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ABSTRACT

Context. Large-scale sky surveys at low frequencies, such as the LOFAR Two-metre Sky Survey (LoTSS), allow for the detection
and characterisation of unprecedented numbers of giant radio galaxies (GRGs, or ‘giants’, of at least lp,GRG B 0.7 Mpc long). This, in
turn, enables us to study giants in a cosmological context. A tantalising prospect of such studies is a measurement of the contribution
of giants to cosmic magnetogenesis. However, this measurement requires en masse radio–optical association for well-resolved radio
galaxies and a statistical framework to infer GRG population properties.
Aims. By automating the creation of radio–optical catalogues, we aim to significantly expand the census of known giants. With the
resulting sample and a forward model that takes into account selection effects, we aim to constrain their intrinsic length distribution,
number density, and lobe volume-filling fraction (VFF) in the Cosmic Web.
Methods. We combined five existing codes into a single machine learning (ML)–driven pipeline that automates radio source com-
ponent association and optical host identification for well-resolved radio sources. We created a radio–optical catalogue for the entire
LoTSS Data Release 2 (DR2) footprint and subsequently selected all sources that qualify as possible giants. We combined the list of
ML pipeline GRG candidates with an existing list of LoTSS DR2 crowd-sourced GRG candidates and visually confirmed or rejected
all members of the merged sample. To infer intrinsic GRG properties from GRG observations, we developed further a population-
based forward model and constrained its parameters using Bayesian inference.
Results. Roughly half of all GRG candidates that our ML pipeline identifies indeed turn out to be giants upon visual inspection,
whereas the success rate is 1 in 11 for the previous best giant-finding ML technique in the literature. We confirm 5, 647 previously
unknown giants from the crowd-sourced LoTSS DR2 catalogue and 2, 597 previously unknown giants from the ML pipeline. Our
confirmations and discoveries bring the total number of known giants to at least 11, 585. Our intrinsic GRG population forward
model provides a good fit to the data. The posterior indicates that the projected lengths of giants are consistent with a curved power
law probability density function whose initial tail index ξ(lp,GRG) = −2.8 ± 0.2 changes by ∆ξ = −2.4 ± 0.3 over the interval up to
lp = 5 Mpc. We predict a comoving GRG number density nGRG = 13 ± 10 (100 Mpc)−3, close to a recent estimate of the number
density of luminous non-giant radio galaxies. With the projected length distribution, number density, and additional assumptions, we
derive a present-day GRG lobe VFFVGRG−CW(z = 0) = 1.4 ± 1.1 · 10−5 in clusters and filaments of the Cosmic Web.
Conclusions. We present a state-of-the-art ML-accelerated pipeline for finding giants, whose complex morphologies, arcminute
extents, and radio-emitting surroundings pose challenges. Our data analysis suggests that giants are more common than previously
thought. More work is needed to make GRG lobe VFF estimates reliable, but tentative results imply that it is possible that magnetic
fields once contained in giants pervade a significant (≳10%) fraction of today’s Cosmic Web.

Key words. Surveys – Methods: data analysis – Catalogues – Galaxies: active – Radio continuum: galaxies – Cosmology: observa-
tions

1. Introduction

Recent radio Stokes I imaging and rotation measure observa-
tions show that filaments of the Cosmic Web are magnetised
(e.g. Govoni et al. 2019; de Jong et al. 2022; Carretti et al. 2023)
with B ∼ 100–102 nG (e.g. Vazza et al. 2021). However, the ori-
gin of these magnetic fields remains highly uncertain. In a pri-
mordial magnetogenesis scenario (e.g. Subramanian 2016), the
⋆ These authors contributed equally to this article.
⋆⋆ E-mail: mostert@strw.leidenuniv.nl, oei@strw.leidenuniv.nl

seeds of intergalactic magnetic fields can be traced to the Early
Universe. This scenario is not problem-free: primordial mag-
netic fields that arise before the end of inflation are typically too
weak to match observations, while fields that arise after inflation
(but before recombination) typically have coherence lengths that
are too small. Alternatively, in an astrophysical magnetogenesis
scenario, the seeds of intergalactic magnetic fields are predomi-
nantly spread by energetic astrophysical phenomena in the more
recent Universe, such as radio galaxies (RGs) and supernova-
driven winds (e.g. Vazza et al. 2017). In this latter scenario, gi-
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ant radio galaxies (GRGs, or ‘giants’) may play a significant role
in the magnetisation of the intergalactic medium (IGM), as their
associated jets can carry magnetic fields of strength B ∼ 102 nG
from host galaxies to cosmological, megaparsec-scale distances
(e.g. Oei et al. 2022).

Efforts to measure the contribution of giants to astrophysical
magnetogenesis in filaments of the Cosmic Web have only re-
cently begun, with the advent of systematically processed, sen-
sitive, low-frequency sky surveys such as the Low Frequency
Array (LOFAR; van Haarlem et al. 2013) Two-metre Sky Sur-
vey (LoTSS; Shimwell et al. 2017). By carrying out both a man-
ual search for giants in LoTSS DR2 (Shimwell et al. 2022)
pipeline products and a rigorous statistical analysis, Oei et al.
(2023a) inferred a key statistic: the volume-filling fraction (VFF)
of GRG lobes within clusters and filaments of the Local Uni-
verse, VGRG−CW(z = 0). However, much uncertainty remains
as to its value, which is set by the GRG number density, GRG
length distribution, and GRG length–lobe volume relation.

As the number of observed radio galaxies rapidly increases
with decreasing angular length, the time required to manually
associate radio source components and identify host galaxies
in the optical logically increases. Machine learning (ML)–based
methods have the potential to massively accelerate the detection
of various radio source classes by complementing and eventu-
ally replacing manual methods (e.g. Proctor 2016; Gheller et al.
2018; Lochner & Bassett 2021; Mostert et al. 2023). The po-
tential for detecting giants was demonstrated by Dabhade et al.
(2020a), who visually inspected the 1, 600 ML-identified GRG
candidates of Proctor (2016) and thereby discovered 151 giants.
By combining into a single pipeline multiple ML-based and rule-
based algorithms that automate both the radio component asso-
ciation and the optical host galaxy identification, we aim to im-
prove upon the 9% precision of Proctor (2016)’s ML predictions.

As part of the present study, we constructed a LoTSS DR2
GRG sample of unparalleled size, by combining results from
a visual search by astronomers (Oei et al. 2023a), a visual
search by citizen scientists (Hardcastle et al. 2023), and a ML-
accelerated search (this article; Sect. 4). With a definitive LoTSS
DR2 GRG sample in hand, we refined the Bayesian forward
model presented in Oei et al. (2023a), and finally constrained
several key geometric quantities pertaining to giants.

In Sect. 2, we briefly review, generalise, and develop the sta-
tistical GRG geometry theory of Oei et al. (2023a). In Sect. 3, we
introduce the LoTSS DR2 data in which we searched for giants.
In Sect. 4, we describe the methods that we used to build our
definite LoTSS DR2 GRG sample, and explain how we used the
theory of Sect. 2 in practice to infer GRG quantities of interest.
In Sect. 5, we present our findings regarding the projected proper
length distribution for giants, their comoving number density,
and their instantaneous lobe VFF in clusters and filaments of the
Cosmic Web. In Sect. 6, we discuss caveats of the present work,
compare our results with previous results, and propose directions
for future work, before we conclude in Sect. 7.

We assume a flatΛCDM model with parameters from Planck
Collaboration et al. (2020): h = 0.6766, ΩBM,0 = 0.0490,
ΩM,0 = 0.3111, and ΩΛ,0 = 0.6889, where H0 := h · 100 km
s−1 Mpc−1. We define giants as radio galaxies with a projected
proper1 length lp ≥ lp,GRG B 0.7 Mpc. We define the spectral
index α such that it relates to flux density Fν at frequency ν as

1 In Cosmic Web filament environments, where giants appear most
common (Oei et al. 2023b), lobes may expand along the Hubble flow,
rendering their proper and comoving extents different. To avoid ambigu-
ity, we stress that our projected lengths are proper instead of comoving.

Fν ∝ να; under this convention, α < 0 at radio frequencies for
which synchrotron self-absorption is negligible.

2. Theory

To infer the intrinsic length distribution, number density, and
lobe VFF of giants, we used a Bayesian forward modelling ap-
proach that incorporates selection effects. We adopt the frame-
work described in Oei et al. (2023a), but generalise a few key
formulae. Furthermore, in a change that allows for the extrac-
tion of tighter parameter constraints from the data, we now pre-
dict joint projected proper length–redshift histograms rather than
projected proper length distributions.

2.1. RG total and projected proper lengths

The central geometric quantity predicted by models of radio
galaxy evolution (e.g. Turner & Shabala 2015; Hardcastle 2018)
is, simply, the RG’s intrinsic proper length l. Once the proba-
bility distribution of the intrinsic proper length random variable
(RV) L is known, one can estimate other geometric quantities
of interest, such as the VFF of RG lobes in the Cosmic Web.
However, for the vast majority of observed RGs only a projected
proper length lp is available, as accurate measurements of jet in-
clination angles θ are currently challenging. In order to fit statis-
tical models to data from surveys such as LoTSS DR2, models
should therefore predict the distribution of the projected proper
length RV Lp.

2.2. GRG projected proper length: General

We now show, first without adopting a specific parametric form
for the distribution of L, how the cumulative density function
(CDF) and probability density function (PDF) of the GRG pro-
jected proper length RV Lp | Lp ≥ lp,GRG can be calculated.
In particular, we suppose that L has support from some length
lmin ≥ 0 onwards. Then Lp = L sinΘ, where Θ is the inclination
angle RV. Assuming that, at least on cosmological scales, all RG
orientations in three dimensions are equally likely,2 the CDF of
Lp relates to the PDF of L via

FLp (lp) =


0 if lp ≤ 0;

1 −
∫ ∞

lmin

√
1 −

( lp
l

)2
fL(l) dl if 0 < lp ≤ lmin;

1 −
∫ ∞

lp

√
1 −

( lp
l

)2
fL(l) dl if lp > lmin.

(1)

We note that, in the usual scenario of lmin = 0, the second
case disappears. Equation 1 generalises Eq. A.8 from Oei et al.
(2023a); its derivation closely follows the one presented there.

The CDF of the GRG projected proper length RV Lp | Lp ≥

lp,GRG is

FLp | Lp≥lp,GRG (lp) =


0 if lp < lp,GRG;

1 −

∫ ∞
lp

√
1−

(
lp
l

)2
fL(l) dl∫ ∞

lp,GRG

√
1−

(
lp,GRG

l

)2
fL(l) dl

if lp ≥ lp,GRG.

(2)

A less precise synonym for ‘projected proper length’ often found in the
literature is ‘largest linear size’.
2 This assumption is admissible, because even if the relative orienta-
tions of RGs and filaments are not random (e.g. Beckmann et al. 2024;
Codis et al. 2018), the uniformity of filament orientations on large scales
leads to uniform RG orientations on large scales.
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This result follows from combining Eq. 1 and Eq. A.12 from Oei
et al. (2023a).3 As PDFs follow from CDFs by differentiation,
we find that the PDFs of Lp and Lp | Lp ≥ lp,GRG are related by

fLp | Lp≥lp,GRG (lp) =


0 if lp < lp,GRG;

fLp (lp)∫ ∞
lp,GRG

√
1−

(
lp,GRG

l

)2
fL(l) dl

if lp ≥ lp,GRG. (3)

We note that, throughout the support of Lp | Lp ≥ lp,GRG,
fLp | Lp≥lp,GRG (lp) and fLp (lp) are directly proportional – the quan-
tity in the denominator of Eq. 3 is merely a normalisation con-
stant.4

To find fLp (lp) if lp > lmin, it is helpful to perform a change
of variables. By defining η B l

lp
, we rewrite

FLp (lp) = 1 − lp

∫ ∞

1

√
1 −

1
η2 fL(lpη) dη if lp > lmin. (5)

This form has the advantage that – within the integral – lp oc-
curs only in the integrand, whereas the form of Eq. 1 features
lp in both the integrand and in the lower integration limit. By
differentation,

fLp (lp) = −
∫ ∞

1

√
1 −

1
η2 fL(lpη) dη

− lp

∫ ∞

1

√
1 −

1
η2

d fL(lpη)
dlp

dη if lp > lmin. (6)

To arrive at concrete expressions for the GRG projected proper
length PDF of Eq. 3, we must choose a specific parametric form
for the distribution of L or Lp.

2.3. GRG projected proper length: Curved power law

Oei et al. (2023a) show that models that assume a Paretian tail for
the RG intrinsic proper length distribution, and that include an-
gular and surface brightness selection effects, can tightly repro-
duce the observed GRG projected proper length distribution. The
PDF of a Pareto-distributed RV is a simple power law, which is
fully specified by a lower cut-off lmin and a tail index ξ. However,
there is a good reason to believe that the true GRG projected
proper length PDF deviates from simple power law behaviour.
The true RG projected proper length PDF fLp will peak around a
value set by the typical jet power, environment, lifetime, and in-
clination angle (amongst other properties). Below this value, fLp

will necessarily be an increasing function of lp; above this value,
fLp will be a decreasing function.5 As giants embody the large-
length tail of the distribution of Lp, it is likely that the slope of
fLp | Lp≥lp,GRG (lp) first becomes more negative (and later becomes
less negative) as lp increases.

To remain close to the seemingly effective Pareto assumption
of Oei et al. (2023a), we assume in this work that, at least for
3 We have also assumed that lp,GRG > lmin, which is the obvious case to
consider.
4 This is an example of a more general rule: for any RV X,

fX | X≥y(x) =

0 if x < y;
fX (x)

1−FX (y) if x ≥ y.
(4)

5 This line of reasoning implicitly assumes that the distribution of Lp
is unimodal.

lp ≥ lp,GRG, the RG projected proper length PDF is a curved
power law:

fLp (lp) ∝
(

lp
lp,GRG

)ξ(lp)

if lp ≥ lp,GRG, (7)

where the exponent

ξ(lp) B ξ(lp,1) +
lp − lp,1

lp,2 − lp,1

(
ξ(lp,2) − ξ(lp,1)

)
(8)

is a linear function of lp. As long as lp,1 , lp,2, both pro-
jected proper length constants can be chosen arbitrarily; how-
ever, lp,1 B lp,GRG seems to be a natural choice. Adopting this
choice, and defining ∆ξ B ξ(lp,2) − ξ(lp,1), leads to the final ex-
ponent formula

ξ(lp) = ξ(lp,GRG) +
lp − lp,GRG

lp,2 − lp,GRG
∆ξ. (9)

We adopted ξ(lp,GRG) and ∆ξ as two parameters of our model.
We furthermore chose lp,2 B 5 Mpc, which is close to the largest
currently known radio galaxy projected proper length (Oei et al.
2022, 2023a). Being the first-order Taylor polynomial of an arbi-
trary function ξ(lp) at lp,GRG, Eq. 8 represents a natural generali-
sation of the constant tail index assumption of Oei et al. (2023a).
In particular, if model parameter ∆ξ = 0, we recover the earlier
Paretian model.

By the same reasoning as before, we find that if the RG pro-
jected proper length PDF is a curved power law for lp ≥ lp,GRG,
then the GRG projected proper length PDF is also a curved
power law over this range:

fLp | Lp≥lp,GRG (lp) ∝
(

lp
lp,GRG

)ξ(lp)

if lp ≥ lp,GRG. (10)

The factors required to normalise fLp (lp) and fLp | Lp≥lp,GRG (lp) can
be obtained numerically.

Whereas Oei et al. (2023a) parametrised fL(l) and derived
fLp (lp) and fLp | Lp≥lp,GRG (lp), we now parametrise fLp (lp) and de-
rive only fLp | Lp≥lp,GRG (lp). It is possible to start modelling at the
level of fL(l), also in the context of curved power law PDFs,
but the resulting expressions for fLp (lp) and fLp | Lp≥lp,GRG (lp) be-
come tedious and rather uninsightful. For simplicity, we there-
fore choose to parametrise fLp (lp); we explore the alternative set-
up in Appendix A.

2.4. GRG observed projected proper length

Equation 10 describes a distribution of GRG projected proper
lengths in the absence of observational selection effects. Unfor-
tunately, this distribution cannot be directly tested against GRG
samples obtained from surveys, which are always affected by se-
lection. For a thorough description and derivation of selection
effect modelling in the context of our framework, we refer the
reader to Sect. 2.8 and Appendix A.8 of Oei et al. (2023a); here,
we shall only briefly introduce the expressions that we require.

A key result, adopted from Eq. 21 of Oei et al. (2023a), is that
the GRG observed projected proper length RV Lp,obs | Lp,obs ≥

lp,GRG can be expressed as

fLp,obs | Lp,obs≥lp,GRG (lp) =


0 if lp < lp,GRG;

C(lp,zmax) fLp (lp)∫ ∞
lp,GRG

C(l′p,zmax) fLp (l′p) dl′p
if lp ≥ lp,GRG,

(11)
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where C is the completeness function. More precisely, C(lp, zmax)
denotes the fraction of all RGs with projected proper length lp in
the volume up to cosmological redshift zmax that is detected and
identified through the survey considered – in this work, this will
be LoTSS DR2. The repeated factors in numerator and denom-
inator reveal that, in order to compute fLp,obs | Lp,obs≥lp,GRG (lp), we
need to know fLp (lp) up to a constant only (and on lp ≥ lp,GRG
only). More concerningly, we also see that selection effects that
reduce the completeness by the same factor for all lp ≥ lp,GRG
leave no imprint on fLp,obs | Lp,obs≥lp,GRG (lp). Therefore, such selec-
tion effects cannot be constrained by a GRG observed projected
proper length analysis alone.

Under the assumption that the RG projected proper length
PDF fLp (lp) does not evolve between redshifts z = zmax and z = 0,
the completeness function becomes

C
(
lp, zmax

)
=

∫ zmax

0 pobs

(
lp, z

)
r2 (z) E−1 (z) dz∫ zmax

0 r2 (z) E−1 (z) dz
, (12)

where the observing probability pobs(lp, z) is the probability that
an RG of projected proper length lp at redshift z is detected by
a survey and its subsequent analysis steps (such as the machine
learning pipeline considered in this work), r denotes comoving
radial distance, and E(z) is the dimensionless Hubble parame-
ter6. The appropriate form of pobs(lp, z) is determined by the se-
lection effects relevant to the survey of interest and its analysis.

In this work, we consider GRG lobe surface brightness (SB)
selection, which at present renders many members of the GRG
population undetectable, and selection by limitations of our anal-
ysis, which causes in principle detectable giants to evade identi-
fication. We described the former effect parametrically, and de-
termined the latter effect empirically. The effects yield functions
pobs,SB(lp, z) and pobs,ID(lp, z), respectively, which then combine
to form a single observing probability function through

pobs(lp, z) = pobs,SB(lp, z) · pobs,ID(lp, z). (14)

2.4.1. Selection effects: Surface brightness limit

RG lobes whose SBs are lower than some threshold bν,th, which
typically equals the survey noise level σ times a factor of or-
der unity, cannot be detected. Following Sect. 2.8.3 of Oei et al.
(2023a), we modelled SB selection by assuming that the lobe
SBs Bν(ν, l, z) at ν = νobs of RGs of intrinsic proper length
l = lref residing at redshift z = 0 are lognormally distributed.
We parametrised Bν(νobs, lref , 0) = bν,ref S , where bν,ref is the me-
dian lobe SB and S is a lognormally distributed RV with median
1 and dispersion parameter σref . The observing probability due
to SB selection then is

pobs,SB

(
lp, z

)
=

∫ ∞

smin

√
1 −

( smin

s

)− 2
ζ

fS (s) ds; (15)

smin =
bν,th
bν,ref

(
lp
lref

)−ζ
(1 + z)3−α ; (16)

fS (s) =
1

√
2πσref s

exp
− ln2 s

2σ2
ref

. (17)

6 In a flat Friedmann–Lemaître–Robertson–Walker universe, the di-
mensionless Hubble parameter E is

E (z) B
H (z)
H0
=

√
ΩR,0 (1 + z)4 + ΩM,0 (1 + z)3 + ΩΛ,0. (13)

Here, α is the typical RG lobe spectral index, which we assumed
fixed at α = −1. The exponent ζ determines how the SB distri-
bution scales with projected proper length lp.

In a departure from Oei et al. (2023a), we did not fix ζ = −2,
but rather left ζ a free parameter which we fitted to the data.
Deviations from ζ = −2 occur in at least two cases: when gi-
ant growth is not shape-preserving, and if the radio luminos-
ity distributions of giants of different lp are distinct. Dynamical
models of RGs in general predict that both cocoons (e.g. Fig. 4
of Turner & Shabala 2015) and lobes (e.g. Fig. 9 of Hardcas-
tle 2018) change shape over time, and in a jet power–dependent
way. There remains considerable uncertainty as to how shapes
change throughout the giant phase: axial ratio–like measures
generally show that RG lobes become more elongated during
growth, but this trend could possibly reverse for giants, whose
lobes might protrude from the clusters and filaments in which
they are born. Simulations suggest that, for such protrusions,
the usual constant power-law profile assumptions for the am-
bient baryon density and temperature break down (e.g. Fig. 8
of Gheller & Vazza 2019). If lobes of giants widen over time,
then ζ would decrease. The second case occurs if the end-of-life
lengths of RGs increase with jet power, so that the subpopula-
tion that survives up to some lp has its jet power distribution –
and therefore its radio luminosity distribution – shifted upwards
with respect to subpopulations at smaller lp. This effect, which
appears plausible given models (e.g. Fig. 8 of Hardcastle 2018),
would increase ζ. At present, it seems hard to predict the net
result on ζ of these counteracting effects.

2.4.2. Selection effects: Non-identification

Every present-day survey search method (such as visual inspec-
tion by scientists, visual inspection by citizen scientists, and ML-
based approaches) will fail to identify some giants that are in
principle identifiable (in the sense that they lie above the detec-
tion threshold set by the noise). For automated approaches, such
as the ML-based approach presented in this work, identification
can become more challenging for larger angular lengths ϕ: one
reason being the increased number of unrelated, interloping ra-
dio sources that cover the solid angle occupied by the RG. We
call the probability that an identifiable RG is indeed identified –
and therefore becomes part of the final sample – pobs,ID.

Say we have M methods to search for giants in the same sur-
vey. Let G = {g1, g2, ..., gN} be the set of all identified giants (so
that |G| = N), and let Gi ⊆ G be the subset identified by method
i. Figure 1 illustrates the set-up. The projected proper length
and cosmological redshift of giant g are lp(g) and z(g), respec-
tively. To determine the identification probability pobs,ID,i(lp, z)
for method i, we first assume it to be of logistic form

pobs,ID,i(lp, z) =
1

1 + exp (−(β0,i + βlp,i · lp + βz,i · z))
. (18)

We obtain best-fit parameters β̂0,i, β̂lp,i, and β̂z,i by performing
binary logistic regression with two explanatory variables on the
data setDi, where

Di B

([lp(g), z(g)
]
, I(g ∈ Gi)

)
| g ∈

M⋃
j=1, j,i

G j

 . (19)

The first element of each pair inDi is a point in projected length–
redshift space, whilst the second element is 0 or 1: I denotes the
indicator function. Qualitatively, Di stores for each giant in the
union of all GRG subsets except Gi its projected length–redshift
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All

Identifiable

Identified

G = G1 ∪ G2 ∪ G3

G1

G2 G3

Fig. 1: Schematic of a three-method search for giants. Of all
giants in the survey footprint up to z = zmax, only those for
which the lobe surface brightness at the observing frequency νobs
is above detection threshold bν,th are identifiable. G denotes the
actually identified set of giants. G1, G2, and G3 are the subsets
identified by each method individually. As an example, we shade
G2 ∪ G3, which has overlap with G1, and which can be used to
measure pobs,ID,1(lp, z).

coordinates, together with the success or failure of its identifica-
tion through method i.

The implicit assumption here is that all g ∈
⋃M

j=1, j,i G j are
typical examples of identifiable giants at the relevant projected
proper length and redshift. We caution that this might not be true:
giants with a peculiar morphology, or those lying in parts of the
sky where optical identification is hard (e.g. towards the Galactic
Plane or crowded regions of large-scale structure), may be iden-
tifiable in a radio surface brightness sense, but will nonetheless
evade sample inclusion more often than other giants. As a result,
giants that do end up in a sample – such as

⋃M
j=1, j,i G j – will have

more regular morphologies than giants in general and will lie in
regions of the sky where optical identification is easier than for
giants in general. Typically, such giants are also more likely to
be found by method i, and as a result our approach will probably
render pobs,ID,i biased high.

Given a set of M functions {pobs,ID,i(lp, z) | i ∈ {1, 2, ...,M}},
several possibilities exist to combine them into a single
pobs,ID(lp, z). At the minimum, pobs,ID(lp, z) is given by a point-
wise maximum:

pobs,ID(lp, z) = max
i∈{1,2,...,M}

pobs,ID,i(lp, z), (20)

which is appropriate if methods tend to find the same identifiable
giants – as in our case.7

2.5. GRG number density

The preceding theory allows us to find the intrinsic, comoving
number density of giants, nGRG, if we know the observed number
of giants within a solid angle of extentΩ and in the volume up to

7 In case methods tend to find independent subsets of identifiable gi-
ants,

pobs,ID(lp, z) = 1 −
M∏

i=1

(1 − pobs,ID,i(lp, z)). (21)

We note that it is possible to design methods that find subsets of identi-
fiable giants that have even less overlap than independent subsets have.

zmax, NGRG,obs(Ω, zmax). We assume that, up to this redshift, nGRG
remains constant. We note that we cannot calculate nGRG using
Eq. 30 from Oei et al. (2023a): this equation assumes ξ(lp,1) =
ξ(lp,2). We derive a more general expression by first noting that
the number of giants observed within a solid angle of extentΩ in
the volume up to zmax and with projected proper lengths between
lp and lp + dlp is

dNGRG,obs(lp,Ω, zmax) =
Ω

4π
nGRG fLp | Lp≥lp,GRG (lp) dlp ·∫ zmax

0
pobs(lp, z) 4πr2(z)

dr
dz

dz. (22)

Because

NGRG,obs(Ω, zmax) =
∫ ∞

lp,GRG

dNGRG,obs(lp,Ω, zmax), (23)

we find, by isolating nGRG, that

nGRG(lp,GRG, zmax) =
H0

c
4π
Ω

NGRG,obs(Ω, zmax) · (24)∫ ∞

lp,GRG

fLp | Lp≥lp,GRG (lp)
∫ zmax

0
pobs(lp, z) 4πr2(z) E−1(z) dz dlp

−1

.

This expression is valid also beyond the context of power law or
curved power law PDFs fLp | Lp≥lp,GRG (lp). We remark that nGRG
can depend sensitively on lp,GRG, the projected proper length
used to define giants. In contrast to the approach of Oei et al.
(2023a), in this work we do not calculate nGRG in a step follow-
ing inference of the framework’s parameters, but rather include
it as a parameter to be constrained during inference.

2.6. GRG lobe volume-filling fraction

To constrain the contribution of giants to astrophysical magne-
togenesis, we wish to know the volume-filling fraction of their
lobes in clusters and filaments of the Cosmic Web, VGRG−CW.
This quantity may have changed over cosmic time; in this work,
we calculate it at the present day. First, we make the approxima-
tion that all GRG lobes (in the Local Universe) lie in clusters
and filaments. In addition, we model the general RG relation
between the two-lobe proper volume RV V and the projected
proper length RV Lp as a power law with scatter:

V = VGRG ·

(
Lp

lp,GRG

)γ
· X, (25)

where VGRG is the mean two-lobe proper volume of an RG with
a projected proper length lp,GRG, and γ is a constant exponent.
Furthermore, X, which we take to be independent of Lp, is a non-
negative, dimensionless RV with a mean of unity and an other-
wise arbitrary distribution. In Sect. 5.3, we present observations
that indicate that this model is reasonable. Under this model,

E[V | Lp ≥ lp,GRG] =
VGRG

lγp,GRG

· E[Lγp | Lp ≥ lp,GRG]. (26)

Finally, if GRG lobes are sufficiently small or giants suffi-
ciently rare (or both), the probability that there exist overlapping
GRG lobes will be low. If, indeed, GRG lobes do not overlap,
VGRG−CW ∝ E[V | Lp ≥ lp,GRG] andVGRG−CW ∝ nGRG, so that

VGRG−CW(z) =
E[V | Lp ≥ lp,GRG](z) nGRG(z) (1 + z)3

VCW(z)
, (27)

whereVCW denotes the VFF of clusters and filaments combined.
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2.7. GRG angular lengths

An object’s angular length ϕ, projected proper length lp, and cos-
mological redshift z are related through

ϕ(lp, z) =
lp(1 + z)

r(z)
. (28)

Due to the expansion of the Universe, there exists a minimum
angular length for objects of a given projected proper length. If
one defines giants as RGs with projected proper lengths lp ≥
lp,GRG B 0.7 Mpc, as in this work, then all giants have an an-
gular length ϕ ≥ 1.3′ (Oei et al. 2023a). This fact has important
consequences for GRG search campaigns. At the LoTSS resolu-
tion of θFWHM = 6′′, it implies that giants are always resolved
and span at least 13 resolution elements. Therefore, to model the
detectability of giants at this resolution, one must consider their
surface brightness (profiles), rather than their flux densities.

2.8. Inference

Finally, we describe how the framework’s six free parameters
θ B [ξ(lp,GRG),∆ξ, bν,ref , σref , ζ, nGRG] can be inferred from a
data set containing a projected length and redshift for each ob-
served giant. In particular, we consider a rectangle in projected
proper length–cosmological redshift parameter space, within
which our model assumptions are expected to hold. We parti-
tion this rectangle into Nb equiareal bins of width ∆lp and height
∆z. We denote the coordinates of bin i’s centre as (lp,i, zi).

We binned the data to obtain a two-dimensional histogram.
The number of giants found in bin i, Ni, is an RV with a Poisson
distribution: Ni ∼ Poisson(λi). Its expectation λi depends on the
model parameters θ. Assuming that the {Ni} are independent, the
log-likelihood becomes

lnL({Ni} | θ) =
Nb∑
i=1

Ni ln λi(θ) − λi(θ) − ln (Ni!). (29)

The last term on the right-hand side of Eq. 29 is the same for
all θ, and need not be calculated if one is interested in L up to
a global constant only.8 Following Eq. 22, but avoiding integra-
tion over z and assuming narrow bins in both dimensions, we
approximate

λi ≈ nGRGVi · fLp | Lp≥lp,GRG (lp,i)∆lp · pobs(lp,i, zi). (31)

The volume in which the giants of bin i fall, Vi, is

Vi = Ωr2(zi)∆ri, with ∆ri =
c

H0

∆z
E(zi)

. (32)

Appendix B details a particularly efficient trick to compute the
likelihood for a range of nGRG, whilst leaving the other param-
eters fixed. By multiplying the likelihood function with a prior
distribution, for which we chose the uniform distribution, we ob-
tained a posterior distribution over θ – up to a constant.

8 If one includes this term, it only needs to be calculated once. For
numerical stability, it is helpful to note that

−

Nb∑
i=1

ln (Ni!) = −
Nb∑
i=1

Ni∑
j=2

ln j. (30)

3. Data

We applied our automated radio–optical catalogue creation
methods to all Stokes I maps from LoTSS DR2 (Shimwell et al.
2022).9 The LoTSS DR2 observations cover the 120–168 MHz
frequency range, have a 6′′ resolution, a median RMS sensitivity
of 83 µJy beam−1, and a flux density scale uncertainty of ap-
proximately 10%. The observations are split into a region cen-
tred at 12h45m +44◦30′ and a region centred at 1h00m +28◦00′;
both avoid the Galactic Plane. These regions span 4, 178 and
1, 457 square degrees respectively, and together cover 27% of
the Northern Sky. The observations consist of 841 partly over-
lapping pointings with diameters of 4.0◦. The vast majority of
the pointings were observed for 8h, all within the May 2014–
February 2020 time frame.

The ML pipeline presented in Sect. 4 does not only rely
on LoTSS DR2 Stokes I maps, but also on an infrared–optical
source catalogue. This catalogue contains the positions, mag-
nitudes, and colours of unWISE (Schlafly et al. 2019) infrared
sources and of DESI Legacy Imaging Surveys DR9 (Dey et al.
2019) optical sources.

To discover as many giants as possible, we supplemented our
ML pipeline’s sample of GRG candidates with the GRG candi-
dates from the value-added LoTSS DR2 catalogue (Hardcastle
et al. 2023). For angularly extended (ϕ > 15′′) radio components
(and thus all giants), the radio source component association and
most of the host galaxy identification for the value-added LoTSS
DR2 catalogue were performed via a public project named ‘Ra-
dio Galaxy Zoo: LOFAR’ on Zooniverse. Zooniverse is an online
citizen science platform for crowd-sourced visual inspection.10

We will refer to the value-added LoTSS DR2 catalogue as the
‘RGZ catalogue’ and to the GRG candidates in that catalogue
as the ‘RGZ GRG candidates’. The detailed source component
information provided by the RGZ catalogue allowed us to ho-
mogenise the angular length estimates of the ML pipeline GRG
candidates and the RGZ GRG candidates (see Sect. 4.6). After
visual confirmation, we supplemented our GRG sample with lit-
erature GRG samples (see Sect. 4.8).

4. Methods

To derive the projected length distribution, number density, and
lobe VFF for the intrinsic population of giants, we followed a
two-stage approach. In the first stage, we gathered all giants that
we detected in the LoTSS DR2 Stokes I images using our auto-
matic ML pipeline and added all other giants that we found in the
RGZ catalogue. We re-evaluated and homogenised the source
size estimates over the combined GRG sample, and manually
inspected the plausibility of the associated radio source compo-
nents and optical/infrared host galaxy. Finally, we merged this
GRG sample with the other GRG samples from the literature. In
the second stage, we search for the most likely parameters for
the forward model presented in Sect. 2 that describe the GRG
observed projected proper length distribution and the selection
effects of the merged GRG sample. Figure 2 shows an overview
of our approach.

4.1. Detecting radio emission

We started out with the publicly available calibrated LoTSS DR2
Stokes I images (Shimwell et al. 2022). For each of the 841
9 LoTSS DR2 is publicly available at https://lofar-surveys.
org/dr2_release.html.
10 The Zooniverse website is https://zooniverse.org.
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Fig. 2: Overview of our approach, which consists of two stages. In the first stage we built a GRG sample, and in the second stage
we inferred the properties of the intrinsic GRG population using a forward model. The brackets indicate the different parts of our
approach and mention the sections containing the corresponding details.
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pointings, we ran the PyBDSF radio blob detection software
(Mohan & Rafferty 2015) using the same parameters as used
in LoTSS DR2 (Shimwell et al. 2022) – notably, this means that
we used a 5σ detection threshold. Appendix C provides the full
list of PyBDSF parameters and their values.

The output we generated consists of a list of radio blobs with
their location and properties. PyBDSF can decompose each radio
blob it detects, into one or more 2D Gaussians. For each radio
blob, we also saved the corresponding list of Gaussians. These
Gaussians function as a source model for each radio blob and
will be used in later steps in the ML pipeline.11

4.2. Calculating radio-to-optical/infrared likelihood ratios

For radio sources, the location of the host galaxy on the sky is
close to the flux density–weighted centre of the radio source.1213

The likelihood ratio method, which exploits this idea, quantifies
the likelihood that a source in one observing band is the correct
counterpart to a source in another observing band (e.g. Richter
1975; de Ruiter et al. 1977; Sutherland & Saunders 1992).
Williams et al. (2019) used this method to cross-match the unre-
solved – and some resolved – radio sources of LoTSS DR1 to a
combined catalogue of infrared and optical sources. More specif-
ically, the infrared sources came from AllWISE (Cutri et al.
2021), whilst the optical sources came from the Panoramic Sur-
vey Telescope and Rapid Response System 1 (Pan-STARRS1;
Chambers et al. 2016) DR1 3π steradian survey. The likelihood
ratio function that Williams et al. (2019) used is a function of
the angular distance between the flux density–weighted centre of
the radio source and the flux density–weighted centre of the op-
tical or infrared source, the magnitude of the optical or infrared
source, and the colour of the optical or infrared source. The like-
lihood ratio function also takes into account uncertainties in each
of these three dependencies.

We adopted the same procedure as detailed by Williams et al.
(2019) to cross-match our simple radio sources (where ‘simple’
is to be understood as in Sect. 4.3) to a combined catalogue of
infrared and optical sources. The infrared sources came from un-
WISE (Schlafly et al. 2019), and the optical sources were now
taken from the DESI Legacy Imaging Surveys DR9 (Dey et al.
2019), which boasts deeper imagery than Pan-STARRS1 DR1
used for LoTSS DR1. The unWISE (Schlafly et al. 2019) and
DESI Legacy Imaging Surveys DR9 source catalogues are used
for LoTSS DR2 cross-matching more generally (Hardcastle et al.
2023). Per pointing, we applied the likelihood ratio method to
the full list of radio blobs and to the full list of Gaussians. For
both the blobs and the Gaussians, we stored the identifier of the
optical or infrared source that produced the highest likelihood
ratio, alongside this highest likelihood ratio itself.

11 However, as we discuss in Sect. 4.6 these source models are not al-
ways adequate for extended, well-resolved radio sources.
12 In this context, ‘close’ refers to angular distances comparable to the
survey’s resolution.
13 The flux density–weighted centre of a radio component is the sum
of the product of position and flux density for each pixel in the area
where PyBDSF found significant emission, divided by the area’s total
flux density. This calculation is performed twice: once for determin-
ing the right ascension and once for determining the declination of the
centroid. The flux density–weighted centre of a multi-component radio
source is the flux density–weighted average of the components’ individ-
ual flux density–weighted centres.

4.3. Sorting radio emission with a gradient-boosting classifier

Most radio sources that consist of a single radio blob (mostly un-
resolved or barely resolved radio sources) can be cross-matched
using the likelihood ratio method. However, some resolved radio
sources, and certainly most resolved giants (Sect. 2.7), consist of
multiple radio blobs as parametrised by PyBDSF, and therefore
require radio blob association and cannot be cross-matched us-
ing the likelihood ratio alone. To separate the simple from the
complex radio blobs in LoTSS DR1, a considerable amount of
visual inspection was applied (Williams et al. 2019). For LoTSS
DR2, Alegre et al. (2022) trained a gradient-boosting classifier
(GBC; Breiman 1997; Friedman 2001) to classify radio blobs as
either ‘simple’ or ‘complex’ based on the properties of the radio
blobs, the properties of the Gaussians fitted to these blobs, the
likelihood ratios for each, and the distance to and properties of
the nearest neighbours.

We adopted the procedure of Alegre et al. (2022) and use
their trained GBC to separate the simple radio blobs from those
that require radio component association beyond PyBDSF’s ca-
pabilities and/or optical host identification beyond the scope of
the likelihood ratio method of Sutherland & Saunders (1992).
We expect most giants to fall in the latter case.

4.4. Associating radio emission into radio sources

We proceeded with automatic radio source component associa-
tion for the complex radio blobs. Following the procedure laid
out by Mostert et al. (2022), for each of these radio blobs, we
created a 300′′ × 300′′ LoTSS DR2 image cutout centred on the
radio blob. Next, a fast region-based convolutional neural net-
work (Fast R-CNN; Girshick 2015), adapted and trained for this
purpose by Mostert et al. (2022), was applied to these cutouts to
predict which (if any) other radio blobs – whether they be com-
plex or simple – form a single physical structure with the central
radio blob. For example, the two lobes of an RG, each repre-
sented by a radio blob, might be associated together to form a
single physical radio source. Due to the fixed 300′′ × 300′′ im-
age size for which the Fast R-CNN was trained, we expect most
radio sources that are associated in our pipeline to have an angu-
lar length ϕ < 424′′.14

The result is a radio source catalogue in which some of the
radio blobs have been merged, and a component catalogue that
lists for each radio blob to which radio source it belongs. The ra-
dio and the component catalogue were completed by appending
to them the remaining list of simple radio blobs.

4.5. Identifying host galaxies in the optical and infrared

Barkus et al. (2022) created a method for identifying the optical
or infrared host of an extended radio source. The method de-
scribed by Barkus et al. (2022) takes the radio morphology into
account by drawing a ridgeline along the regions of high flux
density. The method continues with the application of the like-
lihood ratio method to quantify which pairs of host galaxy can-
didates and radio sources are a plausible match. The likelihood
ratio LR used in this context follows Eq. 1 of Sutherland & Saun-
ders (1992), with the slight simplification of having the latter’s

14 If predicted associations from neighbouring cutouts have an overlap-
ping radio blob, the associations will be merged. For example: in cutout
1 lobe A and core B are associated and in cutout 2 core B and lobe C
are associated, then the set (lobe A, core B, and lobe C) will enter the
catalogue as a single radio source, thereby creating the possibility of
detecting radio sources with angular length ϕ > 424′′.
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dependence on two angular offsets replaced by a dependence on
a radial angular offset only:

LR =
q(m, c) f (r)

n(m, c)
, (33)

where q(m, c) is a prior on the magnitude m and colour c of the
optical host, f (r) is a function of the angular offset between the
optical centroid and the radio centroid, and n(m, c) normalises
for the number density of optical sources with a certain magni-
tude m and colour c in the catalogue used for the cross-matching.

To adapt the likelihood ratio for use in the case of extended
radio sources, Barkus et al. (2022) implemented the different
components of the ratio as follows. For n(m, c), Barkus et al.
(2022) estimated the probability density over m and c for a dis-
tribution of 50, 000 randomly sampled sources from a combined
Pan-STARRS–AllWISE catalogue in the region of the sky that
overlapped with LoTSS DR1. For q(m, c), they estimated the
probability over m and c for sources from the combined Pan-
STARRS–AllWISE catalogue that were manually selected to be
the most likely optical/near-infrared host for a sample of 950
radio sources with angular length ϕ > 15′′. For both n(m, c)
and q(m, c), the AllWISE W1 magnitudes were used for m, the
Pan-STARRS i-band magnitudes minus the AllWISE W1 mag-
nitudes were used for colour c, and the PDF was formed using
a 2D kernel density estimator (KDE; e.g. Pedregosa et al. 2011)
with a Gaussian kernel and a bandwidth of 0.2. For extended
asymmetric or bent radio galaxies, the optical host is not likely
to be found at the radio centroid. Therefore, Barkus et al. (2022)
proposed that f (r) should be a function of both the distance be-
tween the radio centroid and the optical source ropt,centroid and
the smallest distance between the optical source and a ridgeline
fitted to the radio source ropt,ridge. Specifically,

f (r) = fridge(ropt,ridge) · fcentroid(ropt,centroid), (34)

with

fridge(ropt,ridge) =
1

2πσ2
r

e
−r2

opt,ridge
2σ2

r , (35)

and

fcentroid(ropt,centroid) =
1

2πσ2
c

e
−r2

opt,centroid
2σ2

c , (36)

where σ2
r = σ

2
opt + σ

2
radio + σ

2
astr. We fixed the astrometric un-

certainty σastr = 0.2′′. The optical position uncertainties σopt
are taken from the optical catalogue (generally ∼0.1′′), the radio
position uncertainty σradio is fixed to 3′′, and the uncertainty in
the centroid position σc is empirically estimated at 0.2 times the
length of the considered radio source. For the 30 optical sources
closest to the radio ridgeline, Barkus et al. (2022) calculated the
LR and considered the source with the highest LR to be the most
likely host galaxy.

We used the method of Barkus et al. (2022) but made three
minor adaptations. First, we introduce explicit regularisation for
q(m, c) and n(m, c). As the PDF estimates for q(m, c) and n(m, c)
are 2D KDEs over sampled (m, c)-distributions, the parts of the
(m, c)–parameter space that are sparsely sampled can lead to
probabilities that are effectively zero when the realistic theoret-
ical probability should be small but non-zero. Through the q/n-
fraction in Eq. 33, the resulting values of LR in the sparsely sam-
pled parts of the (m, c)–parameter space blow up to unrealistic
large values or collapse to almost 0 (see Fig. D.1). In practice,

these unsampled parts of parameter space are almost never vis-
ited by new sources for which we calculate LR. Even so, we add
a constant factor to the KDE estimate of q and n to get more ro-
bust LR values (see Fig. D.2) and to express the model uncertain-
ties in our functions of q and n. Using 10-fold cross-validation,
we empirically select the bandwidths for the KDEs leading to q
and n to be 0.4. Second, we propose an alternate form of f (r).
For giants, f (r) is rarely dominated by errors in the position of
the optical source or that of the radio source. As ropt,centroid and
ropt,ridge are slightly correlated, multiplication of fridge(ropt,ridge)
and fcentroid(ropt,centroid) under-estimates the chance of low values
of ropt,centroid or ropt,ridge. Therefore, we combine ropt,centroid and
ropt,ridge into a single parameter rmean that is the mean of the two
distance parameters. Furthermore, we observe that the empiri-
cal distributions of ropt,centroid, ropt,ridge and rmean for a sample of
radio sources with angular length > 1′ Aradio,opt for which op-
tical counterparts were determined via visual inspection do not
follow a normal distribution as assumed by Barkus et al. (2022)
but rather a lognormal distribution (see Fig. D.3). Instead of esti-
mating the values of the different error components (astrometric
error, error in optical position, error in radio position) we use
the empirical values of the distribution of f (r) for the sources in
Aradio,opt; see Appendix D for details. Third, we replaced the Pan-
STARRS1 DR1 catalogue (from which colour c was derived)
with the DESI Legacy Imaging Surveys DR9 catalogue, as the
latter goes up to an i-band magnitude of 24.

We applied the modified ridgeline method to all radio
sources in our pipeline catalogue with angular lengths larger than
1′ and brighter than 10 mJy. We limit the ridgeline procedure to
these sources to save time, as the procedure takes multiple sec-
onds per radio source.

After detecting the host galaxies of our radio sources, we
checked for spectroscopic redshifts from SDSS (VizieR cata-
logue V/147/sdss12; Ahn et al. 2012), or if not available, for
photometric redshifts from DESI (VizieR catalogue VII/292;
Duncan 2022). The SDSS catalogue also provides velocity dis-
persions and a quasar flag. The DESI catalogue includes a flag
(fclean) that indicates whether the optical source used in pho-
tometric redshift estimation is free from blending and image
artefacts. The catalogue also includes a column (pstar) that esti-
mates how likely it is that the optical source is a star based on its
colours. In both the ML pipeline and RGZ catalogues, we only
retained sources for which fclean = 1 and pstar ≤ 0.2.

4.6. Reassessing angular source lengths

Next, we proceeded to reassess the angular source lengths, for
both the radio catalogue created using the ML pipeline and the
Composite_Size column reported by the RGZ catalogue de-
scribed by Hardcastle et al. (2023). The angular source lengths
in the ML catalogue and the Composite_Size column in the
RGZ catalogue are the full width at half maximum (FWHM) of
the combined Gaussian components that make up a source, if
the source is only composed of a single radio blob. If the radio
source is composed of multiple radio blobs, the reported size is
the distance between the two furthest removed points on a con-
vex hull that encloses the FWHMs of the blobs that make up the
radio source. However, in the literature, the length of a GRG is
often reported to be the maximum distance between the signal of
a radio source that exceeds three times the image noise σ.

To get the 3σ angular lengths, we applied five steps to all
sources in both catalogues with a reported angular length ϕ > 1′.
First, we created a square image cutout with a width and height
equal to 1.5 times the old angular source length. Second, we
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Fig. 3: Summary of the angular length re-evaluation for radio
source ILTJ130738.79+270355.1. Panels A–D show the initial
cutout, the removal of neighbouring sources, the masking of
emission outside a convex hull based on the old angular length,
and the emission that is left after masking all emission below
thrice the local noise σ. The red line segments delineate the con-
vex hull of the left-over emission, and the red points indicate the
furthest removed points in this convex hull. The great-circle dis-
tance between these points is the 3σ angular length.

mask all neighbouring radio emission. Third, we mask all emis-
sion outside an ellipse with a major axis that is the old source
length, and a minor axis that is 1.1 times the old source width or
a quarter of the old source length if that value is bigger. These
numbers are a result of the observation that, with respect to the
3σ angular lengths, the old lengths were almost always signifi-
cantly overestimated, while the source width tended to be under-
estimated. Fourth, we mask all remaining emission that is below
three times the local noise. Fifth, we fitted a convex hull around
the remaining emission and determined the distance between the
points on this convex hull that were farthest apart. See Fig. 3 for
an illustrative example.

The entire process from source detection (Sect. 4.1) to source
list with optical identifications and updated angular lengths (this
subsection) took roughly half an hour to one hour per LoTSS
DR2 pointing, depending on the detected number of sources.
Each pointing can be processed independently, which allowed us
to spread the processing of all 841 LoTSS DR2 pointings over
5 nodes of a heterogeneous computer cluster with 80 physical
CPU cores in total for three to four days.

Finally, for both the ML pipeline and RGZ catalogues, we
calculate the projected proper lengths using the 3σ angular
lengths and the redshift estimates corresponding to each source,
and discard all sources that do not meet the lp ≥ lp,GRG criterion.
For the ML pipeline catalogue, we discarded all internally dupli-
cate GRG candidates using a 1′ cone search. The RGZ catalogue
did not contain any internal duplicates. That left us with 7, 001
GRG candidates in the ML pipeline catalogue and 7, 044 GRG
candidates in the RGZ catalogue.

4.7. Inspecting GRG candidates visually

The following step we took in the creation of our GRG sam-
ple was a manual visual inspection of all our GRG candidates.
For the RGZ GRG candidates, as described by Hardcastle et al.
(2023), at least five different volunteers already inspected the ra-
dio and corresponding optical emission, and in most cases the
candidates identified in this way were reinspected by a profes-
sional astronomer. The purpose of our manual visual inspec-
tion was therefore to exclude only those sources where either
the radio component association or the host identification was
obviously incorrect. For each GRG candidate, a single expert
looked at a panel showing the candidate with its neighbouring
sources masked and most neighbouring emission masked (akin
to panel C in Fig. 3) and a panel showing the candidate in its
wider context (akin to panel A in Fig. 3); additionally, the lo-
cation of the optical host was indicated. We sorted the candi-
dates into three categories: candidates that looked reasonable,
candidates that clearly missed (or included too many) significant
radio components, and candidates that showed a very unlikely
host galaxy location. For the ML pipeline GRG candidates, we
initially followed the same procedure as for the RGZ GRG can-
didates. To speed up the visual inspection, we skipped the 4, 272
ML pipeline GRG candidates that were verified RGZ giants. Af-
ter inspecting the ML pipeline GRG candidates once, we sub-
jected all that were not rejected to a second round of visual
inspection. The second round was aided by inspecting LoTSS
DR2 radio contours over a Legacy Survey DR9 (g, r, z) image
cube, where sources from the combined optical–infrared cata-
logue within the field of view were highlighted.

For the RGZ catalogue, we judged 6, 550 (93%) GRG candi-
dates to be without issues, 389 (6%) to have radio component
issues, and 105 (1%) to have been assigned an unlikely host
galaxy. For the 5, 864 (unique) ML pipeline GRG candidates,
we judged 2, 722 (47%) candidates to be without issues, 1, 963
(33%) to have radio component issues, and 1, 179 (20%) to have
been assigned an unlikely host galaxy. Radio component associ-
ation issues for the ML-identified candidates occur because the
association method leverages an object detection neural network
with rectangular bounding boxes to capture the radio compo-
nents (Mostert et al. 2022). The large extent of these sources
causes many unrelated (fore- and background) radio sources to
appear in the rectangular bounding box that encompasses the
candidate, increasing the likelihood of erroneous component as-
sociations. Future ML radio association methods should con-
sider using instance segmentation instead of object detection
with a rectangular bounding box.15 Of the 6, 550 RGZ giants,
5, 647 do not appear in previous literature and are thus new dis-
coveries. Of the 2, 722 ML pipeline giants that are not RGZ gi-
ants, 2, 597 are new discoveries.

Qualitatively, from the visual inspection, we noticed that the
verified ML pipeline GRG sample contained more symmetric
giants with colinear jets, while the verified RGZ GRG sample
contained more giants with complex, bent structures indicative
of interaction with the IGM. The ML pipeline did also detect gi-
ants with complex structures, but was often unable to fully sepa-
rate them from all neighbouring unrelated emission. An in-depth
comparison between the ML pipeline and RGZ GRG samples is
beyond the scope of this work. Figures 4 and 5 each show six
examples of previously unknown giants found through our ML-
based approach. Through cutouts covering 3′ × 3′, Fig. 4 shows

15 For the distinction between object detection and instance segmenta-
tion, see Lakshmanan et al. (2021).
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angularly compact giants; through cutouts covering 6′×6′, Fig. 5
shows more angularly extended specimina.

4.8. Merging RGZ, ML pipeline, and literature samples

To complete our GRG sample, we iteratively added giants from
the literature, going from the newest to the oldest publication.
This approach follows from the assumption that newer publica-
tions are generally based on more sensitive and higher-resolution
observations, leading to more accurate angular length measure-
ments. In an effort to avoid having duplicate giants in the fi-
nal sample, we only added giants when their host galaxies were
more than 10′′ away from all host galaxies of already aggregated
giants.

The joint RGZ–ML pipeline sample contains 9, 272 giants.
We added 1, 471 out of the 2, 193 giants presented by Oei et al.
(2023a), 43 out of the 69 giants presented by Simonte et al.
(2022), 62 out of the 62 giants presented by Gürkan et al. (2022),
165 out of the 263 giants presented by Mahato et al. (2022), 178
out of the 178 giants presented by Andernach et al. (2021), 0 out
of the 1 giants presented by Masini et al. (2021), 2 out of the 2
giants presented by Delhaize et al. (2021), 1 out of the 2 giants
presented by Bassani et al. (2021), 1 out of the 4 giants pre-
sented by Tang et al. (2020), 390 out of the 694 giants presented
by Dabhade et al. (2020b), and 0 out of the 6 giants presented by
Ishwara-Chandra et al. (2020). These additions result in a final
catalogue with 11, 585 unique giants. This is the first catalogue
of giants to contain more than 104 specimina.

Figure 6 shows a Mollweide view of the sky with the lo-
cations of both the newly confirmed giants and the giants from
the literature. Almost all known giants stay clear of the Galac-
tic Plane, where radio emission from the Milky Way – of which
we show the specific intensity function at νobs = 150 MHz in
greyscale (Zheng et al. 2017) – makes calibration and imag-
ing harder. In addition, optical host identification is much harder
near the Galactic Plane. The default field of view set-up of both
our ML pipeline (Sect. 4.4) and of RGZ favours the discovery of
giants with angular lengths of a few arcminutes at most. By con-
trast, the GRG search campaign of Oei et al. (2023a) featured
a ‘fuzzy’ ∼5′ lower threshold to allow for an exhaustive man-
ual search with an interactive and dynamic field of view (using
Aladin; Bonnarel et al. 2000). Figure 7 demonstrates that these
design choices lead to GRG samples with markedly different an-
gular length distributions.

As a result, the samples complement each other: the sam-
ple of Oei et al. (2023a) is more complete at lower redshifts and
higher projected lengths, while the RGZ and ML pipeline sam-
ples are more complete at higher redshifts and lower projected
lengths. Figure 8 demonstrates this point, while Table 1 presents
the corresponding statistics of the GRG samples.

For comparison of the 3σ lengths of the ML pipeline and
RGZ giants to those in other surveys, we inform the reader that
the central frequency and the average surface brightness thresh-
old of the observations that we use are νobs = 144 MHz and
bν,th = 25 Jy deg−2 respectively.

4.9. Estimating Bayesian model parameters

After having refined our statistical GRG framework (Sect. 2),
and after having assembled the largest sample of giants yet
(Sects. 4.1–4.8), we combined both advances to perform infer-
ence of the length distribution, number density, and lobe volume-
filling fraction of giants.

Given that our goal has been to infer properties of the full
population of giants, rather than just of those currently observed,
we included two main selection effects in our forward modelling.
As detailed in Sect. 2.4.1, we parametrised surface brightness se-
lection with three parameters, which are free parameters of the
model. As detailed in Sect. 2.4.2, a second cause of selection is
the imperfect operation of our three LoTSS DR2 search meth-
ods, all of which fail to identify a significant fraction of giants
with lobe surface brightnesses above the survey noise level. We
modelled this identification selection pobs,ID with a set of logistic
functions, regressed to GRG data. We now provide details of this
process.

4.9.1. Identification probability functions

To estimate pobs,ID(lp, z) from data, we first selected all giants
detected by the joint efforts of our machine learning pipeline,
RGZ, and the manual, visual search of Oei et al. (2023a). Next,
we retained only those giants that are located in regions of the
sky that have been scanned by all three searches. This overlap
region in principle corresponds to the full LoTSS DR2 coverage
– were it not for the fact that the search of Oei et al. (2023a)
skipped over the LoTSS DR1, which had already been scanned
by Dabhade et al. (2020b). Therefore, the actual overlap region
amounts to the LoTSS DR2 coverage with a spherical quadran-
gle removed, whose minimum and maximum right ascensions
are αmin = 160◦ and αmax = 230◦ and whose minimum and max-
imum declinations are δmin = 45◦ and δmax = 56◦. Appendix E
provides an explicit decomposition of our assumed LoTSS DR2
coverage – and therefore implicitly of the overlap region – in
terms of disjoint spherical quadrangles.

Some of the retained giants have been detected only in the
combined RGZ–ML search, others have been detected only in
the Oei et al. (2023a) search, and yet others have been detected
in both. We note that, had it operated flawlessly, the combined
RGZ–ML search would have detected all sources claimed by
Oei et al. (2023a) (or at least those that are genuine giants –
which should be the vast majority). Therefore, by mapping the
(in)ability of the RGZ–ML search to detect the giants of Oei
et al. (2023a) as a function of lp and z, one can estimate the RGZ–
ML search’s identification probability function, pobs,ID,1(lp, z).
More precisely, for each giant detected by Oei et al. (2023a), we
evaluated whether it was also detected in the RGZ–ML search,
and stored a corresponding Boolean (that is to say, either 1 or 0).
We show these Booleans, at the (lp, z) coordinates of the giants
they belong to, as yellow (representing 1) and blue (representing
0) dots in the top-left panel of Fig. 9. Viewing the Boolean at
(lp, z) as a realisation of a Bernoulli RV with success probability
p = pobs,ID,1(lp, z), we recognise the inference of the identifica-
tion probability function as a binary logistic regression problem
with two explanatory variables. The background of Fig. 9’s top-
left panel shows the corresponding best fit.

By symmetry, this approach can be reversed to estimate the
Oei et al. (2023a) search’s identification probability function,
pobs,ID,2(lp, z). Therefore, for each giant detected in the RGZ–ML
search, we evaluated whether it was also detected by Oei et al.
(2023a), and stored a corresponding Boolean. In the same way
as before, we show these Booleans in the middle-left panel of
Fig. 9. The panel’s background shows the best logistic fit.

We combine the two identification probability functions,
pobs,ID,1(lp, z) and pobs,ID,2(lp, z), in point-wise fashion as to ob-
tain a single function pobs,ID(lp, z). To do so, we follow the mini-
mal combination rule of Eq. 20.
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Fig. 4: LoTSS DR2 cutouts at central observing frequency νobs = 144 MHz and resolution θFWHM = 6′′, centred around the
hosts of newly discovered giants. Each cutout covers a solid angle of 3′ × 3′. Contours signify 3, 5, and 10 sigma-clipped stan-
dard deviations above the sigma-clipped median. For scale, we show the stellar Milky Way disk (with a diameter of 50 kpc)
generated using the Ringermacher & Mead (2009) formula, alongside a 3 times inflated version. Each DESI Legacy Imag-
ing Surveys DR9 (g, r, z) inset shows the central 1′ × 1′ square region. As all giants obey ϕ ≥ 1.3′, they must – if not ori-
ented along one of the square’s diagonals – necessarily protrude from this region. Rowwise from left to right, from top to bot-
tom, these giants are ILTJ000212.45+222116.2, ILTJ001115.77+220316.6, ILTJ001350.25+324530.8, ILTJ001831.84+322247.7,
ILTJ003025.90+334729.2, and ILTJ003534.45+221937.8.
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Fig. 5: LoTSS DR2 cutouts at central observing frequency νobs = 144 MHz and resolution θFWHM = 6′′, centred around the
hosts of newly discovered giants. Each cutout covers a solid angle of 6′ × 6′. Contours signify 3, 5, and 10 sigma-clipped stan-
dard deviations above the sigma-clipped median. For scale, we show the stellar Milky Way disk (with a diameter of 50 kpc)
generated using the Ringermacher & Mead (2009) formula, alongside a 3 times inflated version. Each DESI Legacy Imag-
ing Surveys DR9 (g, r, z) inset shows the central 1′ × 1′ square region. As all giants obey ϕ ≥ 1.3′, they must – if not ori-
ented along one of the square’s diagonals – necessarily protrude from this region. Rowwise from left to right, from top to bot-
tom, these giants are ILTJ002943.72+295700.3, ILTJ003010.58+170948.6, ILTJ003521.87+233625.9, ILTJ003712.91+284436.8,
ILTJ004002.30+252550.9, and ILTJ235802.49+331838.5.
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Fig. 6: With 11, 585 unique giants, we present the largest catalogue of large-scale galactic feedback to the Cosmic Web. The RGZ
(orange) and ML pipeline (red) samples are strictly confined to the LoTSS DR2 area, while the sample by Oei et al. (2023a) extends
to yet-to-be-released LoTSS pointings processed with the DR2 pipeline.

Table 1: Statistics of the GRG samples that we discovered, confirmed, or aggregated. From left to right, the columns provide the
number of giants in each sample, N, and the 10th, the median, and the 90th percentile of the angular length ϕ, redshift z, and
projected proper length lp.

Sample N ϕ10th (′) ϕmedian (′) ϕ90th (′) z10th zmedian z90th lp,10th (Mpc) lp,median (Mpc) lp,90th (Mpc)
ML pipeline 2, 722 1.50 1.97 3.09 0.44 0.87 1.28 0.72 0.87 1.29
RGZ 6, 550 1.56 2.19 4.40 0.31 0.75 1.19 0.73 0.91 1.57
Known giants 11, 585 1.57 2.33 5.70 0.23 0.72 1.19 0.73 0.94 1.68
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Fig. 7: Observed distributions of angular length ϕ, showing that
our three LoTSS DR2 search methods target different ranges of
ϕ. The largest angular lengths detected by Oei et al. (2023a),
RGZ, and the ML pipeline are 132′, 43′, and 8′ respectively,
but we limit the horizontal axis to 12′ for interpretability. The
vertical line marks the minimum angular length that giants can
attain: ϕGRG(lp,GRG = 0.7 Mpc) = 1.3′.

We remark that, by giving each Boolean in these logistic
regressions an equal weight, the resulting functions are tuned
to fit crowded regions of projected length–redshift parameter
space best – at the expense of accuracy in sparser regions. To
increase the accuracy of the functions for the parameter space at
large, we performed a simple rebalancing step. First, we calcu-
lated the mean number density in the parameter space given by
lp ∈ [0.7, 5 Mpc] × [0, 0.5] ∋ z. We then selectively subsampled
the data in crowded regions, following the rule that the number
density in each bin of width 0.5 Mpc and height 0.05 should not
exceed twice the mean number density of the entire parameter
space. We show the rebalanced data, alongside refitted logistic
models, in the right column of Fig. 9. We report the rebalanced
model coefficients in Table 2, and treat them as constants during
the Bayesian inference.

4.9.2. Inference in practice

In this work, we constrained the parameters of Sect. 2’s GRG
population model via a projected length–redshift histogram.
From our most extensive sample of giants, we selected those
with 0.7 Mpc C lp,GRG < lp < 5.1 Mpc and 0 < z < zmax B 0.5
that lie in the LoTSS DR2 coverage as specified in Appendix E.
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Fig. 8: Our sample of RGZ giants (orange squares) and ML
pipeline giants (red squares) effectively complements the sample
of giants with large angular lengths (blue dots) from the manual
search of Oei et al. (2023a). The remaining giants (green pluses)
are from earlier literature, as specified in Sect. 4.8.

We did not include the giants from Oei et al. (2023a) for which
only a lower bound to the redshift is known. This selection re-
tained 2, 685 out of 11, 585 giants. We used these giants to fill
a histogram with bins of width ∆lp = 0.1 Mpc and ∆z = 0.02.
We did not systematically explore the effect of these bin size
parameters on the resulting inference. However, the smaller one
chooses the bins, the higher the numerical cost will be. On the
other hand, if the bins are chosen much larger than the typi-
cal scales over which the underlying observed projected length–
redshift distribution16 varies, then some ability to extract param-
eter constraints will be lost.

To compute the posterior distribution over the six parame-
ters θ = [ξ(lp,GRG),∆ξ, bν,ref , σref , ζ, nGRG], we assumed a uni-
form prior and brute-force evaluated the likelihood function over
a regular grid that covers a total of 2.1 · 109 parameter combina-
tions.17 In doing so, we applied the Poissonian likelihood trick
described in Appendix B, which sped up our computations by
one to two orders of magnitude. Table 2 provides the param-
eter ranges for which we evaluated the likelihood (which co-
incide with their prior distribution ranges), alongside all of the
model’s constants and their assumed values. Because each likeli-
hood function evaluation can be computed independently of the
others, the problem is fully parallelisable. In practice, we dis-

16 With the ‘underlying’ observed projected length–redshift distribu-
tion, we mean the observed projected length–redshift distribution one
would obtain in the limit of an infinite number of observed giants.
17 This approach is feasible by virtue of the low numerical cost of
each likelihood function evaluation. Its main advantage is its simplic-
ity: there are no parameters to tune that govern the method’s conver-
gence behaviour. Once the model is expanded to include more param-
eters, or when selection effects with higher numerical cost are incor-
porated, more efficient (though more complicated) methods such as
Markov chain Monte Carlo or nested sampling will become necessary.

Table 2: Parameters and constants of GRG population forward
model from Sect. 2 alongside their prior ranges and values, as
used in the Bayesian inference presented in Sect. 5. The first six
constants serve to define the quantitative meaning of the parame-
ters and set the scope of the analysis. The other eleven constants
are not arbitrary: they affect the likelihood function and posterior
distribution for a given set of parameter definitions and scope.

Parameter Uniform prior range Explanation
ξ(lp,1 = lp,GRG) [−3.5,−2] Sect. 2.3
∆ξ [−3.5,−1.5] Sect. 2.3
bν,ref [1, 100] · Jy deg−2 Sect. 2.4.1
σref [0.5, 2] Sect. 2.4.1
ζ [−0.5, 0] Sect. 2.4.1
nGRG [0, 50] · (100 Mpc)−3 Sect. 2.5

Constant Value Explanation
lp,GRG 0.7 Mpc Sect. 1
lp,1 0.7 Mpc Sect. 2.3
lp,2 5 Mpc Sect. 2.3
lref 0.7 Mpc Sect. 2.4.1
νobs 144 MHz Sect. 2.4.1
zmax 0.5 Sect. 2.4
α −1 Sect. 2.4.1
bν,th 25 Jy deg−2 Sect. 2.4.1
β0,1 −1.0 Sect. 2.4.2
β0,2 −1.0 Sect. 2.4.2
βlp,1 −0.1 Mpc−1 Sect. 2.4.2
βlp,2 2.4 Mpc−1 Sect. 2.4.2
βz,1 2.8 Sect. 2.4.2
βz,2 −6.4 Sect. 2.4.2
∆lp 0.1 Mpc Sect. 4.9.2
∆z 0.02 Sect. 4.9.2
Ω 1.62 sr Appendix E

tributed the ∼104 core-hours Python calculation over ∼1500 vir-
tual cores, which were spread across ∼20 nodes of a computer
cluster. Next, we generated samples from the posterior distribu-
tion using rejection sampling (e.g. Rice 2006). We subsequently
used these samples to calculate probability distributions for de-
rived quantities.18

5. Results

By combining an unparalleled sample of giant radio galaxies
with a rigorous forward model, we have produced a posterior
distribution over parameters that characterise the intrinsic pop-
ulation of giants. Figure 10 summarises the posterior over pa-
rameter hexads θ = [ξ(lp,GRG),∆ξ, bν,ref , σref , ζ, nGRG] by means
of its one- and two-dimensional marginal distributions. In this
section, we analyse our newfound parameter constraints.

18 To calculate probability distributions over quantities that are a func-
tion of the parameters, such as the Local Universe GRG lobe VFF,
VGRG−CW(z = 0), or the joint search completeness function C, we could
in principle evaluate these quantities for each parameter combination
of the aforementioned grid and weigh each grid point’s result by the
associated likelihood (or, equivalently, posterior probability). However,
some derived quantities are costly to compute, so that excessive evalua-
tions should be avoided.
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Fig. 9: Overview of our determination of the probability to identify giants in the LoTSS DR2 with above-noise surface brightnesses,
as a function of projected length and redshift – through Radio Galaxy Zoo: LOFAR and our machine learning pipeline (top row),
through the search of Oei et al. (2023a) (middle row), and through these methods in unison (bottom row). Each of the upper four
panels shows a binary logistic regression following the theory of Sect. 2.4.2 and the practical considerations of Sect. 4.9.1. The left
column shows results from all available data, whilst the right column shows results from rebalanced data. In our Bayesian inference,
we used the latter results.

5.1. Length distribution of giant radio galaxies

Radio galaxies enrich the IGM with magnetic fields, but giants
– given their megaparsec-scale reach – appear uniquely capable
of seeding the more remote regions of the Cosmic Web. Conse-
quently, scientific interest in quantifying the length distribution
of giants has arisen from the possibility that giants contribute
significantly to cosmic magnetogenesis. The question at hand is
deceivingly simple: how common are giants of various lengths?

As pointed out by Oei et al. (2023a), due to selection ef-
fects, the observed projected length distribution is not a reli-
able estimate of the true projected length distribution. Worse
still, the relevant selection effects might not be quantitatively
known a priori, requiring joint inference of the length distribu-
tion, and the selection effect parameters. Oei et al. (2023a) per-
formed such a joint inference, and found that their data were
consistent with an underlying population of giants with Pareto-
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Fig. 10: Likelihood function over θ = [ξ(lp,GRG),∆ξ, bν,ref , σref , ζ, nGRG], based on 2,685 projected lengths and redshifts of giants
up to zmax = 0.5. We show all two-parameter marginals of the likelihood function, with contours enclosing 50% and 90% of total
probability. We mark the maximum likelihood estimate (MLE) values (grey dot) and the likelihood mean values (grey cross). The
one-parameter marginals again show the MLE (dash-dotted line), a mean-centred interval of standard deviation–sized half-width
(hashed region), and a median-centred 90% credible interval (shaded region).

distributed lengths, characterised by tail index ξ = −3.4 ± 0.5.
In the current work, we have relaxed the assumption of perfect
Paretianity, and explore whether the data are consistent with a
curved power law PDF for the GRG projected proper length RV
Lp | Lp ≥ lp,GRG. The marginals of Fig. 10 suggest that they are
– in fact, the data strongly favour curvature, with a tail index at
lp,1 B lp,GRG B 0.7 Mpc of ξ(lp,GRG) = −2.8 ± 0.2 and a total in-
crease in tail index up to lp,2 B 5 Mpc of ∆ξ = −2.4±0.3. Given
the small relative uncertainty on the latter value, our data appear

inconsistent with perfect Paretianity (∆ξ = 0). We note that our
notion of ‘data’ is different from that in Oei et al. (2023a): not
only do we use more than a thousand additional giants, we also
make more effective use of their redshift information. For further
discussion, see Sect. 6.2.

It remains an open question whether giants can be under-
stood as part of the ordinary radio galaxy population, or whether
they evolve through qualitatively different physical processes.
As pointed out in Sect. 4.1.5 of Oei et al. (2023a), a curved power
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law PDF for Lp | Lp ≥ lp,GRG is consistent with a scenario in
which giants share a broader length continuum with smaller ra-
dio galaxies. More specifically, if the broader radio galaxy length
distribution is approximately lognormal, as appears justifiable on
statistical grounds, then ξ should decrease throughout the dis-
tribution’s right tail – that is, throughout the GRG range. Fu-
ture research should determine whether such a unified non-giant
RG–GRG scenario is also quantitatively consistent with the de-
crease in ξ we have inferred here. In addition, our inferences of
ξ(lp,GRG) and ∆ξ are important in constraining Sect. 5.3’s GRG
lobe volume-filling fraction.

5.2. Number density of giant radio galaxies

The extent to which giants have contributed to cosmic magneto-
genesis depends on their intrinsic number density – which need
not necessarily be a constant, but could have evolved over time.
Observationally, giants are considered rare in comparison to
smaller radio galaxies. However, because giants are presumably
strongly affected by surface brightness selection, this present-
day observed rarity might not translate to an intrinsic rarity. Ex-
citingly, by forward modelling selection effects – and in partic-
ular surface brightness selection – we can constrain the intrinsic
comoving GRG number density between z = 0 and z = zmax,
which we denote simply by nGRG.

The bottom-right one-dimensional marginal of Fig. 10 shows
a strongly skewed distribution for nGRG, with a marginal mean
E[nGRG] = 13 ± 10 (100 Mpc)−3 and a 95% probability that
nGRG > 4 (100 Mpc)−3. These number densities are a factor of
order unity higher than those of Oei et al. (2023a), who inferred
a marginal mean E[nGRG] = 4.6 ± 2.4 (100 Mpc)−3 and a 90%
probability that nGRG < 6.7 (100 Mpc)−3.

The joint marginal distribution of nGRG and bν,ref reveals a
strong inverse relationship, whose origin is easy to grasp. Mod-
els in which giants are relatively rare (i.e. with low nGRG) but
with relatively mild surface brightness selection (i.e. with high
bν,ref) are about as successful in reproducing the data-derived
projected length–redshift histogram as models in which giants
are relatively common (i.e. with high nGRG) but with relatively
severe surface brightness selection (i.e. with low bν,ref). The nar-
rowness of the joint distribution also suggests that, if estimates
of bν,ref would reveal it to be ≳ 10 Jy deg−2, it should be possible
to break the degeneracy and accurately determine nGRG.

Recent work (Oei et al. 2023b) suggests that the co-
moving number density of luminous, non-giant radio galaxies
(LNGRGs), understood to have radio luminosities at 150 MHz of
lν ≥ 1024 W Hz−1 and projected lengths lp < lp,GRG B 0.7 Mpc,
is nLNGRG = 12 ± 1 (100 Mpc)−3. Our work suggests that giants
might be comparably common. If this is indeed the case, then
the widespread belief that giants form a rare population of radio
galaxies must be revised.

5.3. Lobe volume-filling fraction of giant radio galaxies

The present-day volume-filling fraction of the lobes of giants in
clusters and filaments of the Cosmic Web, VGRG−CW(z = 0), is
not a parameter of our model, but rather a derived quantity. As
briefly discussed in Sect. 4.9.2, we compute its probability distri-
bution using the parameter hexads that we have obtained by re-
jection sampling from the posterior. For each sampled hexad, we
compute ξ(lp) using ξ(lp,GRG), ∆ξ, and Eq. 9, then fLp | Lp≥lp,GRG (lp)
using Eq. 10, and finally VGRG−CW(z = 0) using nGRG and
Eq. 27.

10−1 100

Projected proper length lp (Mpc)

10−5

10−4

10−3

10−2

10−1

100

101

T
w

o-
lo

b
e

pr
op

er
vo

lu
m

e
V

(M
p

c3
)

VGRG = 1.2 · 10−2 Mpc3, γ = 2.7

VGRG = 1.0 · 10−2 Mpc3, γ = 2.5

Fig. 11: Empirical relation between projected proper length and
two-lobe proper volume for RGs from Ineson et al. (2017), Oei
et al. (2022), and Oei et al. (2023c). The power law–like trend
motivates Eq. 25. The green fit is based on giants only, whilst the
grey fit is based on all RGs. VGRG is the mean two-lobe proper
volume of the shortest possible giants (i.e. giants for which lp =
lp,GRG), while γ is the exponent of the power law. For self-similar
RG growth, γ = 3.

To arrive at Eq. 27, we assumed in Eq. 25 that RG projected
proper lengths and two-lobe proper volumes obey a power law
relation with scatter. To investigate the validity of this assump-
tion, we collected the projected proper lengths and two-lobe
proper volumes of all Fanaroff–Riley II RGs in the ‘represen-
tative’ sample of Ineson et al. (2017).19 Among these RGs are
just seven giants. To more reliably probe the projected proper
length–two-lobe proper volume relation for giants, we supple-
mented this sample with the giant of NGC 6185, the longest spi-
ral galaxy–generated RG known (Oei et al. 2023c), and with Al-
cyoneus, the longest elliptical galaxy–generated RG known (Oei
et al. 2022). Oei et al. (2023c) estimated that the giant of NGC
6185 measures lp = 2.45 ± 0.01 Mpc and has a two-lobe proper
volume V = 0.35 ± 0.03 Mpc3. Similarly, Oei et al. (2022) esti-
mated that Alcyoneus measures lp = 4.99 ± 0.04 Mpc and has a
two-lobe proper volume V = 2.5±0.3 Mpc3. We show the empir-
ical lp–V relation for the resulting sample in Fig. 11. Tentatively,
we consider the assumed power law relation between projected
proper length and two-lobe proper volume justified, although we
warn that the sample size is small and that we have not made
corrections for selection effects. Through least-squares minimi-
sation in log–log space, we obtained two best-fit power law rela-
tions: one for giants only (green line) and for all RGs (grey line).
In order to calculate Eq. 27, we adopted the parameters from the
giant-based fit: VGRG = 1.2 · 10−2 Mpc3 and γ = 2.7.

For each sampled hexad, we calculate E[Lγp | Lp ≥ lp,GRG]
using the law of the unconscious statistician. The mean two-lobe
volume of a giant is E[V | Lp ≥ lp,GRG](z = 0) = 5.1 ± 0.3 ·
10−2 Mpc3. As in Oei et al. (2023a), we assume that clusters and
filaments comprise 5% of the Local Universe’s volume (Forero-
Romero et al. 2009): VCW(z = 0) = 5%. We show the result-
ing posterior distribution over VGRG−CW(z = 0) in Fig. 12. This
probability distribution inherits its skewness from the skewed

19 We calculated projected proper lengths by summing the lobe tip dis-
tances of both lobes. For RGs for which Ineson et al. (2017)’s Table 5
reports data on only one lobe, we assumed that the other lobe has an
identical lobe tip distance and volume.
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Fig. 12: Posterior distribution for the instantaneous, present-day
GRG lobe volume-filling fraction in clusters and filaments of the
Cosmic Web,VGRG−CW(z = 0).

marginal of nGRG. We find VGRG−CW(z = 0) = 9+15
−4 · 10−6 and

a posterior mean and standard deviation of VGRG−CW(z = 0) =
1.4± 1.1 · 10−5. These results appear statistically consistent with
that of Oei et al. (2023a):VGRG−CW(z = 0) = 5+8

−2 · 10−6.
While they appear low at first sight, we speculate that these

numbers are consistent with a scenario in which giants contribute
significantly to cosmic magnetogenesis. To see why, we first note
that the number of giants that have ever existed might exceed
those that exist now by two orders of magnitude: giants are ac-
tively powered for ∼101–103 Myr (e.g. Hardcastle 2018; Gürkan
et al. 2022; Oei et al. 2022; Dabhade et al. 2023), the Universe
is ∼104 Myr old, and one may assume – in the absence of clear
evidence to the contrary – that the comoving number density of
giants nGRG has remained roughly constant over cosmic time.20

Second, a likely large fraction of all giants that existed through-
out cosmic history lived when the Universe was significantly
smaller. More specifically, all giants at z ≥ z10 B

3√10−1 ≈ 1.15
lived when the Universe’s volume was at least an order of mag-
nitude smaller; this period covers ∼38% of all cosmic time. If the
mean two-lobe proper volume of giants E[V | Lp ≥ lp,GRG] and
the VFF of clusters and filaments VCW have remained roughly
constant over the redshift range [0, z10], then by Eq. 27 we have
VGRG−CW(z = z10) = 10 · VGRG−CW(z = 0).21 Third, buoyant
lobes might deposit magnetic fields in their wake, while diffu-
sion, turbulence, and merger and accretion shocks from large-
scale structure formation might have spread the contents of GRG
lobes further through the IGM (e.g. Enßlin 2003). The typical ex-
tent of a GRG lobe along a single spatial dimension, ℓ, can be
considered to be

ℓ(z) B
3

√
E[V | Lp ≥ lp,GRG](z)

2
, (37)

meaning that ℓ(z = 0) = 0.295 ± 0.006 Mpc ∼ 10−1 Mpc.
If, after jet fuelling stops, lobes rise buoyantly to the edges of
filaments, their total traversed path length will be ∼100 Mpc
(e.g. Gheller & Vazza 2019). The columns through which GRG

20 The dynamics of RGs are different at early epochs; reasons include
a less developed large-scale structure but higher mean cosmic densities,
higher AGN cold gas accretion and galaxy merger rates (e.g. O’Leary
et al. 2021), and more severe inverse Compton energy losses to the CMB
(e.g. Hardcastle 2018). Giants possibly representative of early epochs
are discussed in e.g. Mahato et al. (2022).
21 Based on Millennium simulations, which are dark matter–only, Cau-
tun et al. (2014) suggest that VCW may instead have decreased from
∼10% at z = z10 to ∼5% at z = 0. This would imply that VGRG−CW(z =
z10) is a factor ∼2 smaller than we claim here.

lobes have risen might therefore have a volume that is an or-
der of magnitude larger than the lobes’ own. Taken together,
these three effects could render the present-day VFF of magnetic
fields that were once contained in the lobes of giants higher than
VGRG−CW(z = 0) by four (i.e. 2 + 1 + 1) or more orders of mag-
nitude. This, in turn, suggests a significant astrophysical seed-
ing potential. For instance, assuming four orders of magnitude,
∼10% of the volume of today’s Cosmic Web should have been
magnetised by giants.

We finally point out that giant-induced IGM magnetic fields
could have strengths consistent with observational constraints.
At the moment, the lowest magnetic field strengths measured in
giant radio galaxy lobes, as inferred from images of Alcyoneus
and the giant generated by NGC 6185 assuming the equiparti-
tion or minimum energy condition, are 400–500 nG (Oei et al.
2022, 2023c). If such field strengths would be typical, and buoy-
ancy and diffusion lowers the density of field lines by an order
of magnitude, then the typical giant-induced IGM field strength
would be ∼10 nG. This is in agreement with recent radio esti-
mates and limits (e.g. Table 1 of Vazza et al. 2021). We note
that this argument ignores possibly significant amplification and
decay mechanisms, such as turbulent amplification and decay.

6. Discussion

Below, we discuss how our ML pipeline and GRG population
inference compare to earlier work.

6.1. Comparison with previous machine learning search
techniques

Proctor (2016) applied an ML approach to search for GRG can-
didates by looking for likely pairs of (unresolved) radio lobes
with the required angular length in the NRAO VLA Sky Survey
(NVSS; Condon et al. 1998). For this radio source component
association problem, Proctor (2016) trained an oblique classifier
(a type of decision tree ensemble; Murthy et al. 1993), using six
source finder–derived features on 51, 195 pairs of radio compo-
nents, 48 of which were verified giants. This method proved to
be useful under the assumption that giants generally appear as
an isolated pair of unresolved radio blobs, which is the case for
NVSS with its 45′′ resolution and 450 µJy beam−1 sensitivity.
Dabhade et al. (2020a) visually inspected the 1, 600 GRG can-
didates presented by Proctor (2016) and confirmed 151 giants,
which implies a 9% precision for the GRG candidate predictions.
However, Proctor (2016) expect that giants with resolved lobes
– which rule-based source finders often incorrectly break down
into multiple separate sources – require a different approach, and
virtually all GRG lobes in LoTSS are resolved.22 It works in our
favour that the convolutional neural network in our ML pipeline
(Sect. 4.4) was specifically designed to use the morphology of
the resolved, extended emission as a cue for the radio source
component association. Furthermore, as the source suggestions
from our ML pipeline include optical host identifications, the
candidates that we inspected not only have the required angu-
lar length but also have a host galaxy and corresponding redshift
estimate assigned. This allows us to visually inspect only those
radio sources that fulfil the projected proper length lp,GRG := 0.7
Mpc requirement. Overall, our ML pipeline has a precision of
47% for the GRG candidates that it suggests.

22 As all giants have angular lengths ϕ ≥ 1.3′, they cover at least 13
LoTSS 6′′ beams. This suggests that a single GRG lobe will cover mul-
tiple beams, too.
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6.2. Comparison with previous inference strategies

Compared to the approach of Oei et al. (2023a), our approach
makes better use of the redshift information available for each
giant. More specifically, we use the redshifts to make a ‘redshift-
resolved’ observed projected length histogram, while Oei et al.
(2023a) only compared a ‘redshift-collapsed’ distribution of
observed projected lengths to forward model predictions of
Lp,obs | Lp,obs ≥ lp,GRG. Effectively, Oei et al. (2023a) therefore
used for each giant only Boolean redshift information, I(zi <
zmax): that is, a truth value indicating whether or not the giant
with index i resides at a redshift below the maximum considered
value.

In addition, our work changed the comoving number density
of giants, nGRG, from a derived quantity to a model parameter.
This approach acknowledges the fact that the observed number
of giants, either for a specific projected length–redshift bin or
for the parameter space in its entirety, scales linearly with nGRG
(if the selection effects remain the same). Therefore, there is in-
trinsic population information contained in the observed number
of giants. However, by comparing predicted and observed prob-
ability distributions only, Oei et al. (2023a) did not exploit this
fact.

6.3. Future work

With the advent of large-scale, sensitive, low-frequency sky sur-
veys such as the LoTSS, the Evolutionary Map of the Uni-
verse survey (EMU; Norris et al. 2011), and the arrival of next-
generation instruments such as the SKA (Dewdney et al. 2009)
and the DSA-2000 (e.g. Hallinan et al. 2019; Connor et al. 2022)
later this decade, opportunities will arise to detect many more
giants than have been found hitherto. It is therefore likely that
automated approaches to giant finding and host association will
become only more relevant in the future.

Regarding our own machine learning–based pipeline, there
is significant room to improve both the radio component asso-
ciation and the host association. Visual inspection indicated a
precision of 47% and the empirically determined pobs,ID in Fig.
9 showed that even in combination with the RGZ sample, the
ML pipeline recall does not surpass 70%. Sensible paths to im-
prove the radio component association within the ML pipeline
architecture include switching from rectangular bounding box–
based object detection (the Fast R-CNN used in this article) to
pixel-based instance segmentation and using a larger convolu-
tional backbone (e.g. Liu et al. 2022; Wright et al. 2010) or a
transformer-based backbone (e.g. Liu et al. 2021; Zhang et al.
2023; Li et al. 2023). Mostert et al. (2022) conclude that a larger
convolutional neural network is not effective unless one also sig-
nificantly increases the quantity of high-quality training data,
and in general, transformers require even more training data than
convolutional neural networks (e.g. Wang et al. 2023). To that
extent, adding a filtered version23 of the available LoTSS DR2
RGZ annotations (Hardcastle et al. 2023) to the training data can
be considered. Furthermore, assembling a joined data set encom-
passing the (labelled) survey data of other low frequency radio
telescopes can be considered. Pretraining on this data set can
benefit radio galaxy component association, host identification
and morphological classification tasks across the board.

Finally, there appear to be clear opportunities to make the
population-based forward model presented in Sect. 2 more ac-

23 For example, by identifying a handful of very active and expert vol-
unteers and increasing the weight of their votes.

curate. For example, at present, we have neglected photometric
redshift uncertainties; however, the consequences of these un-
certainties appear perfectly possible to forward model. One such
currently ignored consequence is Eddington bias: as RGs with
projected lengths lp = 0.6 Mpc are intrinsically more common
than those with projected lengths lp = 0.8 Mpc, redshift error–
induced projected length errors have the net effect of falsely rais-
ing the number of supposed giants with projected lengths near
lp,GRG B 0.7 Mpc. This effect could contaminate the inference of
ξ(lp,GRG). Somewhat more challenging, but plausibly of greater
value, would be a further exploration of how surface brightness
selection is effectively modelled. A major focus of such an ex-
ploration would be to analyse the surface brightness character-
istics of hitherto discovered giants. As the masked cutouts of
Fig. 3 suggest, the machine learning–based pipeline described in
this work offers the exciting potential to amass – fully automati-
cally – surface brightness properties for thousands of giants. The
availability of such properties for a large fraction of observed gi-
ants also allows one to fit the forward model to an observed pro-
jected length–redshift–surface brightness histogram, rather than
to an observed projected length–redshift histogram only. It is
highly likely that adding another dimension to the data yields
tighter parameter constraints. To make the identification prob-
ability functions of Fig. 9 more accurate, it appears promising
to have an expert visually (and exhaustively, i.e. without impos-
ing angular length thresholds) comb through a small represen-
tative region of LoTSS DR2 in search of giants. The resulting
data set would provide a better basis for determining the iden-
tification probability functions than the RGZ–ML or Oei et al.
(2023a) data sets used in this work. We note that the Boötes LO-
FAR Deep Field search of Simonte et al. (2022) does not ap-
pear suited for this purpose, as the increased depth of this field
renders it unrepresentative of LoTSS DR2 as a whole. Finally,
the model could be expanded in an attempt to measure cosmo-
logical evolution of, for example, nGRG. However, we note that
adding additional parameters to the model necessitates adopt-
ing more efficient inference techniques, such as Markov chain
Monte Carlo or nested sampling. The associated numerical gain
would, in part, be negated by losing the speed-up associated to
the likelihood trick of Appendix B.

To determine the instantaneous VFF of GRG lobes in the
Cosmic Web, VGRG−CW(z), one needs to calculate the mean
GRG two-lobe proper volume E[V | Lp ≥ lp,GRG](z). To estimate
the latter quantity, we have proposed to leverage the apparent
power law relation between projected length and two-lobe vol-
ume shown in Fig. 11. However, the fit in this work is based on
data of just nine giants. To improve this situation, we recom-
mend expanding the capabilities and automating the paramet-
ric Bayesian lobe volume estimation method introduced by Oei
et al. (2022, 2023c). This method could then be applied to thou-
sands of our ML pipeline’s masked cutouts, such as the one in
Fig. 3. This effort would increase the number of giants on which
our fit of the projected length–two-lobe volume power law is
based by two to three orders of magnitude.

7. Conclusions

In this work, we concatenated an existing crowd-sourced radio–
optical catalogue, a new ML pipeline to automate radio–optical
catalogue creation, and a Bayesian forward model to build a
next-generation giant radio galaxy discovery and characterisa-
tion machine. Applying this setup to the LOFAR Two-metre Sky
Survey, we uncovered thousands of previously unknown giants,
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confirmed thousands of GRG candidates, and constrained the
properties of the underlying population.

1. The LoTSS is an ongoing sensitive, high-resolution, low-
frequency radio survey whose second data release (DR2)
covers 27% of the northern sky. As the number of detected
sources already ranges in the millions, it has become unfea-
sible (at least for small scientific teams) to conduct manual
visual searches for giants, in particular for those with angular
lengths close to the lower limit of 1.3′.

2. To address this challenge, we scanned all 841 LoTSS DR2
pointings – which together cover more than 5,000 square de-
grees of the northern sky – with an ML pipeline that crucially
includes the convolutional neural network of Mostert et al.
(2022), designed for the association of radio components
for highly resolved radio galaxies, and an adapted version
of the automated optical host galaxy identification heuristic
developed by Barkus et al. (2022). Used as a GRG detec-
tion system, our ML pipeline has a precision of 47%, a sig-
nificant improvement over the 9% precision obtained using
the previously best ML GRG detection model (Proctor 2016;
Dabhade et al. 2020a). We merged the resulting giant candi-
date sample with that of the RGZ citizen science campaign
(Hardcastle et al. 2023), homogenised the angular lengths,
and subjected the candidates to a visual quality check. The
result is a sample of more than 8,000 newly confirmed giants,
of which a large fraction are considered genuine beyond rea-
sonable doubt. More than 104 unique giants have now been
identified and published.

3. We expand the population-based statistical forward model of
Oei et al. (2023a) designed to constrain the geometric prop-
erties of giants. In particular, by modelling the PDF of the ra-
dio galaxy projected length RV Lp as a curved power law, we
automatically also model the PDF of the giant radio galaxy
projected length RV Lp | Lp ≥ lp,GRG as a curved power law.
We assume that these projected length distributions do not
undergo intrinsic evolution between cosmological redshifts
of z = zmax and z = 0, and likewise assume an intrinsi-
cally constant comoving GRG number density throughout
this redshift range. We model surface brightness selection by
assuming a lognormal lobe surface brightness distribution at
the survey’s central frequency νobs, which is valid for radio
galaxies of intrinsic proper length lref at redshift z = 0. We
relate lobe surface brightness distributions for radio galaxies
of other lengths and at other redshifts to this reference dis-
tribution. In addition, we model selection caused by the im-
perfect ability of search methods to identify all in-principle
identifiable giants. For this purpose, we use logistic functions
of projected length lp and redshift z.

4. We then sought to identify all model parameter hexads that
can reproduce the projected length–redshift histogram of the
joint RGZ–ML–Oei et al. (2023a) LoTSS DR2 GRG sample.
Through a simple Poissonian likelihood and a uniform prior
distribution, we constructed a posterior distribution over the
model parameters. By confronting the model with an ob-
served projected length–redshift histogram, rather than with
an observed projected length distribution only (as has been
done in Oei et al. (2023a)), we obtain tighter parameter con-
straints.

5. We find evidence in support of the claim that the projected
lengths of giant radio galaxies follow a curved power-law
PDF, whose tail index is equal to ξ(lp,GRG) = −2.8 ± 0.2 at
lp,1 = lp,GRG B 0.7 Mpc and increases by ∆ξ = −2.4 ± 0.3
(i.e. decreases by 2.4 ∓ 0.3) in the projected length interval

leading up to lp,2 = 5 Mpc. The predicted median lobe sur-
face brightness at νobs = 150 MHz, lref = 0.7 Mpc, and z = 0
is equal to bν,ref = 30 ± 20 Jy deg−2. This surface brightness
level is lower than previously thought. Tight degeneracies
resembling inverse relations exist between bν,ref and the ref-
erence surface brightness dispersion measure σref , and be-
tween bν,ref and the GRG number density nGRG. The latter
relation suggests that giants might be more common than
previously thought. At nGRG = 13 ± 10 (100 Mpc)−3, giants
appear to be of an abundance comparable to that of luminous
non-giant radio galaxies. We conclude that, at any moment
in time, a significant fraction of the radio galaxy population
is in a GRG phase. As an immediate consequence, the frac-
tion of radio galaxies that end their lives as giants must be
even higher.

6. Finally, we generate a posterior distribution for the instan-
taneous volume-filling fraction of GRG lobes in clusters and
filaments of the Cosmic Web,VGRG−CW(z = 0) – a key statis-
tic required for determining the cosmic magnetogenesis po-
tential of giants. We findVGRG−CW(z = 0) = 1.4± 1.1 · 10−5.
The mean two-lobe proper volume of a giant is E[V | Lp ≥

lp,GRG](z = 0) = 5.1 ± 0.3 · 10−2 Mpc3. If a GRG population
similar to that in the Local Universe has existed for most of
the lifetime of the Universe, and IGM mixing processes are
significant, then it appears possible that magnetic fields orig-
inating from giants permeate throughout significant (≳10%)
fractions of today’s Cosmic Web.

Using modern automation and inference techniques (which still
leave significant room for future improvements), we conducted
the most detailed study of the abundance and geometrical prop-
erties of giants to date. These cosmic colossi may provide a pre-
viously underappreciated contribution to astrophysical magneto-
genesis.
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Appendix A: Curved power law PDF for L

In Sect. 2.3, we have started modelling the geometry of radio
galaxies at the level of the projected proper length RV Lp. While
algebraically easier – when curved power laws are considered,
at least – this approach is more limited than starting the forward
model at the level of the intrinsic proper length RV L. In this
appendix, we calculate the distribution of Lp upon modelling L
with a curved power law. Let us assume that, for l ≥ lmin,

fL(l) ∝
(

l
lmin

)ξ(l)
, (A.1)

where ξ(l) = al + b. We now use the identity that for f (x) =(
x
c

)ax+b
, one finds

d f (x)
dx

=

( x
c

)ax+b
(
a ln

x
c
+ a +

b
x

)
= f (x)

(
a ln

x
c
+ a +

b
x

)
.

(A.2)

Therefore,

d fL(l)
dl
= fL(l)

(
a ln

l
lmin
+ a +

b
l

)
, (A.3)

and

d fL(lpη)
dlp

= fL(lpη)
(
a ln

lpη
lmin
+ a +

b
lpη

)
η. (A.4)

Therefore, finding the PDF of Lp requires calculating three dif-
ferent integrals over η:

fLp (lp) = − (1 + b)
∫ ∞

1

√
1 −

1
η2 fL(lpη) dη

− lpa
(
1 + ln

lp
lmin

) ∫ ∞

1

√
η2 − 1 fL(lpη) dη

− lpa
∫ ∞

1

√
η2 − 1 fL(lpη) ln η dη for lp > lmin. (A.5)

The PDF of Lp | Lp ≥ lp,GRG follows through Eq. 3.

Appendix B: Likelihood trick

Thanks to its Poissonian form, there exists a particularly nu-
merically efficient way of computing the likelihood presented
in Sect. 2.8 as a function of nGRG, for fixed values of the other
parameters. Defining

A(θ) B
Nb∑
i=1

Ni ln λi(θ) and B(θ) B
Nb∑
i=1

λi(θ), (B.1)

one interested in the log-likelihood up to a constant only needs
to compute

ℓ(θ) B lnL({Ni} | θ) +
Nb∑
i=1

ln (Ni!) = A(θ) − B(θ). (B.2)

The quantity B(θ) has a simple interpretation: it is the total num-
ber of giants expected to be observed under θ within the entire
projected length–redshift parameter space considered.

How does ℓ change upon changing nGRG? When nGRG 7→

a · nGRG, λi 7→ a · λi, so that

ℓ(nGRG) 7→
Nb∑
i=1

Ni ln (a · λi) − a · λi

= A(nGRG) − a · B(nGRG) + ln a ·
Nbins∑
i=1

Ni. (B.3)

(In the notation ℓ(nGRG), A(nGRG), and B(nGRG), we suppress
the dependence on the other five parameters.) We conclude that,
when nGRG increases by a factor a, the A-term in ℓ remains the
same, the B-term in ℓ becomes a factor a bigger, and an extra
factor emerges: namely, the product of ln a and the total number
of giants in the data set.

The significance of this result is that, once A and B are known
at some reference number density nGRG,ref , we can rapidly eval-
uate ℓ for any other number density. In this work, we implement
this ‘likelihood trick’ by evaluating ℓ for two different values of
nGRG (and for many different values of the other parameters). We
then solve for A(nGRG,ref) and B(nGRG,ref), and use

ℓ(nGRG) = A(nGRG,ref) −
nGRG

nGRG,ref
· B(nGRG,ref)

+ ln
nGRG

nGRG,ref
·

Nb∑
i=1

Ni. (B.4)

Appendix C: PyBDSF parameters

As described in Sect. 4.1, the GRG detection pipeline uses
PyBDSF for the initial radio blob detection. For reproducibil-
ity, we provide the specific parameters used, which we adopted
from Shimwell et al. (2022):

bdsf.process_image(<filename>,thresh_isl=4.0,
thresh_pix=5.0, rms_box=(150,15), rms_map=True,
mean_map=’zero’, ini_method=’intensity’,
adaptive_rms_box=True, adaptive_thresh=150,
rms_box_bright=(60,15), group_by_isl=False,
group_tol=10.0, output_opts=True, atrous_do=True,
atrous_jmax=4, flagging_opts=True,
flag_maxsize_fwhm=0.5, advanced_opts=True,
blank_limit=None, frequency=143.65e6)

Appendix D: Adaptations of the radio ridgeline
based host galaxy identification

Here we elaborate on two small adaptations of the radio–optical
crossmatch method introduced by Barkus et al. (2022). First, we
explicitly regularised q(m, c) and n(m, c). Figure D.1 shows that
the unregularised forms of q and n can take on extreme values
in the LR (eq. 33) in sparsely sampled regions of the (m, c)–
parameter space. The 2D KDE that models q(m, c) was fitted
on the m and c values of all 905 sources with an angular length
ϕ > 1′ from 40 randomly picked LoTSS DR2 pointings. The
2D KDE that models n(m, c) was fitted on the m and c values
of 10, 000 sources that were randomly sampled from the entire
combined infrared–optical catalogue. By simply adding a small
constant factor to q(m, c) and n(m, c) we get more robust LR
values, see Fig. D.2. We added a constant factor 0.1 · qmax and
0.1 ·nmax for q and n respectively, where qmax is the maximum of
the KDE for q and nmax is the maximum of the KDE for n. We set
the KDE bandwidths to 0.4 following a 10-fold cross-validation.
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Fig. D.1: Unregularised KDE estimates for q in the left panel, n in the second panel, and q/n with logarithmic colour bar in the third
panel. The KDE bandwidth of 0.2 stems from Barkus et al. (2022).
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panel. The KDE bandwidth of 0.4 stems from 10-fold cross-validation.

Second, we changed the form of f (r). Theoretically, we
might expect both the distance between the ‘true’ optical coun-
terpart and the radio ridgeline ropt,ridge and the distance between
the ‘true’ optical counterpart and the radio centroid ropt,centroid to
be Rayleigh distributed.24 However, as Fig. D.3 demonstrates,
the lognormal distribution clearly provides the best empirical fit
to the distances. The figure shows a histogram of the distance
measures for RGs to their optical counterpart as manually iden-
tified through RGZ. Specifically, we plot the distances for the
same 905 RGs, with an angular length ϕ > 1′, from 40 randomly
selected pointings as above. Thus we update f (r) to be:

f (rmean) =
1

rmeanσ
√

2π
e(− (ln rmean−µ)2

2σ2 ), (D.1)

where we empirically determined σ and µ using our sample of
905 RGs,

µ =

∑
i ln rmean,i

n
= −3.37 (D.2)

24 In two dimensions, the Euclidean distance between the origin and
a point whose Cartesian coordinates are independent, zero-mean, and
equal-variance normal random variables, is Rayleigh distributed. This
motivates modelling the angular distance between the optical counter-
part and the radio centroid with a Rayleigh distribution. The appropriate
value of the distribution’s parameter likely depends (positively) on the
angular length of the RG considered; as such, one would not expect a
single Rayleigh distribution to work for all RGs.

and

σ2 =

∑
i (ln rmean,i − µ)2

n
= 1.28, (D.3)

with n = 905 the size of our sample.
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Fig. D.3: Each panel shows the histogram of a different distance measure between 905 radio galaxies with ϕ > 1′ and their optical
host. The grey, dark grey, and black lines show empirical fits to these histograms for Rayleigh, normal, and lognormal distributions
respectively. The tails of the histograms are long; for visualisation purposes we only plot the r-axis up to 0.05, 0.20, and 0.20.

Appendix E: Sky coverages

As an extension of Sect. 4.9, this appendix details the sky cov-
erages of our analyses. In particular, Table E.1 provides a de-
composition – in terms of disjoint spherical quadrangles – of the
sky coverage common between the ML pipeline, RGZ, and the
combined manual search of Dabhade et al. (2020b) and Oei et al.
(2023a). For simplicity, and as an acknowledgement of the wig-
gle room inherent to defining this joint sky coverage, we chose
integer coordinates. Together, these spherical quadrangles cover
Ω = 5327.9 deg2 = 1.62 sr (25.8%) of the Northern Sky. We
refer to this coverage simply as the ‘LoTSS DR2 coverage’.

The RGZ–ML–Oei et al. (2023a) overlap region amounts to
the LoTSS DR2 coverage with the LoTSS DR1 spherical quad-
rangle removed. The minimum and maximum right ascensions
of this quadrangle are αmin = 160◦ and αmax = 230◦, while
its minimum and maximum declinations are δmin = 45◦ and
δmax = 56◦. This smaller overlap region covers 4838.9 deg2

(23.5%) of the Northern Sky. It is the sky coverage relevant to
estimating the identification probability functions of Sect. 4.9.1
and Fig. 9: pobs,ID,1(lp, z), pobs,ID,2(lp, z), and pobs,ID(lp, z).

Table E.1: Sky coordinates and solid angles of disjoint spherical
quadrangles whose union forms the LoTSS DR2 sky coverage
– over which we have performed our inference. For each spher-
ical quadrangle, we provide the minimum and maximum right
ascension, αmin and αmax, the minimum and maximum declina-
tion, δmin and δmax, and its solid angle, Ω. We list the largest
quadrangles first. The second and third quadrangle touch along
the 360◦–0◦ right ascension coordinate boundary, and could be
viewed as a single whole.

αmin (◦) αmax (◦) δmin (◦) δmax (◦) Ω (deg2)
120 253 28 69 3536.7
0 35 16 35 597.5
338 360 16 35 375.6
253 269 28 47 240.1
109 120 25 41 147.1
269 277 31 47 99.2
330 338 17 30 95.2
191 210 23 28 85.7
35 41 24 32 42.3
253 260 58 69 34.3
120 131 25 28 29.5
277 281 41 47 17.3
327 330 17 20 8.5
277 280 32 35 7.5
117 120 53 57 6.9
260 264 66 69 4.6
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