BI-LIPSCHITZ RIGIDITY OF DISCRETE SUBGROUPS

RICHARD CANARY, HEE OH, AND ANDREW ZIMMER

ABSTRACT. We obtain a bi-Lipschitz rigidity theorem for a Zariski dense discrete subgroup of a connected simple real algebraic group. As an application, we show that any Zariski dense discrete subgroup of a higher rank semisimple algebraic group G cannot have a C^1 -smooth slim limit set in G/P for any non-maximal parabolic subgroup P.

1. Introduction

For i = 1, 2, let G_i be a connected simple real algebraic group and Γ_i a Zariski dense discrete subgroup of G_i . Let

$$\rho:\Gamma_1\to\Gamma_2$$

be an isomorphism. The classical rigidity problem searches for a condition on ρ which guarantees that ρ is algebraic, that is, it extends to a Lie group isomorphism $G_1 \to G_2$.

If Γ_1 is a lattice in G_1 and either

- $G_1 = G_2$ has rank one and is not locally isomorphic to $PSL_2(\mathbb{R})$, or
- G_1 has higher rank,

then any isomorphism $\rho: \Gamma_1 \to \Gamma_2$ is algebraic by celebrated theorems of Mostow, Prasad, and Margulis ([16], [17], [15]). On the other hand, there are very few rigidity theorems for non-lattice discrete subgroups, especially in higher rank. In this article, we provide a rigidity criterion $\rho: \Gamma_1 \to \Gamma_2$ in terms of a ρ -boundary map between the limit sets of Γ_1 and Γ_2 .

Since Γ_i is Zariski dense, there exists a unique Γ_i -minimal subset Λ_i in $\mathcal{F}_i = G_i/P_i$ for a parabolic subgroup P_i of G_i , called the limit set. When both parabolic subgroups are maximal, our result takes the following simple form:

Theorem 1.1 (Bi-Lipschitz rigidity theorem I). Assume that P_1 and P_2 are maximal parabolic subgroups. Let $\rho: \Gamma_1 \to \Gamma_2$ be an isomorphism. If there exists a bi-Lipschitz ρ -equivariant map $f: \Lambda_1 \to \Lambda_2$, then ρ extends to a Lie group isomorphism

$$\bar{\rho}:G_1\to G_2$$

which induces a diffeomorphism $\bar{f}: \mathcal{F}_1 \to \mathcal{F}_2$ such that $\bar{f}|_{\Lambda_1} = f$.

Canary is partially supported by the NSF grant No. DMS-2304636. Oh is partially supported by the NSF grant No. DMS-1900101. Zimmer is partially supported by a Sloan research fellowship and NSF grant No. DMS-2105580.

Recall that $f: \Lambda_1 \to \Lambda_2$ is bi-Lipschitz if there exists $C \geq 1$ such that for all $\xi, \eta \in \Lambda_1$,

$$(1.1) C^{-1}d_{\mathcal{F}_1}(\xi,\eta) \le d_{\mathcal{F}_2}(f(\xi),f(\eta)) \le Cd_{\mathcal{F}_1}(\xi,\eta)$$

where $d_{\mathcal{F}_i}$ is a Riemannian metric on \mathcal{F}_i for i=1,2. Since any two Riemannian metrics on \mathcal{F}_i are bi-Lipschitz equivalent to each other, this notion is well-defined. We note that there can be at most one ρ -equivariant map $f: \Lambda_1 \to \Lambda_2$ [12, Lemma 4.5]. We emphasize that we do not require f to be defined on all of \mathcal{F}_1 , but only on Λ_1 . For $G_1 = G_2 = \mathrm{SO}(n,1)^\circ$, $n \geq 2$, Theorem 1.1 was proved by Tukia [29, Theorem D].

- Remark 1.2. (1) The hypothesis that G_1 and G_2 are simple is necessary; see Remark 4.8.
 - (2) The global bi-Lipschitz hypothesis on f can be replaced by the condition that f is bi-Lipschitz on some non-empty open subset of Λ_1 ; see Lemma 4.9.

We now state a general version of Theorem 1.1 where P_1 and P_2 are arbitrary parabolic subgroups.

Theorem 1.3 (Bi-Lipschitz rigidity theorem II). Let $\rho: \Gamma_1 \to \Gamma_2$ be an isomorphism. If there exists a bi-Lipschitz ρ -equivariant map $f: \Lambda_1 \to \Lambda_2$, then ρ extends to a Lie group isomorphism

$$\bar{\rho}:G_1\to G_2.$$

Moreover, there exists a parabolic subgroup P_2' of G_2 containing P_2 such that $\bar{\rho}(P_1) \subset P_2'$ up to a conjugation and the smooth submersion $G_1/P_1 \to G_2/P_2'$ induced by $\bar{\rho}$ coincides with the composition $\pi \circ f$ on Λ_1 where $\pi: G_2/P_2 \to G_2/P_2'$ is the canonical factor map.

$$\begin{array}{ccc} \Lambda_1 & \xrightarrow{f} & \Lambda_2 \\ & & \circlearrowleft & \downarrow^{\pi} \\ G_1/P_1 & \xrightarrow{\bar{\varrho}} & G_2/P_2' \end{array}$$

See Theorem 4.7 for a stronger version which relaxes the bi-Lipschitz condition to a κ -bi-Hölder condition for $\kappa > 0$.

Remark 1.4. In general, P'_2 is not the same as P_2 . We use the theory of hyperconvex subgroups to construct a Zariski dense discrete subgroup of $SL_8(\mathbb{R})$ which demonstrates this point in Proposition 6.1.

Theorem 1.3 also has consequences for the regularity of the limit set of Γ in G/P when G is a higher rank semisimple real algebraic group and P is a non-maximal parabolic subgroup.

Theorem 1.5 (Regularity of slim limit sets). Let G be a connected semisimple real algebraic group of rank at least 2 and P a non-maximal parabolic

subgroup of G. Any Zariski dense discrete subgroup of G cannot have a slim limit set in G/P which is a C^1 -submanifold.

Note that any non-maximal parabolic subgroup P is contained in at least two non-conjugate maximal parabolic subgroups of G. We call a subset $S \subset G/P$ slim if there exists a pair of non-conjugate maximal parabolic subgroups P_1, P_2 containing P such that the canonical factor map $\pi_i: G/P \to G/P_i$ is injective on S for i = 1, 2.

In particular, the limit set of any subgroup of a P-Anosov or relatively P-Anosov subgroup is always slim. More generally, if any two points in the limit set are in general position, then the limit set is slim.

The non-maximal hypothesis on P in Theorem 1.5 is necessary, as there are many Zariski dense discrete subgroups of $\operatorname{PSL}_n(\mathbb{R})$, $n \geq 3$, whose limit sets are C^1 -submanifolds of $\mathbb{P}(\mathbb{R}^n)$, e.g., images of Hitchin [14] and Benoist representations [2]. We remark that the limit sets of these examples are not C^2 as shown by Zimmer [32].

- Remark 1.6. (1) When G is of rank one, the limit set Λ of a Zariski dense subgroup of G is not a proper C^r -submanifold of G/P where r=1 for $G=\mathrm{SO}(n,1)^\circ$ and r=2 for other rank one groups ([30, Proposition 3.12 and Corollary 3.13]). In higher rank, there exists $0 < r < \infty$, depending on G, such that Λ is not a proper C^r -submanifold of G/P for any parabolic subgroup P [5, Lemma 2.11].
 - (2) Theorem 1.5 was previously established for images of Hitchin representations [26, Corollary 6.1] and for images of (1, 1, 2)-hyperconvex representation of a surface group [18, Corollary 7.7]. We also mention [6], [31], and [20] for related work on the regularity of the limit set for certain classes of subgroups of G = SO(d, 2), $PSL_d(\mathbb{R})$ and SO(p,q) respectively.

On the proofs. We deduce Theorem 1.3 and Theorem 1.5 from the following property of limit sets of a Zariski dense subgroup in higher rank:

Proposition 1.7. Let G be a connected semisimple real algebraic group of rank at least 2. Let Q_1 and Q_2 be a pair of parabolic subgroups of G such that there is no parabolic subgroup of G containing Q_1 and a conjugate of Q_2 (e.g., a pair of non-conjugate maximal parabolic subgroups).

If $\Gamma < G$ is a Zariski dense discrete subgroup, then there is no Γ -equivariant bi-Lipchitz map between the limit sets of Γ on G/Q_1 and G/Q_2 .

Indeed, if ρ in Theorem 1.3 does not extend to a Lie group isomorphism $G_1 \to G_2$, then the following self-joining subgroup

(1.2)
$$\Gamma = (\mathrm{id} \times \rho)(\Gamma_1) = \{ (g, \rho(g)) : g \in \Gamma_1 \}$$

is a Zariski dense subgroup of the product $G = G_1 \times G_2$. On the other hand, a bi-Lipschitz map f as in Theorem 1.3 yields a bi-Lipschitz homeomorphism between the limit sets of the self-joining group Γ in $G/(P_1 \times G_2)$ and $G/(G_1 \times P_2)$, which then gives a desired contradiction by Proposition 1.7. We mention the recent work [10] and [11] on related rigidity theorems which use the idea of self-joinings.

If Γ has a C^1 -slim limit set in G/P as in Theorem 1.5 and P_1 and P_2 are non-conjugate maximal parabolic subgroups containing P, we get a bi-Lipschitz map between the limit sets of Γ in G/P_1 and G/P_2 from the slimness hypothesis. Therefore Proposition 1.7 implies Theorem 1.5.

For the proof of Proposition 1.7, we relate the exponential contraction rates of loxodromic elements $\gamma \in \Gamma$ on G/Q_i with the Jordan projections of the image of γ under Tits representations of G. This part of the argument is motivated by earlier work of Zimmer [32, Section 8]. We then show that the bi-Lipschitz equivalence of the limit sets gives an obstruction to Benoist's theorem [1] on the non-empty interior property of the limit cone of a Zariski dense subgroup (see the proof of Proposition 4.3).

Acknowledgement. We would like to thank Dongryul Kim for helpful comments on a preliminary version of this paper.

2. Preliminaries

Unless mentioned otherwise, let G be a connected semisimple real algebraic group throughout the paper. This means that G is the identity component $\mathbf{G}(\mathbb{R})^{\circ}$ for a semisimple algebraic group \mathbf{G} defined over \mathbb{R} . A parabolic \mathbb{R} -subgroup \mathbf{P} of \mathbf{G} is a proper algebraic subgroup defined over \mathbb{R} such that the quotient \mathbf{G}/\mathbf{P} is a projective algebraic variety. A parabolic subgroup P of G is of the form $\mathbf{P}(\mathbb{R})$ for a parabolic \mathbb{R} -subgroup \mathbf{P} of \mathbf{G} ; in this case, the quotient G/P is equal to $(\mathbf{G}/\mathbf{P})(\mathbb{R})$ and is a real projective variety, called a G-boundary [3]. Any parabolic subgroup P is conjugate to a unique standard parabolic subgroup of G, once we fix a root system associated to G.

To be precise, let A be a maximal real split torus of G. The rank of G is defined as the dimension of A. Let \mathfrak{g} and \mathfrak{a} respectively denote the Lie algebras of G and A. Fix a positive Weyl chamber $\mathfrak{a}^+ \subset \mathfrak{a}$ and set $A^+ = \exp \mathfrak{a}^+$, and a maximal compact subgroup K < G such that the Cartan decomposition $G = KA^+K$ holds. We denote by M the centralizer of A in K. For $g \in G$, we denote by $\mu(g)$ the Cartan projection of g, which is the unique element of \mathfrak{a}^+ such that $g \in K \exp \mu(g)K$.

Any $g \in G$ can be written as the commuting product $g = g_h g_e g_u$ where g_h is hyperbolic, g_e is elliptic and g_u is unipotent. The hyperbolic component

 g_h is conjugate to a unique element $\exp \lambda(g) \in A^+$ and

$$\lambda(g) \in \mathfrak{a}^+$$

is called the Jordan projection of g. When $\lambda(g) \in \operatorname{int} \mathfrak{a}^+$, $g \in G$ is called loxodromic in which case g_u is necessarily trivial and g_e is conjugate to an element $m \in M$.

Let $\Phi = \Phi(\mathfrak{g}, \mathfrak{a})$ denote the set of all roots and Π the set of all simple roots given by the choice of \mathfrak{a}^+ . The Weyl group \mathcal{W} is given by $N_K(A)/M$ where $N_K(A)$ is the normalizer of A in K.

Consider the real vector space $\mathsf{E}^* = \mathsf{X}(A) \otimes_{\mathbb{Z}} \mathbb{R}$ where $\mathsf{X}(A)$ is the group of all real characters of A and let E be its dual. Denote by (\cdot, \cdot) a \mathcal{W} -invariant inner product on E . We denote by $\{\omega_{\alpha} : \alpha \in \Pi\}$ the (restricted) fundamental weights of Φ defined by

$$2\frac{(\omega_{\alpha},\beta)}{(\beta,\beta)} = c_{\alpha}\delta_{\alpha,\beta}$$

where $c_{\alpha} = 1$ if $2\alpha \notin \Phi$ and $c_{\alpha} = 2$ otherwise.

Fix an element $w_0 \in N_K(A)$ of order 2 representing the longest Weyl element so that $\mathrm{Ad}_{w_0} \mathfrak{a}^+ = -\mathfrak{a}^+$. The map

$$i = -Ad_{w_0} : \mathfrak{a} \to \mathfrak{a}$$

is called the opposition involution. It induces an involution of Φ preserving Π , for which we use the same notation i, so that $i(\alpha) = \alpha \circ i$ for all $\alpha \in \Phi$.

For a non-empty subset θ of Π , let $\mathfrak{a}_{\theta} = \cap_{\alpha \in \Pi - \theta} \ker \alpha$, and let P_{θ} denote a standard parabolic subgroup of G corresponding to θ ; that is, $P_{\theta} = L_{\theta}N_{\theta}$ where L_{θ} is the centralizer of $\exp \mathfrak{a}_{\theta}$ and N_{θ} is the unipotent radical of P_{θ} which is generated by root subgroups associated to all positive roots which are not \mathbb{Z} -linear combinations of elements of $\Pi - \theta$. If $\theta = \Pi$, then $P = P_{\Pi}$ is a minimal parabolic subgroup. For a singleton $\theta = {\alpha}$, P_{α} is a maximal parabolic subgroup of G. Any parabolic subgroup P is conjugate to a unique standard parabolic subgroup P_{θ} for some non-empty subset $\theta \subset \Pi$.

We consider the θ -boundary:

$$\mathcal{F}_{\theta} = G/P_{\theta}$$
.

We denote by $d_{\mathcal{F}_{\theta}}$ a Riemannian metric on \mathcal{F}_{θ} . Let $P_{\theta}^{+} = w_{0}P_{\mathrm{i}(\theta)}w_{0}^{-1}$, which is the standard parabolic subgroup opposite to P_{θ} such that $P_{\theta} \cap P_{\theta}^{+} = L_{\theta}$. Hence $\mathcal{F}_{\mathrm{i}(\theta)} = G/P_{\mathrm{i}(\theta)} = G/P_{\theta}^{+}$. The G-orbit $\mathcal{F}_{\theta}^{(2)} = \{(gP_{\theta}, gw_{0}P_{\mathrm{i}(\theta)}) : g \in G\}$ is the unique open G-orbit in $G/P_{\theta} \times G/P_{\theta}^{+}$ under the diagonal G-action. Two elements $\xi \in \mathcal{F}_{\theta}$ and $\eta \in \mathcal{F}_{\mathrm{i}(\theta)}$ are said to be in general position if $(\xi, \eta) \in \mathcal{F}_{\theta}^{(2)}$.

3. Contraction rates of loxodromic elements and Tits representations

The first part of the following theorem immediately follows as a special case of a theorem of Tits [25], and the second part is remarked in [1] and proved in [23].

Theorem 3.1 ([25, Theorem 7.2], [23, Lemma 2.13]). For each $\alpha \in \Pi$, there exists an irreducible representation $\rho_{\alpha} : G \to \operatorname{GL}(V_{\alpha})$ whose highest (restricted) weight χ_{α} is equal to $k_{\alpha}\omega_{\alpha}$ for some positive integer k_{α} and whose highest weight space is one-dimensional.

Moreover, all weights of ρ_{α} are χ_{α} , $\chi_{\alpha} - \alpha$ and weights of the form $\chi_{\alpha} - \alpha - \sum_{\beta \in \Pi} n_{\beta}\beta$ with n_{β} non-negative integers.

These representations are called Tits representations of G. Fix $\alpha \in \Pi$ and, as before, set $\mathcal{F}_{\alpha} = G/P_{\alpha}$. We denote by V_1 and V_2 the weight spaces of ρ_{α} for the highest weight χ_{α} and the second highest weight $\chi_{\alpha} - \alpha$ respectively. We have dim $V_1 = 1$ and dim $V_2 \geq 1$. If we set $\xi_{\alpha} = [P_{\alpha}] \in \mathcal{F}_{\alpha}$, the map $g\xi_{\alpha} \mapsto gV_1$ gives an embedding

$$\mathcal{F}_{\alpha} \to \mathbb{P}(V_{\alpha})$$

whose image is a closed subvariety. We may hence identify \mathcal{F}_{α} as a closed subvariety of $\mathbb{P}(V_{\alpha})$. Let $\langle \cdot, \cdot \rangle_{\alpha}$ be a K-invariant inner product on V_{α} with respect to which A is symmetric and we have the orthogonal weight space decomposition of V_{α} . Using the norms on V_{α} and $\wedge^2 V_{\alpha}$ induced by this inner product, we get a K-invariant Riemannian metric d_{α} on $\mathbb{P}(V_{\alpha})$:

$$d_{\alpha}([v], [w]) = \frac{\|v \wedge w\|}{\|v\| \|w\|}$$
 for $[v], [w] \in \mathbb{P}(V_{\alpha})$.

Recall that an element $g \in G$ is loxodromic if there exist $a \in \text{int } A^+$ and $m \in M$ such that $g = h_g am h_g^{-1}$ for some $h_g \in G$. The element h_g is then uniquely determined modulo AM and $\lambda(g) = \log a \in \text{int } \mathfrak{a}^+$.

Let $\pi_i = \pi_{\alpha,i} : V_\alpha \to V_i$ be the orthogonal projection for i = 1, 2. Recall the following standard lemma:

Lemma 3.2. Let g be a loxodromic element of G. For $\xi \in \mathcal{F}_{\alpha}$, we have $\pi_1(h_q^{-1}\xi) \neq 0$ if and only if $g^n\xi$ converges to $h_q\xi_{\alpha}$ as $n \to \infty$.

The point $y_{\alpha}^g := h_g \xi_{\alpha} \in \mathcal{F}_{\alpha}$ is called the attracting fixed point of g.

Lemma 3.3. Let $g \in G$ be a loxodromic element and $\alpha \in \Pi$.

(1) For all $\xi \in \mathcal{F}_{\alpha}$ with $\pi_1(h_q^{-1}\xi) \neq 0$, we have

$$-\alpha(\lambda(g)) \ge \limsup_{n \to \infty} \frac{1}{n} \log d_{\alpha}(g^n \xi, y_{\alpha}^g).$$

(2) For all $\xi \in \mathcal{F}_{\alpha}$ with $\pi_1(h_q^{-1}\xi) \neq 0$ and $\pi_2(h_q^{-1}\xi) \neq 0$, we have

$$-\alpha(\lambda(g)) = \lim_{n \to \infty} \frac{1}{n} \log d_{\alpha}(g^{n}\xi, y_{\alpha}^{g}).$$

Proof. It suffices to prove the claim when $h_g = e$, i.e., $g = am \in AM$ with $\log a \in \operatorname{int} \mathfrak{a}^+$. Considering $\xi \in \mathcal{F}_{\alpha} \subset \mathbb{P}(V_{\alpha})$, choose a vector $v \in V_{\alpha}$ representing ξ . List all distinct weights of ρ_{α} given by Theorem 3.1 as follows: $\chi_1 = \chi_{\alpha}, \chi_2 = \chi_{\alpha} - \alpha$, and $\chi_i = \chi_{\alpha} - \alpha - \beta_i, 3 \leq i \leq \ell$; in particular, $\beta_i \neq 0$ is a non-negative integral linear combinations of simple roots. Let V_i denote the weight space corresponding to χ_i and write $v = v_1 + v_2 + \cdots + v_\ell$ so that $v_i \in V_i$ for each $1 \leq i \leq \ell$. Suppose that $\pi_1(\xi) \neq 0$, that is $v_1 \neq 0$. We may then assume that v_1 is a unit vector relative to $\langle \cdot, \cdot \rangle_{\alpha}$. Since M commutes with A, M stabilizes each weight subspace, and in particular, $Mv_1 = \pm v_1$. Now

$$g^n v = e^{n\chi_\alpha(\log a)} m^n v_1 + e^{n(\chi_\alpha - \alpha)(\log a)} m^n v_2 + \sum_{i=3}^{\ell} e^{n(\chi_\alpha - \alpha - \beta_i)(\log a)} m^n v_i.$$

Hence the projection $p(g^n v)$ of $g^n v$ to the affine chart $\mathbb{A} = \{w \in V_\alpha : \pi_1(w) = v_1\}$ is

$$p(g^{n}v) = v_{1} + e^{-n\alpha(\log a)}m^{n}v_{2}' + \sum_{i=3}^{\ell} e^{-n(\alpha+\beta_{i})(\log a)}m^{n}v_{i}'$$

where $v_i' = \pm v_i$, depending on the sign of $m^n v_1$. Note that $\lim g^n \xi = V_1$, and that the metric d_{α} on a neighborhood on V_1 in $\mathbb{P}(V_{\alpha})$ is bi-Lipschitz equivalent to the metric d on the affine chart \mathbb{A} , obtained by restricting the distance on V_{α} induced by $\langle \cdot, \cdot \rangle_{\alpha}$.

Since the weight spaces are orthogonal, we have

$$d(p(q^n v), v_1) = e^{-n\alpha(\log a)} (\|v_2\|^2 + \|w_n\|^2)^{1/2}$$

where $w_n = \sum_{i=3}^{\ell} e^{-n\beta_i(\log a)} m^n v_i'$ and $\|\cdot\|$ is the norm induced by $\langle\cdot,\cdot\rangle_{\alpha}$. Since $\log a \in \operatorname{int} \mathfrak{a}^+$ and hence $\beta_i(\log a) > 0$ for all $3 \leq i \leq \ell$, we have

$$\lim_{n\to\infty} w_n = 0.$$

First consider the case when $\pi_2(\xi) = 0$, that is $v_2 = 0$. Since $\log ||w_n|| < 0$ for all large n, we have

$$\limsup_{n \to \infty} \frac{1}{n} \log d_{\alpha}(g^{n}\xi, y_{\alpha}^{g}) = \limsup_{n \to \infty} \frac{1}{n} \log d(p(g^{n}v), v_{1})$$

$$= \limsup_{n \to \infty} \frac{1}{n} (-n\alpha(\log a) + \log ||w_{n}||) \le -\alpha(\log a).$$

Now suppose that $\pi_2(\xi) \neq 0$, that is $v_2 \neq 0$. Again since $w_n \to 0$, we have

$$\lim_{n \to \infty} \frac{1}{n} \log d_{\alpha}(g^n \xi, y_{\alpha}^g) = \lim_{n \to \infty} \frac{1}{n} \log d(p(g^n v), v_1) = -\alpha(\log a).$$

This finishes the proof.

4. BI-LIPSCHITZ RIGIDITY OF DISCRETE SUBGROUPS

Let G be a connected semisimple real algebraic group and X = G/K be the associated Riemannian symmetric space and fix $o = [K] \in X$.

We consider the following notion of convergence of a sequence in G to an element of $\mathcal{F}_{\theta} = G/P_{\theta}$ for a non-empty subset $\theta \subset \Pi$.

For a sequence $g_i o \in X$ and $\xi \in \mathcal{F}_{\theta}$, we write $\lim g_i o = \xi$ and say $g_i o \in X$ converges to ξ if

- (1) $\min_{\alpha \in \theta} \alpha(\mu(g_i)) \to \infty$ as $i \to \infty$; and
- (2) $\lim_{i\to\infty} \kappa_{g_i} P_{\theta} = \xi$ in \mathcal{F}_{θ} for some $\kappa_{g_i} \in K$ such that $g_i \in \kappa_{g_i} A^+ K$.

Definition 4.1. Let $\Gamma < G$ be a discrete subgroup and let $\mathcal{F} = G/P$ for a parabolic subgroup P. Let $\theta \subset \Pi$ be a unique subset such that P is conjugate to P_{θ} and hence $\mathcal{F} = \mathcal{F}_{\theta}$. The limit set of Γ in \mathcal{F}_{θ} is then defined as the set of all accumulation points of $\Gamma(o)$ in \mathcal{F}_{θ} :

$$\Lambda_{\theta} = \Lambda_{\theta}(\Gamma) = \{\lim \gamma_i(o) \in \mathcal{F}_{\theta} : \gamma_i \in \Gamma\}.$$

It is a Γ -invariant closed subset of \mathcal{F}_{θ} , which is non-empty provided Γ contains a sequence γ_i satisfying $\lim_{i\to\infty} \min_{\alpha\in\theta} \alpha(\mu(\gamma_i)) = \infty$. If Γ is Zariski dense, Λ_{θ} is the unique Γ -minimal subset of \mathcal{F}_{θ} and can also be described as the set of all $\xi \in \mathcal{F}_{\theta}$ such that the Dirac measure δ_{ξ} is the weak limit of $(\gamma_i)_*$ Leb $_{\theta}$ for some sequence $\gamma_i \in \Gamma$ where Leb $_{\theta}$ denotes the unique K-invariant probability measure on \mathcal{F}_{θ} ([1], [21]). Moreover, if $\Theta \subset \theta$, then Λ_{Θ} is equal to the image of Λ_{θ} under the canonical projection $\mathcal{F}_{\theta} \to \mathcal{F}_{\Theta}$, by minimality.

The limit cone of Γ is defined as the smallest closed cone of \mathfrak{a}^+ containing all Jordan projections of loxodromic elements of Γ .

Theorem 4.2 (Benoist [1]). If $\Gamma < G$ is Zariski dense, its limit cone has non-empty interior in \mathfrak{a} .

For $\kappa > 0$ and $\theta_1, \theta_2 \subset \Pi$, a map $F : \Lambda_{\theta_1} \to \Lambda_{\theta_2}$ is called κ -bi-Hölder if there exists C > 0 such that for all $x, y \in \Lambda_{\theta_1}$

$$(4.1) C^{-1}d_{\mathcal{F}_{\theta_1}}(x,y)^{\kappa} \le d_{\mathcal{F}_{\theta_2}}(F(x),F(y)) \le Cd_{\mathcal{F}_{\theta_1}}(x,y)^{\kappa}$$

where $d_{\mathcal{F}_{\theta_i}}$ is a Riemannian metric on \mathcal{F}_{θ_i} for i=1,2. Observe that if Γ is Zariski dense, any Γ -equivariant κ -bi-Hölder map $\Lambda_{\theta_1} \to \Lambda_{\theta_2}$ is a homeomorphism; the minimality of Λ_{θ_2} implies the surjectivity and the bi-Hölder property implies the injectivity. Therefore F is κ -bi-Hölder if and only if F is κ -Hölder and F^{-1} is κ^{-1} -Hölder.

Proposition 1.7 follows from the following for $\kappa = 1$:

Proposition 4.3. Let $\Gamma < G$ be Zariski dense. Let θ_1 and θ_2 be disjoint non-empty subsets of Π . Then for any $\kappa > 0$, there exists no Γ -equivariant κ -bi-Hölder map $F : \Lambda_{\theta_1} \to \Lambda_{\theta_2}$.

Proof. For simplicity, we write $\Lambda_i = \Lambda_{\theta_i}$ and $d_{\theta_i} = d_{\mathcal{F}_{\theta_i}}$. Let $F : \Lambda_1 \to \Lambda_2$ be a Γ -equivariant homeomorphsim. Fix $\kappa > 0$. Since $\theta_1 \cap \theta_2 = \emptyset$, the union

 $\bigcup_{\alpha_1 \in \theta_1, \alpha_2 \in \theta_2} \ker(\kappa \alpha_1 - \alpha_2)$ is a finite union of hyperplanes of \mathfrak{a} . Therefore by Theorem 4.2, Γ contains a loxodromic element γ such that

$$\{\kappa \cdot \alpha(\lambda(\gamma)) : \alpha \in \theta_1\} \cap \{\alpha(\lambda(\gamma)) : \alpha \in \theta_2\} = \emptyset.$$

For each i = 1, 2, let $\alpha_i \in \theta_i$ be such that

(4.2)
$$\alpha_i(\lambda(\gamma)) = \min\{\alpha(\lambda(\gamma)) : \alpha \in \theta_i\}.$$

Note that

(4.3)
$$\kappa \cdot \alpha_1(\lambda(\gamma)) \neq \alpha_2(\lambda(\gamma)).$$

Claim: If F^{-1} is κ^{-1} -Hölder, then

(4.4)
$$\alpha_2(\lambda(\gamma)) \le \kappa \cdot \alpha_1(\lambda(\gamma)).$$

By replacing Γ by a suitable conjugate, we may also assume that $\gamma = am \in \Gamma$ with $a \in \text{int } A^+$ and $m \in M$. For each i = 1, 2, let $y_i = y_{\alpha_i}^{\gamma}$ denote the attracting fixed point of γ in \mathcal{F}_i ; we have $y_i \in \Lambda_i$. As Γ is Zariski dense, Λ_i is Zariski dense in \mathcal{F}_i for each i = 1, 2. Let $\pi_{\alpha,1}$ and $\pi_{\alpha,2}$ be as in Lemmas 3.2 and 3.3 for each $\alpha \in \Pi$. Since the set

$$\mathcal{O} = \{ \xi \in \mathcal{F}_1 : \pi_{\alpha,1}(\xi) \neq 0, \pi_{\alpha,2}(\xi) \neq 0 \text{ for all } \alpha \in \theta_1 \}$$

is a Zariski open subset of \mathcal{F}_1 , the intersection $\mathcal{O} \cap \Lambda_1$ is a non-empty open subset of Λ_1 . As F is a homeomorphism, the image $F(\mathcal{O} \cap \Lambda_1)$ is a non-empty open subset of Λ_2 . Since $Z = \{\xi \in \mathcal{F}_2 : \gamma^n \xi \not\to y_2 \text{ as } n \to \infty\}$ is a proper Zariski closed subset of \mathcal{F}_2 by Lemma 3.2, $F(\mathcal{O} \cap \Lambda_1)$ cannot be contained in Z; otherwise it would imply that Λ_2 is contained in a proper Zariski closed subset by the Γ_2 -minimality of Λ_2 , which contradicts the Zariski density of Γ_2 . Therefore there exists an element $\xi \in \mathcal{O} \cap \Lambda_1$ such that $\lim_{n\to\infty} \gamma^n F(\xi) = y_2$. By the equivariance and continuity of F, we have

(4.5)
$$F(y_1) = \lim F(\gamma^n \xi) = \lim \gamma^n F(\xi) = y_2.$$

Let i = 1, 2. Since $P_{\theta_i} = \bigcap_{\alpha \in \theta_i} P_{\alpha}$, we have a diagonal embedding

$$\mathcal{F}_i = G/P_{\theta_i} \to \prod_{\alpha \in \theta_i} \mathbb{P}(V_{\alpha})$$

via the product of the maps in (3.1). Consider the metric d_i on \mathcal{F}_i obtained as the restriction of $\sum_{\alpha \in \theta_i} d_{\alpha}$ to \mathcal{F}_i : for $\eta = gP_{\theta_1}$ and $\eta' = g'P_{\theta_2}$ with $g, g' \in G$,

$$d_i(\eta, \eta') = \sum_{\alpha \in \theta_i} d_{\alpha}(\eta, \eta')$$

where $d_{\alpha}(\eta, \eta') := d_{\alpha}(gV_{\alpha,1}, g'V_{\alpha,1})$ where $V_{\alpha,1}$ is the highest weight line of ρ_{α} as in (3.1). Since d_i is bi-Lipschitz equivalent to a Riemannian metric on \mathcal{F}_i , we have that $F^{-1}: (\Lambda_2, d_2) \to (\Lambda_1, d_1)$ is κ^{-1} -Hölder.

Since $\xi \in \mathcal{O}$ and $\lim \gamma^n F(\xi) = y_2$, we have by Lemma 3.3 that

$$-\alpha(\lambda(\gamma)) = \lim \frac{1}{n} \log d_{\alpha}(\gamma^n \xi, y_1)$$
 for each $\alpha \in \theta_1$

and

$$-\alpha(\lambda(\gamma)) \ge \limsup \frac{1}{n} \log d_{\alpha}(\gamma^n F(\xi), y_2)$$
 for each $\alpha \in \theta_2$.

Since $d_{\alpha_1}(\eta, \eta') \leq d_1(\eta, \eta')$, $d_2(\eta, \eta') \leq \#\theta_2 \max_{\alpha \in \theta_2} d_{\alpha}(\eta, \eta')$, and F^{-1} is κ^{-1} -Hölder, we have

$$(4.6) -\alpha_{1}(\lambda(\gamma)) = \lim \frac{1}{n} \log d_{\alpha_{1}}(\gamma^{n}\xi, y_{1})$$

$$\leq \lim \frac{1}{n} \log d_{1}(\gamma^{n}\xi, y_{1})$$

$$\leq \kappa^{-1} \lim \sup \frac{1}{n} \log d_{2}(F(\gamma^{n}\xi), F(y_{1}))$$

$$= \kappa^{-1} \lim \sup \frac{1}{n} \log d_{2}(\gamma^{n}F(\xi), y_{2})$$

$$= \kappa^{-1} \max_{\alpha \in \theta_{2}} \lim \sup \frac{1}{n} \log d_{\alpha}(\gamma^{n}F(\xi), y_{2})$$

$$\leq -\kappa^{-1} \min_{\alpha \in \theta_{2}} \alpha(\lambda(\gamma)) = -\kappa^{-1}\alpha_{2}(\lambda(\gamma)).$$

This implies that $\alpha_2(\lambda(\gamma)) \leq \kappa \alpha_1(\lambda(\gamma))$, proving the claim.

By switching the role of θ_1 and θ_2 , this claim then implies that if F is κ -Hölder, then $\alpha_1(\lambda(\gamma)) \leq \kappa^{-1}\alpha_2(\lambda(\gamma))$. Therefore if F is κ -bi-Hölder, then $\kappa \cdot \alpha_1(\lambda(\gamma)) = \alpha_2(\lambda(\gamma))$, contradicting (4.3). This finishes the proof.

The proof of Proposition 4.3 shows the following as well:

Proposition 4.4. Let $\Gamma < G$ be Zariski dense and let $\theta_1, \theta_2 \subset \Pi$ be nonempty disjoint subsets. Suppose that Λ_{θ_1} and Λ_{θ_2} are C^1 -submanifolds of \mathcal{F}_{θ_1} and \mathcal{F}_{θ_2} respectively. If $F : \Lambda_{\theta_1} \to \Lambda_{\theta_2}$ is a Γ -equivariant homeomorphism, F cannot be C^1 with non-vanishing Jacobian at any $\xi \in \mathcal{A}$, where $\mathcal{A} \subset \Lambda_{\theta_1}$ is the set of all attracting fixed points of loxodromic elements $\gamma \in \Gamma$ such that $\{\alpha(\lambda(\gamma)) : \alpha \in \theta_1\} \cap \{\alpha(\lambda(\gamma)) : \alpha \in \theta_2\} = \emptyset$.

Proof. Let $\gamma \in \Gamma$ be as above. For each i = 1, 2, let $y_i \in \Lambda_{\theta_i}$ be the attracting fixed point of γ . Then $F(y_1) = y_2$ by (4.5). Suppose that F is C^1 at y_1 , and the Jacobian of F at y_1 is not zero. Then F^{-1} is also C^1 at y_2 . Using the exponential maps and the Taylor series expansion of F, we get that there exist $c \geq 1$ and an open neighborhood U of y_1 in Λ_{θ_1} such that for all $y \in U$,

(4.7)
$$c^{-1}d_1(y,y_1) \le d_2(F(y),F(y_1)) \le cd_1(y,y_1).$$

Let $\alpha_i \in \theta_i$ be as in (4.2). Without loss of generality, we may assume $\alpha_1(\lambda(\gamma)) < \alpha_2(\lambda(\gamma))$ by switching the indexes if necessary. On the other hand, using (4.7), the computation (4.6) gives $\alpha_2(\lambda(\gamma)) \leq \alpha_1(\lambda(\gamma))$, which yields a contradiction.

Remark 4.5. It would be interesting to know whether \mathcal{A} can be replaced by the set of all *conical* limit points of Γ in Proposition 4.4. A point $\xi = gP_{\theta_1}$ is Γ -conical if $\limsup \Gamma g(K \cap P_{\theta_1})A^+ \neq \emptyset$, that is, there exists a sequence

 $\gamma_i \in \Gamma$, $a_i \in A^+$ and $m_i \in K \cap P_{\theta_i}$ such that $\gamma_i g m_i a_i$ converges (see [13, Lemma 5.4] for an equivalent definition in terms of shadows).

This question is inspired by a related result for $G = SO(n+1,1)^{\circ}$. Tukia [27] showed that if $f : \mathbb{S}^n \to \mathbb{S}^n$ is a homeomorphism which conjugates a discrete subgroup Γ_1 of G to another discrete group Γ_2 and has a non-vanishing Jacobian at a conical limit point of Γ_1 , then Γ_1 is conjugate to Γ_2 (see also [7] for an extension of this result to other rank one groups). For a related result for (1, 1, 2)-hyperconvex groups, see [18, Corollary 7.5].

In the rest of this section, let G_i be a connected simple real algebraic group and θ_i be a non-empty set of simple roots of G_i for i=1,2. Let $\Gamma_i < G_i$ be a Zariski dense discrete subgroup and Λ_{θ_i} denote the limit set of Γ_i in $\mathcal{F}_i = G_i/P_{\theta_i}$.

Lemma 4.6. [12, Lemma 4.5] For any isomorphism $\rho: \Gamma_1 \to \Gamma_2$, there exists at most one ρ -equivariant continuous map $f: \Lambda_{\theta_1} \to \Lambda_{\theta_2}$.

Indeed, f must send the attracting fixed point of any loxodromic element γ to that of $\rho(\gamma)$ whenever $\rho(\gamma)$ is loxodromic. Since the set of attracting fixed points of loxodromic elements is dense in Λ_{θ_1} by the Zariski density hypothesis on Γ_1 [1] and f is continuous, this determines the map f.

Theorem 1.3 is a special case of the following theorem for $\kappa = 1$:

Theorem 4.7. Suppose that there exists a ρ -equivariant κ -bi-Hölder map $f: \Lambda_{\theta_1} \to \mathcal{F}_2$ for some $\kappa > 0$. Then ρ extends to a Lie group isomorphism $\bar{\rho}: G_1 \to G_2$. Moreover, there exists a non-empty subset $\Theta_2 \subset \theta_2$ such that $\bar{\rho}$ maps P_{θ_1} into a conjugate of P_{Θ_2} and the smooth submersion $G_1/P_{\theta_1} \to G_2/P_{\Theta_2}$ induced by $\bar{\rho}$ coincides with the composition $\pi \circ f$ on Λ_{θ_1} where $\pi: G_2/P_{\theta_2} \to G_2/P_{\Theta_2}$ is the canonical factor map.

Proof. Let $G = G_1 \times G_2$. Define the following self-joining subgroup

$$\Gamma = (\mathrm{id} \times \rho)(\Gamma_1) = \{(\gamma, \rho(\gamma)) : \gamma \in \Gamma_1\} < G.$$

Note that $P_1 := P_{\theta_1} \times G_2$ and $P_2 := G_1 \times P_{\theta_2}$ are parabolic subgroups of G. The maps $g_1 P_{\theta_1} \mapsto (g_1, e) P_1$ and $g_2 P_{\theta_2} \mapsto (e, g_2) P_2$ define diffeomorphisms between G_1/P_{θ_1} and G_2/P_{θ_2} with G/P_1 and G/P_2 respectively. Moreover, under this identification, the limit set Λ_{θ_i} of Γ_i in G_i/P_{θ_i} corresponds to the limit set Λ_i of the self-joining Γ in G/P_i for each i=1,2.

Since f is a ρ -equivariant continuous embedding of Λ_{θ_1} into G/P_{θ_2} , its image is a Γ_2 -invariant compact subset. Since Λ_{θ_1} is a Γ_1 -minimal subset, the image $f(\Lambda_{\theta_1})$ is also a Γ_2 -minimal subset. Therefore $f(\Lambda_{\theta_1}) = \Lambda_{\theta_2}$ and hence we have a Γ -equivariant bijection $f: \Lambda_1 \to \Lambda_2$ which is κ -bi-Hölder.

Since P_1 and P_2 are parabolic subgroups corresponding to disjoint subsets of simple roots of G, Proposition 4.3 implies that Γ cannot be Zariski dense in G. Since both G_1 and G_2 are simple, the non-Zariski density of the self-joining group Γ implies that ρ extends to a Lie group isomorphism $\bar{\rho}: G_1 \to G_2$ (cf. [4]).

Since $\bar{\rho}(P_{\theta_1})$ must be a parabolic subgroup of G_2 , there exists $g \in G_2$ such that $\bar{\rho}(P_{\theta_1}) = gP_{\theta_0}g^{-1}$ where θ_0 is a non-empty subset of some simple roots of G_2 . We claim $\theta_0 \cap \theta_2 \neq \emptyset$. By replacing ρ by $\mathrm{inn}(g) \circ \rho$ where $\mathrm{inn}(g) : G_2 \to G_2$ is the conjugation by g, we may assume without loss of generality that g = e. The isomorphism $\bar{\rho}$ induces a diffeomorphism $\tilde{\Phi} : G_1/P_{\theta_1} \to G_2/P_{\theta_0}$ given by $\tilde{\Phi}(g_1P_{\theta_1}) = \bar{\rho}(g_1)P_{\theta_0}$. Denote by Λ_{θ_0} the limit set of Γ_2 in G_2/P_{θ_0} . Since $\bar{\rho}|_{\Gamma_1} = \rho$ and hence $\tilde{\Phi}$ is ρ -equivariant, we have $\tilde{\Phi}(\Lambda_{\theta_1}) = \Lambda_{\theta_0}$. Then the composition $F := f \circ \tilde{\Phi}^{-1}$ restricted to Λ_{θ_0} yields a κ -bi-Hölder map between Λ_{θ_0} and Λ_{θ_2} . Since $\tilde{\Phi}^{-1}$ is ρ^{-1} -equivariant and f is ρ -equivariant, F is Γ_2 -equivariant. So by applying Proposition 4.3 one more time, we obtain $\theta_0 \cap \theta_2 \neq \emptyset$. Setting $\Theta_2 = \theta_0 \cap \theta_2$, since P_{θ_0} and P_{θ_2} are subgroups of P_{Θ_2} , we get a map $\Phi := G_1/P_{\theta_1} \to G_2/P_{\Theta_2}$ by composing $\tilde{\Phi}$ with the canonical factor map $G_1/P_{\theta_0} \to G_2/P_{\Theta_2}$. The last claim $\Phi = \pi \circ f$ on Λ_{θ_1} follows from Lemma 4.6. This finishes the proof. \square

Remark 4.8. The hypothesis that G_1 and G_2 are simple is necessary in Theorem 4.7. For example, consider a discrete Zariski dense subgroup Γ of a simple algebraic group G with a discrete faithful representation $\rho: \Gamma \to G$ which does not extend to G. Then $\Gamma_{\rho} = (\mathrm{id} \times \rho)(\Gamma)$ is Zariski dense in G and the map $\gamma \to (\gamma, \rho(\gamma))$ gives an isomorphism $\Gamma \to \Gamma_{\rho}$. On the other hand, for any parabolic subgroup P of G, the isomorphism $G/P \simeq (G \times G)/(P \times G)$ provides an equivariant bi-Lipschitz bijection the limit set of Γ in G/P and the limit set of Γ_{ρ} in $(G \times G)/(P \times G)$.

We note that the global bi-Hölder condition in Proposition 4.3 and Theorem 4.7 can be relaxed to a local bi-Hölder condition by the following lemma.

Lemma 4.9. Keep the notation as in Theorem 4.7 but assume G_1 and G_2 are semisimple, not just simple. Let $f: \Lambda_{\theta_1} \to \Lambda_{\theta_2}$ be a ρ -equivariant homeomorphism which is κ -bi-Hölder on some non-empty open subset U of Λ_{θ_1} for some $\kappa > 0$. Then f is κ -bi-Hölder globally.

Proof. Let $\Lambda_i = \Lambda_{\theta_i}$ for i = 1, 2. Since Λ_1 is Γ_1 -minimal, $\Lambda_1 = \Gamma_1 U$ and hence, by compactness, we have Λ_1 is a finite union of $\gamma_k U$ for some $\gamma_1, \dots, \gamma_n \in \Gamma_1$. If f is not κ -Hölder globally, by the compactness of Λ_1 , we have a sequence $\xi_i \to \xi$ and $\eta_i \to \eta$ such that

(4.8)
$$\frac{d_{\mathcal{F}_2}(f(\xi_i), f(\eta_i))}{d_{\mathcal{F}_1}(\xi_i, \eta_i)^{\kappa}} \to \infty.$$

Since \mathcal{F}_2 is compact, we have $d_{\mathcal{F}_1}(\xi_i,\eta_i) \to 0$. Therefore, for some $1 \leq k \leq n$, $\xi_i,\eta_i \in \gamma_k U$ for all i. Noting that the action of each element of $g_i \in G_i$ on \mathcal{F}_i is a diffeomorphism for i=1,2, we can let L be the maximum of the bi-Lipschitz constants of γ_k on \mathcal{F}_1 and of $\rho(\gamma_k)$ on \mathcal{F}_2 . Now we have $d_{\mathcal{F}_2}(f(\xi_i), f(\eta_i)) \leq Ld_{\mathcal{F}_2}(f(\gamma_k^{-1}\xi_i, \gamma_k^{-1}\eta_i))$ and $d_{\mathcal{F}_1}(\xi_i, \eta_i) \geq L^{-1}d_{\mathcal{F}_1}(\gamma_k^{-1}\xi_i, \gamma_k^{-1}\eta_i))$. Since f is κ -Hölder on U, it follows that the ratio in (4.8) is bounded, yielding a contradiction. This shows that f is κ -Hölder

globally. Similarly by considering f^{-1} , we can show that f^{-1} is κ^{-1} -Hölder globally.

Theorem 1.1 is now a special case of the following corollary of Theorem 4.7 together with Lemma 4.9:

Corollary 4.10. Let α_i be a simple root of G_i for i=1,2. Suppose that there exists a ρ -equivariant bijection $f: \Lambda_{\alpha_1} \to \Lambda_{\alpha_2}$ which is κ -bi-Hölder on some non-empty open subset of Λ_{α_1} for some $\kappa > 0$. Then $\kappa = 1$ and ρ extends to a Lie group isomorphism $\bar{\rho}: G_1 \to G_2$ which induces a diffeomorphism $\bar{f}: G_1/P_{\alpha_1} \to G_2/P_{\alpha_2}$ such that $\bar{f}|_{\Lambda_1} = f$.

Note that the conclusion $\kappa=1$ follows since \bar{f} is diffeomorphism and hence bi-Lipschitz.

Remark 4.11. In general, we cannot replace f bi-Lipschitz by Lipschitz in Theorem 1.1. For example, let Γ be a Schottky subgroup of $\mathrm{SL}_2(\mathbb{R})$ generated by two loxodromic elements a,b. Then for any $N\geq 2$, the representation ρ of Γ into $\mathrm{SL}_2(\mathbb{R})$ given by $a\mapsto a^N$ and $b\mapsto b^N$ induces an equivariant homeomorphism $\Lambda\to\Lambda$ which is Lipschitz, but not bi-Lipschitz. Clearly, ρ does not extend to $\mathrm{SL}_2(\mathbb{R})$.

On the other hand, we have the following corollary of the proof of Theorem 4.7 where f is required only to be Lipschitz under an extra hypothesis on the Hausdorff dimension of limit sets. In the statement below, a Möbius transformation is the extension of any isometry of \mathbb{H}^{n+1} to its boundary $\mathbb{S}^n = \partial \mathbb{H}^{n+1}$.

Corollary 4.12. For i=1,2, let Γ_i be a convex cocompact Zariski dense subgroup of $G_i=\mathrm{SO}^\circ(n_i+1,1),\ n_i\geq 1$. Let $\Lambda_i\subset\mathbb{S}^{n_i}$ be the limit set of Γ_i . Suppose that the Hausdorff dimension of Λ_1 is equal to the Hausdorff dimension of Λ_2 . Let $f:\Lambda_1\to\Lambda_2$ be a ρ -equivariant homeomorphism which is Lipschitz on some non-empty open subset of Λ_1 . Then ρ extends to a Lie group isomorphism of $G_1\to G_2$ and f extends to a Möbius transformation of \mathbb{S}^n for $n=n_1=n_2$.

Proof. By the proof of Lemma 4.9, f is Lipschitz on all of Λ_1 . Let $\Gamma:=(\mathrm{id}\times\rho)(\Gamma_1)$ be the self-joining subgroup of $G=G_1\times G_2$. For i=1,2, let α_i be the simple root of $G=G_1\times G_2$ from the i-th factor. Then for any loxodromic element $g=(\gamma,\rho(\gamma))\in G,\ \alpha_1(\lambda(g))$ and $\alpha_2(\lambda(g))$ are equal to $\lambda(\gamma)$ and $\lambda(\rho(\gamma))$ respectively. Suppose that Γ is Zariski dense in G. The proof of Proposition 4.3 for Γ shows that if there exists a loxodromic element $g=(\gamma,\rho(\gamma))\in\Gamma$ such that $\alpha_1(\lambda(g))>\alpha_2(\lambda(g)),$ then $f:\Lambda_1\to\Lambda_2$ cannot be Lipschitz. On the other hand, if Λ_1 and Λ_2 have the same Hausdorff dimension, the middle direction $(1,1)\in\mathfrak{a}\simeq\mathbb{R}^2$ is always contained in the interior of the limit cone of Γ by [9, Corollary 4.2]. Note that when Γ_i are cocompact lattices and $n_1=n_2=2,$ [9, Corollary 4.2] is due to Thurston [24]. Therefore, the desired element $g\in\Gamma$ can always be found. This

implies that Γ cannot be Zariski dense in G. As before, this implies the conclusion.

5. Slim limit sets of G/P for P non-maximal

Let Γ be a Zariski dense subgroup of a connected semisimple real algebraic group G. Fix a subset $\theta \subset \Pi$ with $\#\theta \geq 2$. Recall from the introduction that a subset $S \subset \mathcal{F}_{\theta}$ is called *slim* if there exists a pair of distinct elements α_1 and α_2 of θ such that the limit set Λ_{θ} injects to G/P_{α_1} and G/P_{α_2} under the canonical projection map $\mathcal{F}_{\theta} \to G/P_{\alpha_i}$ for i = 1, 2.

In this section we prove the following theorem.

Theorem 5.1. If $\#\theta \geq 2$ and Λ_{θ} is a slim subset of \mathcal{F}_{θ} , then no non-empty open subset U of Λ_{θ} is contained in a proper C^1 -submanifold of \mathcal{F}_{θ} .

We first prove the following lemma which connects Theorem 5.1 with Proposition 4.3.

Lemma 5.2. Let $\theta_0 \subset \theta \subset \Pi$. Suppose that Λ_{θ} is a C^1 -submanifold of \mathcal{F}_{θ} and that the canonical projection $\mathcal{F}_{\theta} \to \mathcal{F}_{\theta_0}$ is injective on Λ_{θ} . Then Λ_{θ_0} is a C^1 -submanifold of \mathcal{F}_{θ_0} and $f_{\theta_0} : \Lambda_{\theta} \to \Lambda_{\theta_0}$ is a Γ -equivariant diffeomorphism.

Proof. For simplicity, we write $\Lambda = \Lambda_{\theta}$. We suppose that Λ is a C^1 -submanifold of \mathcal{F}_{θ} . Since the projection $\mathcal{F}_{\theta} \to \mathcal{F}_{\theta_0}$ given by $f(gP_{\theta}) = gP_{\theta_0}$ is a smooth map, its restriction $f: \Lambda \to \mathcal{F}_{\theta_0}$ is a C^1 map which is also injective by hypothesis. We claim that there exists a point $x \in \Lambda$ where $df_x: T_x\Lambda \to T_{f(x)}\mathcal{F}_{\theta_0}$ is injective. Pick a point $x \in \Lambda$ which maximizes rank df_y , $y \in \Lambda$. Then there exists a neighborhood of x in Λ where df has constant rank. Then if $r := \operatorname{rank} df_x$, there exist local coordinates near x where

$$f(x^1, \dots, x^m) = (x^1, \dots, x^r, 0, \dots, 0).$$

Since f is injective, we must have r = m and hence df_x is injective.

Now the set $\{x \in \Lambda : df_x \text{ is injective}\}$ is open and Γ -invariant. Since Γ acts minimally on Λ , this set must be all of Λ . Thus f is an immersion. Since f is an injective immersion and Λ is compact, f is a C^1 -embedding. Hence f is a diffeomorphism onto its image, which is Λ_{θ_0} . In particular, Λ_{θ_0} is a C^1 -submanifold of \mathcal{F}_{θ_0} .

Proof of Theorem 5.1. By the hypothesis on the slimness of Λ_{θ} , there exists a pair of distinct elements α_1 and α_2 of θ such that Λ_{θ} injects to G/P_{α_1} and G/P_{α_2} .

Suppose on the contrary that some non-empty open subset U of Λ_{θ} is contained in some C^1 -submanifold. Since Λ_{θ} is Γ -minimal, we have that for any $\xi \in \Lambda_{\theta}$, $\Gamma \xi$ is dense, so $\gamma \xi \in U$ for some $\gamma \in \Gamma$. Since $\xi \in \gamma^{-1}U$, it follows that Λ_{θ} is a C^1 -submanifold of \mathcal{F}_{θ} . By Lemma 5.2, we have Γ -equivariant diffeomorphisms $f_{\alpha_i}: \Lambda_{\theta} \to \Lambda_{\alpha_i}$ for each i = 1, 2. Hence

 $f_{\alpha_2} \circ f_{\alpha_1}^{-1} : \Lambda_{\alpha_1} \to \Lambda_{\alpha_2}$ is a Γ -equivariant diffeomorphism, contradicting Proposition 4.3. This finishes the proof.

Remark 5.3. We remark that Proposition 4.3 implies that if Λ is a slim subset of G/P, then there exists a maximal parabolic subgroup Q containing P such that the projection $G/P \to G/Q$ restricted to Λ is not bi-Lipschitz.

Antipodal groups. Theorem 1.5 applies to the class of P-antipodal discrete subgroups of G, which contains any subgroup of a P-Anosov or a relatively P-Anosov subgroup. To define an antipodality, we recall that a parabolic subgroup P is called reflexive if its conjugacy class contains a parabolic subgroup P' opposite to P, that is, $P \cap P'$ is a common Levi subgroup of both P and P'. For example, a minimal parabolic subgroup of G is always reflexive. For a parabolic subgroup P, let $P_{\text{reflexive}}$ be the largest reflexive parabolic subgroup contained in P. If $P = P_{\theta}$, then $P_{\text{reflexive}} = P_{\theta \cup i(\theta)}$.

Definition 5.4. A discrete subgroup Γ is called P-antipodal if its limit set in $G/P_{\text{reflexive}}$ is antipodal in the sense that any two distinct points are in general position.

If a discrete subgroup Γ is P-antipodal, then its limit set on G/P injects to G/P' for any P' containing P [13, Lemma 9.5]. Hence if Γ is P-antipodal for a non-maximal parabolic subgroup P, then its limit set is a slim subset of G/P. Therefore the following corollary is a special case of Theorem 1.5.

Corollary 5.5. Let G be a connected semisimple real algebraic group of rank at least 2 and P a non-maximal parabolic subgroup of G. The limit set of a Zariski dense P-antipodal subgroup of G cannot be a C^1 -submanifold of G/P.

Note that there are many slim limit sets which are not antipodal (e.g., the limit set of a self-joining group defined in (1.2)).

6. An example

In this final section, we construct an example of a Zariski dense discrete subgroup of $SL_8(\mathbb{R})$ which explains the necessity of introducing P_2' in the conclusion of Theorem 1.3 in the case when P_2 is not maximal. The examples we construct are Borel-Anosov and (1,1,2)-hyperconvex subgroups of $SL_8(\mathbb{R})$.

We begin by setting up some notation. For any $d \geq 2$, let A be the diagonal subgroup of $\mathrm{SL}_d(\mathbb{R})$ consisting of diagonal elements with positive entries so that \mathfrak{a} and \mathfrak{a}^+ can respectively be identified with $\mathfrak{a} = \{(u_1, \cdots, u_d) : \sum_{k=1}^d u_k = 0\}$ and $\mathfrak{a}^+ = \{(u_1, \cdots, u_d) \in \mathfrak{a} : u_1 \geq \cdots \geq u_d\}$. For $1 \leq k \leq d-1$, let

$$\alpha_k((u_1,\cdots,u_d))=u_k-u_{k+1};$$

then $\Pi = \{\alpha_k : 1 \leq k \leq d-1\}$ is the set of all simple roots. For any $g \in \mathrm{SL}_d(\mathbb{R})$, its Jordan projection $\lambda(g) \in \mathfrak{a}^+$ satisfies

$$\alpha_k(\lambda(g)) = \log \frac{\lambda_k(g)}{\lambda_{k+1}(g)}$$

where $\lambda_1(g) \geq \cdots \geq \lambda_d(g)$ are the absolute values of the eigenvalues of g. Also, for $\theta \subset \Pi$, the boundary $\mathcal{F}_{\theta} = \mathrm{SL}_d(\mathbb{R})/P_{\theta}$ coincides with the partial flag manifold consisting of flags with subspaces of dimensions $\{k : \alpha_k \in \theta\}$.

Let Δ be a hyperbolic group and denote by $\partial \Delta$ its Gromov boundary. Recall from [8] that a representation $\rho : \Delta \to \mathrm{SL}_d(\mathbb{R})$ is $\{\alpha_k\}$ -Anosov if there exist constants c, C > 0 so that for all $\gamma \in \Delta$,

$$\alpha_k(\lambda(\rho(\gamma)) \ge c|\gamma| - C$$

where $|\gamma|$ is the minimal word length of γ with respect to a fixed finite generating set of Δ . If ρ is $\{\alpha_k\}$ -Anosov, it admits a pair of unique continuous equivariant embeddings $\xi_{\rho}^k: \partial \Delta \to \operatorname{Gr}_k(\mathbb{R}^d)$ and $\xi_{\rho}^{d-k}: \partial \Delta \to \operatorname{Gr}_{d-k}(\mathbb{R}^d)$. Furthermore, the image of $(\xi_{\rho}^k, \xi_{\rho}^{d-k})$ coincides with the limit set of $\rho(\Delta)$ in $\mathcal{F}_{\{\alpha_k,\alpha_{d-k}\}}$. We say that ρ is Borel-Anosov if it is $\{\alpha_k\}$ -Anosov for all $1 \leq k \leq d-1$. The image of a Borel-Anosov representation is called a Borel Anosov subgroup.

A representation $\rho: \Delta \to \mathrm{SL}_d(\mathbb{R})$ is (1,1,2)-hyperconvex if it is $\{\alpha_1,\alpha_2\}$ -Anosov and for all distinct $x,y,z\in\partial\Delta$,

$$\xi_{\rho}^{1}(x) \oplus \xi_{\rho}^{1}(y) \oplus \xi_{\rho}^{d-2}(z) = \mathbb{R}^{d}.$$

Both being $\{\alpha_k\}$ -Anosov and being (1, 1, 2)-hyperconvex are open conditions in the representation variety (see [19, Proposition 6.2]).

Proposition 6.1. There exists a Zariski dense discrete subgroup $\Gamma < \operatorname{SL}_8(\mathbb{R})$ which admits an equivariant Lipschitz bijection $\Lambda_{\alpha_3} \to \Lambda_{\alpha_1}$. Moreover, Γ is Borel-Anosov, (1,1,2)-hyperconvex, and the projection map $p:\Lambda_{\{\alpha_1,\alpha_3\}} \to \Lambda_{\alpha_3}$ is a bi-Lipschitz bijection.

Theorem 1.3 in this case applies with $f=p^{-1}, P_1=P_{\alpha_3}, P_2=P_{\{\alpha_1,\alpha_3\}}$ and $P_2'=P_{\alpha_3}$.

Let $\Delta = \langle a_1, a_2 \rangle$ be the free group with two generators a_1, a_2 . Let $N \geq 2$. Let $\tau_1 : \Delta \to \operatorname{SL}_2(\mathbb{R})$ be a convex cocompact representation and $\tau_2 : \Delta \to \operatorname{SL}_2(\mathbb{R})$ be defined so that $\tau_2(a_i) = \tau_1(a_i)^N$ for i = 1, 2. We may choose N large enough that

$$\frac{\alpha_1(\lambda(\tau_2(\gamma)))}{\alpha_1(\lambda(\tau_1(\gamma)))} \ge 4 \quad \text{for all non-trivial} \quad \gamma \in \Delta.$$

Let $\iota: \operatorname{SL}_2(\mathbb{R}) \to \operatorname{SL}_4(\mathbb{R})$ be an irreducible representation, which is unique up to conjugations. Then each $\rho_i = \iota \circ \tau_i$ is a positive representation and hence Borel Anosov and (1,1,2)-hyperconvex [19, Corollary 6.13]. One easily checks that $\frac{\alpha_1(\lambda(\rho_2(\gamma)))}{\alpha_1(\lambda(\rho_1(\gamma)))} \geq 4$ for all non-trivial $\gamma \in \Delta$. Then a theorem of Tsouvalas [26, Theorem 1.9] implies that $f_{\rho_1,\rho_2} = \xi_{\rho_2}^1 \circ (\xi_{\rho_1}^1)^{-1}$ is 4-Hölder.

Let $\Phi_0: \Delta \to SL_8(\mathbb{R})$ denote the representation given by the direct sum $\Phi_0 = \rho_1 \oplus \rho_2$. One checks that

 $\lambda_1(\rho_2(\gamma)) > \lambda_2(\rho_2(\gamma)) > \lambda_1(\rho_1(\gamma)) > \dots > \lambda_4(\rho_1(\gamma)) > \lambda_3(\rho_2(\gamma)) > \lambda_4(\rho_2(\gamma))$

for all non-trivial $\gamma \in \Delta$ and that Φ_0 is Borel Anosov with limit maps given by

$$\zeta_0^k(x) = \begin{cases} \{0\} \oplus \xi_{\rho_2}^k(x) & \text{if } k = 1, 2\\ \xi_{\rho_1}^{k-2}(x) \oplus \xi_{\rho_2}^2(x) & \text{if } k = 3, 4, 5 \\ \mathbb{R}^4 \oplus \xi_{\rho_2}^{k-4}(x) & \text{if } k = 6, 7. \end{cases}$$

Then, the fact that f_{ρ_1,ρ_2} is 4-Hölder implies that $\zeta_0^1 \circ (\zeta_0^3)^{-1}$ is also 4-Hölder. In particular, $\zeta_0^1 \circ (\zeta_0^3)^{-1} : \Lambda_{\alpha_3}(\Phi_0(\Delta)) \to \Lambda_{\alpha_1}(\Phi_0(\Delta))$ is Lipschitz.

However, $\Phi_0(\Delta)$ is not Zariski dense. Since Δ is the free group on two generators, there exists an arbitrary small deformation $\Phi: \Delta \to \operatorname{SL}_8(\mathbb{R})$ of Φ_0 which is Borel Anosov with Zariski dense image. Arguing exactly as in [31, Section 9], one can show that Φ_0 and $\wedge^3\Phi_0$ are both (1,1,2)-hyperconvex. Therefore, we may assume that Φ and $\wedge^3\Phi$ are both (1,1,2)-hyperconvex.

One may then use standard techniques (cf. [31]) to show that if Φ is sufficiently close to Φ_0 , then

$$\frac{2}{3} \le \frac{\alpha_1(\lambda(\Phi(\gamma)))}{\alpha_1(\lambda(\Phi_0(\gamma)))} \le \frac{3}{2} \quad \text{and} \quad \frac{2}{3} \le \frac{\alpha_1(\lambda(\wedge^3 \Phi(\gamma)))}{\alpha_1(\lambda(\wedge^3 \Phi_0(\gamma)))} \le \frac{3}{2}$$

for all non-trivial $\gamma \in \Delta$. Let $\zeta = (\zeta^k)$ be the limit map of $\Phi(\Delta)$ and $\hat{\zeta}_0^1 : \partial \Delta \to \Lambda_{\alpha_1}(\wedge^3 \Phi_0(\Delta))$ and $\hat{\zeta}^1 : \partial \Delta \to \Lambda_{\alpha_1}(\wedge^3 \Phi(\Delta))$ be limit maps of $\wedge^3 \Phi_0$ and $\wedge^3 \Phi$. One may again apply Tsouvalas's theorem [26, Theorem 1.9] to conclude that $\zeta^1 \circ (\zeta_0^1)^{-1}$ and $\hat{\zeta}_0^1 \circ (\hat{\zeta}^1)^{-1}$ are $\frac{2}{3}$ -Hölder. There is a C^1 -equivariant identification of $\Lambda_{\alpha_1}(\wedge^3 \Phi_0(\Delta))$ with $\Lambda_{\alpha_3}(\Phi_0(\Delta))$ and an analogous identification for Φ , so we may conclude that $\zeta_0^3 \circ (\zeta^3)^{-1}$ is $\frac{2}{3}$ -Hölder. Now set

$$\Gamma:=\Phi(\Delta)<\mathrm{SL}_8(\mathbb{R}).$$

Then the limit map

$$\zeta^{1} \circ (\zeta^{3})^{-1} = (\zeta^{1} \circ (\zeta_{0}^{1})^{-1}) \circ (\zeta_{0}^{1} \circ (\zeta_{0}^{3})^{-1}) \circ (\zeta_{0}^{3} \circ (\zeta^{3})^{-1})$$

is a $\frac{16}{9}$ -Hölder and hence yields a Lipschitz map from Λ_{α_3} to Λ_{α_1} . Since Γ is Borel Anosov, the projection map $\Lambda_{\{\alpha_1,\alpha_3\}} \to \Lambda_{\alpha_3}$ is now a bi-Lipschitz homeomorphism. This proves Proposition 6.1.

References

- [1] Y. Benoist. Propriétés asymptotiques des groupes linéaires. Geom. Funct. Anal., 7(1):1–47, 1997.
- [2] Y. Benoist. Convexes divisibles I. In Algebraic groups and arithmetic, Tata Inst. Fund. Res. Stud. Math. 17 (2004), 339-374.
- [3] A. Borel. Linear algebraic groups. Graduate Texts in Math., Vol 126, Springer.
- [4] F. Dalbo and I. Kim. A criterion of conjugacy for Zariski dense subgroups. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 8, 647–650.

- [5] S. Edwards, M. Lee, and H. Oh. Anosov groups: local mixing, counting, and equidistribution. Geometry & Topology 27 (2023), 513-573.
- [6] O. Glorieux and D. Monclair. Regularity of limit sets of AdS quasi-Fuchsian groups. Preprint, arXiv:1809.10639.
- [7] N. Ivanov. Action of Möbius transformations on homeomorphisms: stability and rigidity. Geom. Func. Anal., 6:79–119, 1996.
- [8] F. Kassel and R. Potrie. Eigenvalue gaps for hyperbolic groups and semigroups. J. Mod. Dyn. 18:161–208, 2022.
- [9] D. Kim, Y. Minsky and H. Oh. Tent property of the growth indicator functions and applications. Geom. Dedicata 218 (2024), Paper No: 14
- [10] D. Kim and H. Oh. Rigidity of Kleinian groups via self-joinings. *Inventiones Mathematicae*, Vol 234, issue 3 (2023)
- [11] D. Kim and H. Oh. Rigidity of Kleinian groups via self-joinings: measure theoretic criterion. *Preprint* (arXiv:2302.03552)
- [12] D. Kim and H. Oh. Conformal measure rigidity of representations via self-joinings. Preprint, arXiv:2302.03539.
- [13] D. Kim, H. Oh and Y. Wang. Properly discontinuous actions, growth indicators and conformal measures for transverse subgroups. *Preprint*, arXiv:2306.06846.
- [14] F. Labourie. Anosov flows, surface groups and curves in projective space. *Invent. Math.*, 165:51–114, 2006.
- [15] G. A. Margulis. Discrete subgroups of semisimple Lie groups. Ergeb. Math. Grenzgeb. 17, Springer, 1991.
- [16] G. Mostow. Strong rigidity of locally symmetric spaces. Annals of Mathematics Studies, No. 78. Princeton University Press, 1973.
- [17] G. Prasad. Strong rigidity of Q-rank 1 lattices. Invent. Math., 21:255–286, 1973.
- [18] B. Pozzetti and A. Sambarino. Metric properties of boundary maps, Hilbert entropy and non-differentiability. Preprint, arXiv:2310.07373.
- [19] B. Pozzetti, A. Sambarino, and A. Wienhard. Conformality for a robust class of non-conformal attractors. J. Reine Angew. Math. 774:1–51, 2021.
- [20] B. Pozzetti, A. Sambarino, and A. Wienhard. Anosov representations with Lipschitz limit set. Geom. Top., 27:3303–3360, 2023.
- [21] J.-F. Quint. Mesures de Patterson-Sullivan en rang supérieur. Geom. Funct. Anal., 12(4):776–809, 2002.
- [22] J.-F. Quint. L'indicateur de croissance des groupes de Schottky Ergodic theory and dynamical systems. 23 (2003), 249-272
- [23] I. Smilga. Proper affine actions in non-swinging representations. *Groups Geom. Dyn.*, 12(2):449–528, 2018.
- [24] W. Thurston. Minimal stretch maps between hyperbolic surfaces. Preprint, arXiv: 980103.
- [25] J. Tits. Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconque. J. Reine Angew. Math., 247:196–220, 1971.
- [26] K. Tsouvalas. The Hölder exponent of Anosov limit maps. *Preprint*, arXiv:2306.15823.
- [27] P. Tukia. Differentiability and rigidity of Möbius groups. Invent. Math., 82:557–578, 1985.
- [28] P. Tukia. A rigidity theorem for Möbius groups. Invent. Math. 97, no. 2, 405–431, 1989.
- [29] P. Tukia. Homomorphisms of constant stretch between Möbius groups. Comment. Math. Helvetici. 66, 151-167 1991
- [30] D. Winter. Mixing of frame flow for rank one locally symmetric spaces and measure classification. *Israel J. Math.* 210 (2015), no. 1, 467–507.
- [31] T. Zhang and A. Zimmer. Regularity of limit sets of Anosov representations. Preprint, arXiv:1903.11021.

[32] A. Zimmer. Projective Anosov representations, convex cocompact actions and rigidity. J. Differential Geometry, 119 (2021) 513-586.

Department of Mathematics, University of Michigan, Ann Arbor, MI $\it Email\ address$: canary@umich.edu

Department of Mathematics, Yale University, New Haven, CT 06511 and Korea Institute for Advanced Study, Seoul

 $Email\ address: {\tt hee.oh@yale.edu}$

Department of Mathematics, University of Wisconsin-Madison, Madison, WI

 $Email\ address:$ amzimmer2@wisc.edu