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Abstract

As the deployment of NLP systems in criti-
cal applications grows, ensuring the robustness
of large language models (LLMs) against ad-
versarial attacks becomes increasingly impor-
tant. Large language models excel in various
NLP tasks but remain vulnerable to low-cost
adversarial attacks. Focusing on the domain
of conversation entailment, where multi-turn
dialogues serve as premises to verify hypothe-
ses, we fine-tune a transformer model to ac-
curately discern the truthfulness of these hy-
potheses. Adversaries manipulate hypotheses
through synonym swapping, aiming to deceive
the model into making incorrect predictions. To
counteract these attacks, we implemented in-
novative fine-tuning techniques and introduced
an embedding perturbation loss method to sig-
nificantly bolster the model’s robustness. Our
findings not only emphasize the importance of
defending against adversarial attacks in NLP
but also highlight the real-world implications,
suggesting that enhancing model robustness is
critical for reliable NLP applications.

1 Introduction

Our project is inspired by the coherence assessment
work (Storks and Chai, 2021). Although the state-
of-the-art transformer models could have competi-
tive results on text classification, it is still difficult
for the models to capture coherence from the input,
which makes them vulnerable to attacks. One pos-
sible way for the attack could borrow the idea of
adversarial attacks from the domain of computer vi-
sion (Machado et al., 2020; Xu et al., 2021; Gabriel
et al., 2021). These attacks are carried out by care-
fully crafting noise (perturbation) and injecting it
into an image. The perturbation causes a trained
model to change its prediction. The processed im-
ages are called "adversarial samples." Normally,
this noise that is added to the image is unnotice-
able by humans, hence, is it unlikely that humans
will change their predictions 1. However, a neural

network can be sensitive to such noise.

Figure 1: Adversarial attack in image classification

Figure 2: Adversarial attack in text classification (Jin
et al., 2019)

2 Related Work

This phenomenon indicates that trained neural net-
works might be capturing irrelevant signals from
the training data. (Morris et al., 2020; Alzantot
et al., 2018; Jin et al., 2019; Kuleshov et al., 2018;
Li et al., 2018; Gao et al., 2018; Wang et al., 2019;
Wei and Zou, 2019; Ebrahimi et al., 2017; Zang
et al., 2020; Pruthi et al., 2019) suggested that lan-
guage models suffer the same problem, and they
proposed various methods of generating adversarial
samples and better approaches to defense against
these attaches. A common type of attack is chang-
ing a token to its synonym, as shown in 2. In
the context of conversation entailment, the team
wanted to experiment with "synonym-swapping"
for both the stories and hypotheses. In addition,
the team is also curious to see if expanding the
story with irrelevant information (information over-
load) can flip the model predictions. Although
this method is nontrivial, if time allowed, the team
would like to experiment in this direction as well.

On the defender side, data augmentation is one
of the most popular defense mechanisms; it im-
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proves model robustness against noise by incorpo-
rating perturbed samples into the training process.
More advanced methods (Jin et al., 2019) proposed
Synonym Encoding Method (SEM). By mapping
each cluster of synonyms to a unique encoding be-
fore the input layer, this method improved model
robustness without modifying the network architec-
ture or adding extra data. We would like to propose
a similar method; instead of using its correspond-
ing word embedding, we would like to experiment
using the centroid of its synonyms cluster.

3 Our Approaches

3.1 Dataset

The conversation entailment dataset was originally
proposed by (Zhang and Chai, 2009) and contains
1096 entailment examples. Each sample has a dia-
logue, a hypothesis, and binary labels indicating if
the corresponding hypothesis can be inferred from
the given dialogue. Since any arbitrary hypotheses
could be irrelevant and therefore can be labeled
negative, the authors enforced special criteria in
which all hypotheses must have a majority word
overlap with the given story. Follow the settings
from the paper (Storks and Chai, 2021), we split
the dataset into train, dev, test, with 703, 110, 172
examples each.

3.2 Attack

In terms of “synonym-swapping”, we don’t want to
change the meaning of the sentence so the team in-
tends to focus on swapping adjectives and adverbs.
Changing pronouns, prepositions, conjunction, or
other components might create syntax errors or al-
ter the meaning. NLP toolkits like "NLTK" (Bird
et al., 2009) will be employed to help us find a list
of synonyms for adjectives and adverbs. Then we
will compare the distances between the synonym’s
embedding with the original word’s embedding.
The further the distance, the stronger the perturba-
tion. We plan to manually look at a subset of the
noisy samples for a sanity check.

To simulate a real-world attack scenario, we
would build a small hand-crafted dataset. By
adding irrelevant or misleading sentences after the
origin conversations, we expect the corrupted con-
versations will successfully attack the model and
change the predictions.

More specifically, we defined a few constraints
which attacks have to fulfill. These constraints are
used to ensure that we don’t drastically change the

meanings of a sentence after applying an attack.
Two main constraints:

1. RepeatModification(): we don’t modify to-
kens that have already been modified.

2. StopwordModification(): we disallow stop-
word modification. Since it might create syn-
tax errors and change the meaning.

To define an attack, there are a few more parameters
including “min_cos_sim”, “max_candidates”, and
“pct_words_to_swap”.

• “min_cos_sim”: Minimum distance (cosine
similarity) between a token embedding in the
sentence and the embedding of tokens in the
replacement batch. Range from 0 to 1.

• “max_candidates”: Maximum numbers of to-
kens in a replacement batch. Range from 1 to
infinite.

• “pct_words_to_swap”: Percentage of words
to swap in a sentence. Range from 0 to 1.

To determine what will be a good parameter set,
we performed a coarse grid search. In addition, we
also manually looked through some of the adver-
sarial samples.

Figure 3: Fixed “min_cos_sim” to 0.95 and
“pct_words_to_swap” to 0.5

First, we fixed two parameter “min_cos_sim”
and “pct_words_to_swap”, then gradually in-
creases “max_candidates”. And we found that
when “max_candidates” is greater or equal to 100,
it does not have much effect on the model perfor-
mance. And we noticed something that is very
interesting, synonym-swapping in this setting, re-
sulting in higher testing accuracy. Confusion ma-
trices are also presented in the evaluation section.



Figure 4: Fixed the number of “max_candidates” to 100
and “pct_words_to_swap” to 0.5

Second, we fixed the number of
“max_candidates” to 100 and “pct_words_to_swap”
to 0.5, then change the minimum cosine similarity;
ranging from 0.6 to 0.9. When the minimum
cosine similarity is high, the distance of embedding
between a token and its synonym will be small.
On the other hand, their representations in latent
space are similar. The lower the minimum cosine
similarity, the stronger the attack. And this is also
reflected in the plot; the minimum cosine similarity
is proportional to the testing accuracy. It fluctuates
in the middle due to the randomness within the
greedy-candidate-search process. Due to the time
constraint, the team doesn’t have enough time to
experiment with multiple runs.

Figure 5: Fixed “min_cos_sim” to 0.95 and the number
of “max_candidates” to 100

Thrid, we fixed “min_cos_sim” to 0.95 and
the number of “max_candidates” to 100, then
we change “pct_words_to_swap” from 0.2 to 0.9.
As mentioned above, “pct_words_to_swap” is
the percentage of words to swap in a sentence;
ranging from 0 to 1. Intuitively, the higher
the “pct_words_to_swap”, the stronger the at-
tack. However, due to the characteristic of the

conversational entailment dataset, the effect of
“pct_words_to_swap” is not obvious. The length
of the given conversation segment and the hypothe-
ses are relatively short. In addition, we disable
the modification of stop-words which further re-
duces the number of modifiable tokens. But the
overall trend of testing accuracy decreases when
“pct_words_to_swap” increases.

Figure 6: Fixed the number of “max_candidates” to 100
and “pct_words_to_swap” to 0.9

As mentioned, in the conversational entailment
dataset, since the length of the given conversation
segment and the hypotheses are relatively short,
we maximized “pct_words_to_swap” by setting it
to 0.9. And from previous search results, we de-
cided to fix the “max_candidates” to 100. Then we
ran a coarse grid search again for “min_cos_sim”.
Finally, despite the randomness within the greedy-
candidate-search process, we are able to obtain a
relatively clear trend for testing accuracy. Hence,
we have gained better control of the level of the
adversarial attack.

3.3 Defend

In terms of defense, there are two possibilities: the
attack method is known, or it is not. In the first
case, we can simply apply the attack algorithm to
the training dataset. This can be seen as a way of
data augmentation. After that, we can use the aug-
mented data to fine-tune the baseline model. This
approach is expected to fit the model to the adver-
sarial domain and improve the performance of the
new domain. However, it might potentially harm
the model’s performance on the origin domain. The
second case, where we don’t know the attack algo-
rithm, is closer to the real-world scenario. Since
there is barely any knowledge of the adversarial do-
main, we can only train the model with the original
dataset. To improve the robustness of the model,



one possible way is to introduce noise during the
training process. (Zhang and Yang, 2018) We pro-
pose embedding perturbation loss to achieve this
effect.

3.3.1 Data Augmentation
We apply a very strong adversarial attack to make
the results more significant. The settings are:

• pct_words_to_swap: 0.9

• min_cos_sim: 0.3

• max_candidates: 100

The baseline model is a roberta-large model
which is fine-tuned on the conversational entail-
ment dataset and is provided by the origin paper
(Storks and Chai, 2021). This model is trained with
batch size 32, learning rate 7.5e-06, and 10 epochs.

We then apply the adversarial attack to the train
set and fine-tune the baseline model with batch size
16, learning rate 7.5e-06, and 3 epochs.

3.3.2 Embedding Perturbation Loss
The previous work (Liu et al., 2020) introduced
the ALUM algorithm to apply a new loss func-
tion for fine-tuning large neural language models
(transformers). With a similar idea, we propose the
embedding perturbation loss, as Equation 1.

LEP = (1− α) · LCE + α · LN (1)

Where LCE is defined in Equation 2, and LN is
defined in Equation 3.

LCE = L(f(x; θ), y) (2)

LN = L(f(x; θ) + δ, y) (3)

x, y is the training pair, x is the last hidden out-
put of the RoBERTa model (Liu et al., 2019), and
y is the label. f(x; θ) is the prediction from the
classifier of the RoBERTaForSequenceClassifica-
tion model with input x and model parameters θ. L
is the cross entropy loss. δ is a random generated
Gaussian noise with mean 0 and standard deviation
1. α is a tunable parameter to leverage the impact
of the two losses, in our work, we set α = 0.5 in
all the experiments.
LCE is the loss we actually used to fine-tune the

baseline model, which calculates the cross entropy
loss between the classifier’s logits and the true la-
bels. We keep this loss to train the model to predict

the correctness of the hypothesis introduced from
the conversation segment.
LN denotes the cross entropy loss with the noise-

corrupted hidden outputs. We design this loss
to improve the robustness of the model. By in-
troducing perturbation in the embedding space,
the model can potentially learn the information
of words within nearby embedding space, which
includes synonyms or related words.

By setting α = 0.5, we give equal weight to
both losses, allowing the model to learn two tasks
at once: entailment prediction and capturing related
words. When α < 0.5, the loss gives more weight
to the entailment prediction, and when α > 0.5,
the loss gives more weight to the related words
capturing. The effect of α can be seen in section 4.

To train the model with the embedding pertur-
bation loss, we use the pre-trained RoBERTa-large
model, which is the same pre-trained model as our
baseline model. Instead of fine-tuning with aug-
mented data, we still use the origin train dataset
and apply the embedding perturbation loss during
fine-tuning. This model is trained with batch size
16, learning rate 7.5e-06, and 10 epochs, almost
the same as our baseline model, but a smaller batch
size due to the limit of the training resources.

4 Evaluation

In terms of evaluation, for each experiment, we
will present the testing accuracy as well as a corre-
sponding confusion matrix.

4.1 Attack

As we described before, we first fine-tuned a pre-
trained NLP model on the conversational entail-
ment dataset. Through grid search, we obtained a
very strong baseline – Roberta with a 70% testing
accuracy.

For the baseline model, although the testing ac-
curacy seems to be decent, looking at the confu-
sion matrix, the model is overfitting on the True
instances in the training dataset. Since there is a lot
of false-positive.

In the attack stage, we augmented the testing
dataset in an attempt to lower the testing accuracy.
We have a very interesting observation. We were
able to increase the testing accuracy by slightly aug-
menting the testing dataset with the setting shown
in 8. The augmented test set is able to flip many
false-positive instances to negative. And since the
baseline model we had is overfitting on the True



Figure 7: Baseline model: confusion matrix

Figure 8: Attack configuration: “min_cos_sim” = 0.95,
“max_candidates” = 100 and “pct_words_to_swap” =
0.5

instances, flipping a few false-positive instances
to negative actually increases the overall testing
accuracy.

Last but not least, in the attack stage, we used the
setting shown in 9. We were able to aggressively
lower the testing accuracy all the way from 70%
to 56%. According to the confusion matrix, a sig-
nificant number of false-positive and true-positive
instances are flipped to negative.

4.2 Defend
To show the effect of the adversarial attack and
our defense algorithm, we train several models and
report the results on the origin test dataset and also
the test dataset attacked by the adversarial attack
algorithm.

• Baseline RoBERTa: the fine-tuned model pro-
vided by the paper (Storks and Chai, 2021),
we use this model as the baseline.

• Retrained RoBERTa: since the training envi-

Figure 9: Attack configuration: “min_cos_sim” = 0.3,
“max_candidates” = 100 and “pct_words_to_swap” =
0.9

Origin Attacked
Baseline RoBERTa* 70.9% 58.7%
Retrained RoBERTa 73.8% 60.0%
Fine-tuned RoBERTa 67.4% 65.1%
Augmented RoBERTa 64.0% 59.3%
EP Loss RoBERTa (0.25) 71.5% 57.0%
EP Loss RoBERTa (0.5) 72.1% 61.0%
EP Loss RoBERTa (0.75) 59.9% 51.2%

Table 1: Defense Results: the accuracy of conversation
entailment prediction. * denotes that the model is pro-
vided by the paper (Storks and Chai, 2021).

ronment is different in our work, we fine-tune
a pre-trained RoBERTa model with the ori-
gin train set. This training is with almost the
same parameters we can apply to train our
own baseline model.

• Fine-tuned RoBERTa: we fine-tune our base-
line model with the train set attacked by the
same attacking algorithm applied to the test
set.

• Augmented RoBERTa: the pre-trained
RoBERTa that is purely fine-tuned with the
train set attacked by the same attacking algo-
rithm applied to the test set.

• EP Loss RoBERTa: the pre-trained RoBERTa
that is fine-tuned with the origin train set and
with the embedding perturbation loss.

The results of different models can be found in
Table 1. There are some insights from the results.



4.2.1 The randomness of fine-tuning
RoBERTa model

We adopt the training strategy from the paper
(Storks and Chai, 2021) to train our own base-
line model, Retrained RoBERTa, to eliminate the
effects of different training environments and to
make a comparable baseline model for our follow-
ing experiments. The performance difference be-
tween the paper’s model and our own model is only
3.15%. We can make a hypothesis that large pre-
trainined transformer models such as RoBERTa,
with 354M parameters, are stable in fine-tuning,
even from different training environments.

4.2.2 Fine-tuning’s effect for the origin
domain

The Fine-tuned RoBERTa model achieves the high-
est accuracy in the attacked test set, significantly
outperforming the baseline model. However, we
also observed a significant drop in performance on
the origin test set. This indicates that when the
model is fine-tuned on augmented data, it forgets
important information about the original domain,
resulting in poor performance on the origin test set.
This finding suggests that while fine-tuning on aug-
mented data can improve the model’s performance
on the new domain, it may also negatively impact
its performance on the original domain.

4.2.3 Problems of augmented training
The Augmented RoBERTa has a significant per-
formance drop in the origin test set. It shows
that only seeing the attacked data has a huge limit
when the model is applied to the origin domain.
Also, we can find even in the attacked test set, the
Augmented RoBERTa doesn’t outperform the Re-
trained RoBERTa, showing that the original data
is still important in the adversarial domain. We
suspect that the unnaturality of the attacked data
might also contribute to this problem. When the
model is only fine-tuned on the attacked data, the
difference between the attacked data and the origin
data might be too large to enable the model to adapt
back to the origin domain.

4.2.4 The effect of applying embedding
perturbation loss

The EP Loss RoBERTa is only trained with the
origin train set. By comparing the results with our
baseline model Retrained RoBERTa, we can see
the performance gap between the origin test set and
the attacked test set drops in EP Loss RoBERTa

(0.5). This shows that the embedding perturbation
loss can help improve the robustness of the model.
When comparing with the Fine-tuned RoBERTa,
we can see that EP Loss RoBERTa retains most of
the information from the origin domain, and still
has some improvement to the adversarial domain.
By changing α of the EP Loss, we find that keeping
the two losses with the same weights is the best
setting. The results show that simply adding Gaus-
sian noise can improve the robustness of the model,
while at the same time keeping the information
from the origin domain.

5 Discussion

In the attack stage, the team tried synonym-
swapping. Based on our observation, transformer-
based models are relatively robust against synonym-
swapping. This means that the pre-trained language
models have gained a good understanding of syn-
onyms, and this understanding is embedded into
their word embedding in vector space. In other
words, the cosine similarity of the two synonyms
is very small. And replacing one token with its
synonym in a sentence won’t have much effect.

Before our team started the project, we thought
swapped synonyms would be almost undetectable
by humans. However, after our experiments, the
swapped synonyms look unnatural to humans even
if they don’t modify the meaning of the sentence.
Aggressive synonym-swapping can still decrease
the model’s testing accuracy, but the attack is not
as robust as we thought it would be.

According to the confusion matrices, we ob-
served that the attack is mainly flipping true in-
stances to false. We suspect that this is because of
the unique characteristics of the conversation en-
tailment dataset. A hypothesis that can be entailed
usually contains a lot of overlapping words with the
given conversation segment. However, the range
of false hypotheses is infinite. Essentially, there
are a lot more hypotheses that can not be entailed
compared to true hypotheses. But interestingly,
slight augmentation improved our baseline model
performance.

We have seen the robustness of transformer mod-
els with different training settings. We also see
the power of fine-tuning when we can access to
the adversarial domain. However, fine-tuning will
cause the model to forget the information from
the origin domain. To build a more robust model,
we propose embedding perturbation loss, which



includes the entailment prediction loss with the ori-
gin embeddings and perturbated embeddings. We
have seen the potential for applying this loss to
improve the robustness of the model, but there are
still some questions left. For example, can the em-
bedding perturbation loss improve the performance
on the adversarial domain while also improving the
origin domain? Instead of using Gaussian noise,
if we generate perturbation with a more compli-
cated method, for example, using GAN (Goodfel-
low et al., 2020) to generate noises with feedback
from the network, can we further improve the ro-
bustness of the model? We leave these directions
as our future work.

6 Practical Implications

6.1 Adversarial Attacks in the Real World

Adversarial attacks on machine learning algorithms
are not a science fiction future, they are a reality
that we face today. There have been adversarial at-
tacks on semantic segmentation models, 3D recog-
nition, audio and text recognition, deep reinforce-
ment learning, and more (Kui Ren and Liu, 2019).

The threat of malicious attackers motivates the
need for innovative defense strategies. Currently,
there are a range of provable defensive measures
against various adversarial attacks. These de-
fenses can guarantee a certain level of accuracy
against a given class of attacks, and include tech-
niques such as distributional robustness certifica-
tion, consistency-based defenses, KNN-based de-
fenses, and more (Kui Ren and Liu, 2019). By
implementing these defensive measures, we can
protect our models against adversarial attacks and
ensure their secure operation.

As the use of natural language processing tech-
nology continues to grow, so too will the potential
for adversarial attacks on these systems. These at-
tacks, which seek to exploit weaknesses in models,
can have significant consequences for the security
and integrity of the systems they target. To address
this threat, researchers are working on developing
robust defenses against adversarial attacks. These
efforts will be crucial in ensuring that real-world
systems are able to withstand these types of attacks
and continue to operate effectively. Additionally,
the ongoing development and refinement of these
defenses will be essential in maintaining the trust
and confidence of users in NLP technology.

6.2 Adversarial Attacks on Language Models
that Produce Text

Adversarial attacks are already a growing concern
when it comes to language models like GPT-3.
To protect against potentially harmful information,
GPT-3 has implemented safeguards that prevent it
from answering questions that could harm people.
For example, if someone were to ask GPT-3 how to
"kill all of humanity," the model would recognize
this as an inappropriate query and refuse to answer
10.

Figure 10: GPT-3 identifies inappropriate prompts

However, an attacker could still potentially try
to exploit GPT-3 with an adversarial prompt. For
instance, by prompting the model with the request
for inspiration for a "fictional" villain who wants
to kill all of humanity, an attacker could then ask
GPT-3 for details on how such a villain could ac-
complish this goal. Figure 11 shows an example of
this prompt.

Figure 11: GPT-3 Prompted with an Adversarial Attack

As illustrated in Figure 12, GPT-3 is able to pro-
vide a detailed response to the attacker’s adversarial
prompt, despite the model’s safeguards.

Figure 12: GPT-3 Falls for the Adversarial Attack

This example highlights the need for ongoing
vigilance and the development of stronger defenses



against adversarial attacks on language models.

7 Conclusion

Overall, we were able to develop a fully functional
pipeline, simulating the attack and defense proce-
dures in NLP. More specifically, we fine-tuned the
RoBERTa model on the conversational entailment
dataset. Using grid search, we established a very
strong baseline with 73.8% testing accuracy.

In the attack stage, we performed a coarse
grid search over three hyperparameters:
“pct_words_to_swap”, “min_cos_sim”, and
“max_candidates”. Such that, despite the ran-
domness within the greedy-candidate-search
process, we are able to obtain a relatively clear
trend in terms of testing accuracy; gaining better
control of the level of the adversarial attack. We
observed that for this task specifically, slight
modifications of the content actually increase
the testing accuracy. Moderate-level “synonym
swapping”-based attacks are not very effective
against large language models that are pre-trained
and fine-tuned. Aggressive attacks work but can
make a sentence unnatural to humans.

By applying the attacking algorithm, the perfor-
mance of the baseline model significantly drops to
around 60.0%. Trying to stimulate the real-world
NLP scenario, we build different models in differ-
ent conditions: Fine-tuned RoBERTa is fine-tuned
on the origin data and then on the attacked data,
Augmented RoBERTa is only fine-tuned on the at-
tacked data, EP Loss RoBERTa is only fine-tuned
on the origin data and with the embedding pertur-
bation loss. We find that only using the data from
the adversarial domain couldn’t help much on both
domains, while fine-tuning data from both domains
will let the model forget the information from the
previous domain. In the case that the adversarial
attack is unknown, we find that the embedding per-
turbation loss is an easy-to-implement but useful
algorithm to improve the robustness of the model.

In this project, we simulate real-world attack and
defense procedures in NLP. We find that attacks
with cheap and easy-to-implement methods can
significantly hurt the model. We also propose a
new loss function, the embedding perturbation loss,
that can potentially improve the robustness of the
model without adding additional data. We will
keep investigating the power and application of
this method.
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