RO
C

LastFM

2 4 6 8 10 12 14
Runtime (min)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sd
uc

tiv
e

AU
C-

RO
C

Facebook

10 20 30 40
Runtime (min)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sd
uc

tiv
e

AU
C-

RO
C

ca-HepTh

2 4 6 8 10 12 14
Runtime (min)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sd
uc

tiv
e

AU
C-

RO
C

Protein-Protein

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Runtime (min)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sd
uc

tiv
e

AU
C-

RO
C

Wikipedia

Tranductive AUC-ROC vs. Training Time for Variations of node2vec
node2vec (original) node2vec (positive only) node2vec (positive only, normalized) node2vec II

Figure 10: The above figure shows the downstream performance of each algorithm as measured by average link-prediction
AUC-ROC as opposed to transductive precision. To calculate the AUC-ROC for each node, we take edges in the test set as
positive examples and non-edges as negative examples; the prediction scores are the dot products between pairs of embeddings.
The AUC-ROC results confirm that our augmentation preserves out-of-sample performance while reducing runtime.

Liu et al.

0 5 10 15 20
Degree

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

LastFM
LINE (original)
LINE (positive only)
LINE (positive only, normalized)
LINE II

0 20 40 60 80 100
Degree

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

Facebook
LINE (original)
LINE (positive only)
LINE (positive only, normalized)
LINE II

2 4 6 8 10 12 14 16
Degree

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

ca-HepTh
LINE (original)
LINE (positive only)
LINE (positive only, normalized)
LINE II

0 10 20 30 40 50
Degree

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

Protein-Protein
LINE (original)
LINE (positive only)
LINE (positive only, normalized)
LINE II

0 10 20 30 40 50 60 70
Degree

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

Wikipedia
LINE (original)
LINE (positive only)
LINE (positive only, normalized)
LINE II

0 10 20 30 40
Triangle Count

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

LastFM
LINE (original)
LINE (positive only)
LINE (positive only, normalized)
LINE II

0 500 1000 1500 2000 2500
Triangle Count

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

Facebook
LINE (original)
LINE (positive only)
LINE (positive only, normalized)
LINE II

0 2 4 6 8 10 12 14 16
Triangle Count

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

ca-HepTh
LINE (original)
LINE (positive only)
LINE (positive only, normalized)
LINE II

0 20 40 60 80 100 120 140
Triangle Count

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

Protein-Protein
LINE (original)
LINE (positive only)
LINE (positive only, normalized)
LINE II

0 100 200 300 400
Triangle Count

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

Wikipedia
LINE (original)
LINE (positive only)
LINE (positive only, normalized)
LINE II

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Clustering Coefficient

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

LastFM
LINE (original)
LINE (positive only)
LINE (positive only, normalized)
LINE II

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Clustering Coefficient

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

Facebook
LINE (original)
LINE (positive only)
LINE (positive only, normalized)
LINE II

0.0 0.2 0.4 0.6 0.8
Clustering Coefficient

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

ca-HepTh
LINE (original)
LINE (positive only)
LINE (positive only, normalized)
LINE II

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Clustering Coefficient

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

Protein-Protein
LINE (original)
LINE (positive only)
LINE (positive only, normalized)
LINE II

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Clustering Coefficient

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

Wikipedia
LINE (original)
LINE (positive only)
LINE (positive only, normalized)
LINE II

Figure 11: Because the SGNS node sampling probability is a function of node degree and our augmentation samples uniformly
by default, it is important to assess whether the algorithms differ in their correlations between node features and downstream
performance. For each node feature (degree, triangle count, and clustering coefficient), nodes are ranked and divided into 50

bins, and then the average transductive precision is plotted for each bin. Overall, we see that the algorithms share similar
correlations between node features and downstream performance despite differences in the node-sampling distributions.

0 5 10 15 20
Degree

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

LastFM
node2vec (original)
node2vec (positive only)
node2vec (positive only, normalized)
node2vec II

0 20 40 60 80 100
Degree

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

Facebook
node2vec (original)
node2vec (positive only)
node2vec (positive only, normalized)
node2vec II

2 4 6 8 10 12 14 16
Degree

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

ca-HepTh
node2vec (original)
node2vec (positive only)
node2vec (positive only, normalized)
node2vec II

0 10 20 30 40 50
Degree

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

Protein-Protein
node2vec (original)
node2vec (positive only)
node2vec (positive only, normalized)
node2vec II

0 10 20 30 40 50 60 70
Degree

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

Wikipedia
node2vec (original)
node2vec (positive only)
node2vec (positive only, normalized)
node2vec II

0 10 20 30 40
Triangle Count

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

LastFM
node2vec (original)
node2vec (positive only)
node2vec (positive only, normalized)
node2vec II

0 500 1000 1500 2000 2500
Triangle Count

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

Facebook

node2vec (original)
node2vec (positive only)
node2vec (positive only, normalized)
node2vec II

0 2 4 6 8 10 12 14 16
Triangle Count

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

ca-HepTh
node2vec (original)
node2vec (positive only)
node2vec (positive only, normalized)
node2vec II

0 20 40 60 80 100 120 140
Triangle Count

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

Protein-Protein
node2vec (original)
node2vec (positive only)
node2vec (positive only, normalized)
node2vec II

0 100 200 300 400
Triangle Count

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

Wikipedia
node2vec (original)
node2vec (positive only)
node2vec (positive only, normalized)
node2vec II

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Clustering Coefficient

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

LastFM
node2vec (original)
node2vec (positive only)
node2vec (positive only, normalized)
node2vec II

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Clustering Coefficient

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

Facebook
node2vec (original)
node2vec (positive only)
node2vec (positive only, normalized)
node2vec II

0.0 0.2 0.4 0.6 0.8
Clustering Coefficient

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

ca-HepTh
node2vec (original)
node2vec (positive only)
node2vec (positive only, normalized)
node2vec II

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Clustering Coefficient

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

Protein-Protein
node2vec (original)
node2vec (positive only)
node2vec (positive only, normalized)
node2vec II

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Clustering Coefficient

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

Wikipedia
node2vec (original)
node2vec (positive only)
node2vec (positive only, normalized)
node2vec II

Figure 12: The setup for the above figure is analogous with Figure 11 but for node2vec. The takeaways for node2vec are largely
the same as those for LINE: the algorithms share similar correlations between node features and downstream performance.

Re-visiting Skip-Gram Negative Sampling: Dimension Regularization for More Efficient Dissimilarity Preservation in Graph Embeddings

10 20 30 40 50 60
Degree

0.0

0.2

0.4

0.6

0.8

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

LastFM
line (original)
line (positive only)
line (positive only, normalized)
line II

10 20 30 40 50 60
Degree

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

Facebook
line (original)
line (positive only)
line (positive only, normalized)
line II

10 20 30 40 50 60
Degree

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

ca-HepTh
line (original)
line (positive only)
line (positive only, normalized)
line II

10 20 30 40 50 60
Degree

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

Protein-Protein
line (original)
line (positive only)
line (positive only, normalized)
line II

10 20 30 40 50 60
Degree

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

Wikipedia
line (original)
line (positive only)
line (positive only, normalized)
line II

(a) UniformWeighting

10 20 30 40 50 60
Degree

0.0

0.2

0.4

0.6

0.8

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

LastFM
line (original)
line (positive only)
line (positive only, normalized)
line II

10 20 30 40 50 60
Degree

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

Facebook
line (original)
line (positive only)
line (positive only, normalized)
line II

10 20 30 40 50 60
Degree

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

ca-HepTh
line (original)
line (positive only)
line (positive only, normalized)
line II

10 20 30 40 50 60
Degree

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

Protein-Protein
line (original)
line (positive only)
line (positive only, normalized)
line II

10 20 30 40 50 60
Degree

Tr
an

du
ct

iv
e

Pr
ec

isi
on

@
10

Wikipedia
line (original)
line (positive only)
line (positive only, normalized)
line II

(b) Weight Nodes by degree3/4

Figure 13: While our augmentation is capable of weighting nodes when performing repulsion, just as SGNS weights nodes as a
function of degree, applying the traditional SGNS node weights (weight proportional to degree3/4) via (15) does not significantly
impact downstream performance compared to using uniform weights, which we use in all other empirical evaluations. In the
figure, the curves for LINE II in the top subfigure correspond to setting ®𝑝 = ®1 whereas the LINE II curves in the bottom subfigure
correspond to setting the weight of each node to 𝑑3/4, where 𝑑 is the node’s degree. The curves for all other variations of LINE
are identical in the top and bottom subfigures.

	Abstract
	1 Introduction
	2 From Node Repulsion to Dimension Regularization
	2.1 Dimension Regularization for Spectral Embeddings
	2.2 Dimension Regularization for Skip-Gram Embeddings

	3 Algorithm Augmentation to Replace SGNS
	3.1 Instantiation for LINE and node2vec

	4 Evaluation
	4.1 Evaluation Methodology
	4.2 Results

	5 Related Works
	5.1 Skip-Gram Negative Sampling
	5.2 Non-contrastive Self-Supervised Learning

	6 conclusion
	References
	A Proofs
	A.1 Proof for Proposition 2.1
	A.2 Proposition 2.2
	A.3 Proof for Proposition 2.3
	A.4 Proposition 2.4

	B Experimental Methodology
	B.1 Graph Generation and Pre-processing
	B.2 Runtime Evaluation
	B.3 Initialization
	B.4 Hyperparameters
	B.5 Transductive Precision

	C Supplemental Evaluation

