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Abstract

Reinforcement learning from human feedback (RLHF) has been an effective technique
for aligning AI systems with human values, with remarkable successes in fine-tuning large-
language models recently. Most existing RLHF paradigms make the underlying assumption that
human preferences are relatively homogeneous, and can be encoded by a single reward model.
In this paper, we focus on addressing the issues due to the inherent heterogeneity in human
preferences, as well as their potential strategic behavior in providing feedback. Specifically,
we propose two frameworks to address heterogeneous human feedback in principled ways:
personalization-based one and preference-aggregation-based one. For the former, we propose
two approaches based on representation learning and clustering, respectively, for learning
multiple reward models that trades-off the bias (due to preference heterogeneity) and variance
(due to the use of fewer data for learning each model by personalization). We then establish
sample complexity guarantees for both approaches. For the latter, we aim to adhere to the single-
model framework, as already deployed in the current RLHF paradigm, by carefully aggregating
diverse and truthful preferences from humans. We propose two approaches based on reward
and preference aggregation, respectively: the former utilizes both utilitarianism and Leximin
approaches to aggregate individual reward models, with sample complexity guarantees; the
latter directly aggregates the human feedback in the form of probabilistic opinions. Under the
probabilistic-opinion-feedback model, we also develop an approach to handle strategic human
labelers who may bias and manipulate the aggregated preferences with untruthful feedback.
Based on the ideas in mechanism design, our approach ensures truthful preference reporting,
with the induced aggregation rule maximizing social welfare functions.

1 Introduction

Reinforcement Learning from Human Feedback (RLHF) has been widely used in fine-tuning
Large Language Models like ChatGPT and Claude 3, showing their significance and usefulness in
aligning these models with human values/utilities that can be nuanced and complicated (Ziegler
et al., 2019; Ouyang et al., 2022; Bai et al., 2022). The underlying assumption of RLHF is that
human utility functions are closely linked to human preferences, making it feasible to learn about
human utility from preference data. Therefore, most of the RLHF use a single utility function (also
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Q1: Which smartphone company is the biggest?

Homogeneous Feedback

𝐴!: 
Samsung seems 

great!

𝐴": 
The capital of the 
US is Washington, 

DC.

𝐴#: 
Apple is the 

biggest company. 

𝐴! would be the right answer!

Q2: Which company is the best for making phones?

Heterogeneous Feedback

𝐵!: 
Samsung is the 
best company.

𝐵": 
It might depend on 
what you prioritize 
for the smartphone. 

𝐵#: 
Apple has a really 
good design for the 

iPhone. 

Preference
𝐵" > 𝐵# > 𝐵!

Preference
𝐵! > 𝐵# > 𝐵"

Cluster 1 Cluster 2

LLM

LLM

LLM

LLM

LLM

LLM

Solution 1) Personalization 
with Representation Learning
- Leveraging the Common 
Structure of Human Rewards

Solution 2) Personalization 
with Clustering
-  Cost Efficient 
-  Bias–Variance Tradeoff

Solution 3) Aggregating with 
Social Choice Theory
- DSIC Mechanism
- Social Welfare Maximization

Figure 1: We demonstrate a setting where humans might have heterogeneous feedback. We provide
a personalization-based framework and a human preference aggregation-based framework.

known as a reward function) to model the preferences of human labelers (Ziegler et al., 2019).
Contrary to the assumption of “homogeneity” in reward valuation, humans assign “heterogeneous”
reward values to the same question-and-answer pairs, especially for sensitive and open-ended
questions, depending on their background. This diversity suggests that the probability of selecting
a particular answer cannot be universally proportional to a presumed common reward value
(Figure 1). Therefore, the assumption that having a homogeneous preference for humans, which is
arguably an overly simplified model could potentially lead to reward models that prioritize the
preferences of the majority group in the data while neglecting the preferences of minorities. This is
concerning because it can result in biases and inequalities in the fine-tuned LLM systems, making
it less fair and representative of diverse perspectives that are inherent in society.

In addressing the challenge of diverse human preferences, the notion of personalized reward
models and LLMs emerges: Intuitively, one could consider creating tailored LLMs for each human
user who provides their own personalized data. However, this method might be inadequate due to
the limited data available for each individual, potentially leading to inaccurate reward estimations
and reduced precision in LLMs due to high variance. Conversely, employing a single reward and
associated language model for every human user by naively pooling all users’ data often relies on
an implicit assumption that humans have homogeneous preferences, which is barely the case in
practice (Pollak and Wales, 1992; Boxall and Adamowicz, 2002).

On the other hand, even when acknowledging the heterogeneity of human preferences and
aggregating them carefully to learn a single reward model, there is a challenge that has not received
enough attention in the RLHF literature: humans are by nature rational (of certain degrees) and
strategic, with their own objectives to optimize. They might manipulate their own feedback by not
providing truthful one, to distort the aggregated results to be closer to their own preferences, and
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thus manipulate the output of LLMs fine-tuned over the aggregated preference data. For example,
in online rating systems, users may provide extreme feedback to disproportionately influence the
overall ratings toward their viewpoint.

Given the challenges above, we raise and attempt to address two questions: (1) how should we
mitigate the variance of the personalized reward model and LLM model arising from the paucity
of each human user’s data, and (2) if we use a single LLM model, as already deployed in the
current RLHF pipeline, what constitutes an effective method for aggregating diverse and truthful
preferences for fine-tuning LLMs?

Contributions. We provide a systematic study to address the challenges above due to the het-
erogeneity of human preferences in RLHF, with provable efficiency guarantees. We develop two
frameworks: one based on personalization, and one based on human preference aggregation.
The personalization-based framework seeks to address the question (1) above, and includes two
approaches as detailed below:

• Representation-learning-based Personalization: We propose a representation learning-
based approach for learning the heterogeneous individual reward function (see Figure 1).
By leveraging comparison data from a diverse set of humans, we can enhance the accuracy
of the representation learning (Theorem 3.4). This improvement results in better sample
complexity for estimating the personalized reward model and, consequently, more effective
policy learning compared to approaches using non-diverse but heterogeneous data sets
(Theorem 3.1). To improve the sample complexity, we develop a new proof technique to
bound the reward estimation errors without accurate representations, leading to the use of
summations of non-zero expectation random variables, which may be of independent interest
(proof of Lemma 5).

• Clustering-based Personalization: We then consider personalization with human user
clustering, with sample complexity guarantees. We introduce an approach for learning
clustered reward functions, and personalizing users’ reward model within each cluster by
the learned model for that cluster.

The aggregation-based framework seeks to address question (2), which aggregates heteroge-
neous human preferences in a principled way via social choice theory, and includes two aggregation
approaches as detailed below:

• Reward Aggregation with Comparison Data: We first estimate the parameters for each
individual’s reward model using the individual’s preference comparison data. Then, we
aggregate reward models using a family of reward aggregation rules, including those based
on the utilitarianism and Leximin approaches. We then provide sample complexities of the
policy induced from the single aggregated reward model.

• Preference Aggregation with Probabilistic Opinion Data: We then provide aggregation
methods for RLHF with a new feedback form: probabilistic opinion (Dietrich and List, 2016),
where human labelers provide feedback as a probability vector instead of binary comparison
data, as in the existing RLHF pipeline. Without assuming the relationship between human
reward and preference, we directly aggregate the diverse probabilistic preferences into a
consensus one. Under this feedback model, we also develop a mechanism to handle strategic
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human labelers, who may benefit by reporting untruthful preferences, while biasing the
aggregated preference and thus the fine-tuned LLM. Our mechanism guarantees that the
labelers will report truthful preferences, while the induced aggregation rules maximize
various social welfare functions.

1.1 Related Work

Reinforcement Learning from Human Feedback. Empirical evidence has demonstrated the effi-
cacy of incorporating human preferences into reinforcement learning (RL) for enhancing robotics
(Abramson et al., 2022; Hwang et al., 2023) and for refining large-scale language models (Ziegler
et al., 2019; Ouyang et al., 2022; Bai et al., 2022). These human inputs take various forms, such as
rankings (Ziegler et al., 2019; Ouyang et al., 2022; Bai et al., 2022), demonstrations (Finn et al.,
2016), and scalar ratings (Warnell et al., 2018). A few approaches have been explored empirically
to personalize RLHF. For example, assigning fine-grained rewards to small text segments to en-
hance the training process (Wu et al., 2024), or training each human labeler’s reward model with
Multi-Objective Reinforcement Learning perspective (Jang et al., 2023; Hwang et al., 2023) have
been proposed. Moreover, (Li et al., 2024) suggested the training of each human labeler’s reward
model directly using personalized feedback with human embedding obtained by the human model,
and also an approach for the clustering with finding cluster embedding.

On the theory front, the studies of RLHF have received increasing research interest. The
most related prior works are (Zhu et al., 2023; Zhan et al., 2023; Wang et al., 2024), where (Zhu
et al., 2023) investigated the Bradley-Terry-Luce (BTL) model (Bradley and Terry, 1952) within
the context of a linear reward framework; while (Zhan et al., 2023) generalized the results to
encompass more general classes of reward functions. Both works concern the setting with offline
preference data. (Xiong et al., 2023) provided a theoretical analysis for KL-regularized RLHF. In
the online setting, (Wang et al., 2024) established a correlation between online preference learning
and online RL through a preference-to-reward interface. Yet, to the best of our knowledge, there is
no prior work that has analyzed RLHF with heterogeneous feedback with theoretical guarantees
(except the recent independent works discussed in detail below).

Representation Learning. Early work of (Baxter, 2000) established a generalization bound that
hinges on the concept of a task generative model within the representation learning framework.
More recently, (Tripuraneni et al., 2021; Du et al., 2020) demonstrated that, in the setup with linear
representations and squared loss functions, task diversity can significantly enhance the efficiency
of learning representations. Moreover, (Tripuraneni et al., 2020) provided a representation learning
with general representation and general loss functions. Representation learning has been extended
to the reinforcement learning setting as well. For low-rank Markov Decision Processes, where
both the reward function and the probability kernel are represented through the inner products of
state and action representations with certain parameters, (Agarwal et al., 2020; Ren et al., 2022;
Uehara et al., 2021) explored the theoretical foundations for learning these representations. Also,
(Ishfaq et al., 2024; Bose et al., 2024) analyzed the sample complexity of multi-task offline RL.

Reward and Preference Aggregation. Preference aggregation is the process by which multiple
humans’ preference orderings of various social alternatives are combined into a single, collective
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preference or choice (List, 2013). Arrow’s Impossibility Theorem demonstrates that no aggregation
rule for preference orderings can simultaneously meet specific criteria essential for ensuring a fair
and rational aggregation of each human user’s preferences into a collective decision (Arrow, 1951).
Therefore, people considered replacing preference orderings with assigning real numbers to social
alternatives (Sen, 2018; Moulin, 2004), which is sometimes called a reward (welfare) function ♮ for
each human user. (Skiadas, 2016; Moulin, 2004) provided reward (welfare) aggregation rules which
satisfy several desirable properties. Furthermore, an alternative method to circumvent Arrow’s
impossibility theorem involved aggregating preferences via probabilistic opinion (Stone, 1961;
Lehrer and Wagner, 2012). In this approach, opinions are represented as probability assignments
to specific events or propositions of interest.

Comparison with Recent Works. While preparing the present work, we noticed two recent inde-
pendent works that are closely related. Firstly, (Chakraborty et al., 2024) considered the aggregation
of reward models with heterogeneous preference data, focusing on aligning with the Egalitarian
principle in social choice theory. In contrast, we provide a framework with various aggregation
rules and also prove that the aggregation rules we considered are also welfare-maximizing. More
importantly, we design mechanisms for human feedback providers so that they can truthfully
report their preferences even when they may be strategic. Moreover, we also develop another frame-
work to handle heterogeneous preferences: the personalization-based one. Finally, we establish
near-optimal sample complexity analyses for the frameworks we developed.

More recently, (Zhong et al., 2024) provided a theoretical analysis of reward aggregation in
RLHF, focusing primarily on linear representations. Our work, in comparison, considers general
representation functions and general relationships between reward function and preference. Unlike
(Zhong et al., 2024), where they focused on reward aggregation, we focus on personalization for
every human labeler and also employ clustering techniques for personalization. (Zhong et al.,
2024) and our paper also both investigated the case that reward and preference are not related.
Our paper suggested a probabilistic opinion pooling with a mechanism design to effectively elicit
truthful human preferences, presuming human labelers may be strategic. In contrast, (Zhong et al.,
2024) analyzed an algorithm for a von Neumann winner policy, where a von Neumann winner
policy is a policy that has at least a 50% chance of being preferred compared to any other policy.
Moreover, (Zhong et al., 2024) also explored the Pareto efficiency of the resulting policy.

Notation. The matrix O denotes an all-zero matrix, while I stands for an identity matrix, of
proper dimensions. We use A ≻O to denote that matrix A is a positive definite matrix. The function
σ represents the Sigmoid function, defined by σ (x) = 1/(1 + exp(−x)). The notation [K] denotes
the set {1,2, . . . ,K}. ∆(A) refers to a probability vector in R|A|. The term σ2

k (A) denotes the k-th
largest singular value of matrix A. A function f (x) is categorized based on the complexity notation
as follows: f (x) = O(g(x)) if there exists C > 0 and x0 such that f (x) ≤ Cg(x) holds for all x ≥ x0,
f (x) = Ω(g(x)) if there exists C > 0 and x0 such that f (x) ≥ C · g(x) for all x ≥ x0, f (x) = o(g(x)) if
limx→∞

f (x)
g(x) = 0, and f (x) = Õ(g(x)) if f (n) =O(g(x) · logk(g(x))) for some finite k. The vector e1 is

defined as the standard basis vector of proper dimension with the first component being 1. For a
finite-dimensional vector x, the norm ∥x∥1 refers to its ℓ1-norm, while ∥x∥ refers to the ℓ2-norm,
unless otherwise specified. We also define ∥x∥Σ =

√
x⊺Σx for a positive definite matrix Σ. For a

♮In our paper, we regard the reward function as a welfare function in social choice theory.
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matrix M, the norm ∥M∥F denotes the Frobenius norm of M. The multinomial distribution is
denoted by Multinomial(p1, . . . ,pn), where p1, . . . ,pn are the probabilities of outcomes for each of
the n categories, respectively, with

∑n
i=1pi = 1 and pi ≥ 0 for all i ∈ [n]. Kullback-Leibler (KL)

divergence between two probability distributions P ,Q ∈ ∆(X) is defined as
∑
x∈supp(X) P (x) log

(
P (x)
Q(x)

)
.

2 Preliminaries

Most existing RLHF processes (for language model fine-tuning) consist of two main stages: (1)
learning a model of human rewards (oftentimes from preference data), and (2) fine-tuning with the
reference policy through Reinforcement Learning algorithms, e.g., Proximal Policy Optimization
(PPO) (Schulman et al., 2017). It may also be possible to avoid the explicit learning of reward
functions while fine-tuning the policy directly from preference data (Rafailov et al., 2024). We will
introduce both approaches in detail below, and will seek to develop frameworks that will cover
both cases.

Markov Decision Processes. We define the state s as an element of the set of possible prompts
or questions, denoted by S , and the set of actions a, contained in A, as the potential answers or
responses to these questions. Consider an RLHF setting with N human labelers (or users), each
of whom has their own reward function. This setting can be characterized by a Markov Decision
Process (MDP) with N reward functions, represented by the tuple M = (S ,A,H, (Ph)h∈[H],r =
(ri)i∈[N ]), where H denotes the length of the horizon, Ph : S × A 7→ ∆(S) is the state transition
probability at step h ∈ [H], T := (S ×A)H denotes the set of all possible trajectories, and ri : T → R
is the reward function for individual i and trajectory τ ∈ T , representing the utility of human user
i from a sequence of responses to a given prompt. We assume −Rmax ≤ ri(τ) ≤ Rmax for every τ ∈ T
and i ∈ [N ], for some Rmax > 0. This reward model also covers the case that ri(τ) =

∑
h∈[H] rh,i(sh, ah),

where rh,i : S ×A→ R denotes the state-action reward function for each step h and individual i,
and τ = (s1, a1, s2, a2, . . . , sH , aH ). The MDP concludes at an absorbing termination state with zero
reward after H steps.

A policy πh : (S ×A)h−1×S → ∆(A) is defined as a function mapping trajectories to distributions
over actions for each step h ∈ [H] within the horizon H . We define the history-dependent policy
class as Π. The collection of these policies across all steps is denoted by π. The expected cumulative
reward of a policy π is given by J(π;ri) := Eτ,π[ri(τ)] where the expectation in the formula is taken
over the distribution of the trajectories under the policy π. Trajectory occupancy measures, denoted
by dπ : T → [0,1], are defined as dπ(τ) := Pπ(τ), which denotes the probability of generating
trajectory τ following policy π.

Relationship between Preference and Reward Function. For the MDP withM = (S ,A,H, (Ph)h∈[H],r =
(ri)i∈[N ]), if we compare two trajectories τ0 and τ1, we define some random variable o such that o = 0
if τ0 ≻ τ1, and o = 1 if τ0 ≺ τ1. Here, τ0 ≻ τ1 indicates that τ0 is preferred than τ1. We assume that
Pri (o = 0 | τ0, τ1) = Φ(ri(τ0)− ri(τ1)) for all i ∈ [N ], where Φ : R→ [0,1] is a monotonically increasing
link function, which satisfy Φ(x)+Φ(−x) = 1 and logΦ(x) is a strongly convex function. For example,
Φ(x) = σ (x) indicates the BTL model (Definition 2.1 below), a frequently used model for the relation-
ship between preference and reward. Also, we define Pr(· | τ0, τ1) := (Pr1(· | τ0, τ1)⊺, . . . , PrN (· | τ0, τ1)⊺)⊺.
We call Pr and Pri a preference probability vector induced by the reward vector r and the reward ri .
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Definition 2.1. The Plackett-Luce (PL) model (Plackett, 1975; Luce, 2005) quantifies the likelihood that
a trajectory τk is preferred over all other pairs in the set {τk}k∈[K] by assigning it a probability defined as

Pr
(
τk ≻ τk′∀k′ , k

∣∣∣ (τk)k∈[K]

)
=

exp(r(τk))∑
k′∈[K] exp(r(τk′ ))

where r is the reward function for a human labeler. In the case where k = 2, this formulation simplifies to
the Bradley-Terry-Luce (BTL) Model (Bradley and Terry, 1952).

Direct Preference Optimization (DPO) (Rafailov et al., 2024). Consider the case with Marko-
vian reward and policy, i.e., the reward r : S ×A → R is a function of state s and action a, and
the policy π : S → ∆(A) is also depending only on the state s. Also, assume that we compare
actions for each state rather than the whole trajectories. In the fine-tuning phase using RL, when
KL-regularization with the reference policy πold is employed, the optimal policy is given by:

π(a | s) =
1
Z(s)

πold(a | s)exp
(
r(s,a)
β

)
,

where Z(s) serves as a normalization factor that is independent of the answer a, and β represents
the coefficient for KL regularization. Integrating the BTL model into this framework yields:

πRLHF = argmin
π

−E(s,a0)≻(s,a1)

[
logσ

(
β log

π(a0 | s)
πold(a0 | s)

− β log
π(a1 | s)
πold(a1 | s)

)]
,

where σ denotes the Sigmoid function (Rafailov et al., 2024). This formulation bypasses the step of
explicitly estimating the reward function.

Fundamentals of Auction Theory. Consider the sealed-bid auction mechanism (Vickrey, 1961),
where each participant i ∈ [N ] privately submits a bid bi(x) for every possible outcome x ∈ X, whose
true value is pi(x) ∈ R. An auction is termed a Dominant Strategic Incentive-Compatible (DSIC)
auction (Roughgarden, 2010) if revealing each participant’s true valuation is a weakly dominant
strategy, i.e., an individual’s optimal strategy is to bid their true valuation of the item, bi(x) = pi(x)
for all x ∈ X, irrespective of the bids b−i(x) submitted by others for all x ∈ X. This mechanism is
also called a truthful mechanism (Roughgarden, 2010). An auction has a social-welfare-maximizing
allocation rule (Roughgarden, 2010) if the outcome x is argmaxx∈X

∑
i∈[N ]pi(x).

3 Personalized RLHF via Representation Learning

In this section, we provide the first approach in the personalization-based framework, based on
representation learning.

Reward Function Class. We will assume that we have access to a pre-trained feature function
φ : T → Rd , which encodes a trajectory of states and actions (i.e., questions and answers) to a
d-dimensional feature vector. This covers the case where feature φh : S ×A → Rd is defined at
each state-action pair, i.e., φ(τ) :=

∑
h∈[H]φh(sh, ah) for trajectory τ = (s1, a1, . . . , sH , aH ). For example,

it is common to use the penultimate layer of an existing pre-trained LLM or other pre-trained
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backbones to encode a long sentence to a feature vector (Donahue et al., 2014; Gulshan et al., 2016;
Tang et al., 2015).

Our first goal is to learn reward models for each human user using preference datasets. First,
we define the reward function class as

Gr =
{
(⟨ψω(φ(·)),θi⟩)i∈[N ]

∣∣∣ψω ∈ Ψ ,θi ∈ Rk and ∥θi∥2 ≤ B for all i ∈ [N ]
}
,

for some B > 0, where Ψ is the set of representation functions parameterized by ω ∈ Ω, i.e.,
Ψ = {ψω | ω ∈Ω}, where ψω : Rd → Rk. We assume that d ≫ k. We denote θθθ = (θ1, . . . ,θN ), and to
emphasize the relationship between reward and (ω,θθθ), we will write rω,θi (·) := ⟨ψω(φ(·)),θi⟩ for
each individual i ∈ [N ] and rω,θθθ(·) := (rω,θ1

(·), · · · , rω,θN (·))⊺ ∈ RN . From this section, we will write
r⋆ = (r⋆1 , . . . , r

⋆
N ) as the underlying human reward functions.

Assumption 3.1 (Realizability). We assume that the underlying true reward can be represented as
r⋆i (·) = ⟨ψ⋆(φ(·)),θ⋆i ⟩ for some representation function ψ⋆ ∈ Ψ (in other words, there exists some ω⋆ ∈Ω
such that ψω⋆ = ψ⋆) and ∥θ⋆i ∥2 ≤ B for each individual i ∈ [N ].

To emphasize (ω,θθθ), we define shorthand notation Pω,θθθ := Prω,θθθ as the preference probability
induced by rω,θθθ. We also write Pω,θ := P⟨ψω(φ(·)),θ⟩, which is the probability induced by ⟨ψω(φ(·)),θ⟩.

3.1 Algorithms

We introduce our algorithms for learning personalized policy. Compared to traditional RLHF
algorithms (Ziegler et al., 2019; Ouyang et al., 2022; Zhu et al., 2023), we consider personalized
reward function by representation learning.

Algorithm 1 outputs a joint estimation of ψ⋆ and θθθ⋆ with maximum likelihood estimation
(MLE), together with personalized policies. The input of the algorithm is D̂ = ∪i∈[N ]D̂i where

D̂i = {(o(j)
i , τ

(j)
i,0, τ

(j)
i,1)j∈[Np]}. Here, τ (j)

i,t is sampled from the distribution µt for t = 0,1, and o
(j)
i ∼

Pr⋆i (·|τ (j)
0 , τ

(j)
1 ). We regard the reward estimation of human users as a multi-task representation

learning problem (Du et al., 2020; Tripuraneni et al., 2020). After estimating the reward functions,
we construct two kinds of confidence sets for the reward function and outputs based on each
confidence set:

• Confidence set (Equation (3.1)) for the MLE estimation as Liu et al. (2022), which is also
used in (Liu et al., 2023; Zhan et al., 2023; Wang et al., 2024; Zhan et al., 2022), with
ζ = C1 log(NGr (1/(NNp))/δ) for a constant C1 > 0, which will be related to Theorem 3.1. the
definition of bracketing number (NGr ) is deferred to Appendix B.

• Confidence set (Equation (3.2)) with ζ′ = C8

(
k
ξ2κ2 log(NGr (1/(NNp))/δ)

η2NNp
+ ξ2(k+log(N/δ))

η2Np
+λB2

)
,

where C8,λ > 0 are constants, ξ := maxx∈[−2Rmax,2Rmax]

∣∣∣∣Φ ′(x)
Φ(x)

∣∣∣∣, κ := (minx∈[−2Rmax,2Rmax]Φ
′(x))−1,

and η := minx∈[−2Rmax,2Rmax]

(
Φ ′(x)2−Φ ′′(x)Φ(x)

Φ(x)2

)
. In the case that Φ(x) = σ (x) (i.e. Φ is a Sigmoid

function), ξ ≤ 1 and κ = η = 1
2+exp(−2Rmax)+exp(2Rmax) . This confidence set will be related to

Theorem 3.4. With this confidence set, we can get sharper bound with Assumptions 3.2 - 3.4.

Lastly, we find the best policy based on the pessimistic expected value function. µi,ref in Algorithm 1
is a known reference trajectory distribution for individual i ∈ [N ], and it can be set as µ1.
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Algorithm 1 Personalized RLHF via Representation Learning

Input: Dataset D̂ = ∪i∈[N ]D̂i where D̂i = {(o(j)
i , τ

(j)
i,0, τ

(j)
i,1)j∈[Np]} is the preference dataset for the ith

individual.
Estimate ω⋆ and θθθ⋆ by

(ω̂,θ̂θθ)← argmin
ω∈Ω,∥θi∥2≤B for all i∈[N ]

∑
i∈[N ]

∑
j∈[Np]

logPω,θi (o
(j)
i | τ

(j)
i,0, τ

(j)
i,1)

Construct a confidence set of the reward function by

R(D̂)←
{
rω,θθθ

∣∣∣∣∣ ∑
i∈[N ]

∑
j∈[Np]

logPω,θi (o
(j)
i | τ

(j)
i,0 , τ

(j)
i,1) ≥

∑
i∈[N ]

∑
j∈[Np]

logPω̂,θ̂i (o
(j)
i | τ

(j)
i,0 , τ

(j)
i,1)− ζ

}
(3.1)

or

R′(D̂)←∩i∈[N ]

{
rω,θθθ

∣∣∣∣ 1
Np

∑
j∈[Np]

∣∣∣(rω̂,θ̂i (τ (j)
i,0)− rω̂,θ̂i (τ

(j)
i,1))− (rω,θi (τ

(j)
i,0)− rω,θi (τ

(j)
i,1))

∣∣∣2 ≤ ζ′} (3.2)

Compute policy with respect to R(D̂) (or R′(D̂)) for all i ∈ [N ] by

π̂i ← argmax
π∈Π

min
r∈R(D̂)

(
J(π;ri)−Eτ∼µi,ref

[ri(τ)]
)

(3.3)

or

π̂′i ← argmax
π∈Π

min
r∈R′(D̂)

(
J(π;ri)−Eτ∼µi,ref

[ri(τ)]
)

(3.4)

Output: (ω̂,θ̂θθ, (π̂i)i∈[N ]) or (ω̂,θ̂θθ, (π̂′i)i∈[N ]).

Algorithm 2 addresses a scenario where a new human user, who was not a labeler before, aims
to learn their own reward models using representations previously learned by other human users,
focusing solely on learning θ⋆0 . They leverage the learned representation ψω̂ from Algorithm 1. The

input of the algorithm is D̂0 = {(o(j)
0 , τ

(j)
0,0, τ

(j)
0,1)j∈[Np]}. Algorithm 2 provides an estimation of θ⋆0 with

MLE using the frozen representation ψω̂. Similarly, after estimating the reward function, we con-

struct confidence set for the MLE estimation with ζ = C8

(
k
ξ2κ2 log(NGr (1/(NNp))/δ)

η2NNp
+ ξ2(k+log(1/δ))

η2Np
+λB2

)
for a constant C8 > 0. Lastly, we find the best policy based on the pessimistic expected value func-
tion. µ0,ref in Algorithm 2 is a known reference trajectory distribution.

3.2 Results and Analyses

For ease of analysis, we consider the case where the sizes of preference datasets for each individual

i ∈ {0} ∪ [N ] are identical, i.e., D̂i = {(o(j)
i , τ

(j)
i,0, τ

(j)
i,1)j∈[Np]}, satisfies |D̂i | =Np for all i ∈ {0} ∪ [N ]. The

result in this section can also be extended to the case with |D̂i | =Np,i for each individual i. We defer
all the proofs of this section to Appendix C.
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Algorithm 2 Transferable RLHF for a New Human User via Representation Learning

Input: Dataset D̂0 = {(o(j)
0 , τ

(j)
0,0, τ

(j)
0,1)j∈[Np]} and ω̂ from Algorithm 1.

Estimate θ⋆0 by

θ̂0← argmin
∥θ0∥2≤B

∑
j∈[Np]

logPω̂,θ0
(o(j)

0 | τ
(j)
0,0, τ

(j)
0,1)

Construct a confidence set of the reward function by

R(D̂)←
{
rω,θ0

∣∣∣ 1
Np

∑
j∈[Np]

∣∣∣(rω̂,θ̂0
(τ (j)

0,0)− rω̂,θ̂0
(τ (j)
i,1))− (rω,θ0

(τ (j)
0,0)− rω,θ0

(τ (j)
0,1))

∣∣∣2 ≤ ζ}

Compute policy with respect to R(D̂) by

π̂0← argmax
π∈Π

min
r0∈R(D̂0)

(
J(π;r0)−Eτ∼µ0,ref

[r0(τ)]
)

Output: (π̂i)i∈[N ].

Definition 3.1 (Concentrability Coefficient). The concentrability coefficient, with respect to a reward
vector class Gr, human user i, a target policy πtar (which policy to compete with, which potentially can be
the optimal policy π⋆i corresponding to r⋆i ), and a reference policy µref, is defined as follows:

Cr

(
Gr,πtar ,µref , i

)
:= max

0,sup
r∈Gr

Eτ0∼πtar ,τ1∼µref

[
r⋆i (τ0)− r⋆i (τ1)− ri (τ0) + ri (τ1)

]√
Eτ0∼µ0,τ1∼µ1

[∣∣∣r⋆i (τ0)− r⋆i (τ1)− ri (τ0) + ri (τ1)
∣∣∣2]

 .
We also define the concentrability coefficient of the reward scalar class in Appendix B.2, and we denote
this as Cr(Gr ,πtar,µref).

(Zhan et al., 2023) provides an interpretation of concentrability coefficient. For example, if

µref = µ1, the value of Cr (Gr,πtar ,µ1, i) ≤
√

maxτ∈T
dπtar (τ)
µ0(τ) , so this reflects the concept of “single-

policy concentrability” (Rashidinejad et al., 2021; Zanette et al., 2021; Ozdaglar et al., 2023), which
is commonly assumed to be bounded in the offline RL literature.

We present the gap of the expected value function between the target policy πi,tar and the
estimated policy π̂i for each individual i ∈ [N ]. Here, πi,tar, which may be the optimal policy π⋆i
over r⋆i , serves as the policy that π̂i will compete.

Theorem 3.1. (Total Expected Value Function Gap). Suppose Assumption 3.1 holds. For any δ ∈ (0,1],
with probability at least 1− δ, the output (π̂i)i∈[N ] of Algorithm 1 satisfies

∑
i∈[N ]

(
J(πi,tar;r

⋆
i )− J(π̂i ;r⋆i )

)
≤

√
cκ2NC2

max log(NGr (1/NNp)/δ)

Np
,

where Cmax := maxi∈[N ]Cr(Gr,πi,tar,µi,ref, i) and c > 0 is a constant.
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Corollary 3.2. (Expected Value Function Gap). Suppose Assumption 3.1 holds. For any δ ∈ (0,1] and
all i ∈ [N ], with probability at least 1− δ, the output π̂i of Algorithm 1 satisfies

J(πi,tar;r
⋆
i )− J(π̂i ;r⋆i ) ≤

√
cκ2Cr(Gr,πi,tar,µi,ref, i)2 log(NGr (1/NNp)/δ)

Np
,

where c > 0 is a constant.

Note that the results above do not need any assumption on (θ⋆i )i∈[N ]. Still, as Np→∞, π̂i has
comparable or better performance than the comparator policy πi,tar, which approaches the optimal
policy if πi,tar = π⋆i . We defer the proofs of Theorem 3.1 and Corollary 3.2 to Appendix C.1.

Next, we want to improve the bound for Corollary 3.2, as the gap of the expected value
function does not decay with N , which is the number of human users. Therefore, we consider
the case that (θi)i∈[N ] are diverse (Assumption 3.2), which is critical for improving the sample
complexity of Algorithm 1 by outputting (π̂′i)i∈[N ]. We will additionally assume the uniqueness of
the representation up to the orthonormal linear transformation (Assumption 3.3), and uniform
concentration of covariance (Assumption 3.4). These assumptions are commonly used in multi-task
learning (Du et al., 2020; Tripuraneni et al., 2021; Lu et al., 2021)

Assumption 3.2 (Diversity). The matrix Θ⋆ = [θ⋆1 , · · · ,θ
⋆
N ] ∈ Rk×N satisfies σ2

k (Θ⋆) ≥Ω (N/k).

Assumption 3.2 means that θi is evenly distributed in Rd space for i ∈ [N ], which indicates
“diverse” human reward function.

Assumption 3.3 (Uniqueness of Representation (up to Orthonormal-Transformation)). For any
representation functions ψ,ψ′ ∈ Ψ and ϵ > 0, if there exists {vi}Ti=1, {v

′
i }
T
i=1, and a trajectory distribution

µ that satisfy
1
T

∑
i∈[T ]

Eτ∼µ∥ψ(φ(τ))⊤vi −ψ′(φ(τ))⊤v′i∥
2 ≤ ϵ,

W = [v1,v2, · · · ,vT ] ∈ Rk×T satisfies σ2
k (W ) ≥Ω (T /k), and ∥vi∥2 ≤ B for all i ∈ [T ]. Then, there exists a

constant orthonormal matrix P such that

∥ψ(φ(τ))− P ψ′(φ(τ))∥2 ≤ ckϵ/B

for all trajectory τ where c > 0 is a constant.

This assumption posits that if two representation functions, ψ and ψ′, yield sufficiently small
differences in expected squared norms of their inner products with corresponding vectors over
trajectory distributions, then they are related by a constant orthonormal transformation. If
ψω(φ(s,a)) := ωφ(s,a) where ω is k × d orthonormal matrix, we can prove that Assumption 3.3
holds with non-degenerate φ(s,a) distribution (Appendix C.2.2).

Definition 3.2. Given distributions µ0,µ1 and two representation functions ψ,ψ′ ∈ Ψ , define the
covariance between ψ and ψ′ with respect to µ0,µ1 to be

Σψ,ψ′ (µ0,µ1) := Eτ0∼µ0,τ1∼µ1
[(ψ(φ(τ0))−ψ(φ(τ1)))(ψ′(φ(τ0))−ψ′(φ(τ1)))⊺] ∈ Rk×k .

Define the symmetric covariance as

Λψ,ψ′ (µ0,µ1) =
[
Σψ,ψ(µ0,µ1) Σψ,ψ′ (µ0,µ1)
Σψ′ ,ψ(µ0,µ1) Σψ,ψ′ (µ0,µ1)

]
.
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We make the following assumption on the concentration property of the representation covari-
ances.

Assumption 3.4. (Uniform Concentrability). For any δ ∈ (0,1], there exists a numberNunif(Ψ ,µ0,µ1,δ)
such that for any n ≥Nunif(Ψ ,µ0,µ1,δ), the empirical estimation Λ̂ψ,ψ′ (µ0,µ1) of Λψ,ψ′ (µ0,µ1) based on
n independent trajectory sample pairs from distributions (µ0,µ1), with probability at least 1 − δ, will
satisfy the following inequality:

1.1Λψ,ψ′ (µ0,µ1) ⪰ Λ̂ψ,ψ′ (µ0,µ1) ⪰ 0.9Λψ,ψ′ (µ0,µ1),

for all ψ,ψ′ ∈ Ψ .

Assumption 3.4 means that the empirical estimate Λ̂ψ,ψ′ (µ0,µ1) closely approximates the true
Λψ,ψ′ (µ0,µ1) with high probability. Similarly, if ψω(φ(τ)) := ωφ(τ), Npoint(Ψ ,µ0,µ1,δ) = Õ(d) (Du
et al., 2020, Claim A.1). If distributions µ0,µ1 are clear from the context, we omit the notation µ0,µ1
for Σψ,ψ′ (µ0,µ1) and Λψ,ψ′ (µ0,µ1). Moreover, we also write Σψ,ψ as Σψ for notational convenience.

With Assumption 3.2 and Assumption 3.3, ψ⋆ and ψω are close up to an orthonormal matrix
transformation, as asserted below:

Corollary 3.3. (Closeness between ψ⋆ and ψω). Suppose Assumptions 3.1, 3.2, and 3.3 hold. For any
δ ∈ (0,1], with probability at least 1− δ, if rω,θθθ ∈ R′(D) as specified in Algorithm 1, then there exists an
orthonormal matrix Pω such that[

∥ψ⋆(φ(τ0))−ψ⋆(φ(τ1))− Pω(ψω(φ(τ0))−ψω(φ(τ1)))∥2
]
≤ k

crepκ
2 log(NGr (1/(NNp))/δ)

NNpB2

for all τ0, τ1, where crep > 0 is a constant.

We provide the proof of Corollary 3.3 in Appendix C.3. Using Corollary 3.3, now we have a
better sample complexity compared with that in Theorem 3.1, as stated below:

Theorem 3.4. (Improved Expected Value Function Gap). Suppose Assumptions 3.1, 3.2, 3.3, and 3.4
hold. For any δ ∈ (0,1], all i ∈ [N ] and λ > 0, with probability at least 1−δ, the output π̂′i of Algorithm 1
satisfies

J(πi,tar;r
⋆
i )− J(π̂′i ;r

⋆
i )

≤

√
cCr(Gr,πi,tar,µi,ref, i)2

(
k
ξ2κ2 log(NGr (1/(NNp))/δ)

η2NNp
+
ξ2(k + log(N/δ))

η2Np
+λB2

) (3.5)

where c > 0 is a constant.

Lastly, we can also use the learned representation for a new human user as follows:

Theorem 3.5. (Expected Value Function Gap for a New Human User). Suppose Assumptions 3.2, 3.3,
and 3.4 hold. For any δ ∈ (0,1] and λ > 0, with probability at least 1− δ, the output π̂0 of Algorithm 2
satisfies

J(π0,tar;r
⋆
0 )− J(π̂0;r⋆0 )

≤

√
cCr(Gr,πi,tar,µi,ref, i)2

(
k
ξ2κ2 log(NGr (1/(NNp))/δ)

η2NNp
+
ξ2(k + log(1/δ))

η2Np
+λB2

)
where c > 0 is a constant.
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We provide the proofs of Theorem 3.4 and Theorem 3.5 in Appendix C.4.

Remark 1 (Sample Complexity). For Theorem 3.4, if we naively learn the personalization model with-
out representation learning,NGr (1/(NNp)) will be very large. For example, if we use linear representation
φω(x) =ωx andω is a d×k orthonormal matrix, then log(NGr (1/NNp)/δ) ≤ O

(
(dk +Nk) log

(
RmaxNNp/δ

))
while naive personalization with

G′r =
{
(⟨φ(·),θi⟩)i∈[N ]⟩

∣∣∣θi ∈ Rd and ∥θi∥2 ≤ B for all i ∈ [N ]
}

provides NG′r (1/(NNp)) ≤ O
(
Nd log

(
RmaxNNp/δ

))
. Since d ≫ k, the bound of Equation (3.5)’s right-

hand side has a significant improvement when we use the representation learning. If the representation
function class is an MLP class, we can use a known bracket number by Bartlett et al. (2017).

We also point out that the existing technique from representation learning literature does not
cover the case with general representation function learning with a log-likelihood loss function
with O(1/Np) rate, to the best of our knowledge.

Lastly, we examine the tightness of our analysis by the theoretical lower bound of the sub-
optimality gap of personalization.

Theorem 3.6. (Lower Bound for the Sub-Optimality Gap of Personalization). For any k > 6,Np ≥
CkΛ2 and Λ ≥ 2, there exists a representation function φ(·) so that

min
i∈[N ]

inf
π̂

sup
Q∈CB(Λ)

(
max
π∗∈Π

J(π∗;rω,θi )− J(π̂;rω,θi )
)
≥ CΛ ·

√
k
Np
,

where

CB(Λ)B
{
QB

({
µ0,µ1

}
, {τ (j)

i,0, τ
(j)
i,1}i∈[N ],j∈[Np],ω,θθθ

) ∣∣∣Cr(Gr,π⋆ ,µ1, i) ≤Λ for all i ∈ [N ]
}

is the family of MDP with N reward functions and H = 1 instances.

The proof is largely adapted from (Zhu et al., 2023, Theorem 3.10). By Theorem 3.6, for general
representation function class, we establish that Algorithm 1 is near-optimal for the sub-optimality

of the induced personalization policy, as log(NGr (1/NNp)) can be small so that

√
k

log(NGr (1/(NNp))/δ)
NNp

can be dominated by
√

k
Np

. Note that if Ψ is a linear representation class, our result for person-

alization (Theorem 3.4) still has a
√
k gap compared to the lower bound (Theorem 3.6). This gap

is also observed in (Tripuraneni et al., 2020). We will leave the sharpening of this
√
k factor as a

future work.

4 Personalized RLHF via Human User Clustering

We now provide the second approach in the personalization-based framework, through human
user clustering. In particular, fine-tuning an LLM for each individual may be impractical. We
thus propose an alternative approach that segments human users into clusters and fine-tunes an
LLM for each cluster. This strategy entails deploying K clustered models, which can be smaller
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than the number of human users N . A critical aspect of this methodology is the way to generate
clusters. This clustering-based personalization has also been studied in the federated (supervised)
learning literature (Mansour et al., 2020; Ghosh et al., 2020; Sattler et al., 2020). We introduce our
algorithm next, based on the algorithmic idea in Mansour et al. (2020).

4.1 Algorithms

We partition all the N human users into K clusters and find the best parameters for each cluster as
follows:

max
(r(k))k∈[K]

∑
i∈[N ]

1
N

max
k∈[K]

EDi
[
logPr(k)

(
oi | τi,0, τi,1

)]
.

Since we only have access to the empirical data distribution, we instead solve the following problem:

max
(r(k))k∈[K]

∑
i∈[N ]

1
N

max
k∈[K]

∑
j∈[Np]

logPr(k)

(
o

(j)
i

∣∣∣τ (j)
i,0, τ

(j)
i,1

)
. (4.1)

Algorithm 3 outputs K clustered policies and a map from human users to clusters. The input

of the algorithm is D̂ = ∪i∈[N ]D̂i where D̂i = {(o(j)
i , τ

(j)
i,0, τ

(j)
i,1)j∈[Np]}, which is the same as Algorithm 1.

After estimating the representation parameter ω̂, the algorithm will estimate the reward function
parameters (θ̂(k))k∈[K] with Equation (4.2). Lastly, we find the best policy based on expected value
function.

We also provide a practical algorithm that uses DPO and EM (Moon, 1996) algorithms to
solve Equation (4.2). Given the inherent complexity of this hierarchical optimization problem,
which presents more challenges than standard optimization tasks (Anandalingam and Friesz,
1992), we propose a novel algorithm that circumvents the need for explicit reward function
estimation in Algorithm 4. Our approach begins by randomly assigning each human user to a
cluster. Subsequently, we reassign random human users to the cluster where the policy most
effectively maximizes their empirical DPO loss (Equation (4.3)). Finally, we refine our solution
by optimizing the DPO loss function for the selected human users within each cluster, thereby
enhancing the overall policy effectiveness.

4.2 Results and Analyses

First, we introduce label discrepancy (Mohri and Muñoz Medina, 2012) for the preference dataset
and reward function class. We defer all the proofs of this section to Appendix D.

Definition 4.1 (Label Discrepancy). Label discrepancy for preference distribution Di and Dj , which
are distributions of (o,τ0, τ1), with reward function class Gr is defined as follows:

disc(Di ,Dj ,Gr ) = max
r∈Gr

∣∣∣∣EDi
logPr(o | τ1, τ0)−EDj

logPr(o | τ1, τ0)
∣∣∣∣.
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Algorithm 3 Personalized RLHF via Clustering

Input: Dataset D̂ = ∪i∈[N ]D̂i where D̂i = {(o(j)
i , τ

(j)
i,0, τ

(j)
i,1)j∈[Np]} is the preference dataset for the ith

individual, and ω̂ form Algorithm 1.
Learn θ(i) and the clustering map f : [N ]→ [K] by

(θ̂(k))k∈[K]← argmax
∥θ(k)∥2≤B for all k∈[K]

∑
i∈[N ]

max
k∈[K]

∑
j∈[Np]

logPω̂,θ(k)
(o(j)
i | τ

(j)
i,0, τ

(j)
i,1) (4.2)

f̂ (i)← argmax
k∈[K]

∑
j∈[Np]

logPω̂,θ̂(k)
(o(j)
i | τ

(j)
i,0, τ

(j)
i,1) for all i ∈ [N ]

For each k ∈ [K],

π̂(k)← argmax
π∈Π

(
J(π;rω̂,θ̂(k)

)−Eτ∼µ1
[rω̂,θ̂(k)

(τ)]
)
.

Output: ((π̂(k))k∈[K], (θ̂(k))k∈[K], ω̂, f̂ ).

Lemma 1 (Mansour et al. (2020)). For any δ ∈ (0,1], with probability at least 1 − δ, the output
((π̂(k))k∈[K], (θ̂(k))k∈[K], ω̂, f̂ ) of Algorithm 3 satisfies

max
∥θ′i∥≤B for all i∈[N ]

∑
i∈[N ]

∑
j∈[Np,i ]

log

 Pω̂,θ′i (o
(j)
i | τ

(j)
i,0, τ

(j)
i,1)

Pω̂,θ̂f̂ (i)
(o(j)
i | τ

(j)
i,0, τ

(j)
i,1)


≤ CclusterNNp


√

log(2K/δ)
Np

+

√
kK log(Np/K)

Np
+

∑
i∈[N ]

1
N
disc(Di ,Cf̂ (i),Gψω̂ )

 ,
where Ck := ∪f̂ (i)=kDi , Ccluster > 0 is a constant, and Gψω := {rω,θ | ∥θ∥ ≤ B} for all ω ∈Ω.

Theorem 4.1. (Total Expected Value Function Gap). Suppose Assumptions 3.1, 3.2, 3.3, and 3.4 hold.
Also, assume that Cr(Gr ,π,µi,ref, i) ≤ C′max for all policy π and i ∈ [N ]. For any δ ∈ (0,1], all i ∈ [N ] and
λ > 0, with probability at least 1− δ, the output ((π̂(k))k∈[K], f̂ ) of Algorithm 3 satisfies∑

i∈[N ]

(
J(πi,tar;r

⋆
i )− J(π̂f̂ (i);r

⋆
i )

)
≤ cNκ

 log(2K/δ)
Np

+
kK log(Np/K)

Np
+
kξ2κ2 log(NGr (1/(NNp))/δ)

NNp

+

 ∑
i∈[N ]

1
N
disc(Di ,Cf̂ (i),Gψ⋆ ))


2

+

 log(NGψ⋆ (1/NNp)/δ)

NNp

21/4

,

where c > 0 is a constant.

We note that due to the
√
dk/Np order on the right-hand side of Lemma 1, we have a slower rate

in Theorem 4.1 than Theorem 3.4. This gap is mainly due to the fact that the analysis of Lemma 1
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Algorithm 4 ClusterDPO: Learning K clustered policies by DPO

Input: Dataset D̂ = ∪i∈[N ]D̂i where D̂i = {a(j)
i,0 ≻ a

(j)
i,1, s

(j)
i )j∈[Np]} is the preference dataset for the ith

individual, β is a parameter for DPO
Randomly select K human users p1, . . . ,pK and initialize π0

(k) for all k ∈ [K] as

π0
(k)← argmax

π∈Π

∑
j∈[Np]

logσ

β log
π(a(j)

pk ,0
| s(j)pk )

πold(a(j)
pk ,0
| s(j)pk )

− β log
π(a(j)

pk ,1
| s(j)pk )

πold(a(j)
pk ,1
| s(j)pk )


Randomly initialize f 0(i) for i < {p1, . . . ,pK }
for t ∈ [T ] do

Randomly select K human users p1, . . . ,pK .
for i ∈ [N ] do

if i < {p1, . . . ,pK } then
Define f t(i)← f t−1(i)

end if
end for
Assign f t(pk) for all k ∈ [K] as

f t(pk)← argmax
s∈[K]

∑
j∈[Np]

logσ

β log
πt−1

(s) (a(j)
pk ,0
| s(j)pk )

πold(a(j)
pk ,0
| s(j)pk )

− β log
πt−1

(s) (a(j)
pk ,1
| s(j)pk )

πold(a(j)
pk ,1
| s(j)pk )

 (4.3)

Run a few steps of optimization to update πt−1
(s) for all s ∈ [K] (for example, gradient ascent or

Adam) to maximize

∑
f (pk)=s

∑
j∈[Np]

logσ

β log
π(a(j)

pk ,0
| s(j)pk )

πold(a(j)
pk ,0
| s(j)pk )

− β log
π(a(j)

pk ,1
| s(j)pk )

πold(a(j)
pk ,1
| s(j)pk )


and obtain πt(s) for all s ∈ [K].

end for
Assign f T+1(i) for all i ∈ [N ] as

f T+1(i)← argmax
s∈[K]

∑
j∈[Np]

logσ

β log
πT(s)(a

(j)
i,0 | s

(j)
i )

πold(a(j)
i,0 | s

(j)
i )
− β log

πT(s)(a
(j)
i,1 | s

(j)
i )

πold(a(j)
i,1 | s

(j)
i )


Output: (πT(k))k∈[K] and f T+1

should cover uniformly for arbitrary f̂ , and also due to a difference between max and expectation
of max, which is bounded using McDiarmid’s inequality.

Remark 2. In contrast to the results in Section 3, we additionally assume Cr(Gr ,π,µ1, i) ≤ C′max in
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Theorem 4.1. To adopt a pessimistic approach, constructing a confidence set for clustered reward functions
across all clusters is necessary. However, the ambiguity of which human user belongs to which cluster
complicates this analysis, as pessimism would need to be applied to every potential cluster. Consequently,
defining a confidence set for every possible clustering scenario is required, significantly complicating the
analysis of the algorithm.

5 Reward and Preference Aggregation

This section adheres to the RLHF setting with a single LLM, while handling the heterogeneous hu-
man feedback by reward/preference aggregation. For reward aggregation, we leverage comparison
data similar to the methods discussed in the previous sections. We first estimate individual reward
functions based on such data and then aggregate these functions to form a unified reward model.
In comparison, for preference aggregation, we introduce a novel framework termed “probabilistic
opinion pooling”. Specifically, instead of relying on binary comparison data, human users provide
feedback as probability vectors. This approach eliminates the need to aggregate heterogeneous
preferences via reward functions, allowing for the direct aggregation of probabilistic opinions
provided by users.

5.1 Reward Aggregation with Comparison Data

We introduce the following reward aggregation rules (Equations (5.1) and (5.2)), which are favor-
able as they satisfy several pivotal axioms in social choice theory. These axioms – monotonicity,
symmetry, continuity, independence of unconcerned agents, translation independence, and the
Pigou-Dalton transfer principle – are crucial for ensuring fairness and consistency in the decision-
making process (List, 2013; Skiadas, 2009, 2016). We present the definition of these axioms in
Appendix E.1 for completeness. The aggregation rules are presented as follows:

Aggα(r) =

 1
α log

(
1
N

∑
i∈[N ] exp(αri)

)
α , 0

1
N

∑
i∈[N ] ri α = 0

(5.1)

and

Agg′α(r) =
{ 1

Nα

∑
i∈[N ](exp(αri)− 1) α , 0

1
N

∑
i∈[N ] ri α = 0

(5.2)

where r = (r1, . . . , rN )⊺ is a reward vector with trajectory input. Note that Equation (5.1) and
Equation (5.2) are equivalent in the sense of the associated optimal policy, as the log function is
monotonically increasing. We can verify that limα→−∞Aggα(r) = mini∈[N ] ri and limα→∞Aggα(r) =
maxi∈[N ] ri . This implies that when α is small, the reward aggregation rule emphasizes on
mini∈[N ] ri , and when α is large, it emphasizes on maxi∈[N ] ri . When α = 0, Equation (5.1) represents
utilitarianism, and when α → −∞, Equation (5.1) represents a Leximin-based aggregation rule
(List, 2013).

5.1.1 Algorithm and Analysis

Algorithm 5 outputs a joint estimation of ψ⋆ and θθθ⋆ with maximum likelihood estimation as
Algorithm 1. The procedure is overall the same as Algorithm 1, except the last step for estimating
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the best policy for the pessimistic expected value function associated with the aggregated reward
function.

Algorithm 5 RLHF with Reward Aggregation

Input: Dataset D̂ = ∪i∈[N ]D̂i where D̂i = {(o(j)
i , τ

(j)
i,0, τ

(j)
i,1)j∈[Np]} is the preference dataset for the ith

human, λ > 0, and ω̂ from Algorithm 1. We also use Equation (3.2) for constructing a confidence
set of reward function R′(D̂).
Compute policy with respect to R′(D̂) for all i ∈ [N ] by

π̂← argmax
π∈Π

min
r∈R′(D̂)

(
J(π;Aggα(r1, . . . , rN ))−Eτ∼µref

[Aggα(r1, . . . , rN )(τ)]
)
. (5.3)

Output: (ω̂,θ̂θθ, π̂).

Similar to the results in Theorem 3.4, we have the following theorem for Algorithm 5:

Theorem 5.1. (Expected Value Function Gap). Suppose Assumptions 3.1, 3.2, 3.3, and 3.4 hold. For
any δ ∈ (0,1], all i ∈ [N ] and λ > 0, with probability at least 1− δ, the output π̂ of Algorithm 5 satisfies

J(πtar;Aggα(r⋆))− J(π̂;Aggα(r⋆))

≤

√
cαCr(Gr,πtar,µref)2

(
kκ2 log(NGr (1/(NNp))/(δ/N ))

NNp
+
ξ2(k + log(N/δ))

η2Np
+λB2

)
where cα > 0 is a constant depending on α, and other constants are defined in Section 3.1.

We defer the proof of Theorem 5.1 to Appendix E.2. Lastly, we consider the tightness of our
analysis by providing a theoretical lower bound of the sub-optimality gap of aggregation.

Theorem 5.2. (Lower Bound for the Sub-Optimality Gap of Aggregation). For any k > 6,Np ≥
CkΛ2,Λ ≥ 2, and α ∈ R there exists a representation function φ(·) so that

inf
π̂

sup
Q∈CB(Λ)

(
max
π∗∈Π

J(π∗;Aggα(rω,θθθ))− J(π̂;Aggα(rω,θθθ))
)
≥ CΛ ·

√
k
Np
,

where

CB(Λ)B
{
QB

({
µ0,µ1

}
, {τ (j)

i,0, τ
(j)
i,1}i∈[N ],j∈[Np],ω,θθθ

) ∣∣∣Cr(Gr,π⋆ ,µ1, i) ≤Λ for all i ∈ [N ]
}

is the family of MDP with N reward functions and H = 1 instances.

By Theorem 5.2, for general representation function class, we establish that Algorithm 5 is
near-optimal for the sub-optimality of the induced personalization policy.

Remark 3 (Comparison with Recent Independent Work (Zhong et al., 2024)). (Zhong et al., 2024)
also considered reward aggregation rules, adhering to the axiom of scale independence but not translation
independence (Moulin, 2004). Here, scale/translation independence of the aggregation rule means that
the aggregation rule should yield the same choice even if the reward functions are scaled/translated,
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respectively. Our theoretical results can also be extended to the reward aggregation rule in (Zhong et al.,
2024). However, since we also consider the relationship of the reward aggregation rule and preference
aggregation rule by probabilistic opinion pooling, which will be presented in the next section, we only
present Equation (5.1) for the reward aggregation rule.

(Zhong et al., 2024) also considered Nash’s bargaining (Nash, 1953), which maximizes
∏
i∈[N ](ri −

minri) rather than
∏
i∈[N ] ri . In this case, they can also consider translation independence. Ours can also

be extended by substituting ri to ri/minri in the aggregation function (Equation (5.1)), but we decided
not to include it in our paper since we did not have this result in our initial draft.

5.2 Preference Aggregation with Probabilistic Opinion Data

5.2.1 RLHF with Probabilistic Opinion Feedback

Consider a set of questions {s(j)}j∈[Np], and for each question s(j), there are K potential answers

denoted by A(j) := {a(j)
k }k∈[K]. Traditional RLHF methods involve human labelers i ∈ [N ] selecting a

preferred answer from A(j). This approach limits the human feedback to a singular choice, which,
though being simple, restricts the expressiveness of human preferences.

To address this, we introduce a new setting whereby human labelers provide feedback as a

probability vector q(j)
i ∈ ∆(A(j)), which is also called probabilistic opinion in social choice theory

(Stone, 1961; Lehrer and Wagner, 2012). Here, ∆(A(j)) represents the set of all possible distributions
over the answers in A(j). This allows labelers to quantify their preferences across multiple answers
rather than selecting only one, and can be implemented in practice without increasing too much of
overload for feedback collection.

Our setup does not assume a predefined relationship between each reward function for every
human labeler and their preferences. Instead, we aggregate the diverse probabilistic preferences
of multiple labelers into a consensus probability distribution over the answers. We define an
aggregation function (or a probabilistic opinion pooling function), Agg-pα(P ), which takes a tuple
of human preference distributions P = (P1, . . . , PN ) ∈ (∆(A))N and maps it to a single probability
distribution in ∆(A) where A is the potential answer set. This aggregated distribution represents a
probabilistic opinion pooling among human labelers for each a ∈ A:

Agg-pα(P)(a) =


(
∑
i∈[N ](Pi (a))α)1/α∑

a′∈A(
∑
i∈[N ](Pi (a′))α)1/α α , 0

(
∏
i∈[N ] Pi (a))1/N∑

a′∈A(
∏
i∈[N ] Pi (a′))

1/N α = 0
. (5.4)

Remark 4. The case where α = 0 is referred to as the geometric pooling function (McConway, 1978).
This function is known for preserving unanimity and not being eventwise independent, while it does
satisfy external Bayesianity (Madansky, 1964; Dietrich and List, 2016). External Bayesianity mandates
that updating the probabilities with new information should yield consistent results regardless of whether
the update occurs before or after the aggregation process (Genest, 1984).

Interestingly, Equation (5.4), which describes the aggregation of probabilistic preferences, has a
connection to Equation (5.2), concerning reward aggregation, under the assumption of the Plackett-
Luce model for the relationship between reward functions and preference models (Definition 2.1).
We then formalize the connection between the probabilistic opinion pooling in Equation (5.4) and
the reward aggregation rule in Equation (5.1). We defer the proof of Theorem 5.3 to Appendix E.4.
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Theorem 5.3. (Relationship between Reward Aggregation and Preference Aggregation). Suppose
human preferences are modeled by the PL model, and all human labelers share a common lower bound on
their reward functions. Let (Ri(a))a∈A represent the reward function associated with action a ∈ A and
Pi ∈ ∆(A) denote the corresponding probabilistic opinion for individual i ∈ [N ]. Then, the preference
aggregation Agg-pα(P), is equivalent to the preference derived under the PL model with the aggregated
rewards (Aggα(R(a)))a∈A for any α ∈ [−∞,∞].

While we generally do not presuppose any specific relationship between probabilistic opinions
and reward functions, Theorem 5.3 shows that under the classical choice model of Plackett-Luce,
these two aggregation rules can coincide (while the probabilistic aggregation framework may
potentially handle other cases).

5.2.2 Algorithm

Now, we provide an algorithm that uses the feedback in the form of probabilistic opinions (Al-
gorithm 6). The only difference from the DPO algorithm (Rafailov et al., 2024) is to change the
deterministic answer ai to the ai sampled based on the probabilistic opinion pooling, which is in
the second line in the for loop of Algorithm 6.

Algorithm 6 Probabilistic Opinion Pooling DPO (POP-DPO)

Input: Dataset D̂ = ∪i∈[N ]D̂i where D̂i = {q(j)
i (s(j)i ), s(j), i)}j∈[Np] is the probabilistic opinion dataset

for the ith individual, q(j)
i ∈ ∆(A) with |A| = 2, β is a parameter for DPO, α is a parameter for

aggregation
for every epoch do

For every question s(j) where j is in the batch, q(j) := Agg-pα(q(j)).

Sample a(j)
0 ∼Multinomial(q(j)) and define a(j)

1 as non-selected answer.
Run a few steps of optimization to update π (for example, gradient ascent or Adam) to
maximize

∑
j∈batch

logσ

β log
π(a(j)

0 | s(j))

πold(a(j)
0 | s(j))

− β log
π(a(j)

1 | s(j))

πold(a(j)
1 | s(j))


end for
Output: π

5.3 Mechanism Design for Preference Aggregation

Suppose that human labeler i (i ∈ [N ]) provides preference data by probabilistic opinion Pi ∈
∆(A). We now consider the natural scenario where the labelers may be strategic – given they are
human beings with (certain degree of) rationality. In particular, knowing the form of preference
aggregation (and the fact that they may affect the process), human labelers may provide untruthful
feedback of their preference, in order to benefit more in terms of their actual utility/preference. In
particular, the untruthful preference may bias the aggregated preference (that LLM will be fine-
tuned over) towards their own preference, and thus manipulates the LLM output. We demonstrate
the scenario more quantitatively in the following example.
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An Example with Untruthful Feedback. Consider a set of N labelers evaluating two answers,
where each labeler expresses a probabilistic opinion on the answers (a1, a2). Specifically, suppose
labeler N believes that a1 is slightly preferable to a2, represented by the probability vector PN =
(0.6,0.4)⊺. Conversely, all other labelers i ∈ [N − 1] have probabilistic opinion favoring the second
answer, represented by Pi = (0.2,0.8)⊺.

We assume that the aggregation of these opinions employs the Agg-p−∞ rule, defined as

Agg-p−∞(P )(at) =
mini∈[N ] Pi (at)

mini∈[N ] Pi (a1)+mini∈[N ] Pi (a2) for t = 1,2, where P represents the matrix of probabilistic

opinions across all labelers and answers. Under truthful reporting, the aggregated result would be
calculated as Agg-p−∞ (P ) = (1/3,2/3)⊺. However, labeler N can strategically provide an untruthful
probabilistic opinion to distort the aggregated result toward his original view: If labeler N reports
a distorted opinion of P ′N = (13/15,2/15)⊺ instead of (0.6,0.4)⊺, the new aggregated opinion be-
comes Agg-p−∞ (P ′) = (0.6,0.4)⊺, where P ′ = (P1, . . . , PN−1, P

′
N ), which aligns exactly with labeler N ’s

probabilistic opinion, while further deviating from other labelers’ actual preference. This example
underscores the potential of strategic behavior in the aggregation of probabilistic opinions, and
thus highlights the importance of incentivizing truthful preference reporting.

5.3.1 Setup

To address the untruthful feedback issue, we resort to the ideas in mechanism design (Nisan and
Ronen, 1999; Börgers, 2015; Roughgarden, 2010). Specifically, we will develop mechanisms that
can impose some cost on human labelers, so that they do not have the incentive to report untruthful
preferences.

Imposing Cost for Human Feedback Collection. Though not being enforced in most existing
RLHF frameworks, we believe it is reasonable and possible to incorporate it in the feedback
collection, especially in scenarios where a single reward model (and thus a single LLM) is mandated.
For example, the future large models may be regulated by some administrative agency, e.g., the
government. These agencies’ objective is for social good, despite the heterogeneity in human
preferences, and also possess the power to enforce cost to human labelers, e.g., via taxing. It may
also be possible for big technology companies who train LLMs, e.g., OpenAI, to incentivize truthful
feedback through personalized and strategic (negative) payment (which corresponds to the cost
here) to human labelers.

In this setup, we will first prove the existence of a cost function ci : ∆(A)N → R for all i ∈ [N ]
that induces truthful reporting of probabilistic opinions from human labelers. Here, the input of
ci is the probabilistic opinion of every human labeler. This is also called the dominant strategy
incentive-compatible (DSIC) mechanism (Nisan and Ronen, 1999; Börgers, 2015; Roughgarden,
2010). Then, we prove that there exists an aggregation rule and cost function that induce DSIC,
and also maximize social welfare. We denote each human labeler’s underlying (true) probabilistic
opinion as pi

(
s(j)

)
for each question s(j). Accounting for such cost, we define the utility function of

individual i for question s(j) as

u
(j)
i

(
pi

(
s(j)

)
,
(
Pi

(
s(j)

))
i∈[N ]

)
= −d

(
pi

(
s(j)

)
,Agg-p

((
Pi

(
s(j)

))
i∈[N ]

))
− ci

((
Pi

(
s(j)

))
i∈[N ]

)
.
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Here, d : ∆(A) × ∆(A) → R represents the distance between the underlying true probabilistic
opinion and the aggregated preference. Moreover, we define the welfare function of individual i

from addressing question s(j) as Wel(j)
i (O) = −d(pi(s(j)),O) for any O ∈ ∆(A).

Remark 5 (Examples of Distance Function d). We can instantiate d(p,q) as the KL-divergence. Also,
we may instantiate dα(p,q) = sgn(α) 1

1−α
∑
j∈A

(
1− pαj q

1−α
j

)
, which is a variant of the α-Renyi divergence

for α , 0. One can easily check that dα(p,q) ≥ 0. In fact, one can also prove that limα→1dα(p,q) = d(p,q)
with d(p,q) being the KL-divergence (Appendix E.5).

5.3.2 Mechanism and Guarantees

We design a mechanism inspired by the Vickery-Clarke-Groves mechanism (Vickrey, 1961; Clarke,
1971; Groves, 1973), as defined below.

Definition 5.1 (VCG Mechanism). Assume that there are n strategic agents and a finite set X of
outcome, and each individual i has a private valuation vi for each outcome x ∈ X. The bidding b =
(b1, . . . , bN )⊺ ∈ (R|X |)N where bi ∈ R|X | is bidding for all outcome of individual i ∈ [N ]. Define their utility
function as vi(x(b))− ci(b), where x : (R|X |)N → X is the allocation rule and ci : (R|X |)N → R is the cost
function. The summation of welfare function of all agents is defined as Wel(x) =

∑
i∈[N ] vi(x) for all x ∈ X.

The goal is to design x and (ci)i∈[N ] functions to make a DSIC and welfare-maximizing mechanism. The
following x and ci for i ∈ [N ] is DSIC welfare maximizing mechanism:

x(b) = argmax
x∈X

∑
i∈[N ]

bi(x), ci(b) = max
x∈X

∑
j,i

bj(x)−
∑
j,i

bj(x(b)) for all i ∈ [N ].

Unfortunately, the classical VCG mechanism presents certain limitations such as it cannot be
solved in polynomial time in general (Nisan and Ronen, 1999; Börgers, 2015; Roughgarden, 2010).
We here adopt certain forms of allocation rule (which corresponds to the aggregation rule in our
RLHF setting) and cost functions as follows, which allow the outcome set to be a simplex (with
infinitely many outcomes):

Agg-p(P ) = argmin
p∈∆(A)

∑
i∈[N ]

d(P ,p), ci(P ) =
∑
j,i

d(Pi ,Agg-p(P ))− min
p∈∆(A)

∑
j,i

d(Pi ,p). (5.5)

Theorem 5.4. (DSIC Welfare-Maximizing Mechanism). The aggregation rule and the cost function as
in Equation (5.5) provide a DSIC welfare-maximizing mechanism.

Due to the modeling, we have an advantage compared to the original VCG mechanism. The
minimization in the aggregation function can be achieved using a simple optimization method
such as gradient descent, which makes our aggregation rule and cost function computation easy,
which is in contrast with the original VCG mechanism.

Now, we connect our mechanism design with pre-defined preference aggregation function
(Agg-pα in Equation (5.4)). Theorem 5.5 implies that Equation (5.4) is maximizing social welfare
and also we are available to construct the cost function to make human feedback truthful.

Theorem 5.5. If we set d as a variant of the α-Renyi distance for α , 0 (Remark 5) and define d as
KL-divergence for α = 0, the DSIC welfare-maximizing aggregation rule is Equation (5.4). Therefore,
aggregation rule Equation (5.4) is also welfare-maximizing with appropriate cost function.
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If we assume the relationship between reward and preference follows the PL model (Defi-
nition 2.1), then Equation (5.1) implies a welfare-maximizing aggregation rule, which connects
reward aggregation and mechanism design. We defer all proofs for the results in Section 5.3.2 to
Appendix E.6.
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A Table of Notation

Notation Definition
N Number of Individuals
S State Space
A Action Set
H Horizon Length
Ph Transition Probability at Horizon h
r Reward
T Trajectory Set
τ Trajectory

J(π;ri) Eτ,π [ri(τ)]
dπ(τ) Occupancy Measure: Pπ(τ)

Φ : R→ [0,1] Strongly Convex Function Mapping Reward to Preference
σ (x) Sigmoid Function: ex

1+ex

Pri (o = 0 | τ0, τ1) Φ(ri(τ0)− ri(τ1))
ψω : Rd → Rk Representation Function

Ψ {ψω |ω ∈Ω}

Gr
Set of Reward Functions:

{(⟨ψω(φ(·)),θi⟩)i∈[N ] | ψω ∈ Ψ ,θi ∈ Rk and ∥θi∥2 ≤ B for all i ∈ [N ]}
NGr (ϵ) Bracket Number of Gr Associated with ϵ
rω,θj (·) ⟨ψω(φ(·)),θj⟩
rω,θθθ(·) (rω,θ1

(·), · · · , rω,θN (·)) ∈ RN
r⋆i (·) Ground-truth Reward: ⟨ψ⋆(φ(·)),θ⋆i ⟩

ψ⋆(= ψω⋆ ) Ground-truth Representation Function
Rmax −Rmax ≤ r⋆i (τ) ≤ Rmax

D̂ ∪i∈[N ]D̂i
D̂i {(o(j)

i , τ
(j)
i,0, τ

(j)
i,1)j∈[Np]}

Np Np = |D̂1| = |D̂2| = ... = |D̂N |
Cr (Gr,πtar ,µref , i) Defined in Definition 3.1

Aggα(r) Defined in Equation (5.2)
Agg-pα(p)(a) Defined in Equation (5.4)

B Deferred Definition

B.1 Bracketing Number.

We modify and adopt the definition of the bracketing number of preferences introduced by (Zhan
et al., 2023), with some adjustments. Consider Gr as the class of functions representing sets
of reward vectors, where each reward vector is denoted by (ri)i∈[N ]. Assume g1 and g2 maps
(τ0, τ1) ∈ T × T to 2N -dimensional vectors. A pair (g1, g2) constitutes an ϵ-bracket if for every pair
of trajectories (τ0, τ1) and for each i ∈ [N ], it holds that g1(· | τ0, τ1) ≤ g2 (· | τ0, τ1) and ∥g1 (· | τ0, τ1)−
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g2 (· | τ0, τ1)∥1 ≤ ϵ. The ϵ-bracketing number of Gr, denoted byNGr (ϵ), is defined as the minimum
number of ϵ-brackets

(
gb,1, gb,2

)
b∈[NGr (ϵ)]

required such that for any reward vector r ∈ Gr, there exists

at least one bracket b ∈ [NGr(ϵ)] such that for all pairs of trajectories (τ0, τ1), gb,1(· | τ0, τ1) ≤ Pr(· |
τ0, τ1) ≤ gb,2(· | τ0, τ1) holds.

B.2 Concentrability Coefficient for a Reward Scalar Class

This definition is exactly the same with the concentrability coefficient of preference as outlined by
(Zhan et al., 2023).

Definition B.1 (Zhan et al. (2023)). The concentrability coefficient, with a reward vector class Gr , a
target policy πtar (which policy to compete with (potentially optimal policy π⋆)), and a reference policy
µref, is defined as follows:

Cr
(
Gr ,πtar ,µref

)
:= max

0,sup
r∈Gr

Eτ0∼πtar ,τ1∼µref

[
r⋆ (τ0)− r⋆ (τ1)− r (τ0) + r (τ1)

]√
Eτ0∼µ0,τ1∼µ1

[
|r⋆ (τ0)− r⋆ (τ1)− r (τ0) + r (τ1)|2

]
 .

C Deferred Proofs in Section 3

C.1 Proof of Theorem 3.1 and Corollary 3.2

Theorem 3.1. (Total Expected Value Function Gap). Suppose Assumption 3.1 holds. For any δ ∈ (0,1],
with probability at least 1− δ, the output (π̂i)i∈[N ] of Algorithm 1 satisfies

∑
i∈[N ]

(
J(πi,tar;r

⋆
i )− J(π̂i ;r⋆i )

)
≤

√
cκ2NC2

max log(NGr (1/NNp)/δ)

Np
,

where Cmax := maxi∈[N ]Cr(Gr,πi,tar,µi,ref, i) and c > 0 is a constant.

Corollary 3.2. (Expected Value Function Gap). Suppose Assumption 3.1 holds. For any δ ∈ (0,1] and
all i ∈ [N ], with probability at least 1− δ, the output π̂i of Algorithm 1 satisfies

J(πi,tar;r
⋆
i )− J(π̂i ;r⋆i ) ≤

√
cκ2Cr(Gr,πi,tar,µi,ref, i)2 log(NGr (1/NNp)/δ)

Np
,

where c > 0 is a constant.

Before having a proof of Theorem 3.1 and Corollary 3.2, we provide general two properties of
MLE estimates, which is a slightly modified version of (Zhan et al., 2023) and (Liu et al., 2022).

Lemma 2 ((Zhan et al. (2023), Lemma 1, reward vector version)). For any δ ∈ (0,1], if r ∈ Gr, with
dataset D̂ = ∪i∈[N ]D̂i where D̂i = {(o(j)

i , τ
(j)
i,0, τ

(j)
i,1)j∈[Np]}, τ

(j)
i,0 ∼ µ0, τ (j)

i,1 ∼ µ1, and o(j)
i ∼ Pr⋆i (·|τ (j)

0 , τ
(j)
1 ),

there exist C1 > 0 such that∑
i∈[N ]

∑
j∈[Np]

log

 Pri (o
(j)
i | τ

(j)
i,0, τ

(j)
i,1)

Pr⋆i (o(j)
i | τ

(j)
i,0, τ

(j)
i,1)

 ≤ C1 log(NGr (1/(NNp))/δ)

holds.
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Lemma 3 ((Liu et al. (2022), Proposition 14, scalar version)). For any δ ∈ (0,1], with probability
at least 1 − δ, if r ∈ G′r , with dataset D̂ = {(o(j), τ

(j)
0 , τ

(j)
1 )j∈[M]} where τ (j)

0 ∼ µ0, τ (j)
1 ∼ µ1, and o(j) ∼

Pr⋆ (·|τ
(j)
0 , τ

(j)
1 ),

Eµ0,µ1

[
∥Pr(· | τ

(j)
0 , τ

(j)
1 )− Pr⋆ (· | τ

(j)
0 , τ

(j)
1 )∥21

]
≤ C2

M

 ∑
j∈[M]

log

Pr⋆ (o(j) | τ (j)
0 , τ

(j)
1 )

Pr(o(j) | τ (j)
0 , τ

(j)
1 )

+ log(NG′r (1/M)/δ)


holds where C2 > 0 is a constant.

Lemma 4 ((Liu et al. (2022), Proposition 14, vector version)). For any δ ∈ (0,1], with probability at
least 1−δ, if r ∈ G′r, with dataset D̂ = ∪i∈[N ]D̂i where D̂i = {(o(j)

i , τ
(j)
i,0, τ

(j)
i,1)j∈[Np]}, τ

(j)
i,0 ∼ µ0, τ (j)

i,1 ∼ µ1, and

o
(j)
i ∼ Pr⋆i (·|τ (j)

0 , τ
(j)
1 ),

1
N

∑
i∈[N ]

Eµ0,µ1

[
∥Pri (· | τ

(j)
0 , τ

(j)
1 )− Pr⋆i (· | τ (j)

0 , τ
(j)
1 )∥21

]

≤ C2

NNp

 ∑
i∈[N ]

∑
j∈[Np]

log

Pr⋆i (o(j) | τ (j)
0 , τ

(j)
1 )

Pri (o
(j) | τ (j)

0 , τ
(j)
1 )

+ log(NG′r (1/(NNp))/δ)


holds where C2 > 0 is a constant.

Note that r⋆ do not need to be in G′r for the above lemmas. Lemma 2 states that the log-
likelihood logPr for a preference dataset generated by the reward model r⋆ cannot exceed the
log-likelihood logPr⋆ for a preference dataset generated by the reward model r⋆ , with a gap related
to the bracket number of Gr. Lemma 4 states that the ℓ1 distance between likelihood function Pr⋆
and Pr for all r ∈ G′r can be bounded with the difference between log-likelihood logPr⋆ and logPr for
a preference dataset generated by the reward model r⋆ with a gap related to the bracket number of
G′r.

Proof of Theorem 3.1 and Corollary 3.2. We define the event E1,E2 as satisfying (Lemma 2, Lemma 4)
with δ← δ/2, respectively, so we have P(E1 ∩E2) > 1− δ. We will only consider the under event
E1 ∩E2. Then, we can guarantee that∑

i∈[N ]

∑
j∈[Np]

logPω̂,θ̂i (o
(j)
i | τ

(j)
i,0, τ

(j)
i,1)

≤
∑
i∈[N ]

∑
j∈[Np]

logPω⋆ ,θ⋆i (o(j)
i | τ

(j)
i,0, τ

(j)
i,1) +C1 log(NGr (1/(NNp))/δ),

which indicates that r⋆(= rω⋆ ,θθθ⋆ ) ∈ R(D̂). Moreover, by the definition of Equation (3.1), if rω,θθθ ,rω′ ,θθθ′ ∈
R(D̂), ∣∣∣ ∑

i∈[N ]

∑
j∈[Np]

logPω,θi (o
(j)
i | τ

(j)
i,0, τ

(j)
i,1)−

∑
i∈[N ]

∑
j∈[Np]

logPω′ ,θ′i (o
(j)
i | τ

(j)
i,0, τ

(j)
i,1)

∣∣∣
≤ C1 log(NGr (1/(NNp))/δ)
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holds, since
∑
i∈[N ]

∑
j∈[Np] logPω,θi (o

(j)
i | τ

(j)
i,0, τ

(j)
i,1) is bounded by

∑
i∈[N ]

∑
j∈[Np] logPω̂,θ̂i (o

(j)
i | τ

(j)
i,0, τ

(j)
i,1)

by definition of ω̂,θ̂θθ if rω,θθθ ∈ Gr. Therefore, by Lemma 4, we have

1
N

∑
i∈[N ]

Eµ0,µ1

[
∥Pω,θi (· | τ

(j)
i,0, τ

(j)
i,1)− Pω⋆ ,θ⋆i (· | τ (j)

i,0, τ
(j)
i,1)∥21

]

≤ C2

NNp

 ∑
i∈[N ]

∑
j∈[Np]

log

Pω⋆ ,θ⋆i (o(j)
i | τ

(j)
i,0, τ

(j)
i,1)

Pω,θi (o
(j)
i | τ

(j)
i,0, τ

(j)
i,1)

+ log(NGr (1/(NNp))/δ)


≤ C2

NNp

(
C1 log(NGr (1/(NNp))/δ) + log(NGr (1/(NNp))/δ)

)
=

C3

NNp
log(NGr (1/(NNp))/δ)

for any rω,θθθ ∈ R(D̂), where C3 = C2(C1 + 1). Then, by the mean value theorem, for any rω,θθθ ∈ R(D̂),
we have

1
N

∑
i∈[N ]

Eµ0,µ1

[∣∣∣(rω,θi (τi,0)− rω,θi (τi,1))− (r⋆i (τi,0)− r⋆i (τi,1))
∣∣∣2]

≤ κ
2

N

∑
i∈[N ]

Eµ0,µ1

[
∥Pω,θθθ(· | τ (j)

i,0, τ
(j)
i,1, i)− Pω⋆ ,θθθ⋆ (· | τ

(j)
i,0, τ

(j)
i,1, i)∥

2
1

]
≤ C3κ

2

NNp
log(NGr (1/(NNp))/δ).

(C.1)

Now, we define for all policy π,

r i,inf
π := argmin

r∈R(D)

(
J(π,ri)−Eτ∼µi,ref

[ri(τ)]
)
.

Then, we can bound the difference of the expected cumulative reward of a policy πi,tar and π̂i by

J(πi,tar;r
⋆
i )− J(π̂i ;r⋆i )

= (J(πi,tar;r
⋆
i )−Eτ∼µi,ref

[r⋆i (τ)])− (J(π̂i ;r
⋆
i )−Eτ∼µi,ref

[r⋆i (τ)])

≤
(i)

(J(πi,tar;r
⋆
i )−Eτ∼µi,ref

[r⋆i (τ)])

− (J(πi,tar;r
i,inf
πi,tar

)−Eτ∼µi,ref
[r i,inf
πi,tar

(τ)]) + (J(π̂j ;r
i,inf
π̂i

)−Eτ∼µi,ref
(r i,inf
π̂i

(τ)))

− (J(π̂i ;r
⋆
i )−Eτ∼µi,ref

[r⋆i (τ)])

≤
(ii)

(J(πi,tar;r
⋆
i )−Eτ∼µi,ref

[r⋆i (τ)])− (J(πi,tar;r
i,inf
πi,tar

)−Eτ∼µi,ref
[r i,inf
πi,tar

(τ)])

= Eτi,0∼πi,tar,τi,1∼µi,ref
[(r⋆i (τi,1)− r⋆i (τi,0))− (r i,inf

πi,tar
(τi,1)− r i,inf

πi,tar
(τi,0))]

≤ Cr(Gr,πi,tar,µi,ref, i)

√
Eµ0,µ1

[∣∣∣(r⋆i (τi,1)− r⋆i (τi,0))− (r i,inf
πi,tar

(τi,1)− r i,inf
πi,tar

(τi,0))
∣∣∣2]

(C.2)

Here, (i) holds since π̂j is a distributional robust policy for R(D̂) (Equation (3.1)) and (ii) holds
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due to the definition of r i,inf
π̂i

. Therefore, if we sum Equation (C.2) over i ∈ [N ], we have∑
i∈[N ]

(
J(πi,tar;r

⋆
i )− J(π̂i ;r⋆i )

)
≤ Cmax

∑
i∈[N ]

√
Eµ0,µ1

[∣∣∣(r⋆i (τi,1)− r⋆i (τi,0))− (r i,inf
πi,tar

(τi,1)− r i,inf
πi,tar

(τi,0))
∣∣∣2]

≤ Cmax

√
N

∑
i∈[N ]

Eµ0,µ1

[∣∣∣∣(r⋆i (τi,1)− r⋆i (τi,0))− (r i,inf
πi,tar

(τi,1)− r i,inf
πi,tar

(τi,0))
∣∣∣∣2]

≤ Cmax

√
C3Nκ2 log(NGr (1/NNp)/δ)

Np
,

which proves Theorem 3.1. Moreover, we have

J(πi,tar;r
⋆
i )− J(π̂i ;r⋆i )

≤ Cr(Gr,πi,tar,µi,ref, i)

√
Eµ0,µ1

[∣∣∣∣(r⋆i (τi,1)− r⋆i (τi,0))− (r i,inf
πi,tar

(τi,1)− r i,inf
πi,tar

(τi,0))
∣∣∣∣2]

≤ Cr(Gr,πi,tar,µi,ref, i)

√ ∑
i∈[N ]

Eµ0,µ1

[∣∣∣∣(r⋆i (τi,1)− r⋆i (τi,0))− (r i,inf
πi,tar

(τi,1)− r i,inf
πi,tar

(τi,0))
∣∣∣∣2]

≤ Cr(Gr,πi,tar,µi,ref, i)

√
C3κ2 log(NGr (1/NNp)/δ)

Np

which proves Corollary 3.2.

C.2 Discussion on Assumption 3.3

C.2.1 Comparing with (Lu et al., 2021, Assumption 6.4)

Assumption C.1 ((Lu et al. (2021), Assumption 6.4)). For any representation functions ψ,ψ′ ∈ Ψ and
ϵ > 0, if there exists v,v′ ∈ Rd that satisfy

E∥ψ(x)⊤v −ψ′(x)⊤v′∥2 ≤ ϵ

Then there exists a constant invertible matrix P such that

∥ψ(x)− P ψ′(x)∥2 ≤ o(ϵ/∥v∥2) = o(ϵ/∥v′∥2).

for all x.

Assumption 3.3 bears similarity to Assumption C.1; however, the latter is notably more strin-
gent. For instance, consider the case where v = v′ = e1 without loss of generality. If it holds that
E∥ψ1(x)−ψ′1(x)∥2 ≤ ϵ, then it implies ψ ∼ P ψ′. In this context, ψ1 and ψ′1 represent the first coordi-
nates of ψ and ψ′, respectively. The assumption that similarity in the first coordinate necessitates
equivalence of the entire representations (ψ ∼ P ψ′) is a strong assumption.
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C.2.2 Case Study (Linear Representation): ψω(x) = ωx and ω is an Orthonormal Matrix

Proposition 1. Assume that ψω(φ(τ)) = ωφ(τ) where ω is a k × d orthornormal matrix. For any
representation functionsψω,ψω′ ∈ Ψ and ϵ > 0, if there exists {vi}Ti=1, {v

′
i }
T
i=1, and a trajectory distribution

µ that satisfy

1
T

∑
i∈[T ]

Eτ∼µ∥ψω(φ(τ))⊤vi −ψω′ (φ(τ))⊤v′i∥
2 ≤ ϵ (C.3)

dand V = [v1,v2, · · · ,vT ] ∈ Rk×T satisfies σ2
k (W ) ≥ Ω (T /k), and ∥vi∥2 ≤ B for all i ∈ [T ]. If Σ :=

Eµ[φ(τ)φ(τ)⊺] ≻O, then there exists a constant invertible matrix P such that

∥ψω(φ(τ))− P ψω′ (φ(τ))∥2 ≤ ckϵ/B

where c > 0 is a constant.

Proof. By Equation (C.3), we have

(ω⊺V − (ω′)⊺V ′)⊺Σ(ω⊺V − (ω′)⊺V ′) ≤ T ϵ,

where V ′ = [v′1, . . . , v
′
T ] ∈ Rk×T . Since Σ ≻O, we have

∥ω⊺V − (ω′)⊺V ′∥2 ≤ T ϵ.

By (Yu et al., 2015, Theorem 4), there exist an orthonormal matrix P such that

∥ω − P (ω′)⊺∥2 ≤ ckϵ

where c > 0 is a constant, which concludes Proposition 1.

C.3 Proof of Corollary 3.3

Corollary 3.3. (Closeness between ψ⋆ and ψω). Suppose Assumptions 3.1, 3.2, and 3.3 hold. For any
δ ∈ (0,1], with probability at least 1− δ, if rω,θθθ ∈ R′(D) as specified in Algorithm 1, then there exists an
orthonormal matrix Pω such that

[
∥ψ⋆(φ(τ0))−ψ⋆(φ(τ1))− Pω(ψω(φ(τ0))−ψω(φ(τ1)))∥2

]
≤ k

crepκ
2 log(NGr (1/(NNp))/δ)

NNpB2

for all τ0, τ1, where crep > 0 is a constant.

Proof. By Equation (C.1), if we use Assumption 3.3 with Θ⋆/B, we can find an orthonormal matrix
Pω such that

[
∥ψ⋆(φ(τ0))−ψ⋆(φ(τ1))− Pω(ψω(φ(τ0))−ψω(φ(τ1)))∥2

]
≤ k

crepκ
2 log(NGr (1/(NNp))/δ)

NNpB2

for all τ0, τ1, where crep > 0 is a constant.
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C.4 Proof of Theorem 3.4

Lemma 5. Suppose Assumptions 3.1, 3.2 and 3.3 hold. For any δ ∈ (0,1] and λ > 0, with probability at
least 1− δ, r⋆ ∈ R′(D̂), i.e., the underlying reward functions are an element of Equation (3.2).

Proof. Assume that Corollary 3.3 holds with probability 1− δ/2 for ω̂, i.e.,[
∥ψ⋆(φ(τ0))−ψ⋆(φ(τ1))− Pω̂(ψω̂(φ(τ0))−ψω̂(φ(τ1)))∥2

]
≤ k

crepκ
2 log(NGr (1/(NNp))/δ)

NNpB2 . (C.4)

We only consider the event that Equation (C.4) holds. We will use this Pω̂ for the proof of Theo-
rem 3.4. We will approach similarly with the proof of (Zhu et al., 2023). Consider the following
optimization problem:

maximize
∥θ∥i≤B

f (θi) :=
1
Np

∑
j∈[Np]

logPω̂,θi (o
(j)
i | τ

(j)
i,0, τ

(j)
i,1).

Then, we have θ̂i = argmax
∥θ∥i≤B

f (θi) and

∇f (θi) =
1
Np

∑
j∈[Np]

(
Φ ′(⟨ψω̂(φ(τ (j)

i,0))−ψω̂(φ(τ (j)
i,1)),θi⟩)

Φ(ψω̂(φ(τ (j)
i,0))−ψω̂(φ(τ (j)

i,1)),θi⟩)
111(o(j)

i = 0)

−
Φ ′(⟨ψω̂(φ(τ (j)

i,1))−ψω̂(φ(τ (j)
i,0)),θi⟩)

Φ(ψω̂(φ(τ (j)
i,1))−ψω̂(φ(τ (j)

i,0)),θi⟩)
111(o(j)

i = 1)
)(
ψω̂(φ(τ (j)

i,0))−ψω̂(φ(τ (j)
i,1))

)

∇2f (θi) =
1
Np

∑
j∈[Np]

Φ ′′(x(j)
i )Φ(x(j)

i )−Φ ′(x(j)
i )2

Φ(x(j)
i )2

(
ψω̂(φ(τ (j)

i,0))−ψω̂(φ(τ (j)
i,1))

)(
ψω̂(φ(τ (j)

i,0))−ψω̂(φ(τ (j)
i,1))

)⊺
where x(j)

i = ⟨ψω̂(φ(τ (j)
i,0)) − ψω̂(φ(τ (j)

i,1)),θi⟩. Here, we also define ψω̂(D̂i) ∈ RNp×k such as every

j ∈ [Np]th row is
(
ψω(φ(τ (j)

i,0))−ψω(φ(τ (j)
i,1))

)
.

Then, we have

∇2f (θi) ⪯ −ηΣ̂ψω̂ := −
η

Np

∑
j∈[Np]

(
ψω̂(φ(τ (j)

i,0))−ψω̂(φ(τ (j)
i,1))

)(
ψω̂(φ(τ (j)

i,0))−ψω̂(φ(τ (j)
i,1))

)⊺

where η := minx∈[−2Rmax,2Rmax]

(
Φ ′(x)2−Φ ′′(x)Φ(x)

Φ(x)2

)
. For example, if Φ(x) = σ (x), then η = 1

2+exp(−2Rmax)+exp(2Rmax) .

Then, by the Taylor expansion of f , we have

f (θ̂i)− f (P ⊺
ω̂θ

⋆
i )− ⟨∇f (P ⊺

ω̂θ
⋆
i ), θ̂i − P

⊺
ω̂θ

⋆
i ⟩ ≤ −

η

2
∥θ̂i − P

⊺
ω̂θ

⋆
i ∥

2
Σ̂ψω̂

.

Since θ̂i = argmax
∥θ∥i≤B

f (θi), for any λ > 0, we have

∥∇f (P ⊺
ω̂θ

⋆
i )∥(Σ̂ψω̂+λI)−1∥θ̂i − P

⊺
ω̂θ

⋆
i ∥Σ̂ψω̂+λI ≥ ⟨∇f (P ⊺

ω̂θ
⋆
i ), θ̂i − P

⊺
ω̂θ

⋆
i ⟩ ≥

η

2
∥θ̂i − P

⊺
ω̂θ

⋆
i ∥

2
Σ̂ψω̂

. (C.5)
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We define a random vector V ∈ RNp as follows:

Vj =


Φ ′(⟨ψ⋆(φ(τ (j)

i,0))−ψ⋆(φ(τ (j)
i,1)),θ⋆i ⟩)

Φ(ψ⋆(φ(τ (j)
i,0))−ψ⋆(φ(τ (j)

i,1)),θ⋆i ⟩)
w.p. Φ(ψ⋆(φ(τ (j)

i,0))−ψ⋆(φ(τ (j)
i,1)),θ⋆i ⟩)

−Φ
′(⟨ψ⋆(φ(τ (j)

i,1))−ψ⋆(φ(τ (j)
i,0)),θ⋆i ⟩)

Φ(ψ⋆(φ(τ (j)
i,1))−ψ⋆(φ(τ (j)

i,0)),θ⋆i ⟩)
w.p. Φ(ψ⋆(φ(τ (j)

i,1))−ψ⋆(φ(τ (j)
i,0)),θ⋆i ⟩)

for all j ∈ [Np]. Define ξ = maxx∈[−2Rmax,2Rmax]

∣∣∣∣Φ ′(x)
Φ(x)

∣∣∣∣. If Φ(x) = σ (x), ξ ≤ 1. Then, we can verify that

E[V ] = 0 and |Vj | ≤ ξ for all j ∈ [Np].
Also, define V ′ ∈ RNp as follows:

V ′j =


Φ ′(⟨ψω̂(φ(τ (j)

i,0))−ψω̂(φ(τ (j)
i,1)),P ⊺

ω̂θ
⋆
i ⟩)

Φ(ψω̂(φ(τ (j)
i,0))−ψω̂(φ(τ (j)

i,1)),P ⊺
ω̂θ

⋆
i ⟩)

w.p. Φ(ψ⋆(φ(τ (j)
i,0))−ψ⋆(φ(τ (j)

i,1)),θ⋆i ⟩)

−Φ
′(⟨ψω̂(φ(τ (j)

i,1))−ψω̂(φ(τ (j)
i,0)),P ⊺

ω̂θ
⋆
i ⟩)

Φ(ψω̂(φ(τ (j)
i,1))−ψω̂(φ(τ (j)

i,0)),P ⊺
ω̂θ

⋆
i ⟩)

w.p. Φ(ψ⋆(φ(τ (j)
i,1))−ψ⋆(φ(τ (j)

i,0)),θ⋆i ⟩)

for all j ∈ [Np]. ∇f (P ⊺
ω̂θ

⋆
i ) can be written as

∇f (P ⊺
ω̂θ

⋆
i ) =

1
Np
ψω̂(D̂i)⊺V ′i =

1
Np
ψω̂(D̂i)⊺Vi +

1
Np
ψω̂(D̂i)⊺(V ′i −Vi).

Therefore, we can bound ∥∇f (P ⊺
ω̂θ

⋆
i )∥(Σ̂ψω̂+λI)−1 by

∥∇f (P ⊺
ω̂θ

⋆
i )∥(Σ̂ψω̂+λI)−1 ≤ ∥

1
Np
ψω̂(D̂i)⊺Vi∥(Σ̂ψω̂+λI)−1︸                          ︷︷                          ︸

(i)

+∥ 1
Np
ψω̂(D̂i)⊺(V ′i −Vi)∥(Σ̂ψω̂+λI)−1︸                                   ︷︷                                   ︸

(ii)

.

Step 1: Bounding (i).
Define M = 1

N 2
p
ψω̂(D̂i)(Σ̂ψω̂ +λI)−1ψω̂(D̂i)⊺, then we have

∥ 1
Np
ψω̂(D̂i)⊺Vi∥(Σ̂ψω̂+λI)−1 = V ⊺MV .

We can check

Tr(M) ≤ k
Np
, Tr

(
M2

)
≤ k

N2
p
, ∥M∥F = σ1(M) ≤ 1

Np

in the same way with (Zhu et al., 2023, Page 19). Therefore, as V ’s components are bounded,
independent, and EV = 000, we can use Bernstein’s inequality in quadratic form (for example, (Hsu
et al., 2012, Theorem 2.1) and (Zhu et al., 2023, Page 19)), so we have

∥ 1
Np
ψω̂(D̂i)⊺Vi∥(Σ̂ψω̂+λI)−1 ≤ ξC4

√
k + log(N/δ)

Np
(C.6)

for a constant C4 > 0 with probability at least 1− δ/(2N ).
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Step 2: Bounding (ii).
We have

∣∣∣Φ ′(x)
Φ(x) −

Φ ′(y)
Φ(y)

∣∣∣ ≤ ξ |x − y| by the mean value theorem if x,y ∈ [−2Rmax,2Rmax], so

|Vi −V ′i | ≤max
τ0,τ1

ξ |⟨(ψ⋆(φ(τ0))−ψ⋆(φ(τ1)))− (Pω̂ψω̂(φ(τ0))− Pω̂ψω̂(φ(τ1))),θ⋆i ⟩|

≤ ξ

√
k
crepκ2 log(NGr (1/(NNp))/δ)

NNp
.

Therefore, we have

∥ 1
Np
ψω̂(D̂i)⊺(V ′i −Vi)∥(Σ̂ψω̂+λI)−1 ≤

ξC5√
Np

√
k
κ2 log(NGr (1/(NNp))/δ)

NNp
(C.7)

where C5 > 0 is a constant.
Step 3: Combining (i) and (ii).

Combining Equation (C.6) and Equation (C.7), we have

∥∇f (P ⊺
ω̂θ

⋆
i )∥(Σ̂ψω̂+λI)−1 ≤

ξC5√
Np

√
k
κ2 log(NGr (1/(NNp))/δ)

NNp
+ ξC4

√
k + log(N/δ)

Np

≤ C6

√
k
ξ2κ2 log(NGr (1/(NNp))/δ)

NNp
+
ξ2(k + log(N/δ))

Np

for a constant C6 > 0 with probability at least 1− δ/N and Equation (C.5) provides

∥θ̂i − P
⊺
ω̂θ

⋆
i ∥Σ̂ψω̂

≤ C7

√
k
ξ2κ2 log(NGr (1/(NNp))/δ)

η2NNp
+
ξ2(k + log(N/δ))

η2Np
+λB2,

which is equivalent to

1
Np

∑
j∈[Np]

∣∣∣⟨(ψω̂(φ(τ (j)
i,0))−ψω̂(φ(τ (j)

i,1))), θ̂i − P
⊺
ω̂θ

⋆
i ⟩

∣∣∣2
≤ C2

7

k ξ2κ2 log(NGr (1/(NNp))/δ)

η2NNp
+
ξ2(k + log(N/δ))

η2Np
+λB2

 ,
with probability at least 1− δ/N .
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Now, we will bound 1
Np

∑
j∈[Np]

∣∣∣(rω̂,θ̂i (τ (j)
i,0)− rω̂,θ̂i (τ

(j)
i,1))− (r⋆i (τ (j)

i,0)− r⋆i (τ (j)
i,1))

∣∣∣2:

1
Np

∑
j∈[Np]

∣∣∣(rω̂,θ̂i (τ (j)
i,0)− rω̂,θ̂i (τ

(j)
i,1))− (r⋆i (τ (j)

i,0)− r⋆i (τ (j)
i,1))

∣∣∣2
=

1
Np

∑
j∈[Np]

∣∣∣⟨ψω̂(φ(τ (j)
i,0))−ψω̂(φ(τ (j)

i,1)), θ̂i⟩ − ⟨ψ⋆(φ(τ (j)
i,0))−ψ⋆(φ(τ (j)

i,1)),θ⋆i ⟩
∣∣∣2

≤ 2
Np

∑
j∈[Np]

∣∣∣⟨(ψω̂(φ(τ (j)
i,0))−ψω̂(φ(τ (j)

i,1))), θ̂i − P
⊺
ω̂θ

⋆
i ⟩

∣∣∣2
+

2
Np

∑
j∈[Np]

∣∣∣⟨ψω̂(φ(τ (j)
i,0))−ψω̂(φ(τ (j)

i,1))− Pω̂(ψ⋆(φ(τ (j)
i,0))−ψ⋆(φ(τ (j)

i,1))),θ⋆i ⟩
∣∣∣2

≤ 2C7

k ξ2κ2 log(NGr (1/(NNp))/δ)

η2NNp
+
ξ2(k + log(N/δ))

η2Np
+λB2


+

2
Np
Npk

crepκ
2 log(NGr (1/(NNp))/δ)

NNp

≤ C8

k ξ2κ2 log(NGr (1/(NNp))/δ)

η2NNp
+
ξ2(k + log(N/δ))

η2Np
+λB2


for a constant C8 > 0. Combining this result for all i ∈ [N ], Lemma 5 holds.

Lemma 6. Suppose Assumptions 3.1, 3.2, 3.3, and 3.4 hold. For any δ ∈ (0,1], with probability at least
1− δ, for any rω,θθθ ∈ R′(D̂),

Eµ0,µ1

[∣∣∣(rω,θi (τi,0)− rω,θi (τi,1))− (r⋆i (τi,0)− r⋆i (τi,1))
∣∣∣2]

≤ C9

k ξ2κ2 log(NGr (1/(NNp))/δ)

η2NNp
+
ξ2(k + log(N/δ))

η2Np
+λB2


where C9 > 0 is a constant.

Proof. For any τ0, τ1, by Assumption 3.4, with large Np ≥Nunif(Ψ ,µ0,µ1,δ), we have the analog of
Equation (C.1):

Eµ0,µ1

[∣∣∣(rω,θi (τi,0)− rω,θi (τi,1))− (r⋆i (τi,0)− r⋆i (τi,1))
∣∣∣2]

=
[
θi
−θ⋆i

]⊺
Λφω ,φψ⋆ (µ0,µ1)

[
θi
−θ⋆i

]
≤ 1.1

[
θi
−θ⋆i

]⊺
Λ̂φω ,φψ⋆ (µ0,µ1)

[
θi
−θ⋆i

]
≤ 1.1C8

k ξ2κ2 log(NGr (1/(NNp))/δ)

η2NNp
+
ξ2(k + log(N/δ))

η2Np
+λB2


which concludes the proof.
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Theorem 3.4. (Improved Expected Value Function Gap). Suppose Assumptions 3.1, 3.2, 3.3, and 3.4
hold. For any δ ∈ (0,1], all i ∈ [N ] and λ > 0, with probability at least 1−δ, the output π̂′i of Algorithm 1
satisfies

J(πi,tar;r
⋆
i )− J(π̂′i ;r

⋆
i )

≤

√
cCr(Gr,πi,tar,µi,ref, i)2

(
k
ξ2κ2 log(NGr (1/(NNp))/δ)

η2NNp
+
ξ2(k + log(N/δ))

η2Np
+λB2

) (3.5)

where c > 0 is a constant.

Proof. We have

J(πi,tar;r
⋆
i )− J(π̂′i ;r

⋆
i )

≤ Cr(Gr,πi,tar,µi,ref, i)

√
Eµ0,µ1

[∣∣∣(r⋆i (τi,1)− r⋆i (τi,0))− (r i,inf
πi,tar

(τi,1)− r i,inf
πi,tar

(τi,0))
∣∣∣2]

≤

√
cCr(Gr,πi,tar,µi,ref, i)2

(
kκ2 log(NGr (1/(NNp))/δ)

NNp
+
ξ2(k + log(N/δ))

η2Np
+λB2

)
where c > 0 is a constant, which is similar to the proof of Theorem 3.1.

In the exactly same way, we can prove Theorem 3.5, so we omit the proof of Theorem 3.5

C.5 Proof of Theorem 3.6

Theorem 3.6. (Lower Bound for the Sub-Optimality Gap of Personalization). For any k > 6,Np ≥
CkΛ2 and Λ ≥ 2, there exists a representation function φ(·) so that

min
i∈[N ]

inf
π̂

sup
Q∈CB(Λ)

(
max
π∗∈Π

J(π∗;rω,θi )− J(π̂;rω,θi )
)
≥ CΛ ·

√
k
Np
,

where

CB(Λ)B
{
QB

({
µ0,µ1

}
, {τ (j)

i,0, τ
(j)
i,1}i∈[N ],j∈[Np],ω,θθθ

) ∣∣∣Cr(Gr,π⋆ ,µ1, i) ≤Λ for all i ∈ [N ]
}

is the family of MDP with N reward functions and H = 1 instances.

Proof of Theorem 3.6. We follow the construction in Theorem 3.10 of Zhu et al. (2023).
We will only consider H = 1 case. Assume k can be divided by 3 without loss of general-

ity. Let S B {0,1, ..., k/3− 1} and A B {a1, a2, a3}. Let ψω(φ(s,a1)) = e3s, ψω(φ(s,a2)) = e3s+1, and
ψω(φ(s,a3)) = 0. Also, let v−1 B {1/d,1/d +∆,−2/d −∆} and v1 B {1/d + 2∆,1/d +∆,−2/d − 3∆}.
We construct 2|S| instances in CB. Let w ∈ {±1}|S| and θw B [vw1

,vw2
, ...,vw|S|]. Let µ0(s,a1) =

1−2Λ2

|S| ,µ0(s,a2) = 2Λ2

|S| , and µ1(s,a3) = 1 for any s ∈ S .

According to Zhu et al. (2023),
∥∥∥∥Σ−1/2
D Es∼ρ

[
ψω(φ(s,π⋆(s)))

]∥∥∥∥
2
≤ Λ, where ρ is the uniform

distribution over S . At the same time, for any θw we have ∥θw∥2 ∈ΘB when taking B = 1, d > 6 and
∆ < 1/(6d).
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Next, we will show that Cr(Gr,π⋆ ,µ1, i) ≤Λ. By definition, we have∥∥∥∥Σ−1/2
D Es∼ρ

[
ψω(φ(s,π⋆(s)))

]∥∥∥∥
2

=
∥∥∥∥Σ−1/2
D Es∼ρ,a∼π⋆(· |s),(s′ ,a′)∼µ1

[
ψω(φ(s,π⋆(s)))−ψω(φ(s′ , a′)

]∥∥∥∥
2
,

since a′ ≡ a3 by definition of µ1 and ψω(φ(·, a3) ≡ 0. Then, by Section D.1. of Zhan et al. (2023), we

have Cr(Gr,π⋆ ,µ1, i) ≤
∥∥∥∥Σ−1/2
D Es∼ρ

[
ψω(φ(s,π⋆(s)))

]∥∥∥∥
2
≤Λ. Therefore, combined with Theorem 3.10

of Zhu et al. (2023), we finished the proof.

D Proof of Section 4

Corollary 3.3 holds with probability 1− δ/3, so we have

max
τ0,τ1
∥(ψ⋆(φ(τ0))−ψ⋆(φ(τ1)))− Pω̂(ψω̂(φ(τ0))−ψω̂(φ(τ1)))∥2 ≤ k

C3κ
2 log(NGr (1/(NNp))/δ)

NNpB2

Claim 1. For any δ ∈ (0,1], with probability at least 1−δ, for arbitrary Di and Dj , the gap between label
discrepency with reward function class Gψω̂ and Gψ⋆ is bounded as follows:

∣∣∣disc(Di ,Dj ,Gψω̂ )− disc(Di ,Dj ,Gψ⋆ )
∣∣∣ ≤ 2C10

√
kξ2κ2 log(NGr (1/(NNp))/δ)

NNp

for i, j ∈ [N ] where C10 > 0 is a constant. We recall the definition of Gψw = {⟨ψw,θ⟩ | ∥θ∥2 ≤ B}.

Proof. ∣∣∣∣∣EDi
logPω̂,P ⊺

ω̂θ
(o | τ1, τ0)−EDi

logPω⋆ ,θ(o | τ1, τ0)
∣∣∣∣∣

≤ EDi

∣∣∣∣∣ logPω̂,P ⊺
ω̂θ

(o | τ1, τ0)− logPω⋆ ,θ(o | τ1, τ0)
∣∣∣∣∣

≤ ξEDi

∣∣∣⟨Pω̂(ψω̂(φ(τ1))−ψω̂(φ(τ0)))− (ψ⋆(φ(τ1))−ψ⋆(φ(τ0))),θ⟩
∣∣∣

≤ C10

√
kξ2κ2 log(NGr (1/(NNp))/δ)

NNp

where ξ := maxx∈[−Rmax,Rmax]

∣∣∣∣Φ ′(x)
Φ(x)

∣∣∣∣, which is also defined in Appendix C.

Theorem 4.1. (Total Expected Value Function Gap). Suppose Assumptions 3.1, 3.2, 3.3, and 3.4 hold.
Also, assume that Cr(Gr ,π,µi,ref, i) ≤ C′max for all policy π and i ∈ [N ]. For any δ ∈ (0,1], all i ∈ [N ] and
λ > 0, with probability at least 1− δ, the output ((π̂(k))k∈[K], f̂ ) of Algorithm 3 satisfies∑

i∈[N ]

(
J(πi,tar;r

⋆
i )− J(π̂f̂ (i);r

⋆
i )

)
≤ cNκ

 log(2K/δ)
Np

+
kK log(Np/K)

Np
+
kξ2κ2 log(NGr (1/(NNp))/δ)

NNp

+

 ∑
i∈[N ]

1
N
disc(Di ,Cf̂ (i),Gψ⋆ ))


2

+

 log(NGψ⋆ (1/NNp)/δ)

NNp

21/4

,
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where c > 0 is a constant.

Proof. By Claim 1 with Lemma 1, we have

∑
i∈[N ]

∑
j∈[Np,i ]

log

 Pω⋆ ,θ⋆i (o(j)
i | τ

(j)
i,0, τ

(j)
i,1)

Pω̂,θ̂f̂ (i)
(o(j)
i | τ

(j)
i,0, τ

(j)
i,1)


≤ max
∥θ′i∥≤B for all i∈[N ]

∑
i∈[N ]

∑
j∈[Np,i ]

log

 Pω⋆ ,θ′i (o
(j)
i | τ

(j)
i,0, τ

(j)
i,1)

Pω̂,θ̂f̂ (i)
(o(j)
i | τ

(j)
i,0, τ

(j)
i,1)


≤
(i)

max
∥θ′i∥≤B for all i∈[N ]

∑
i∈[N ]

∑
j∈[Np,i ]

log

 Pω̂,θ′i (o
(j)
i | τ

(j)
i,0, τ

(j)
i,1)

Pω̂,θ̂f̂ (i)
(o(j)
i | τ

(j)
i,0, τ

(j)
i,1)


+NNpC10

√
kξ2κ2 log(NGr (1/(NNp))/δ)

NNp

≤ CclusterNNp

(√
log(2K/δ)

Np
+

√
kK log(Np/K)

Np
+

√
kξ2κ2 log(NGr (1/(NNp))/δ)

NNp

+
∑
i∈[N ]

1
N
disc(Di ,Cf̂ (i),Gψŵ )

)

≤ C11NNp

(√
log(2K/δ)

Np
+

√
kK log(Np/K)

Np
+

√
kξ2κ2 log(NGr (1/(NNp))/δ)

NNp

+
∑
i∈[N ]

1
N
disc(Di ,Cf̂ (i),Gψ⋆ ))

)
,

where ω̂ is a learned parameter from the representation learning, and C11 > 0 is a constant. Here,
(i) came from the same reason with Claim 1. Therefore, by Lemma 3, we have

Eµ0,µ1

[
∥Pω̂,θ̂f (i)

(· | τ (j)
i,0, τ

(j)
i,1)− Pw⋆ ,θ⋆ (· | τ

(j)
i,0, τ

(j)
i,1)∥21

]
≤ C11

(√
log(2K/δ)

Np
+

√
kK log(Np/K)

Np
+

√
kξ2κ2 log(NGr (1/(NNp))/δ)

NNp

+
∑
i∈[N ]

1
N
disc(Di ,Cf̂ (i),Gψ⋆ )) +

log(NGψω̂ (1/NNp)/δ)

NNp

)
.
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Here, we usedNGψω̂ (1/NNp) =NGψ⋆ (1/NNp). Now, we get the similar bound with Equation (C.1):

1
N

∑
i∈[N ]

EDi

[∣∣∣∣∣(rω̂,θ̂f̂ (i)
(τi,0)− rω̂,θ̂f̂ (i)

(τi,1))− (r⋆i (τi,0)− r⋆i (τi,1))
∣∣∣∣∣2]

≤ C11κ
2
(√

log(2K/δ)
Np

+

√
kK log(Np/K)

Np
+

√
kξ2κ2 log(NGr (1/(NNp))/δ)

NNp

+
∑
i∈[N ]

1
N
disc(Di ,Cf̂ (i),Gψ⋆ )) +

log(NGψ⋆ (1/NNp)/δ)

NNp

)
.

Lastly, we use the following:

J(πi,tar;r
⋆
i )− J(π̂i ;r⋆i )

= (J(πi,tar;r
⋆
i )−Eτ∼µi,ref

(r⋆i (τ)))− (J(π̂i ;r
⋆
i )−Eτ∼µi,ref

(r⋆i (τ)))

= (J(πi,tar;r
⋆
i )−Eτ∼µi,ref

(r⋆i (τ)))− (J(πi,tar; r̂i)−Eτ∼µi,ref
(̂ri(τ)))

+ (J(πi,tar; r̂i)−Eτ∼µi,ref
(̂ri(τ)))− (J(π̂j ; r̂i)−Eτ∼µi,ref

(̂ri(τ)))

+ (J(π̂i ; r̂i)−Eτ∼µi,ref
(̂ri(τ)))− (J(π̂i ;r

⋆
i )−Eτ∼µi,ref

(r⋆i (τ)))

≤ 2C′max

√
Eµ0,µ1

[∣∣∣(r⋆i (τi,0)− r⋆i (τi,1))− (̂ri(τi,0)− r̂i(τi,1))
∣∣∣2]

where the last inequality came from the fact that π̂i is the best policy with respect to r̂f (i). Therefore,
summing the above relationship with i ∈ [N ] provides∑

i∈[N ]

(
J(πi,tar;r

⋆
i )− J(π̂i ;r⋆i )

)
≤ C12Nκ

 log(2K/δ)
Np

+
kK log(Np/K)

Np
+
kξ2κ2 log(NGr (1/(NNp))/δ)

NNp

+

 ∑
i∈[N ]

1
N
disc(Di ,Cf̂ (i),Gψ⋆ ))


2

+

 log(NGψ⋆ (1/NNp)/δ)

NNp

21/4

.

E Proof of Section 5

E.1 Six Pivotal Axioms for Reward Aggregation

For the completeness of the paper, we introduce six pivotal axioms for reward aggregation (Moulin,
2004).

• Monotonicity: For two reward vectors, r = (r1, . . . , rN )⊤ and r′ = (r ′1, . . . , r
′
N )⊤ such that ri = r ′i

for i , j and rj > r ′j for some j ∈ [N ], then r ≻ r′. This is related to Pareto optimality, indicating
that if one vector is strictly better than another in at least one dimension and no worse in any
other, it is considered superior.
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• Symmetry: The reward aggregation function should treat all individuals equally. The
outcome should not depend on the identities of the individuals but only on their rewards.

• Independence of Unconcerned Agents: If for an individual j ∈ [N ], rj = r ′j , then the magni-
tude of rj does not influence the comparison between r and r′.

• The Pigou-Dalton Transfer Principle: If ri < rj and r ′i + rj = r ′j + ri for a pair (i, j) ∈ [N ]× [N ]
and rk = r ′k for all k , i, j ∈ [N ], then r′ ≻ r. This condition implies that, all else being
equal, a social welfare function should favor allocations that are more equitable, reflecting a
preference for balancing the rewards between individuals i and j.

• Translation Independence: If r ≻ r′, then r + c ≻ r′ + c for c ∈ RN .

• Continuity: In the context of social choice with a continuous preference scale, continuity
means that small changes in the individual preferences should not lead to abrupt changes in
the collective decision.

Equation (5.2) and its monotonically increasing transformation is only reward aggregation that
satisfying the above six axioms. In (Zhong et al., 2024), the consider Scale Independence rather than
Translation Independence, which is defined as follows:

• Scale Independence: If r ≻ r′, then λ · r ≻ λ · r′ for λ > 0.

In this case, the reward aggregations that satisfying six axioms are

Aggα(r) =
{ 1

Nα

∑
i∈[N ] r

α
i α , 0∏

i∈[N ] ri α = 0

for α ∈ [−∞,∞].

E.2 Proof of Theorem 5.1

Theorem 5.1. (Expected Value Function Gap). Suppose Assumptions 3.1, 3.2, 3.3, and 3.4 hold. For
any δ ∈ (0,1], all i ∈ [N ] and λ > 0, with probability at least 1− δ, the output π̂ of Algorithm 5 satisfies

J(πtar;Aggα(r⋆))− J(π̂;Aggα(r⋆))

≤

√
cαCr(Gr,πtar,µref)2

(
kκ2 log(NGr (1/(NNp))/(δ/N ))

NNp
+
ξ2(k + log(N/δ))

η2Np
+λB2

)
where cα > 0 is a constant depending on α, and other constants are defined in Section 3.1.

Proof. Define Cα := maxx,y,z,w∈[−Rmax,Rmax]
|(exp(αx)−exp(αy))−(exp(αz)−exp(αw))|

α|(x−y)−(z−w)| for α , 0 and Cα = 1 for
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α = 0. Then we know that Cα <∞. Now, in the same way of proof of Theorem 3.4, we have

J(πtar;Aggα(r⋆1 , . . . , r
⋆
N ))− J(π̂;Aggα(r⋆1 , . . . , r

⋆
N ))

≤ Cr(Gr,πtar,µref)

√
Eµ0,µ1

[∣∣∣(Aggα(r⋆(τ1))−Aggα(r⋆(τ0)))− (Aggα(rinf
πtar

(τ1))−Aggα(rinf
πtar

(τ0)))
∣∣∣2]

≤ Cr(Gr,πtar,µref)

√√√√
C2
αEµ0,µ1

 1
N

∑
i∈[N ]

∣∣∣(r⋆i (τ1)− r⋆i (τ0))− (r inf
πtar

(τ1)− r inf
πtar

(τ0))
∣∣∣2

≤

√
cα

kκ2 log(NGr (1/(NNp))/(δ/N ))

NN2
p

+
ξ2(k + log(N/δ))

η2Np
+λB2

.
where the last line is from Lemma 6, which conclude the proof.

E.3 Proof of Theorem 5.2

Theorem 5.2. (Lower Bound for the Sub-Optimality Gap of Aggregation). For any k > 6,Np ≥
CkΛ2,Λ ≥ 2, and α ∈ R there exists a representation function φ(·) so that

inf
π̂

sup
Q∈CB(Λ)

(
max
π∗∈Π

J(π∗;Aggα(rω,θθθ))− J(π̂;Aggα(rω,θθθ))
)
≥ CΛ ·

√
k
Np
,

where

CB(Λ)B
{
QB

({
µ0,µ1

}
, {τ (j)

i,0, τ
(j)
i,1}i∈[N ],j∈[Np],ω,θθθ

) ∣∣∣Cr(Gr,π⋆ ,µ1, i) ≤Λ for all i ∈ [N ]
}

is the family of MDP with N reward functions and H = 1 instances.

Proof. We start with the same setting and the same instances that achieve the lower bounds with
Theorem 3.6. Since

Es[Aggα(r)(s,π⋆)−Aggα(r)(s,π′)] ≥Ω

Es[ ∑
i∈[N ]

(ri(s,π
⋆)− ri(s,π′))]

 ≥Ω

CΛ ·
√

k
Np


We can finish the proof for all α ∈ R. The first inequality holds by definition when α = 0.
When α , 0, for any i ∈ [N ], we have exp(ri(s,π⋆))− exp(ri(s,π′)) ≥ exp(−Rmax)

∣∣∣ri(s,π⋆)− ri(s,π′)
∣∣∣ ≥

Ω

(
CΛ ·

√
k
Np

)
.

E.4 Proof of Theorem 5.3

Theorem 5.3. (Relationship between Reward Aggregation and Preference Aggregation). Suppose
human preferences are modeled by the PL model, and all human labelers share a common lower bound on
their reward functions. Let (Ri(a))a∈A represent the reward function associated with action a ∈ A and
Pi ∈ ∆(A) denote the corresponding probabilistic opinion for individual i ∈ [N ]. Then, the preference
aggregation Agg-pα(P), is equivalent to the preference derived under the PL model with the aggregated
rewards (Aggα(R(a)))a∈A for any α ∈ [−∞,∞].
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Proof. By the PL modeling, we have

Pi(a) =
exp(Ri(a))∑

a′∈A exp(Ri(a′))
. (E.1)

We divide Equation (E.1) by Pi(afix), we have

Ri(a) = logPi(a)− (logPi(s,afix)−Ri(afix)) := logPi(a)−Ci (E.2)

where Ci := logPi(afix)−Ri(afix). Since Ri(a) have upper bound as Ci , and we assumed that every
reward Ri(a) have the same upper bound, we can assume Ci = C for every i. Therefore, plugging
Equation (E.2) provides the equivalence between Aggα(R) and Agg-pα(P ).

E.5 Relationship between KL divergence and variant of α-Renyi divergence.

By L’Hôpital’s rule, we have

lim
α→1

1
1−α

1−
∑
j∈A

pij

(
qij
pij

)1−α
 =

∑
j∈A

lim
β→0

−pij log
(
qij
pij

)(
qij
pij

)β = KL(p,q).

E.6 Proof of Section 5.3.2

The proof of Theorem 5.4 is exactly the same as the proof of the fact that the VCG mechanism is
DSIC welfare-maximizing. The difference with the proof of the original VCG mechanism’s property
is the parametrization of bidding, which will be explained in this section.

Theorem 5.4. (DSIC Welfare-Maximizing Mechanism). The aggregation rule and the cost function as
in Equation (5.5) provide a DSIC welfare-maximizing mechanism.

Proof. The aggregated result space ∆(A) corresponds to the output space X of Definition 5.1. We
can interpret the bidding part, bj(x), of Definition 5.1 as −d(Pj ,p). So, instead of bidding on every
output without any rule, we can interpret the bidding as the minus distance function between their
own probabilistic opinion and aggregated probabilistic opinion. The underlying value function
therefore corresponds to −d(pj ,p). This interpretation provides the same line of proof of the VCG
mechanism’s property.

By good parametrization of the VCG mechanism, we can also achieve the computational
efficiency of our cost function computation.

Theorem 5.5. If we set d as a variant of the α-Renyi distance for α , 0 (Remark 5) and define d as
KL-divergence for α = 0, the DSIC welfare-maximizing aggregation rule is Equation (5.4). Therefore,
aggregation rule Equation (5.4) is also welfare-maximizing with appropriate cost function.

Proof. We solve the optimization problem as follows:

argmin
p∈∆(A)

∑
i∈[N ]

dα(Pi ,p) (E.3)
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where dα(p,q) = sgn(α) 1
1−α

∑
j∈A

(
1− pαj q

1−α
j

)
. We can check that dα(p,q) is a convex function with

respect to q, as

d2

dq2
j

dα(p,q) = αsgn(α)q−α−1
j ≥ 0.

Therefore, Equation (E.3) can be solved with first-order condition:∑
i∈[N ]

(
Pij
pj

)α
= λ for all j ∈ A

which provides Equation (5.4).
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