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Abstract

Fault-tolerant quantum computation enables reliable quantum computation but incurs a
significant overhead from both time and resource perspectives. To reduce computation time,
Austin G. Fowler proposed time-optimal quantum computation by constructing a quantum cir-
cuit for a fault-tolerant T gate without probabilistic S gate correction. In this work, we introduce
a resource-compact quantum circuit that significantly reduces resource requirements by more
than 60% for a fault-tolerant T gate without probabilistic S gate correction. Consequently, we
present a quantum circuit that minimizes resource utilization for time-optimal quantum compu-
tation, demonstrating efficient time-optimal quantum computation. Additionally, we describe
an efficient form involving initialization, CNOTs, and measurements, laying the foundation for
the development of an efficient compiler for fault-tolerant quantum computation.

1 Introduction

Fault-tolerant quantum computing [1, 2, 3] is necessary for reliable computation in real-world en-
vironments. Overcoming errors and ensuring the reliability of quantum computations are critical
steps towards achieving the transformative capabilities promised by quantum computing technology.
Fault-tolerant quantum computation imposes significant resource demands, encompassing the need
for additional qubits, increased circuit depth, ancillary qubits, and computational overhead for error
correction. Addressing these challenges is essential for advancing the field of quantum computing
system software and realizing the full potential of fault-tolerant quantum algorithms in practical
applications. Thus, it is necessary to reduce the resources required to run fault-tolerant quantum
computation as much as possible. For this purpose, several studies have been conducted and are
still in progress [4, 5, 6, 7, 8].

In fault-tolerant quantum computation, error correction and feedforward processes were believed
to cause considerable time overhead, highlighting a key limitation in efficiency. However, it is known
that such overhead can be significantly reduced by a circuit that can perform T gates without apply-
ing S gate correction probabilistically [9]. Thus, given a quantum error-correcting code that enables
universal fault-tolerant quantum computation and transversal measurement of logical X and Z, the
methodology for executing time-optimal quantum computation has been proposed. This means that
the asymptotic time complexity of the arbitrary quantum algorithm execution corresponds to the
product of the number of layers consisting of independent T gates and a single physical measure-
ment time. In other words, surprisingly, it was demonstrated that the number of independent T
gates can determine the overall execution speed of quantum computation, highlighting its impor-
tance [8, 10, 11, 12, 13].
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Figure 1: Quantum circuit for fault-tolerant T gate with probabilistic S gate correction [15].
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Figure 2: Quantum circuit for fault-tolerant T gate without probabilistic S gate correction [9].

On the other hand, arbitrary fault-tolerant quantum computation can be converted into the
Initialization, CNOT, and Measurement form [14]. The form is called ICM form. It is known that
the form allows a more flexible approach towards circuit optimization for an appropriate compiler to
produce a fault-tolerant, error-corrected description from a higher-level quantum circuit. The ICM
form is composed based on the previous known circuit for fault-tolerant implementation for the T
gate [9].

The previous known circuit for fault-tolerant T gate implementation is based on selective des-
tination teleportation and selective source teleportation. Thus, the circuit requires more resources
than are absolutely necessary to perform it. In this work, we design a circuit that directly performs
fault-tolerantly T gate without selective destination teleportation and selective source teleportation
in order to design a more efficient circuit. Utilizing our circuit design for a fault-tolerant T gate, we
demonstrate time-optimal quantum computation with minimized resources and describe the ICM
form, also optimized in terms of resources.

2 Quantum circuits for a fault-tolerant T gate

An arbitrary fault-tolerant quantum computation can be performed using only controlled-NOT , H,
S, and T gates [15]. Generally, it has been turned out to be very simple to implement the controlled-
NOT , H, and S gates fault-tolerantly. In order to complete the set of gates for universal quantum
computation, it is necessary to perform the T gate in a fault-tolerant manner.

A quantum circuit implementing fault-tolerantly a T gate is shown in Figure 1. Here, |A⟩ =
TH |0⟩. The state |A⟩ can be prepared either directly via state distillation [16]. In the circuit, the
measurement is performed in the first qubit, and if the measurement result is 0 then it is done.
Otherwise, the operation SX is performed to the second qubit. In other words, based on the
measurement results, the S gate is applied probabilistically.
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Figure 3: Our quantum circuit for fault-tolerant T gate without probabilistic S gate correction.

A quantum circuit for a fault-tolerant T gate without a probabilistic S gate correction can be
performed by the combination of selective destination teleportation, selective source teleportation
and the circuit for a fault-tolerant T gate in Figure 1. Figure 2 shows a quantum circuit implementing
a T gate without a probabilistic S gate correction [9]. Here, |Y ⟩ = SH |0⟩ and |+⟩ = H |0⟩. The
circuit shown in Figure 2 is slightly modified using circuit identity to reduce depth. To ensure that
the T gate is performed accurately, we have calculated operations based on the measurement results
and included them in the Figure 2. From the circuit depicted in the Figure 2, we can deduce the
following Proposition 1.

Proposition 1. A quantum circuit to perform a T gate without probabilistically applying the S gate
can be designed using a maximum of 5 ancillary qubits, 6 CNOTs and 5 X- or Z-basis measure-
ments [9].

Since |Y ⟩ = SH |0⟩, the S gate is included in the process of generating the |Y ⟩ state and is applied
deterministically, not probabilistically. In the circuit in Figure 2, operations based on measurement
results are performed using only the X or Z gate. Thus, performing X or Z gates followed by
Clifford gates can be converted to performing Clifford gates first and then performing X or Z gates
appropriately. It can be used to parallelize quantum circuits.

Constructing a quantum circuit for a fault-tolerant T gate without employing probabilistic S
gate correction via selective destination and source teleportation may seem intuitively straightfor-
ward. However, we design a circuit that directly performs fault-tolerantly T gate without selective
destination and selective source teleportation in order to design a more efficient circuit. Figure 3
shows our circuit. The circuit utilizes only two ancillary states, represented as |Y ⟩ and |A⟩. The
circuit necessitates 2 CNOT operations and also requires 2 measurements in either the X- or Z-basis.
Therefore, from the circuit depicted in the Figure 3, we can deduce the following Theorem 1.

Theorem 1. A quantum circuit to perform a T gate without probabilistically applying the S gate can
be designed using a maximum of 2 ancillary qubits, 2 CNOTs and 2 X- or Z-basis measurements.

The proof can be established through straightforward calculations. However, we elaborate on
the proof to demonstrate the correctness of our circuit in implementing the T gate.

Proof. Let |ψ⟩ = α |0⟩+ β |1⟩, where |α|2 + |β|2 = 1. Then,

|ψ⟩ |Y ⟩ |A⟩ =
1

2
(α |000⟩+ e

πi
4 α |001⟩+ iα |010⟩+ ie

πi
4 α |011⟩

+β |100⟩+ e
πi
4 β |101⟩+ iβ |110⟩+ ie

πi
4 β |111⟩). (1)

Thus,

CNOT32CNOT31 |ψ⟩ |Y ⟩ |A⟩ =
1

2
(α |000⟩+ e

πi
4 α |111⟩+ iα |010⟩+ ie

πi
4 α |101⟩

+β |100⟩+ e
πi
4 β |011⟩+ iβ |110⟩+ ie

πi
4 β |001⟩). (2)
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resources the previous circuit our circuit
number of ancillary qubits 5 2

number of CNOT s 6 2
number of measurements 5 2

Table 1: Comparison between the previous circuit and our circuit for fault-tolerant T gate imple-
mentation. Reduction rates: Ancillary qubits - 60%, CNOTs - 67%, Measurements - 60%.

Next, a Z-basis measurement is performed on the first qubit, and depending on the measurement
result of the first qubit, X-basis measurement or Z-basis measurement is performed on the second
qubit. Let us denote the outcome of the Z-basis measurement result on the first qubit as mZ1 . Let
us denote the outcome of X(Z)-basis measurement result on the second qubit as mX2(mZ2).

1. If mZ1
= 0, then 1√

2
|0⟩ (α |00⟩+ iα |10⟩+ e

πi
4 β |11⟩+ ie

πi
4 β |01⟩).

(a) If mX2
= 0, then 1+i√

2
|0⟩ |+⟩T3 |ψ⟩.

(b) If mX2
= 1, then 1−i√

2
|0⟩ |−⟩ (α |0⟩ − e

πi
4 β |1⟩).

Therefore, 1−i√
2
|0⟩ |−⟩Z3(α |0⟩ − e

πi
4 β |1⟩) = 1−i√

2
|0⟩ |−⟩T3 |ψ⟩.

2. If mZ1
= 1, then 1√

2
|1⟩ (eπi

4 α |11⟩+ ie
πi
4 α |01⟩+ β |00⟩+ iβ |10⟩).

(a) If mZ2
= 0, then |10⟩ (ieπi

4 α |1⟩+ β |0⟩).
Therefore, |10⟩Z3X3(ie

πi
4 α |1⟩+ β |0⟩) = ie

πi
4 |10⟩T3 |ψ⟩.

(b) If mZ2
= 1, then |11⟩ (eπi

4 α |1⟩+ iβ |0⟩).
Therefore, |11⟩X3(e

πi
4 α |1⟩+ iβ |0⟩) = e

πi
4 |11⟩T3 |ψ⟩.

Table 1 presents a comparison between the previously known circuit and our proposed circuit
for implementing the fault-tolerant T gate. For fault-tolerant quantum computation employing
n independent T gates, the previous circuit necessitates 5n ancillary qubits, whereas our circuit
requires only 2n. Consequently, relative to the prior approach, the ratio of ancillary qubits required
in the circuit can be reduced by 60%. The number of CNOTs and number of measurements for fault-
tolerant quantum computation can also be reduced significantly. Furthermore, operations based on
measurement results are considerably simpler than those of previous circuits.

A circuit for a fault-tolerant T gate appears that a minimum of two ancillary qubits are essential
for deterministic fault-tolerant implementation of the T gate without probabilistic S gate correction.
One corresponds to the state |A⟩ for the application of the T gate, while the other relates to the state
|Y ⟩ intended for the S gate application. Each of these ancillary qubits seemingly necessitates at least
one two-qubit gate to entangle with a given state |ψ⟩. Thus, configuring a quantum circuit for fault-
tolerant T gate implementation appears challenging, particularly when aiming for further resource
reduction compared to our circuit, especially under the same conditions where measurements and
operations depending on the measurement results.

In a similar way, a quantum circuit for fault-tolerant T † gate implementation can be obtained as
shown in Figure 4. The structure of a quantum circuit for fault-tolerant T † gate implementation is
similar to a structure of a quantum circuit for fault-tolerant T gate implementation.
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Figure 4: Our quantum circuit for fault-tolerant T † gate without probabilistic S gate correction.

3 Efficient time-optimal quantum computation

Our proposed circuit for implementing the fault-tolerant T gate can be used for all fault-tolerant
quantum computation. The circuit (HT )n can be regarded as a simple example of a circuit previously
thought to require substantial time overhead. However, the overhead can be greatly reduced by using
the technique of time-optimal quantum computation [9].
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Figure 5: Quantum circuits for fault-tolerant (HT )n: (a) Using the previous known circuit (b) Using
our circuit. Reduction rates: Ancillary qubits - 60%, CNOTs - 80%, Measurements - 60%.

The circuit (HT )n is shown in Figure 5 (a). The circuits in Figure 5 was expressed according
to Fowler’s notation [9]. The circuit in Figure 5 (a) was slightly modified using circuit identity to
reduce depth. It consists of 5n ancillary qubits, 5n CNOTs, n CZ, 2 Hs, and 5n X- or Z-basis
measurements. The circuit depth encompasses a depth of 4 for the Clifford circuit and an additional
depth of n+1 for measurements, resulting in a total depth of n+4 excluding X or Z gates based on
measurement results. In principle, only the time-ordered X- or Z-basis measurements constrain the
speed of quantum computation, as all gates preceding measurements can be executed in constant
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time.
Utilizing our proposed design, the circuit (HT )n can be more efficiently constructed, as depicted

in Figure 5 (b). It consists of 2n ancillary qubits, n CNOTs, n CZ, 2 Hs and 2n X- or Z-basis
measurements. The circuit depth encompasses a depth of 3 for the Clifford circuit and an additional
depth of n+1 for measurements, resulting in a total depth of n+4 excluding X or Z gates based on
measurement results. The ratio of ancillary qubits needed for the fault-tolerant (HT )n circuit has
decreased by 60%, from 5n to 2n. Although the ratio of CZs required is the same at n, the ratio of
CNOTs has decreased by 80% from 5n to n. The ratio of measurements required has also decreased
by 60%, from 5n to 2n.
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Figure 6: Time-optimal quantum computation: (a) Using the previous known circuit (b) Using our
circuit. Reduction rates: Ancillary qubits - 40%, CNOTs - 50%, Measurements - 40%.

In general, arbitrary quantum computations can be consisted of Clifford gates and T gates.
The circuit in the Figure 6 (a) can be obtained by using the previous circuit for fault-tolerant T
gate implementation. The circuit consists of parallel Clifford gates including CNOTs for T gate
implementation and time-ordered X- or Z-basis measurements. This is known as time-optimal
quantum computation.

Utilizing our proposed design, the circuit can be more efficiently constructed, as depicted in
Figure 6 (b). For each fault-tolerant T gate implementation, the number of ancillary qubits required
is only 2. However, to parallel Clifford gates, gate teleportation is additionally performed. Thus,
one additional ancillary qubit is used for each T gates. Even considering parallel Clifford gates,
the ratio of ancillary qubits required for time-optimal quantum computation is reduced by 40%.
If parallel Clifford gates are not considered, quantum computation is possible with fewer resources
because gate teleportation is not required. The following Corollary 1 can be obtained.
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Figure 8: ICM form for the H gate [17].

Corollary 1. Arbitrary quantum computation can be transformed into a quantum circuit for time-
optimal quantum computation using a maximum of 3 ancillary qubits, 3 CNOT operations, 3 mea-
surements in either the X- or Z-basis, and solely X or Z operations depending on the measurement
results for each independent T gate.

As evident from the Corollary 1, executing fault-tolerant quantum computation expeditiously is
feasible with fewer resources compared to existing methods.

4 Efficient ICM form

Arbitrary quantum computation can be converted into the Initialization, CNOT, and Measurement
form [14]. First, the initialization layer of qubits consists of one of four distinct states (|0⟩, |+⟩, |Y ⟩,
|A⟩). Secondly, the CNOT layer consists of a massive and deterministic array of CNOT operations.
Last, the measurement layer consists of a series of time-ordered X- or Z-basis measurements. The
ICM form facilitates a versatile methodology for circuit optimization. Concurrently, the package
yields either a standard circuit or a canonical geometric description, essential for interfacing with
contemporary hardware architectures that employ topological quantum codes.

As a simple example, a controlled-V gate can be converted into the ICM form. First of all, the
controlled-V gate can be decomposed into 2 Hs, 4 CNOTs, 2 T s and 1 T † with an ancillary qubit as
shown in Figure 7. Through simple calculations, the H gate can be converted into the ICM form as
shown in Figure 8 [17]. By using the previous circuit for the implementation of the T gate, circuit
shown in Figure 9 (a) can be obtained. It consists of 22 ancillary qubits, 28 CNOTs and 21 X- or
Z-basis measurements. By employing our circuit for T gates depicted in Figure 3 and the circuit for
T † gates shown in Figure 4, the form can be designed with reduced resources. The ICM form for the
controlled-V gate is illustrated in Figure 9 (b). It consists of 13 ancillary qubits, 16 CNOTs and 12
X- or Z-basis measurements. Therefore, it can be seen that all resources are reduced by more than
40% compared to using a circuit in Figure 9 (a). Consequently, it can facilitate the development of
an efficient compiler for fault-tolerant quantum computation.
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Figure 9: ICM form of the controlled-V gate: (a) ICM form using the previous known circuit for
the controlled-V gate. (b) Our ICM form utilizing our circuit for the controlled-V gate. Reduction
rates: Ancillary qubits - 41%, CNOTs - 43%, Measurements - 43%.

5 Conclusion

We have explored the expeditious execution of fault-tolerant quantum computation while minimizing
resource consumption. We have presented a quantum circuit that significantly reduces resource
requirements by more than 60% for a fault-tolerant T gate without probabilistic S gate correction.
Our circuit exhibits a 60% reduction in ancillary qubits, a 67% reduction in CNOT gates, and a
60% reduction in measurements. Consequently, we have presented a quantum circuit that minimizes
resource utilization for time-optimal quantum computation, demonstrating efficient time-optimal
quantum computation with over 40% reduced resources. Specifically, ancillary qubits are reduced
by 40%, CNOT gates by 50%, and measurements by 40%. Additionally, we have described the
efficient ICM form for development of a compiler for fault-tolerant quantum computation.

The efficiency of our circuit has been attained by directly configuring the circuit without relying
on selective destination teleportation and selective source teleportation while attempting to imple-
ment a fault-tolerant T gate without probabilistically applying the S gate. Configuring a quantum
circuit for fault-tolerant T gate implementation appears challenging, especially when aiming for
further resource reduction compared to our circuit under the same measurement conditions.

Our study emphasizes a significant enhancement in the efficiency of fault-tolerant T gate imple-
mentation. The circuit holds potential for contributing to the advancement of quantum computing
system software, such as the development of an efficient compiler for fault-tolerant quantum com-
putation.

8



Acknowledgements

T. Kim expresses gratitude to Professor Soojoon Lee and Professor Hayata Yamasaki for their
valuable discussions and insightful comments. This work was supported by the Ministry of Science,
ICT and Future Planning (MSIP) by the Institute of Information and Communications Technology
Planning and Evaluation grant funded by the Korean government (2019-0-00003, “Research and
Development of Core Technologies for Programming, Running, Implementing and Validating of
Fault-Tolerant Quantum Computing System”) and the National Research Foundation of Korea
(NRF-2021M3E4A1038213, RS-2023-00281456).

References

[1] P. W. Shor, Fault-tolerant quantum computation, In Proceedings of 37th Conference on Founda-
tions of Computer Science, pp. 56-65. IEEE, 1996.

[2] D. Aharonov and M. Ben-Or, Fault-tolerant quantum computation with constant error, In Pro-
ceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pp. 176-188,
1997.

[3] D. Gottesman, An introduction to quantum error correction and fault-tolerant quantum compu-
tation, in Quantum Information Science and Its Contributions to Mathematics, Proceedings of
Symposia in Applied Mathematics, 68 pp. 13-58 (2010).

[4] V. V. Shende, A. K. Prasad, I. L. Markov and J. P. Hayes, Synthesis of reversible logic circuits,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 22 pp.710-
722, 2003.

[5] M. Amy, D. Maslov, M. Mosca and M. Roetteler, A meet-in-the-middle algorithm for fast syn-
thesis of depth-optimal quantum circuits, IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems 32 pp. 818-830, 2013.

[6] N. J. Ross and P. Selinger, Optimal ancilla-free Clifford+T approximation of z-rotations, Quan-
tum Information and Computation 16, 901 (2016).

[7] T. Kim and B.-S. Choi, Efficient decomposition methods for controlled-Rn using a single ancillary
qubit, Scientific Reports 8, 5445 (2018).

[8] V. Gheorghiu, M. Mosca and P. Mukhopadhyay, T-count and T-depth of any multi-qubit unitary,
npj Quantum Information 8, 141 (2022).

[9] A. G. Fowler, Time-optimal quantum computation, arXiv:1210.4626 (2012).

[10] R. Babbush, J. R. McClean, M. Newman, C. Gidney, S. Boixo, and H. Neven, Focus beyond
quadratic speedups for error-corrected quantum advantage, PRX Quantum 2, 010103 (2021).

[11] C. Chamberland and E. T. Campbell, Universal quantum computing with twist-free and tempo-
rally encoded lattice surgery, PRX Quantum 3, 010331 (2022).

[12] M. Hanks, M. P. Estarellas, W. J. Munro, and K. Nemoto, Effective compression of quantum
braided circuits aided by ZX-calculus, Phys. Rev. X 10, 041030 (2020).

9

http://arxiv.org/abs/1210.4626


[13] M. Amy, D. Maslov, and M. Mosca, Polynomial-time T-Depth optimization of Clifford+T cir-
cuits via matroid partitioning, IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 33 pp.1476-1489 (2014)

[14] A. Paler, I. Polian, K. Nemoto and S. J. Devitt, Fault-tolerant high level quantum circuits:
form, compilation and description, Quantum Science and Technology, 2, 025003 (2017).

[15] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge Uni-
versity Press, 2000.

[16] S. Bravyi and A. Kitaev, Universal quantum computation with ideal Clifford gates and noisy
ancillas, Physical Review A 71, 022316 (2005).

[17] A. Paler, I. Polian, K. Nemoto and S. J. Devitt, A regular representation of quantum circuits,
Reversible Computation, Lecture Notes in Computer Science (LNCS) Krivine, Jean and Stefani,
Jean-Bernard 9138 pp.139-154 (2015).

10


	Introduction
	Quantum circuits for a fault-tolerant T gate
	Efficient time-optimal quantum computation
	Efficient ICM form
	Conclusion

