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NEGATIVE CURVATURE IN LOCALLY REDUCIBLE ARTIN GROUPS

JILL MASTROCOLA

Abstract. In this paper, we define the 2-complete Artin complex and show that it is systolic for locally

reducible Artin groups. The stabilizers of simplices in this complex are exactly the proper parabolic sub-

groups which are "2-complete." We use this systolicity to show that parabolic subgroups, with 2-completions

that are not the whole Artin group, are weakly malnormal. This allows us to conclude that many locally

reducible Artin groups are acylindrically hyperbolic.

1. Introduction

Geometric group theory uses geometric and topological methods to study finitely generated groups. If
one considers the action of a group on a space satisfying certain geometric properties, one can often recover
algebraic properties of the group. Artin groups, one class of particular interest, are closely related to the
relatively well-studied Coxeter groups and mapping class groups. Much of the successful study of Artin
groups has been through the action of the group on a negatively or nonpositively curved space. In this
paper, we study a subclass known as locally reducible Artin groups by defining a new nonpositively curved
complex and using it to show many Artin groups within this class are acylindrically hyperbolic.

Artin groups were introduced in the 1960’s by Tits as an extension of Coxeter groups. There are many
long-standing open questions and conjectures about Artin groups. For example, it is unknown whether Artin
groups are torsion-free, have solvable word problem, or satisfy the famous K(π, 1)-conjecture. Much progress
has been made for particular subclasses of Artin groups, but as a whole they remain quite mysterious.

An Artin group is a group with a presentation of the form

〈s1, . . . , sn | sisjsi . . .
︸ ︷︷ ︸

mij

= sjsisj . . .
︸ ︷︷ ︸

mij

〉

for some finite set of generators S = {s1, . . . , sn} where mij ∈ {2, 3, . . . ,∞} for each 1 ≤ i < j ≤ n. If
mij = ∞, then si and sj have no relation. We can encode the same information in a defining graph,
denoted Γ, with vertices V (Γ) = S. If mij < ∞, then Γ has an edge between vertices si and sj labeled by
the integer mij . An Artin group with defining graph Γ is denoted AΓ.

To each Artin group there is an associated Coxeter group, WΓ, which is the quotient of AΓ defined by
adding the relations s2i = 1 for all 1 ≤ i ≤ n. If WΓ is a finite group, we say that AΓ is of finite type. Note
that AΓ will always be an infinite group.

For a subset of generators T ⊆ S, the associated standard parabolic subgroup of AΓ is the subgroup
generated by T . Van der Lek [36] proved that this subgroup is isomorphic to the Artin group determined by
the full subgraph of Γ with vertices T , which we will denote AT . Any conjugate of such a subgroup is called
a parabolic subgroup.

Among the commonly studied subclasses of Artin groups, finite type Artin groups and right-angled Artin
groups (those for which mij = 2 or ∞ for all i, j) have seen the most progress. In the finite type case, an Artin
group admits a Garside structure, which provides normal forms and combinatorial structure for studying
the group. Right-angled Artin groups are examples of graph products of groups. They have algorithmic
properties and admit a CAT(0) cubical structure.

The class of 2-dimensional Artin groups has also seen significant progress. (The dimension of an Artin
group is the maximum cardinality of a subset T ⊆ V (Γ) such that AT is finite type.) By groundbreaking
work of Charney and Davis, 2-dimensional Artin groups are torsion-free and satisfy the K(π, 1)-conjecture
[9]. They are also known to have solvable word problem by work of Chermak [12]. More recently Cumplido,
Martin, and Vaskou have developed a rich study of large-type Artin groups (those for which mij ≥ 3 for all
i, j) and have proven many long-standing conjectures about them: the intersection of a family of parabolic
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subgroups is itself a parabolic subgroup [13], automorphisms are classified, and [38] the class of large-type
Artin groups is rigid under isomorphism [27].

Our focus in this paper is the following class of Artin groups. They were introduced by Charney, who
showed they satisfy both the K(π, 1)-Conjecture and the Tits Conjecture [8].

Definition 1.1. An Artin group AΓ is locally reducible if the only finite type triangles contained in Γ
are of the form 2− 2− k for some k ≥ 2.

Within this class of Artin groups, the only finite type parabolic subgroups which occur are cyclic subgroups,
dihedral subgroups (i.e., AT for T = {a, b} where mab ≥ 3), and direct products of cyclic and dihedral
subgroups.

The notion of hyperbolic groups was introduced by Gromov in the 1980’s [18], and sparked much of the
field of geometric group theory as we know it today. The action of a group on a hyperbolic or nonpositively
curved space has proven to be a very useful tool in the field, especially when the action is proper and
cocompact. More recently, there have been many attempts at generalizing hyperbolic groups. In this paper,
we focus on acylindrical hyperbolicity.

A group action of G on a metric space (X, d) is acylindrical if for every ǫ ≥ 0, there exist constants R ≥ 0
and N ≥ 0 such that for all points x, y ∈ X such that d(x, y) ≥ R, |{g ∈ G | d(x, gx) ≤ ǫ and d(y, gy) ≤
ǫ}| ≤ N . A group is acylindrically hyperbolic if it is not virtually cyclic and has an acylindrical action
on a hyperbolic space.

Informally, acylindricity can be interpreted as a sort of properness on pairs of points that are far apart in
the space. The original definition of acylindrical hyperbolicity goes back to Sela [34], which applies to group
actions on trees. The more general and current definition is due to Bowditch [4] and was shown by Osin [33]
to be equivalent to other conditions studied in [2, 21, 35].

Acylindrically hyperbolic groups include all but finitely many mapping class groups [4, 28], Out(Fn) for
n ≥ 2 [1], and many CAT(0) groups [35]. Certain classes of Artin groups are known to be acylindrically
hyperbolic, including the following classes, provided the group is irreducible, not cyclic, and of sufficient
rank:

• right-angled Artin groups [7, 33, 35]
• Artin groups whose defining graph is not a join [10, 11]
• XXL Artin groups (all mij ≥ 5) [19]
• triangle-free Artin groups [24]
• Artin groups of euclidean type [6]
• 2-dimensional Artin groups [26, 37]

In this paper, we show that many locally reducible Artin groups are acylindrically hyperbolic. For AΓ an
arbitrary Artin group, define Γ̂ to be the graph obtained from Γ by deleting all edges not labeled by 2. We
consider a single vertex of Γ̂ with no edges to be its own connected component. A parabolic subgroup of AΓ

is 2-complete if it can be written as gAT g
−1 for some g ∈ AΓ and some T ⊆ V (Γ) where T is a union of

connected components of Γ̂. A 2-completion of a parabolic subgroup P is a 2-complete parabolic subgroup
which contains P . Note that 2-completions are not unique (see Remark 3.1).

Theorem 1.2. Let AΓ be an Artin group. If either

(1) AΓ is locally reducible and has a maximal finite-type subgroup which is dihedral and which has a
2-completion that is not all of AΓ, or

(2) AΓ splits as an amalgamated product AΓ1
∗AΓ1∩Γ2

AΓ2
such that AΓ1

is locally reducible and there is
a 2-completion of AΓ1∩Γ2

which does not contain all of AΓ1
,

then AΓ is acylindrically hyperbolic.

The following theorem is the key ingredient to this result. This allows us to apply work of Martin [25] and
Minasyan and Osin [29] to conclude that many Artin groups which are locally reducible are acylindrically
hyperbolic.

Theorem 1.3. Let AΓ be a locally reducible Artin group such that Γ̂ has at least two connected components.
Then any parabolic subgroup P of AΓ which has a 2-completion that is not all of AΓ is weakly malnormal
(i.e., there exists g ∈ G such that |P ∩ gPg−1| < ∞).
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As is a common theme in the study of Artin groups, nonpositively curved geometric complexes are a
key component of these results. For locally reducible Artin groups, it is known that the Deligne complex is
CAT(0) [8]. In Section 3, we introduce the 2-complete Artin complex and show that it satisfies a combinatorial
version of nonpositive curvature known as systolicity.

Intuitively, a geodesic metric space is said to be CAT(0) if its triangles are “at least as thin as” comparison
triangles in R2. In the case of a cubical complex with the standard Euclidean metric, there is a simple link
condition to check that the complex is CAT(0). However, when dealing with a different metric on a cube
complex, or in the setting of a simplicial complex, CAT(0)-ness can be quite hard to check, especially in
high dimensions. Systolicity was introduced as an analogue of CAT(0)-ness for simplicial complexes by
Januszkiewicz and Świątkowski [23] and independently by Haglund [20]. Systolicity shares many of the same
nice consequences of CAT(0)-ness, and it can always be checked in a combinatorial way. See Section 4 for a
precise definition. The following result is the key to proving Theorem 1.3.

Theorem 1.4. Let AΓ be a locally reducible Artin group. If there are at least three connected components

in Γ̂, then the 2-complete Artin complex of AΓ is systolic.

We begin by recalling the definitions of the well-known Delgine and Artin complexes (Section 2). We then
define the 2-complete Artin complex (Section 3) and show that it is systolic (Section 4). We prove Theorem
1.3 (Section 5) and apply theorems of Martin and Minasyan-Osin to show that many locally reducible Artin
groups are acylindrically hyperbolic (Section 6). Finally, we discuss some potential future directions related
to this work (Section 7).

Acknowledgements. I would like to thank my advisor Ruth Charney, who introduced me to the subject
of geometric group theory and has supported me throughout my graduate school journey. None of this work
would have been possible without her guidance and advice along the way. I also want to thank Alex Martin,
who offered helpful motivations and suggestions early on, and has supported my work throughout. Special
thanks go to Carolyn Abbott and Jason Behrstock, who both provided helpful feedback on my results and
my writing.

2. Complexes Associated to Artin Groups

2.1. The Deligne Complex. The Deligne complex for an arbitrary Artin group AΓ with generating set S
was introduced by Charney and Davis [9], generalizing the work of Deligne [15], who defined such a complex
for finite type Artin groups. Let Sf = {T ⊆ S | AT is finite type}. We include ∅ ∈ Sf with the standard
convention that A∅ = {1}. Note that Sf is a partially ordered set with respect to inclusion.

Definition 2.1. The Deligne complex of AΓ, denoted DΓ, is the cubical complex whose vertices correspond
to cosets gAT for g ∈ AΓ and T ∈ Sf and whose k-dimensional cubes correspond to intervals of inclusion
[gAR, gAT ] of length k + 1.

The Artin group AΓ acts by left multiplication on DΓ. The stabilizer of a vertex gAT is the parabolic
subgroup gAT g

−1. A fundamental domain for the action is the subcomplex KDΓ
of DΓ spanned by vertices

of the form AT for T ∈ Sf .
We will now define the Moussong metric for the Deligne complex. We will start by describing the Moussong

metric in its original setting: the Davis complex [32]. This complex associated to the Coxeter group WΓ is
defined analogously to the Deligne complex. We consider the same set Sf as above.

Definition 2.2. The Davis complex of WΓ, denoted CΓ, is the cubical complex whose vertices correspond
to cosets wWT for w ∈ WΓ and T ∈ Sf and whose k-dimensional cubes correspond to intervals of inclusion
[wWR, wWT ] of length k + 1.

Similarly to above, WΓ acts by left multiplication on CΓ and has a fundamental domain KCΓ
spanned by

vertices of the form WT .
When WΓ is finite, it can be viewed as a group of orthogonal transformations of Rn. The generators

s ∈ S act as reflections across the walls of a simplicial cone Z ⊆ Rn. There is a unique point x∅ ∈ Z ∩ Sn−1

which is equidistant from each wall of Z. The convex hull X of the orbit of x∅ under the action of WΓ is
isomorphic to the Davis complex CΓ. The origin in Rn corresponds to the vertex WS in CΓ and x∅ in Rn
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corresponds to the vertex W∅ in CΓ. The fundamental domain KCΓ
is identified with the intersection X ∩Z.

This isomorphism gives a metric on CΓ; in this case CΓ is called the Coxeter cell of WΓ.
If WΓ is infinite, we can cover CΓ by the closed stars of vertices of the form wWT for T maximal elements

of Sf . Since WT is finite, a star corresponding to a vertex of this form is isomorphic to the Coxeter cell of
WT and can be given the metric of that Coxeter cell. These Coxeter cells together give a piecewise Euclidean
metric on CΓ, called the Moussong metric. Moussong proved that CΓ with this metric is CAT(0) for all
WΓ [32].

For an Artin group AΓ, the quotient map to its associated Coxeter group AΓ → WΓ induces an equivariant
projection DΓ → CΓ, which is an isomorphism when restricted to the fundamental domain KDΓ

. We define
the Moussong metric on the Deligne complex DΓ to be the piecewise Euclidean metric defined on each
translate of KDΓ

by letting KDΓ
be isometric to KCΓ

.

Theorem 2.3. [8, Theorem 3.2] If AΓ is locally reducible, then DΓ with the Moussong metric is CAT(0).

2.2. The Artin Complex. When Charney and Davis defined the Deligne complex in [9], they also intro-
duced the analogous Artin complex.

Definition 2.4. The Artin complex associated to AΓ, denoted XΓ, is the simplicial complex with vertices
corresponding to cosets of the form gAS\{t} for g ∈ AΓ and t ∈ S. A set of vertices spans a simplex if the
corresponding cosets have nonempty intersection.

Cumplido, Martin, and Vaskou showed that the Artin complex is systolic for Artin groups of large type
[13]. Using the consequences of this geometry, they show that the intersection of parabolic subgroups of a
large-type Artin group is a parabolic subgroup, solving a long-standing conjecture. The Artin complex was
also studied by Godelle and Paris, who in particular showed that it is a flag complex [17]. Their work has
inspired a new approach to the K(π, 1)-conjecture by Huang [22]. In this paper we define a modification of
this complex, called the 2-complete Artin complex.

3. The 2-Complete Artin Complex

Let AΓ be an Artin group with defining graph Γ, and let v be a vertex in Γ. The 2-completion of v is
the full subgraph of Γ spanned by v together with all vertices which can be reached from v by an edge path
labeled only by 2’s.

Let S(2) = {T ⊆ S | if v ∈ T , then the 2-completion of v is contained in T }. This is a partially ordered
set with respect to inclusion. If Γ is as in Example 3.3, then T = {a, b, c} ∈ S(2) but W = {a, b, c, d} 6= S(2).

Let Γ̂ be the subgraph of Γ which consists of all the vertices of Γ and the edges of Γ labeled by 2.
Connected components of Γ̂ correspond to non-empty, minimal elements of S(2). We consider a single vertex
in Γ which has no edges labeled 2 to be its own connected component in Γ̂. (See Example 3.3.)

A subset T ⊆ V (Γ) of generators is 2-complete if it is an element of S(2), i.e., if for every v ∈ T , all the
vertices in the 2-completion of v are also in T . A parabolic subgroup is 2-complete if it can be written in
the form gAT g

−1 for some g ∈ AΓ and some 2-complete T ⊆ V (Γ).
A 2-completion of a parabolic subgroup P of AΓ is a parabolic subgroup that is 2-complete and contains

P .

Remark 3.1. A parabolic subgroup can have many distinct 2-completions. For a standard parabolic subgroup
AT , there is a canonical choice: AR where R is the union of the 2-completions of the vertices of T . However
in the case of a general (non-standard) parabolic subgroup, there is not a canonical choice of 2-completion
since a parabolic subgroup may be conjugate to more than one standard parabolic.

Definition 3.2. The 2-complete Artin complex, X̂Γ, is the following simplicial complex of groups:

• there is a vertex for every left coset of a standard parabolic subgroup of the form AΓ\T for T some

single connected component of Γ̂, and
• a collection of vertices spans a simplex if the associated cosets have collective nonempty intersection.

Let K denote the fundamental domain of X̂Γ, i.e., the simplex corresponding to standard parabolic
subgroups of AΓ.

4



Example 3.3. We will now show an example of Γ̂ and K, given the following defining graph Γ.

a

b

c

d

e

f

2

7

2 2

5

6

3

9

Γ = a

b

c

d

e

f

2

2 2Γ̂ =

Label the connected components in Γ̂ as T = {a, b, c}, U = {d, e}, and V = {f}. The 2-complete Artin
complex X̂Γ has the following fundamental domain:

A∅

AT∪V AU∪V

AT∪U

AT AU

AV

K =

Observation 3.4. The 2-complete proper parabolic subgroups of AΓ are exactly the stabilizers of simplices

of X̂Γ.

We say a vertex of X̂Γ has type Γ \ T if it corresponds to coset of the form gAΓ\T . Likewise, the type of

each simplex in X̂Γ is given by the subset of Γ corresponding to its associated coset. Equivalently, the type
of a simplex is determined by the intersection of the types of the vertices of that simplex. Note that each
top-dimensional simplex corresponds to a coset of the form gA∅.

Proposition 3.5 (Basic Properties of X̂Γ). Let AΓ be an Artin group.

(1) If Γ̂ has at least two connected components, then X̂Γ is connected.

(2) If Γ̂ has at least three connected components, then X̂Γ is simply connected.

(3) The link in X̂Γ of a simplex of type U is isomorphic to the 2-complete Artin complex X̂Γ′ where Γ′

is the subgraph of Γ spanned by the vertices of U .

Proof. The 2-complete Artin complex X̂Γ is a simplicial complex of groups in the language of Bridson-
Haefliger [5]. The fundamental domain K has vertices of the form AΓ\T for T a single connected component

of Γ̂, and edges between vertices corresponding to nonempty intersection. The morphisms associated to the
inclusion of faces of K are the natural inclusions of the respective Artin groups. In this language, X̂Γ is the
development of K, in the sense of [5].

(1): If there are at least two connected components of Γ̂, then the fundamental domain K of X̂Γ is at
least one-dimensional and is connected. Furthermore, the Artin group AΓ is generated by the collection of
parabolic subgroups which are stabilizers of simplices of X̂Γ. By [5, Prop 12.20], X̂Γ is connected.

(2): If there are at least three connected components of Γ̂, then by [5, Prop 12.20 (4)], X̂Γ is simply
connected.

(3): By [5, Construction 12.24], we can describe the link of a simplex in X̂Γ as the development of an
appropriate subcomplex of groups. �

4. The 2-complete Artin Complex is Systolic

In this section we show that for a locally reducible Artin group AΓ, where Γ̂ has at least three connected
components, the associated 2-complete Artin complex X̂Γ is systolic. Let X be a simplicial complex. A
subcomplex Y ⊆ X is full if any simplex of X spanned by a set of vertices of Y is a simplex of Y . A full
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cycle γ ⊆ X is a cycle that is full as a subcomplex of X . See below for some examples. The systole of a
simplicial complex X is

sys(X) = min{|γ| | γ is a full cycle in X}

For a simplicial complex X , sys(X) ≥ 3, and if there are no full cycles in X then sys(X) = ∞. A simplicial
complex X is locally k-large if sys(lkX(Y )) ≥ k for all simplices Y ⊆ X . X is k-large if it is locally k-large
and sys(X) ≥ k.

Definition 4.1. A simplicial complex X is systolic if it is connected, simply-connected, and locally 6-large.

Not a full cycle Not a full cycle A full cycle

Theorem 4.2. [5, Theorem 2.11] The sum of the interior angles of a quadrilateral in a CAT(0) space cannot
be greater than 2π.

Lemma 4.3. [8, Lemma 5.1] Let AΓ be a locally reducible Artin group. For any T ⊆ S, the natural inclusion
DT →֒ DΓ is an isometric embedding, and hence the image is convex.

Proposition 4.4. Let AΓ be locally reducible, and let R ⊆ V (Γ) correspond to a finite type clique in Γ. If

|R| ≥ 3, then R must be contained in a single connected component of Γ̂.

Proof. Choose r ∈ R. For any vertices u, v ∈ R \ {r}, the collection {r, u, v} spans a finite-type triangle in
Γ. Since AΓ is locally reducible, this triangle has type 2− 2− k. Thus u and v must lie in the 2-completion
of r, and hence all three vertices must be in the same connected component of Γ̂. �

Lemma 4.5. Let AΓ be a locally reducible Artin group such that Γ̂ has at least two connected components.

Let T and U be two distinct connected components of Γ̂. If t1, t2 ∈ AT and u1, u2 ∈ AU are pairs of (not
necessarily distinct) elements, then t1u1 6= u2t2.

Proof. Suppose by way of contradiction that there are elements t1, t2 ∈ AT and u1, u2 ∈ AU such that
t1u1 = u2t2. Then there is a quadrilateral in the Deligne complex DΓ determined by vertices A∅, u1A∅,
t1u1A∅ = u2t2A∅, t2A∅, and the geodesics between them.

A∅

u1A∅ t2A∅

t1u1A∅ = u2t2A∅

The geodesics forming the sides of this quadrilateral are not edges, and do not even need to be edge paths.
However since DΓ is CAT(0) by Theorem 2.3, the geodesics are unique.

We will now consider the measure of each interior angle of the quadrilateral. The goal is to show that
such a quadrilateral cannot exist using Theorem 4.2.

By Lemma 4.3, the two sides [A∅, u1A∅] and [A∅, t2A∅] are contained in the Deligne complex associated
to AU (denoted DU ) and the Deligne complex associated to AT (denoted DT ), respectively. Hence the angle
between the two sides, i.e., the interior angle of the quadrilateral at A∅, is bounded below by the angle at
A∅ between DU and DT as embedded subcomplexes of DΓ.

Let vs denote the vertex in lkDΓ
(A∅) corresponding to the edge (A∅, A{s}) in DΓ. The angle between DU

and DT in DΓ is determined by the distance between vertices vt and vu in lkDΓ
(A∅) for all t ∈ T and u ∈ U .

Note that the 1-skeleton of lkDΓ
(A∅) is isomorphic to the defining graph Γ. Indeed, there is one vertex in

lkDΓ
(A∅) for each edge in DΓ of the form (A∅, A{s}), and hence for each generator s ∈ V (Γ). And there is

an edge between two vertices vr and vs in lkDΓ
(A∅) if and only if there is a 2-dimensional cube in DΓ with
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vertices A∅, A{r}, A{s}, and A{r,s}, which happens precisely when A{r,s} is a finite type Artin group, i.e.,
there is an edge between r and s in Γ.

Let t ∈ T and u ∈ U be arbitrary. By Proposition 4.4, for any generator s ∈ V (Γ), it must be that A{s,t,u}

is not finite type. Hence in lkDΓ
(A∅), there are no n-dimensional simplices between vt and vu for n ≥ 2, and

so the distance between vt and vu is determined by the 1-skeleton of lkDΓ
(A∅). For an edge (r, s) in Γ with

label mrs, the corresponding edge (vr, vs) in lkDΓ
(A∅) has length π − π

mrs
with respect to the Moussong

metric. Since mtu ≥ 3, the distance between vt and vu is at least 2π
3 .

Therefore, the interior angle of the above quadrilateral at vertex A∅ is at least 2π
3 .

We can repeat this argument for vertices u1A∅ and t2A∅ by translating each by u−1
1 and t−1

2 , respectively,
which preserves angle measures.

It follows that the sum of interior angles in the quadrilateral at vertices u1A∅, A∅, and t2A∅, is at least 2π.
By Theorem 4.2, it is impossible for the fourth vertex of this quadrilateral to exist. Hence we have reached
a contradiction, and it must be that t1u1 6= u2t2. �

Lemma 4.6. Let AΓ be a locally reducible Artin group. If Γ̂ has exactly two connected components, then

X̂Γ is 6-large.

Proof. If there are exactly two connected components of Γ̂, the fundamental domain K of X̂Γ is a 1-
dimensional simplex. By construction, there will be no higher-dimensional simplices in X̂Γ. Thus X̂Γ is
6-large if sys(X̂Γ) ≥ 6.

Let T and U be the subsets of generators corresponding to the two connected components of Γ̂. Any edge
in X̂Γ will have exactly one vertex of type T and one vertex of type U , since every edge in the complex is
some translate of K. In particular, any cycle in X̂Γ will have even length.

We need to show that sys(X̂Γ) ≥ 6. By the preceding paragraph, this is equivalent to showing that there
are no full cycles of length 4 in X̂Γ. Consider a path of length 3 in X̂Γ. By translating, we can assume that
the fundamental domain K is the middle edge in the path.

Since the local group of K is A∅, the local groups of the two edges adjacent to K in the path are of the
form g1A∅ and g2A∅ for some g1, g2 ∈ AΓ.

Since X̂Γ has an edge between g2AU and AT , there is a coset representative of g2AU which is in AT .
Without loss of generality, assume g2 is this coset representative. Similarly, by considering the edge between
AU and g1AT , we may assume g1 ∈ AU .

AT AU

g2AU g1AT

A∅

g1A∅g2A∅

If there was an edge connecting the two endpoints of this path, the cosets g2AU and g1AT would have
nonempty intersection, implying there are elements u ∈ AU and t ∈ AT such that g2u = g1t. But this
contradicts Lemma 4.5, so the endpoints of the path cannot be connected by an edge. Thus there are no full
cycles of length 4 in X̂Γ. Hence if Γ̂ has two connected components, then X̂Γ is 6-large. �

The following proposition of Januszkiewicz-Swaitkowski [23], specialized for our case, will be used in
the last step of our proof of Theorem 1.4. Recall that a simplicial complex is systolic if it is connected,
simply-connected, and locally 6-large.

Proposition 4.7. [23, Prop 1.4] If X is a systolic simplicial complex, then X is 6-large.

Theorem 1.4. Let AΓ be a locally reducible Artin group. If there are at least three connected components

in Γ̂, then X̂Γ is systolic.
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Proof. Let AΓ be a locally reducible Artin group and suppose Γ̂ has at least three connected components.
By Proposition 3.5, the complex X̂Γ is connected and simply connected. To show that X̂Γ is systolic, we
must show that it is locally 6-large. We will use induction on the number of connected components n of Γ̂.

Start by assuming that n = 3. To show that X̂Γ is locally 6-large, we need to show that
sys(Lk

X̂Γ

(g∆T )) ≥ 6 for any simplex g∆T . Choose an arbitrary simplex g∆T of type T , that is, choose a
simplex in the orbit of a face of the fundamental domain K which has local group AT . By Proposition 3.5,
Lk

X̂Γ

(g∆T ) is isomorphic to the 2-complete Artin complex associated with Artin group AT .
By construction, T is a set of standard generators determined by some collection of connected components

of Γ̂. By the definition of X̂Γ, T cannot contain all of the standard generators: it must be missing all
generators from at least one connected component of Γ̂. Consider the subgraph Z of Γ consisting only of the
vertices associated to generators in T . Let Ẑ be the analogue of Γ̂, i.e., the graph with vertex set T and all
edges between vertices which were labeled 2 in Γ. Since the generators in at least one connected component
of Γ̂ had to be omitted from T , Ẑ has strictly fewer connected components than Γ̂.

Let k be the number of connected components of Ẑ. By the assumption that n = 3, we have 0 ≤ k < 3.
If k = 2, then by Lemma 4.6, X̂Z ≃ Lk

X̂Γ

(g∆T ) is 6-large. If k = 0 or 1, then X̂Z ≃ Lk
X̂Γ

(g∆T ) has no

embedded full cycles, so sys(Lk
X̂Γ

(g∆T ) = ∞. Hence when n = 3, X̂Γ is locally 6-large and therefore is
systolic.

Now assume that n > 3, i.e., Γ̂ has more than 3 connected components. Also assume that every 2-complete
Artin complex X̂Z where Ẑ has k < n connected components is 6-large. Indeed, if k = 0, 1, or 2, then we
have shown X̂Z is 6-large. If 3 ≤ k < n, then by induction we assume X̂Z is systolic and by Proposition 4.7
it is 6-large. It remains to show that X̂Γ is locally 6-large.

Consider an arbitrary simplex h∆U of X̂Γ of type U . By Proposition 3.5, we know that Lk
X̂Γ

(h∆U ) is
isomorphic to the 2-complete Artin complex associated with Artin group AU . By construction, U cannot
contain generators from all the connected components of Γ̂, so as a 2-complete Artin complex Lk

X̂Γ

(h∆U )

is associated with strictly fewer than n connected components. So by the induction hypothesis, Lk
X̂Γ

(h∆U )

is 6-large. Since our choice of simplex was arbitrary, X̂Γ is locally 6-large.
Hence if there are at least three connected components of Γ̂, X̂Γ is systolic. �

5. Weakly Malnormal

In this section, we will use the systolicity of the 2-complete Artin complex and the following well-known
result from systolic geometry to prove that most parabolic subgroups of locally reducible Artin groups are
weakly malnormal. (See, e.g., [13, Lemma 14].)

Lemma 5.1. Let G be a group acting without inversions on a systolic simplicial complex X. If H ≤ G fixes
two vertices of X, then H fixes pointwise every combinatorial geodesic between them.

A combinatorial geodesic between two vertices is a minimal-length edge path. Note that in a systolic
simplicial complex, there could be many distinct combinatorial geodesics between two given vertices.

Definition 5.2. Let G be a group. A subgroup H of G is weakly malnormal if there exists g ∈ G such
that |H ∩ gHg−1| < ∞.

Theorem 1.3. Let AΓ be a locally reducible Artin group such that Γ̂ has at least two connected components.
Then any parabolic subgroup P of AΓ which has a 2-completion that is not all of AΓ is weakly malnormal.

Proof. Let V be an arbitrary connected component of Γ̂. We will start by showing that the parabolic
subgroup AΓ\V is weakly malnormal. Our goal is to construct an element g ∈ AΓ such that |AΓ\V ∩
gAΓ\V g

−1| < ∞; in fact, we will show this intersection is trivial.

Recall that by the construction of X̂Γ, there is a vertex v in the fundamental domain K whose local group
is AΓ\V . Furthermore, there is a face of K of dimension (dimK − 1) “opposite” to v whose local group is
AV . Specifically, this face is determined by vertices associated to parabolic subgroups of the form AΓ\T for
T 6= V . Since v is the only vertex of K not contained in this face, v is adjacent to every vertex in the face
corresponding to AV .
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Let the generators of V be labeled {v1, . . . , vℓ} and let g = v1 . . . vℓ. We will look at the translate of K
by this element g. By construction, g setwise fixes the face of K corresponding to AV and translates vertex
v (corresponding to AΓ\V ) to the vertex w = gv corresponding to gAΓ\V . Similarly to v, w is connected to
all vertices in the face of K corresponding to parabolic subgroups of the form AΓ\T for T 6= V . Hence the
combinatorial distance between vertices v and w is 2.

In the case that Γ̂ has three or more connected components, any choice of vertex of K on the face AV

corresponds to a unique combinatorial geodesic between v and w. By Theorem 1.4, X̂Γ is systolic. Thus a
subgroup that fixes two vertices must pointwise fix every combinatorial geodesic between them by Lemma
5.1. Since Stab(v) = AΓ\V and Stab(w) = gAΓ\V g

−1, every combinatorial geodesic between these vertices
is fixed by Stab(v) ∩ Stab(w) = AΓ\V ∩ gAΓ\V g

−1. Hence AΓ\V ∩ gAΓ\V g
−1 pointwise fixes all the vertices

of K, so it must pointwise fix K itself. The local group of K is A∅ and thus has trivial stabilizer, so
AΓ\V ∩ gAΓ\V g

−1 must be trivial.

In the case that Γ̂ has exactly two connected components, K is an edge, and the face of K corresponding
to AV is itself a vertex. In that case we have an edge path of length 2: v = AΓ\V to AV to w = gAΓ\V .

By Lemma 4.6, X̂Γ is one-dimensional and 6-large. Thus this path of length 2 from v to w must be the
unique combinatorial geodesic between v and w, else X̂Γ would have a cycle of length 4. Since this geodesic
is unique, it is fixed by Stab(v) ∩ Stab(w). Then as above, AΓ\V ∩ gAΓ\V g

−1 must pointwise fix K, and so
the intersection must be trivial.

Hence in both cases, AΓ\V is weakly malnormal. Thus any subgroup of AΓ\V is weakly malnormal, and
any conjugate is also weakly malnormal. Hence if P is a parabolic subgroup with a 2-completion that is not
all of AΓ, then P is weakly malnormal. �

6. Acylindrical Hyperbolicity

The following are theorems of Martin and Minasyan and Osin, respectively, which we will use to apply
our result about weakly malnormal subgroups and show that certain locally reducible Artin groups are
acylindrically hyperbolic.

Theorem 6.1. [25, Theorem B] Let X be a CAT(0) simplicial complex, with an action by simplicial iso-
morphisms of a group G. Assume there exists a vertex v of X such that:

(1) The orbits of G on the link LkX(v) are unbounded for the associated angular metric.
(2) Stab(v) is weakly malnormal in G.

Then G is either virtually cyclic or acylindrically hyperbolic.

Theorem 6.2. [29, Corollary 2.2] Let G split as an amalgamated product: G = A∗CB such that A 6= C 6= B

and C is weakly malnormal in G. Then G is either virtually cyclic or acylindrically hyperbolic.

Theorem 1.2. Let AΓ be an Artin group. If either

(1) AΓ is locally reducible and has a maximal finite-type subgroup which is dihedral and which has a
2-completion that is not all of AΓ, or

(2) AΓ splits as an amalgamated product AΓ1
∗AΓ1∩Γ2

AΓ2
such that AΓ1

is locally reducible and there is
a 2-completion of AΓ1∩Γ2

which does not contain all of AΓ1
,

then AΓ is acylindrically hyperbolic.

Proof. Let AΓ an Artin group.
(1): We assume that AΓ is locally reducible and has a maximal finite-type subgroup which is dihedral and

which has a 2-completion that is not all of AΓ. Thus Γ contains at least one edge, say [a, b], with mab ≥ 3,
such that A{a,b} is a maximal finite-type standard parabolic subgroup (i.e., A{a,b} is not contained in a larger
finite-type parabolic subgroup) and there is a 2-completion of A{a,b} that is not all of AΓ.

Since AΓ is locally reducible, the Deligne complex DΓ associated to AΓ is CAT(0) by [8]. Consider
LkDΓ

(A{a,b}). There is a path in the link given by the sequence {giA∅}
∞
i=0 where gi = ababa . . . is a word of

length i. By [37, Lemma 4.5] the length of gi is unbounded, and by Theorem 1.3, A{a,b} is weakly malnormal.
Hence by Theorem 6.1, AΓ is acylindrically hyperbolic.

(2): Now we assume that AΓ splits as an amalgamated product AΓ = AΓ1
∗AΓ1∩Γ2

AΓ2
such that AΓ1

is
locally reducible and there is a 2-completion of AΓ1∩Γ2

which does not contain all of AΓ1
. By Theorem 1.3,
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AΓ1∩Γ2
is weakly malnormal in AΓ1

, and hence is weakly malnormal in AΓ. By Theorem 6.2, AΓ is either
virtually cyclic or acylindrically hyperbolic. Since AΓ is an amalgamated product, it is not virtually cyclic,
hence it is acylindrically hyperbolic. �

Remark 6.3. One may wonder whether the assumption that Γ̂ has two connected components is necessary.
There are certainly counterexamples to acylindrical hyperbolicity when Γ̂ has one connected component.
Take, for example, an Artin group which splits as a direct product. Then Γ̂ has one connected component,
and AΓ is not acylindrically hyperbolic.

7. Future Directions

We can ask whether the intersection of a collection of parabolic subgroups of a particular Artin group is
itself a parabolic subgroup. This is another question that is open in general, but is conjectured to be true
for all Artin groups. It has been proven to be true for several classes including finite-type Artin groups [14],
right-angled Artin groups (Artin groups for which mij = 2 or ∞ for all i, j) [16], large-type Artin groups
(Artin groups for which mij ≥ 3 for all i, j) [13], and 2-dimensional, (2,2)-free Artin groups [3]. It is also
known to be true for the intersection of two parabolic subgroups of an FC-type Artin group, when at least
one of the parabolic subgroups is finite-type [31] and [30].

In many cases when the affirmative answer is known, the solution has come from the study of one or more
geometric spaces with some property of non-positive curvature (e.g. hyperbolic, CAT(0), systolic). In this
case, when stabilizers of vertices (or simplices, cubes, etc.) are parabolic subgroups, the geometric properties
of the action help greatly in the study of their intersection. Examples include the Deligne complex and the
Artin complex (see Section 2).

Question 7.1. For AΓ a locally reducible Artin group, is the intersection of an arbitrary collection of 2-
complete parabolic subgroups itself a parabolic subgroup?
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