
M-DEW: Extending Dynamic Ensemble Weighting to Handle
Missing Values

Adam Catto∗ adam.catto@mssm.edu
Icahn School of Medicine at Mount Sinai, New York, NY, USA

Nan Jia∗ njia@gradcenter.cuny.edu
CUNY Graduate Center, New York, NY, USA

Ansaf Salleb-Aouissi ansafsalleb@columbia.edu
Columbia University, New York, NY, USA

Anita Raja anita.raja@hunter.cuny.edu

CUNY Hunter College, New York, NY, USA

Abstract

Missing value imputation is a crucial prepro-
cessing step for many machine learning prob-
lems. However, it is often considered as a
separate subtask from downstream applications
such as classification, regression, or cluster-
ing, and thus is not optimized together with
them. We hypothesize that treating the impu-
tation model and downstream task model to-
gether and optimizing over full pipelines will
yield better results than treating them sepa-
rately. Our work describes a novel AutoML
technique for making downstream predictions
with missing data that automatically handles
preprocessing, model weighting, and selection
during inference time, with minimal compute
overhead. Specifically we develop M-DEW, a
Dynamic missingness-aware Ensemble Weight-
ing (DEW) approach, that constructs a set
of two-stage imputation-prediction pipelines,
trains each component separately, and dynami-
cally calculates a set of pipeline weights for each
sample during inference time. We thus extend
previous work on dynamic ensemble weight-
ing to handle missing data at the level of full
imputation-prediction pipelines, improving per-
formance and calibration on downstream ma-
chine learning tasks over standard model av-
eraging techniques. M-DEW is shown to out-
perform the state-of-the-art in that it produces
statistically significant reductions in model per-
plexity in 17 out of 18 experiments, while im-
proving average precision in 13 out of 18 exper-
iments.

∗ These authors contributed equally

Data and Code Availability This paper uses six
public health datasets: the EEG Eye State (Roesler,
2013), the Diabetic Retinopathy (Antal and Hajdu,
2014), the Wisconsin Breast Cancer Diagnosis and
Prognosis (Street et al., 1995), Diabetes 130-US hos-
pitals for years 1999- 2008 (Clore et al., 2014), and
the Myocardial Infarction Complications (Golovenkin
et al., 2020) datasets from the UCI Machine Learning
Repository. The code for the approach paper is avail-
able at https://github.com/adamcatto/dynamime

Institutional Review Board (IRB) This re-
search does not involve human subjects, and thus
does not require IRB approval.

1. Introduction

Missing value imputation is a crucial preprocessing
step for many machine learning problems, notably
in supervised machine learning. Consider biomedical
and clinical tasks, such as diagnosis, disease progres-
sion modeling, and risk stratification. The datasets
on which these machine learning models are trained
tend to be sparse: many procedures, tests, and mea-
surements are conducted on a small number of sam-
ples across the entire dataset. Therefore, successful
prediction modeling in these regimes requires meth-
ods for handling missing values that are optimal for
downstream prediction tasks. While our approach
is motivated by clinical informatics problems and we
evaluate our approach on healthcare datasets, our ap-
proach addresses the missing data problem that is
ubiquitous across a plethora of application domains.

© A. Catto, N. Jia, A. Salleb-Aouissi & A. Raja.

ar
X

iv
:2

40
5.

00
18

2v
1 

 [
cs

.L
G

] 
 3

0 
A

pr
 2

02
4

https://github.com/adamcatto/dynamime


M-DEW24

We describe the road map leading to our approach
below.

It is common knowledge that missing values exist
in the health, signal processing, and image recogni-
tion fields. Hardware malfunction, machines shut-
down and human mistakes are inevitable despite in-
vesting much effort to avoid them (Emmanuel et al.,
2021). One strategy for handling those data is to
simply delete portions of the data that are missing.
However, deleting such data can bias the data in non-
MCAR regimes (see section 2.1). Furthermore, in
real life, a global complete-case analysis is impossi-
ble, people may opt instead to delete features with
large amounts of missing values. The issue with this
approach is two-fold: (1) it is plausible that most
features in the dataset are sparse, so only the most
commonplace measurements will be preserved, and
(2) perhaps those sparse features are particularly im-
portant for certain sub-groups of subjects for whom
the data are available, leading to worse predictions.

Another approach to missing data is imputation,
either by a central tendency statistic on the feature
(e.g., mean, median), or as a function of the features
which are present in that sample (examples include
k-nearest neighbors imputation (Zhang, 2012), mul-
tiple imputation via chained equations (White et al.,
2011), and random forest-based prediction of fea-
ture value (Stekhoven and Bühlmann, 2012)). How-
ever, imputation of features which are not strongly-
correlated with other features has serious potential
to misrepresent the samples and bias the feature’s
distribution (White and Carlin, 2010). The same is-
sues are present with imputation based on central
tendency (e.g., imputation to the population mean
lowers standard deviation).

It is not known a priori what methods are best
suited for imputing missing values for a given dataset,
especially since certain features may be better pre-
dicted by one class of models and covariates vs. oth-
ers. For instance, one feature may be strongly pre-
dicted as an additive model of certain other fea-
tures, whereas another may be strongly predicted by
a nearest-neighbor or tree-like algorithm.

We hypothesize that applying a dynamic ensemble
weighting (DEW) approach to the full imputation-
classification pipeline will lead to reduced classifica-
tion errors over the standard soft voting / uniform
model averaging (UMA) approach. Specifically, we
develop and evaluate M-DEW, a novel approach that
learns a dynamic ensemble weighting function for
a pool of imputation-classifier pipelines on a per-

sample basis, taking into account missing values. M-
DEW is designed to address the knowledge gap in
the current state-of-the-art by mitigating the effects
of sample misrepresentation by estimating the suit-
ability of each missing-data-handling technique for
a given sample. Our approach is designed to of-
fload the problem of selecting imputation and down-
stream prediction modules by simply supplying a set
of imputation-prediction pipelines, and learning an
optimal weighting of the pipelines’ predictions dy-
namically for each sample.

Our novel contributions are two-fold: (i) an en-
sembling technique at the level of joint imputation-
prediction pipelines, rather than choosing imputa-
tion and prediction strategies separately; and (ii) a
method for dynamically assigning pipeline contribu-
tion weights for each sample during the inference
phase, which outperforms simple model prediction
averaging. Our approach augments a meta-layer on
top of existing pipelines for prediction modeling with
missing data, enabling better techniques to ensem-
ble prior approaches. We show that this comes at
a relatively small cost on top of uniform averaging,
discussed more in Section 3.

We evaluate the capability of our model weighting
scheme to correctly order its class probability esti-
mates using standard metrics such as AUROC, but
also note that another benefit of learning a model
weighting function is to better calibrate the class pre-
dictions per-sample, i.e. to reduce the absolute er-
ror for each sample. Whereas AUROC measures a
pipeline’s ability to separate classes, we can measure
the capability of a model weighting function (e.g. M-
DEW) relative to a baseline (e.g. soft voting) on
a sample-by-sample basis by looking at the distribu-
tion of per-sample error reductions between weighting
schemes. We refer to the sample-wise errors as model
perplexity.

This paper is organized as follows: Section 2 de-
scribes the related work, Section 3 explains our pro-
posed missingness-aware dynamic ensemble weight-
ing (M-DEW) approach, Section 4 presents experi-
mental set up and statistical evaluation of M-DEW
compared to uniform model averaging (UMA), and
Section 5 is the discussion of conclusions and future
work.

2. Related Works

Our method develops an ensembling technique to
weigh predictions based on missing data patterns. In

2



M-DEW24

this section we review the types of missing data that
exist, how to handle them with imputation, and ex-
isting ensemble learning methods on which we base
our novel contributions.

2.1. Missing Data

Missing values are categorized into three bins: (i)
missing at random (MAR), (ii) missing completely
at random (MCAR), and (iii) missing not at random
(MNAR) defined in Mack et al. (2018). MCAR indi-
cates that missingness of a feature does not depend
on the values of other features. For instance, one-
off glitches in one sensor isolated from other sensors
yield MCAR missingness. MAR indicates that miss-
ingness of a feature depends on the values of observed
covariates. MAR missing values are generated by
some (either deterministic or nondeterministic) func-
tion, which could be parameterized by e.g., a quantile
function (patients below a certain age would not be
screened for various age-related cancers) or logistic
regression. MNAR indicates that missingness of a
feature can depend on both the values of other vari-
ables as well as whether other variables are missing.
This may be rule-based, for instance: on a survey, if
questions are asked in multiple languages, then if one
question in a given language is left blank, the others
will likely be as well.

2.2. Data Imputation

A straightforward method of imputing missing val-
ues is to use column-wise central-tendency statistics
such as the mean. In this case, the mean of the non-
missing values of each column in the dataset is calcu-
lated, and any missing value in a column c is imputed
to the mean of c. However, this approach can severely
perturb the distribution of the data, for instance by
decreasing variance and artificially concentrating the
probability mass function. Furthermore, if a feature
can be modeled as a function of other variables, this
dependence is washed away and the conditional /
joint distributions become corrupted, in addition to
an increase in estimation error as compared to, say,
parametric estimation based on the values of other
features.

Due to this issue with imputation using any cen-
tral tendency statistic, we may want to approach the
problem as a prediction problem using other features.
Some options for imputing continuous features are
regression and k-nearest neighbors: one can train a

(singular, multivariate) regression model with the col-
umn to impute as the target column, and the samples
which have the feature present as the training set;
the model can be used to predict the column values
for those samples which are missing it. For categor-
ical variables, one may consider a similarly simple
classifier, such as logistic regression. One particu-
larly useful model for imputing missing tabular data
is the MissForest algorithm proposed by Stekhoven
and Bühlmann (2012), which first imputes all miss-
ing values in a column to the mean of that column,
then for each column with missing values fits a ran-
dom forest model on the observed portion and pre-
dicts the missing values, updating them with the pre-
dictions; this process is done over a chosen number
of iterations or until some convergence criterion is
met. MissForest can simultaneously impute contin-
uous and categorical variables. We note that the
idea behind the MissForest approach can be extended
to other regression and classification backbones, viz.
gradient boosting, and MLPs. However, not all fea-
tures are most appropriately modeled with a random
forest; some may be better modeled by linear mod-
els, nearest-neighbor methods, etc. Therefore we may
prefer to choose estimators other than random for-
est, or even an ensemble of other kinds of estimators.
There have been attempts to use Generative Adver-
sarial Networks (GANS) and Autoencoders (Psych-
ogyios et al., 2022; Lee et al., 2021) to address missing
value imputation. While these methods work well,
both of them focused on one specific dataset and use
a single imputation technique as opposed to our en-
semble approach which adapts the imputer for differ-
ent sub-populations of the data.

2.3. Ensemble Methods

Ensembling (Dietterich et al., 2002) is a class of ma-
chine learning techniques that aims to combine mul-
tiple predictors into a stronger predictor. For exam-
ple, decision tree-based ensemble techniques such as
random forest (Breiman, 2001), boosting (Schapire,
1999), and bagging (Breiman, 1996) aim to combat
the typically high variance associated with single de-
cision trees, by aggregating weaker classifiers trained
on smaller sample sets and/or feature spaces. Ensem-
ble methods can also combine multiple strong predic-
tors into yet a stronger predictor; for instance, voting
classifiers (Ruta and Gabrys, 2005) take predictions
from multiple (strong) predictors and use majority
rule to obtain a final prediction. The stacked gener-

3



M-DEW24

alization algorithm (Wolpert, 1992) trains a meta-
estimator on the set of already-trained prediction
models, learning an optimal strategy (e.g. neural net-
work weights or decision tree splits) for combining
individual model predictions into a final; this meta-
estimator can be any estimator that takes a vector as
input, such as a logistic regression model or a deci-
sion tree. Extreme Gradient Boost (XGBoost) (Chen
and Guestrin, 2016) is a popular implementation of
gradient tree boosting, which is designed to be space-
and time-efficient.

2.4. Dynamic Ensemble Weighting

Our method builds on previous work in the area of
dynamic ensembling (Zhang et al., 2019; Cruz et al.,
2020). As a method that is generally applicable to
any classification or regression scenario, DEW has
been used for time-series forecasting (Du et al., 2022)
(Chowell et al., 2020), (Lu et al., 2022), and learn-
ing of non-stationary time-series data representations
(Yin et al., 2015). In opposition to static ensemble
techniques such as random forest, gradient boosting,
voting, or stacked generalization, dynamic ensemble
techniques choose an ensemble of estimators and a
weighting scheme on a sample-by-sample basis. The
typical flow of a dynamic ensembling algorithm starts
with a pool of estimators and a training set provided
as input, upon which the competence of each esti-
mator is assessed per sample; in the inference phase,
either a subset of estimators or a weighting scheme
is chosen based on the expected competence of each
estimator. When only the estimator with the high-
est expected competence is chosen, this is called dy-
namic estimator selection (e.g. dynamic classifier se-
lection); when a subset of estimators is chosen, this
is called dynamic ensemble selection; when a weight-
ing scheme is adapted for each sample in the infer-
ence phase, this is called dynamic ensemble weight-
ing. Most similar to our work is (Conroy et al., 2016)
which is a variant of AdaBoost (Freund et al., 1999)
(Schapire, 2013) that is designed to handle missing
values; the main difference between Conroy et al.
(2016) and our approach is that their approach opti-
mizes a single pipeline for all the data while ours is a
meta-ensembling approach, which can take the model
proposed in Conroy et al. (2016) as one pipeline input
among others. Cruz et al. (2020) provide a more com-
prehensive overview of dynamic ensembling methods.
However, these dynamic ensembling methods do not
take into account the properties of missing data. Our

work fills this gap by adapting DEW to accept miss-
ing values in the inputs. Whereas these other algo-
rithms operate on complete datasets (i.e. datasets
without missing values), our algorithm can handle
incomplete datasets and utilize missingness patterns
to make better predictions.

3. Approach

The Missingness-aware Dynamic Ensemble Weight-
ing (M-DEW) method we have developed is based
on the idea that different methods for handling miss-
ing data may work better for certain sub-populations
of samples than others. For instance, within some
regions of the input space, certain features may be
strongly predicted using a nearest-neighbor approach,
but in other regions of the input space certain features
may be nonlinear functions of subsets of features, per-
haps parameterized by a neural network with Recti-
fied Linear Unit (ReLU) activation or a decision tree.
The key idea underlying M-DEW is to dynamically
assign weights to prediction models trained using dif-
ferent missing-data-handling techniques, based on the
data’s missingness patterns, in order to more robustly
aggregate predictions from these different models.

Algorithm 1 Fit Dynamic Ensemble Weighting
Model
Procedure: FitM-DEWModel(trainData, trainTar-

gets, valData, valTargets, estimator-
Pool)

sampleWiseEstimErrors ← dict();
for estim in estimatorPool do

estim.fit(trainData, trainTargets);
valPredictions ← estim.estimate(valData); # list
of predictions, one for each sample
sampleWiseEstimErrors[estim] ← |valTargets −
valPredictions|; # list of errors, one for each
sample

end
Return: sampleWiseEstimErrors

Consider an estimator E : Fn → T m mapping
n−tuples over a field F to a target space T m. Typi-
cally, the domain of the input data we receive is Rn

N ,
where Rn

N = R ∪ {NaN}, NaN is the symbol for
“missing value”. Mechanisms for handling missing
data may be thought of as procedures of the form
M : Rn

N → Rm where m ≤ n. Such procedures
include deletion mechanisms – which remove either
samples, features, or both which contain missing val-

4



M-DEW24

Figure 1: M-DEW Work Flow Diagram: Phase 1: Imputation and prediction models are fitted to “stage-1” training
set. Phase 2: Inference with each imputation-prediction pipeline run on a “stage-2” training set, with pipeline errors
stored for each sample. Phase 3: Inference on new samples involves weighting each pipeline’s prediction according to
its relative competence in the neighborhood of the input sample, i.e. the softmax over pipelines’ mean inverse errors.

ues – and imputation mechanisms, which populate
the NaN entries with some estimates of what those
values might look like, either by central tendency
measures or some prediction via other features. As
such, they prepare the data to be fed to the estima-
tors for training or inference, such that the new data
is compatible with the estimators’ domains (i.e., no
missing values). In this subsection, we will refer to an
estimator as a composite procedure E ◦M , which first
maps from Rn

N → Rm and then from Rm → {0, 1}.
Within the scope of this paper, we will strictly use im-
puters I as opposed to the more general class of M
procedures, thus when we use the term E for “estima-
tor”, we are in fact referring to a composite procedure
E ◦ I : Rn

N → Rm → {0, 1}.
To fit the model, we first fit a pool of estimators

E ∗ = {E1, · · · ,En} which can handle missing data
on a training dataset. Then we compile predictions
and corresponding errors for each sample in the train-
ing set from each estimator. This process is demon-
strated in Algorithm 1. This classification error ma-
trix is used in the next phase for determining which
pipelines are most competent in different areas of the
input space.
In the inference phase (demonstrated in Algo-

rithm 2), for a given sample we impute the sample
with each pipeline and perform a k-nearest-neighbor
search over the stage-2 imputed training set (see Fig-
ure 1), and calculate a normalized error rate for each
estimator’s predictions in the sample’s neighborhood.

Algorithm 2 Dynamic Ensemble Weighting Model
Prediction
Procedure: M-DEWModelPredict(sample, train-

Data, estimatorPool, sampleWiseEs-
timErrors, nNeighbors)

errors ← dict();
normalizedCompetences ← list();
estimPredictions ← list();
for estim in estimatorPool do

neighbors ← missingnes-
sAwareKNNSearch(sample, trainData, nNeigh-
bors);
errors[estim] ← err for err in sampleWiseEs-
timErrors when sample associated with err is in
neighbors;
normalizedCompetence←
1−mean(errors[estim]);
normalizedCompetences.append
(normalizedCompetence);
estimPredictions.append(estim.estimate(sample));

end
weights ← softmax(normalizedCompetences);
prediction← dotProduct(weights, estimPredictions);
Return: prediction

Each estimator is assigned a competence score for the
sample’s neighborhood as one minus the normalized
error; the competence scores reflect each pipeline’s

5



M-DEW24

Dataset # of instances # of features types of features data type is missing data

EEG Eye State 14980 15 Integer, Real Multivariate False
Diabetic Retinopathy 1151 20 Integer, Real Multivariate False
Breast Cancer Diagnosis 569 32 Real Multivariate False
Breast Cancer Prognosis 198 34 Real Multivariate True
Diabetes VCU 100000 55 Integer Multivariate, Sequential, Time series True
Myocardial Infarction 1700 124 Real Multivariate True

Table 1: Description of 6 datasets

ability to classify the sample with least perplexity.
The competence scores are compiled into a vector
and the weights per estimator are calculated as the
softmax of the vector. It is well-known that ensem-
ble approaches are interpretable (Liang et al., 2022).
The competence scores in extending M-DEW can be
traced back directly to the pipelines’ performances on
each of the selected nearest-neighbor samples

Computational Complexity We highlight that
our approach comes with minimal overhead in time-
and space-complexity. Let n be the sample size of
the whole dataset and p be the number of pipelines.
The only additional memory requirement is a cached
matrix of each baseline classifier’s error per sam-
ple, which has space complexity O (np+ nd); in ex-
act terms, given a dataset split into stage-1 train-
ing, stage-2 training, and test sets, for a proportional
s1, s2, s3 percentage split, the exact space complexity
is s2 ·n ·p. In our experiments, s1 = 0.16, thus we can
approximate the additional space complexity on top
of UMA as n·p

6 . Thus the space complexity is multi-
linear in the sample size and number of pipelines.

In terms of time complexity, our algorithm oper-
ates in two stages: (i) fitting the classification error
matrix and (ii) running inference. To fit the classifi-
cation error matrix requires a running time of O(np)
inferences. At inference time on the test set, all that
is required is (i) a k nearest neighbor search on the
stage-2 training set, (ii) prediction on those k neigh-
bors by p pipelines, and (iii) a mean-reduce operation
followed by softmax and scaling of predictions by the
calculated weights. For input samples of dimension d,
the KNN component has time complexity O(nd+nk),
the per-sample inference component has time com-
plexity O(kp), the mean-reduce has time complexity
O(pk), and the softmax → weight scaling composite
is O(p). As the number of test-set samples is linear in
the dataset size, the time complexity to run the whole
pipeline from training to evaluation after fitting the
baseline pipelines is

O(np) +O(n) ∗ [O(n(d+ k) +O(pk) +O(p)]

= O(np) +O(n2(d+ k) + npk)

= O(n(p+ n(d+ k)) + pk)

= O

(
n2

[
d+ k +

pk

n

])
The added time complexity is quadratic in the sam-

ple size and multilinear in the number of pipelines,
nearest-neighbors, and dataset dimension. This
presents a tractable cost on top of the standard soft
voting. Notably, increasing the size of the ensemble
adds only a linear overhead to the whole pipeline, so
one can easily scale up the number of pipelines.

One limitation with our approach is nearest-
neighbor methods on input spaces that contain miss-
ing values themselves; in the current M-DEW algo-
rithm, the nearest-neighbor lookup for each pipeline
is done on that pipeline’s imputed dataset. In this
way the M-DEW algorithm does not directly utilize
the pattern of missingness intrinsic to a given sample,
opting instead to use imputations of that sample and
training samples. Utilization of missingness patterns
can be explored by constructing distance functions
on spaces which allow missing values.

4. Experiments

4.1. Experimental Setup

We evaluate M-DEW on six health-related datasets
(described in Table 1): Roesler (2013); Street et al.
(1995); Antal and Hajdu (2014); Clore et al. (2014);
Golovenkin et al. (2020); Street et al. (1995). Five of
these are datasets with < 100, 000 samples and one
dataset with ≥ 100, 000 samples. The breast cancer
resource (Street et al., 1995) has two datasets: diag-
nosis and prognosis. All datasets used in this study
are openly available on the UCI Machine Learning
Repository (Asuncion and Newman, 2007). The cri-
teria for dataset selection were (i) biomedical-related;

6



M-DEW24

UMA M-DEW UMA M-DEW % Positive % Samples:
AP AP AUROC AUROC Class M-DEW Error <

UMA Error

EEG Eye State MCAR 81.281 81.720 83.208 83.573 45 71.729
EEG Eye State MAR 88.152 88.676 89.328 89.817 45 81.429
EEG Eye State MNAR 82.007 82.389 83.763 84.110 45 72.804
Myocardial Infarction MCAR 84.528 84.300 83.769 83.550 50 62.731
Myocardial Infarction MNAR 89.564 89.510 88.667 88.640 50 72.140
Myocardial Infarction MAR 91.223 91.154 90.321 90.301 50 76.015
Diabetic Retinopathy MNAR 77.370 77.409 72.279 72.414 53 58.471
Diabetic Retinopathy MAR 79.192 79.200 74.285 74.240 53 56.560
Diabetic Retinopathy MCAR 77.349 77.346 72.650 72.657 53 57.168
Breast Cancer Diagnosis MCAR 98.401 98.398 98.593 98.594 37 77.329
Breast Cancer Diagnosis MAR 98.600 98.606 98.935 98.940 37 82.601
Breast Cancer Diagnosis MNAR 98.524 98.546 98.864 98.878 37 77.329
Breast Cancer Prognosis MCAR 30.759 30.852 57.700 57.602 24 62.626
Breast Cancer Prognosis MNAR 36.617 38.053 61.758 61.618 24 62.626
Breast Cancer Prognosis MAR 29.792 29.953 53.487 53.445 24 54.545
Diabetes VCU MCAR 63.324 63.343 67.594 67.608 46 56.125
Diabetes VCU MNAR 66.485 66.551 70.746 70.781 46 59.066
Diabetes VCU MAR 66.850 66.883 71.151 71.169 46 56.185

Table 2: Comparison of M-DEW algorithm to Uniform Model Averaging (UMA) algorithm over six datasets using
classification metrics: Average Precision (AP) (Col. 1- 2), Area Under the Receiver-Operator Characteristic Curve
(AUROC) (Col. 3-4), % positive class which is percent of samples in positive class i.e. imbalance in dataset (Col. 5)
and % of test-set samples on which M-DEW outperformed uniform model averaging UMA (Col. 6).

(ii) contained numerical features (for regression mod-
eling simplicity). A total of 18 experiments were con-
ducted, with 6 datasets and 3 types of missingness.
We first create baseline estimators for building the en-
semble model for prediction using 4 regression meth-
ods as imputers and 2 classifiers for prediction. Next,
we construct a corresponding error matrix to capture
the competence score and then finally construct the
M-DEW ensemble model. More details about imput-
ers and classifiers can be found in the supplementary
documents.

4.2. Imputers, Classifiers and Missingness

We used four types of regression models for im-
putation: a k-nearest neighbor (KNN) imputer, a
Bayesian ridge regression imputer, an XGBoost re-
gressor, and a random forest regressor. KNN and
linear regression models are the two most straightfor-
ward and commonly-used learning algorithms in im-
putation and have popular implementations in scikit-
learn (Kramer and Kramer, 2016). We chose ran-
dom forest due to the popularity of the MissForest
algorithm and included XGBoost as another strong
ensembling approach. For all experiments, the XG-

Boost models had a max tree depth of 4 and 50 boost-
ing rounds. Each random forest model was similarly
built with 50 trees with a max-depth of 4. Down-
stream of the imputers, we used two types of classi-
fiers to make predictions: XGBoost and random for-
est. Like the imputers, the XGBoost models had 50
boosting rounds and a max tree depth of 4, and each
random forest model was built from 50 trees with
a max tree depth of 4. The imputers were imple-
mented using scikit-learn’s IterativeImputer and KN-
NImputer classes. The Bayesian Ridge regression pa-
rameters were set to the scikit-learn default. Details
of the implementation of all of our models—imputers,
classifiers, and M-DEW models—are available in Ap-
pendix A.

To determine M-DEW’s performance on different
forms of missing data, we randomly introduced syn-
thetic missing values into the datasets to emphasize
the various missingness characteristics discussed in
Section 2. This was done for two reasons: (i) not
all datasets we selected contain missing values as
shown in Table 1, and (ii) to evaluate our model
in similar controlled settings, i.e., settings with sim-
ilar amounts of missingness. In our experiments, for

7



M-DEW24

MCAR-type missingness, 30% of values in the dataset
were masked at random. For MAR and MNAR, 30%
of the columns contained missing values at a rate of
30% of samples, which depended on 3

7 of the remain-
ing columns via a logistic regression model with ran-
domly assigned weights; in the case of MNAR, the
input features to the logistic regression model were
masked at random at a rate of 30%, so that the miss-
ing values in the columns to be masked depended
also on the missing values in the inputs that gener-
ated the mask – a feature not present in MAR, which
distinguishes MAR from MNAR. A Python port of
the R-misstastic library (Mayer et al., 2021) was used
to systematically introduce missingness to the data.
Details of the implementation of all of our models –
imputers, classifiers, and DEWmodels – are available
in the appendix.

Figure 2: Violin Plot of AUROC for 8 standard
imputer-estimators, baseline UMA pipeline and M-DEW
pipeline’s performance rankings. All metrics in M-DEW
ranked at the first place with narrower range. The wider
the shape got in the plots, the more samples filled in

4.3. Evaluation

We compare M-DEW’s performance to that of the
naive (uniform averaging) ensembling approach us-
ing standard classification metrics across six binary

classification datasets and three types of missingness
(MCAR, MAR, MNAR). We report the average pre-
cision score and AUROC score across 18 experiments
for M-DEW and UMA in Table 2. Given that a major
goal of the M-DEW approach is to reduce the pre-
dicted class probability error (i.e. perplexity) com-
pared to the uniform averaging case, we also report
the fraction of samples for which M-DEW errors are
less than UMA errors, as a measure of the amount of
time that M-DEW-calculated weights are direction-
ally correct relative to the baseline.

In addition to reporting the fraction of samples for
which M-DEW improved on UMA, to quantify the
statistical significance of these sample-wise error im-
provements, we run a paired t-test over all samples
in each dataset and report the p-value.

Figure 3: Frequency of rankings that M-DEW has most
1st place ranking among other models

4.3.1. Main Results

As shown in Table 2, M-DEW outperforms UMA on
the average precision score in 13/18 trials and on AU-
ROC in 11/18 trials. We noted that in cases with
more significant class imbalance (breast cancer diag-
nosis and prognosis), average precision may be a bet-
ter metric than AUROC, because AUROC can still
be quite high while reporting large numbers of false
positives; in these cases, M-DEW outperforms UMA
on average precision in 5/6 cases, and essentially per-
forms the same in the sixth case. In every experiment,
M-DEW classification probability error was globally
lower than UMA classification probability error.

In some cases, one of the baseline pipelines may
outperform the ensemble methods if it performs
more strongly than the other baselines. However,
we hypothesized that M-DEW would be robustly
among the top-performing models when compared

8



M-DEW24

with UMA and the baseline models. To test this,
we plotted the relative rankings among the 8 base-
lines, UMA, and M-DEW on the AUROC metric
across the 18 experiments as a violin plot in Fig-
ure 2. Indeed, we see that M-DEW is more consis-
tently better-ranked than the other methods, includ-
ing UMA; M-DEW’s ranking is concentrated heavily
among the top 2-3. The other pipelines (including
UMA) have median rankings higher than M-DEW,
and much higher ranking variance, indicating the sta-
bility of M-DEW.
To test M-DEW’s ability to improve sample-wise

calibration, we run a paired t-test for each dataset
that compares the class probability errors between
M-DEW and UMA. This significance test confirmed
the alternative hypothesis that the M-DEW error dis-
tribution has a lower mean than the UMA error dis-
tribution’s mean. 17 out of 18 tests indicate that the
DEW has a lower error per-sample.

Dataset P-Value
EEG Eye State MCAR < 0.0001
EEG Eye State MAR < 0.0001
EEG Eye State MNAR < 0.0001
Myocardial Infarction MCAR 1.3× 10−07

Myocardial Infarction MNAR 1.5× 10−26

Myocardial Infarction MAR 1.20× 10−31

Diabetic Retinopathy MNAR 5.0× 10−05

Diabetic Retinopathy MAR 0.0041
Diabetic Retinopathy MCAR 0.0017
Breast Cancer Diagnosis MCAR 0.0002
Breast Cancer Diagnosis MAR < 0.0001
Breast Cancer Diagnosis MNAR < 0.0001
Breast Cancer Prognosis MCAR 0.0271
Breast Cancer Prognosis MNAR 0.0009
Breast Cancer Prognosis MAR 0.1491
Diabetes VCU MCAR < 0.0001
Diabetes VCU MNAR < 0.0001
Diabetes VCU MAR < 0.0001

Table 3: Results of paired t-test; p ≤ 0.05 We tested
the hypothesis the M-DEW error distribution has a lower
mean than the UMA error distribution.

As listed in Table 3, per-sample M-DEW errors are
significantly less than the corresponding UMA errors
for most samples, in all but one trial. Plots of the his-
tograms of relative error improvements can be seen in
Figure 4 and 5. The plots show M-DEW Error minus
UMA Error. Therefore, the more dense the plot is to
the left of 0, the better M-DEW performs relative
to UMA. We can see that especially for the myocar-
dial infarction and EEG eye state experiments, the
distributions are visibly concentrated to the left of
zero, which is reflected in the results of paired t-test.
For the other datasets, the error difference is concen-

trated closer to zero, yet still shifted left, indicating
that while the magnitude of improvement is lower,
M-DEW still tends to be directionally correct. In-
deed, in every experiment, M-DEW errors are less
than UMA errors for the majority of samples. More
details and a thorough discussion of calibration anal-
ysis and the Brier score can be found in Appendix A.

5. Conclusion and Future Work

We have designed and evaluated an approach to ex-
tend the classical notion of dynamic ensemble weight-
ing to datasets with missing data. Whereas previ-
ous approaches would have required first imputing
and then training classifiers on the imputed dataset,
we develop a technique for directly optimizing at the
level of joint imputation-prediction pipelines. This
approach estimates a soft ordering of pipelines by
calculating expected relative competences of each
pipeline via the pipelines’ performances on nearby
samples from the training set. Using relative ex-
pected competence scores as weights to scale the
pipelines’ predictions reduces model perplexity com-
pared with uniform soft voting over pipelines, evi-
denced by the paired t-test results in Table 3. It
improves classification probability error in the major-
ity of samples, leading to better calibrated prediction
distributions. This can be useful when calculating
disease risk scores or in scenarios where quantifying
uncertainty is important.

The small overhead required by the algorithm al-
lows it to be used as an AutoML module; instead of
performing model selection, one can use all baseline
models to form a stronger predictor. M-DEW also
preserves any interpretability afforded by the base-
line models; it provides a clear, nearest-neighbor ap-
proach to assigning competence-based weights, so for
each sample one can trace the contributions of each
pipeline via that sample’s nearest neighbors’ compe-
tences in M-DEW’s second training stage.

In extending the dynamic ensembling approach to
handle missing values in the inputs, our work paves
the way for future research along these lines. M-
DEW makes no assumptions about underlying input
structure, as long as there is a suitable distance mea-
sure between inputs and suitable objective function
for outputs.

We plan to extend the approach to utilize learned
representations of the inputs. We are also investi-
gating ways to jointly optimize the imputation and

9



M-DEW24

(a) eeg-eye-mar (b) eeg-eye-mcar (c) eeg-eye-mnar

Figure 4: Relative Error Histograms-EEG Eye State

(a) myocardial-infarction-mar (b) myocardial-infarction-mcar (c) myocardial-infarction-mnar

Figure 5: Relative Error Histograms- Myocardial Infarction

downstream prediction models using differentiable
programs such as neural networks with combined loss
functions.

6. Acknowledgements

Research reported in this publication was supported
by the National Library Of Medicine of the Na-
tional Institutes of Health under Award Number
R01LM013327. The content is solely the responsibil-
ity of the authors and does not necessarily represent
the official views of the National Institutes of Health.

References

Balint Antal and Andras Hajdu. Diabetic Retinopa-
thy Debrecen. UCI Machine Learning Repository,
2014. DOI: https://doi.org/10.24432/C5XP4P.

Arthur Asuncion and David Newman. Uci machine
learning repository, 2007.

Leo Breiman. Bagging predictors. Machine learning,
24(2):123–140, 1996.

Leo Breiman. Random forests. Machine learning, 45
(1):5–32, 2001.

Tianqi Chen and Carlos Guestrin. Xgboost: A
scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on
knowledge discovery and data mining, pages 785–
794, 2016.

Gerardo Chowell, R Luo, K Sun, Kimberlyn Roosa,
Amna Tariq, and C Viboud. Real-time forecasting
of epidemic trajectories using computational dy-
namic ensembles. Epidemics, 30:100379, 2020.

John Clore, Krzysztof Cios, Jon DeShazo, and Beata
Strack. Diabetes 130-US hospitals for years 1999-
2008. UCI Machine Learning Repository, 2014.
DOI: https://doi.org/10.24432/C5230J.

Bryan Conroy, Larry Eshelman, Cristhian Potes, and
Minnan Xu-Wilson. A dynamic ensemble approach
to robust classification in the presence of missing
data. Machine Learning, 102:443–463, 2016.

Rafael MO Cruz, Luiz G Hafemann, Robert
Sabourin, and George DC Cavalcanti. Deslib: A

10



M-DEW24

dynamic ensemble selection library in python. J.
Mach. Learn. Res., 21(8):1–5, 2020.

Thomas G Dietterich et al. Ensemble learning. The
handbook of brain theory and neural networks, 2(1):
110–125, 2002.

Liang Du, Ruobin Gao, Ponnuthurai Nagaratnam
Suganthan, and David ZW Wang. Bayesian op-
timization based dynamic ensemble for time se-
ries forecasting. Information Sciences, 591:155–
175, 2022.

Tlamelo Emmanuel, Thabiso Maupong, Dimane
Mpoeleng, Thabo Semong, Banyatsang Mphago,
and Oteng Tabona. A survey on missing data in
machine learning. 8(1):140, 2021. ISSN 2196-1115.
doi: 10.1186/s40537-021-00516-9. URL https:

//doi.org/10.1186/s40537-021-00516-9.

Yoav Freund, Robert Schapire, and Naoki Abe. A
short introduction to boosting. Journal-Japanese
Society For Artificial Intelligence, 14(771-780):
1612, 1999.

S.E. Golovenkin, V.A. Shulman, D.A. Rossiev, P.A.
Shesternya, S.Yu. Nikulina, Yu.V. Orlova, and V.F.
Voino-Yasenetsky. Myocardial infarction compli-
cations. UCI Machine Learning Repository, 2020.
DOI: https://doi.org/10.24432/C53P5M.

Oliver Kramer and Oliver Kramer. Scikit-learn. Ma-
chine learning for evolution strategies, pages 45–53,
2016.

Woonghee Lee, Jaeyoung Lee, and Younghoon Kim.
Contextual imputation with missing sequence of
eeg signals using generative adversarial networks.
IEEE Access, 9:151753–151765, 2021. doi: 10.
1109/ACCESS.2021.3126345.

Minfei Liang, Ze Chang, Zhi Wan, Yidong Gan,
Erik Schlangen, and Branko Šavija. Interpretable
ensemble-machine-learning models for predicting
creep behavior of concrete. Cement and Concrete
Composites, 125:104295, 2022.

Hongliang Lu, Hongjun Su, Pan Zheng, Yihan Gao,
and Qian Du. Weighted residual dynamic ensem-
ble learning for hyperspectral image classification.
IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 15:6912–6927,
2022.

Christina Mack, Zhaohui Su, and Daniel Westreich.
Types of missing data. In Managing Missing Data
in Patient Registries: Addendum to Registries for
Evaluating Patient Outcomes: A User’s Guide,
Third Edition [Internet]. Agency for Healthcare
Research and Quality (US), 2018. URL https:

//www.ncbi.nlm.nih.gov/books/NBK493614/.

David J. C. MacKay. Bayesian interpolation. In
C. Ray Smith, Gary J. Erickson, and Paul O. Neu-
dorfer, editors, Maximum Entropy and Bayesian
Methods: Seattle, 1991, pages 39–66. Springer
Netherlands, 1992. ISBN 978-94-017-2219-3. doi:
10.1007/978-94-017-2219-3 3. URL https://doi.

org/10.1007/978-94-017-2219-3_3.

Imke Mayer, Aude Sportisse, Julie Josse, Nicholas
Tierney, and Nathalie Vialaneix. R-miss-tastic: a
unified platform for missing values methods and
workflows. arXiv preprint arXiv:1908.04822, 2019.

Imke Mayer, Aude Sportisse, Julie Josse, Nicholas
Tierney, and Nathalie Vialaneix. R-miss-tastic: a
unified platform for missing values methods and
workflows, 2021.

Alexandru Niculescu-Mizil and Rich Caruana.
Predicting good probabilities with supervised
learning. In Proceedings of the 22nd In-
ternational Conference on Machine Learning
- ICML ’05, pages 625–632. ACM Press,
2005. ISBN 978-1-59593-180-1. doi: 10.1145/
1102351.1102430. URL http://portal.acm.org/

citation.cfm?doid=1102351.1102430.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine Learning in
Python . Journal of Machine Learning Research,
12:2825–2830, 2011.

John Platt. Probabilistic outputs for support vector
machines and comparisons to regularized likelihood
methods. Adv. Large Margin Classif., 10, 06 2000.

Konstantinos Psychogyios, Loukas Ilias, and Dim-
itris Askounis. Comparison of missing data im-
putation methods using the framingham heart
study dataset. In 2022 IEEE-EMBS Interna-
tional Conference on Biomedical and Health In-
formatics (BHI). IEEE, September 2022. doi:

11

https://doi.org/10.1186/s40537-021-00516-9
https://doi.org/10.1186/s40537-021-00516-9
https://www.ncbi.nlm.nih.gov/books/NBK493614/
https://www.ncbi.nlm.nih.gov/books/NBK493614/
https://doi.org/10.1007/978-94-017-2219-3_3
https://doi.org/10.1007/978-94-017-2219-3_3
http://portal.acm.org/citation.cfm?doid=1102351.1102430
http://portal.acm.org/citation.cfm?doid=1102351.1102430


M-DEW24

10.1109/bhi56158.2022.9926882. URL http://dx.

doi.org/10.1109/BHI56158.2022.9926882.

Oliver Roesler. EEG Eye State. UCI Ma-
chine Learning Repository, 2013. DOI:
https://doi.org/10.24432/C57G7J.

Dymitr Ruta and Bogdan Gabrys. Classifier selection
for majority voting. Information fusion, 6(1):63–
81, 2005.

Robert E Schapire. A brief introduction to boost-
ing. In Ijcai, volume 99, pages 1401–1406. Citeseer,
1999.

Robert E Schapire. Explaining adaboost. In Empiri-
cal Inference: Festschrift in Honor of Vladimir N.
Vapnik, pages 37–52. Springer, 2013.

Daniel J Stekhoven and Peter Bühlmann.
Missforest—non-parametric missing value im-
putation for mixed-type data. Bioinformatics, 28
(1):112–118, 2012.

W Nick Street, Olvi L Mangasarian, and William H
Wolberg. An inductive learning approach to prog-
nostic prediction. InMachine Learning Proceedings
1995, pages 522–530. Elsevier, 1995.

Michael E. Tipping. Sparse bayesian learn-
ing and the relevance vector machine. J.
Mach. Learn. Res., 1:211–244, sep 2001. ISSN
1532-4435. doi: 10.1162/15324430152748236.
URL https://doi-org.ezproxy.gc.cuny.edu/

10.1162/15324430152748236.

Olga Troyanskaya, Michael Cantor, Gavin Sher-
lock, Pat Brown, Trevor Hastie, Robert Tibshi-
rani, David Botstein, and Russ B. Altman. Miss-
ing value estimation methods for DNA microar-
rays. 17(6):520–525, 2001. ISSN 1367-4803. doi:
10.1093/bioinformatics/17.6.520. URL https://

doi.org/10.1093/bioinformatics/17.6.520.

Ian RWhite and John B Carlin. Bias and efficiency of
multiple imputation compared with complete-case
analysis for missing covariate values. Statistics in
medicine, 29(28):2920–2931, 2010.

Ian R White, Patrick Royston, and Angela M Wood.
Multiple imputation using chained equations: is-
sues and guidance for practice. Statistics in
medicine, 30(4):377–399, 2011.

David H Wolpert. Stacked generalization. Neural
networks, 5(2):241–259, 1992.

Xu-Cheng Yin, Kaizhu Huang, and Hong-Wei Hao.
De2: dynamic ensemble of ensembles for learning
nonstationary data. Neurocomputing, 165:14–22,
2015.

Bianca Zadrozny and Charles Elkan. Transforming
classifier scores into accurate multiclass probabil-
ity estimates. In Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’02, page
694–699, New York, NY, USA, 2002. Association
for Computing Machinery. ISBN 158113567X. doi:
10.1145/775047.775151. URL https://doi-org.

ezproxy.gc.cuny.edu/10.1145/775047.775151.

Shichao Zhang. Nearest neighbor selection for iter-
atively knn imputation. Journal of Systems and
Software, 85(11):2541–2552, 2012.

Zhong-Liang Zhang, Yu-Yu Chen, Jing Li, and Xing-
Gang Luo. A distance-based weighting framework
for boosting the performance of dynamic ensemble
selection. Information Processing & Management,
56(4):1300–1316, 2019.

12

http://dx.doi.org/10.1109/BHI56158.2022.9926882
http://dx.doi.org/10.1109/BHI56158.2022.9926882
https://doi-org.ezproxy.gc.cuny.edu/10.1162/15324430152748236
https://doi-org.ezproxy.gc.cuny.edu/10.1162/15324430152748236
https://doi.org/10.1093/bioinformatics/17.6.520
https://doi.org/10.1093/bioinformatics/17.6.520
https://doi-org.ezproxy.gc.cuny.edu/10.1145/775047.775151
https://doi-org.ezproxy.gc.cuny.edu/10.1145/775047.775151


M-DEW24

Appendix A. Technical Appendix

In the appendix we provide details for the baseline
code (Section 1), hardware information(Section 2),
and certainty analysis with reliability diagrams for
M-DEW(Section 3).

A.1. Baseline Code

Our baseline is generated with several sklearn mod-
ules, Xgboost, and R-miss-tastic.

• Uniform Model Averaging (UMA) This is
a technique that gives equal weight to each in-
dividual model’s prediction when making a fi-
nal prediction. It serve as a baseline ensemble
method.

• R-miss-tastic (Mayer et al., 2019) This
method generates missing values from non-
missing datasets with customized distribu-
tion of missing data percentage. https:

//github.com/R-miss-tastic/website/

tree/master/static/how-to/python

• KNN (Troyanskaya et al., 2001) The
method uses the weighted average of its
K-nearest neighbors to impute the missing
value. https://scikit-learn.org/stable/

modules/generated/sklearn.impute.

KNNImputer.html

• Bayesian Ridge (MacKay, 1992; Tipping,
2001) This method is based on Bayesian
linear regression and is designed to han-
dle regression problems while taking into
account uncertainty in the model parame-
ters. https://scikit-learn.org/stable/

modules/generated/sklearn.linear_model.

BayesianRidge.html

• Xgboost (Chen and Guestrin, 2016) Xg-
boost is applied in both imputation stage
and prediction stage. It is the effective and
efficient method to deal with missing data.
https://github.com/dmlc/xgboost/blob/

36eb41c960483c8b52b44082663c99e6a0de440a/

doc/index.rst

• Random Forest (Breiman, 2001) This method
is applied in both imputation stage and pre-
diction stage. It is a meta estimator that
employs averaging to increase predicted ac-
curacy and reduce overfitting after fitting

numerous decision tree classifiers to different
dataset subsamples. https://scikit-learn.

org/stable/modules/generated/sklearn.

ensemble.RandomForestRegressor.html#

sklearn.ensemble.RandomForestRegressor

https://scikit-learn.org/stable/

modules/generated/sklearn.ensemble.

RandomForestClassifier.html

A.2. Hardware Information

• CPU

Model name: Intel(R)Xeon(R)CPU

E5-2687W v4@3.00GHz

CPU(s): 48

Thread(s) per core: 2

CPU max MHz: 3500.0000

L1d cache: 32K

L1i cache: 32K

L2 cache: 256K

L3 cache: 30720K

• GPU

GPU0: Quadro K620

GPU1: NVIDIA GeForce

A.3. Relative Error Histograms for datasets

Plots of the histograms of relative error improvements
can be seen in Figure 6. The plots show M-DEW
Error − UMA Error. Therefore, the more dense the
plot is to the left of 0, the better DEW performs
relative to UMA.

A.4. Calibration Analysis

Calibration analysis (Platt, 2000; Niculescu-Mizil and
Caruana, 2005; Zadrozny and Elkan, 2002) is nor-
mally applied after training to statistically measure
the model’s ability with prediction probability. It
is sophisticated when classifying a data point to a
correct label is important. Motivated by M-DEW’s
ability to reduce perplexity, we extend it by adding a
further layer of calibration on top.

CalibratedClassifierCV 1 (Pedregosa et al., 2011) is
an effective tool for enhancing the performance of pre-
dictive algorithms, particularly in classification tasks.

1. https://scikit-learn.org/stable/modules/generated/
sklearn.calibration.CalibratedClassifierCV.html

13

https://github.com/R-miss-tastic/website/tree/master/static/how-to/python
https://github.com/R-miss-tastic/website/tree/master/static/how-to/python
https://github.com/R-miss-tastic/website/tree/master/static/how-to/python
https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html
https://github.com/dmlc/xgboost/blob/36eb41c960483c8b52b44082663c99e6a0de440a/doc/index.rst
https://github.com/dmlc/xgboost/blob/36eb41c960483c8b52b44082663c99e6a0de440a/doc/index.rst
https://github.com/dmlc/xgboost/blob/36eb41c960483c8b52b44082663c99e6a0de440a/doc/index.rst
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.calibration.CalibratedClassifierCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.calibration.CalibratedClassifierCV.html


M-DEW24

Figure 6: Relative Error Histograms

14



M-DEW24

This algorithmic technique aims to improve the relia-
bility of probabilistic predictions made by classifiers,
ensuring they are well-calibrated and reflect the true
likelihood of class membership. By combining a base
classifier with a calibration model, CalibratedClas-
sifierCV transforms the raw predicted probabilities
into more accurate estimates, thus providing more
meaningful confidence scores.
CalibratedClassifierCV can significantly enhance

its predictive capabilities when applied to a new al-
gorithm. The new algorithm can first generate raw
predicted probabilities for each class, which are of-
ten optimistic and may not accurately represent the
true class probabilities. Next, the calibrated model
produces more accurate and well-calibrated proba-
bilities, an S-shape curve. For the M-DEW algo-
rithm, We experiment calibration analysis for all six
datasets.
There are three groups of reliability diagrams with

Sigmoid calibration as Figure ??. In plotting below,
the x-axis represents the average predicted probabil-
ity in each bin. The y-axis is the fraction of positives,
i.e., the proportion of samples whose class is the pos-
itive class (in each bin). The term ”bin” in refers
to the number of ”bins” or calibration intervals used
to transform the raw predicted scores into calibrated
probabilities. By dividing the predicted probabili-
ties into bins, we can observe how well the predicted
probabilities align with the actual fraction of positive
samples within each bin of our model. The rest are
the calibrated results(reliability diagrams).
The ideal shape of curves should be close to the S-

shape and instead appear to be fluctuating for dataset
Wisconsin Breast Cancer diagnosis and prognosis. It
usually suggests that the models may have some de-
gree of miscalibration or inconsistency in their pre-
dicted probabilities. However, those two datasets are
not in S-shape because of sample size or data imbal-
ance. Fluctuations in the calibration curve can also
occur when the sample size is small, or there is a
significant class imbalance in the data. The calibra-
tion curve may not smooth out in such cases due to
limited data points in certain regions.

15



M-DEW24

Figure 7: M-DEW’s imputing-prediction pipeline. There are total 8 base estimators to construct M-DEW. Random
Forest, XGBoosting, and KNN are popular imputation technique

Experiment UMA M-DEW
eeg eye state MNAR 0.259 0.2601360786916317
eeg eye state MCAR 0.2587541559455349 0.2596832891854269
eeg eye state MAR 0.2599553776319339 0.26178878397810695
diabetic retinopathy MAR 0.3020440141903601 0.3031740221628122
diabetic retinopathy MNAR 0.2891785425641328 0.2902275287724473
diabetic retinopathy MCAR 0.30269251203479697 0.30352194179421066
wisconsin bc prognosis MCAR 0.19828763284593903 0.1984543459655042
wisconsin bc prognosis MNAR 0.18263723211754626 0.18393224974616498
wisconsin bc prognosis MAR 0.20945584159775288 0.2095635635424871
wisconsin bc diagnosis MCAR 0.4237567782008261 0.42418764860161845
wisconsin bc diagnosis MNAR 0.4238170852085251 0.4241030127687644
wisconsin bc diagnosis MAR 0.4221709207468057 0.42236447517994835
myocardial infarction MCAR 0.2954491814718572 0.2976526040103881
myocardial infarction MAR 0.298894038746503 0.3027085660867358
myocardial infarction MNAR 0.31277641034218473 0.3156143066211194
Diabetes vcu MAR 0.2630907363015426 0.2637330086475949
Diabetes vcu MCAR 0.25845379258736195 0.2587403688534198
Diabetes vcu MNAR 0.26287367651477866 0.2634343516876172

Table 4: Brier Score-a metric for evaluating the precision of probability predictions, particularly in binary classifi-
cation tasks. During the development of M-DEW, the Brier Score offered trustworthy probability estimates, which
is crucial for risk assessment and decision-making procedures. Dew’s results outperformed UMA

16



M-DEW24

Dataset UMA M-DEW

AUC Acc. F1 AUC Acc. F1

Eye-eeg-state MAR 0.894 0.806 0.764 0.899 0.811 0.771
Eye-eeg-state MCAR 0.833 0.750 0.687 0.837 0.754 0.693
Eye-eeg-state MNAR 0.838 0.758 0.697 0.842 0.760 0.701
Diabetic Retinopathy MAR 0.754 0.681 0.681 0.731 0.664 0.664
Diabetic Retinopathy MCAR 0.666 0.633 0.633 0.611 0.595 0.594
Diabetic Retinopathy MNAR 0.732 0.665 0.665 0.733 0.664 0.663
Breast Cancer Wisconsin Diagnostic MAR 0.990 0.947 0.947 0.990 0.947 0.947
Breast Cancer Wisconsin Diagnostic MCAR 0.989 0.954 0.954 0.989 0.953 0.952
Breast Cancer Wisconsin Diagnostic MNAR 0.993 0.949 0.949 0.993 0.947 0.947
Breast Cancer Wisconsin Prognostic MAR 0.544 0.742 0.690 0.546 0.737 0.682
Breast Cancer Wisconsin Prognostic MCAR 0.589 0.758 0.680 0.589 0.758 0.680
Breast Cancer Wisconsin Prognostic MNAR 0.623 0.763 0.709 0.623 0.763 0.709
Myocardial infarction MAR 0.902 0.810 0.795 0.903 0.814 0.801
Myocardial infarction MCAR 0.834 0.740 0.728 0.831 0.738 0.727
Myocardial infarction MNAR 0.892 0.788 0.779 0.892 0.788 0.779
Diabetes 130 hospitals MAR 0.712 0.652 0.572 0.713 0.653 0.575
Diabetes 130 hospitals MCAR 0.677 0.625 0.513 0.677 0.625 0.515
Diabetes 130 hospitals MNAR 0.708 0.649 0.564 0.709 0.650 0.566

Table 5: Standard classification metrics - AUROC (AUC), accuracy (Acc.), F1-score (F1),between UMA and M-
DEW. We use AUROC to assess model discrimination between classes, accuracy to measure the overall correctness
of predictions, and the F1 score to balance precision and recall, particularly in imbalanced datasets. In most cases,
M-DEW performed better than UMA.

17


	Introduction
	Related Works
	Missing Data
	Data Imputation
	Ensemble Methods
	Dynamic Ensemble Weighting

	Approach
	Experiments
	Experimental Setup
	Imputers, Classifiers and Missingness
	Evaluation
	Main Results


	Conclusion and Future Work
	Acknowledgements
	Technical Appendix
	Baseline Code
	Hardware Information
	Relative Error Histograms for datasets
	Calibration Analysis


