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Abstract—Active learning seeks to achieve strong performance
with fewer training samples. It does this by iteratively asking
an oracle to label new selected samples in a human-in-the-
loop manner. This technique has gained increasing popularity
due to its broad applicability, yet its survey papers, especially
for deep learning-based active learning (DAL), remain scarce.
Therefore, we conduct an advanced and comprehensive survey on
DAL. We first introduce reviewed paper collection and filtering.
Second, we formally define the DAL task and summarize the
most influential baselines and widely used datasets. Third, we
systematically provide a taxonomy of DAL methods from five
perspectives, including annotation types, query strategies, deep
model architectures, learning paradigms, and training processes,
and objectively analyze their strengths and weaknesses. Then, we
comprehensively summarize main applications of DAL in Natural
Language Processing (NLP), Computer Vision (CV), and Data
Mining (DM), etc. Finally, we discuss challenges and perspectives
after a detailed analysis of current studies. This work aims to
serve as a useful and quick guide for researchers in overcoming
difficulties in DAL. We hope that this survey will spur further
progress in this burgeoning field.

Index Terms—Active learning, Deep learning, Natural language
processing, Computer vision, Uncertainty quantification, Sequen-
tial optimal design, Adaptive sampling.

I. INTRODUCTION

HE remarkable success of deep learning relies heavily on

large-scale datasets with human-annotated labels [1]. How-
ever, continually labeling large-scale datasets is an extremely
time-consuming, expensive, and laborious task, which tends
to become a bottleneck for deep learning with limited labeled
data. To tackle this issue, Deep Active Learning (DAL) recently
exhibits great potential. As Fig. 1 shows, DAL models are first
trained on an initial training dataset. Then, query strategies
can be iteratively applied to select the most informative and
representative samples from a large pool of unlabeled data.
Finally, an oracle labels the selected samples and adds them
to the training dataset for retraining or fine-tuning of the
DAL models. DAL aims to achieve competitive performance
while reducing annotation costs within a reasonable time [2]-
[4]. Benefiting from the strong representation capabilities of
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Fig. 1: The general pipeline in deep active learning.

various neural networks, such as Graph Neural Networks
(GNNs) [5], Convolutional Neural Networks (CNNs) [6],
and Transformers [7], as well as leveraging prior knowledge
from pre-trained models like Contrastive Language-Image Pre-
Training (CLIP) [8] and Generative Pre-trained Transformer
(GPT) [9], DAL has made significant advances.

As a methodology for selecting or generating a subset of
training data in data-centric Al, DAL is closely related to
learning settings and practical techniques, including curriculum
learning [10], transfer learning [11], data augmentation or prun-
ing [12], [13], and dataset distillation [14]. The commonality
of these methods is to train or fine-tune a model using a small
number of samples, aiming to remove noise and redundancy
while improving training efficiency without decreasing models’
performance on downstream tasks. However, one primary
difference from DAL is that these approaches have full access
to all labels when selecting, distilling, or generating training
subsets. DAL defaults to that all data should be unlabeled during
the training subset selection process, making it better suited
for real-world scenarios where labels are initially unavailable.

To summarize DAL methodologies, recent efforts have
focused on specific tasks such as text classification [15] and
image analysis [16], [17], specific domains like NLP [18] and
CV [19], [20], or reproducing mainstream baselines [21], [22].
As for most early survey work, one common inadequacy is that
they may not have enough discussion of recent advances [23]-
[25], or lack summarization of emerging learning paradigms
(contrastive learning etc.) and challenges [26], [27], especially
in light of rapidly developing deep learning techniques (e.g.,
Fine-tune on pre-trained models). To assist researchers in
reviewing, summarizing, and planning for future exploration,
we provide a comprehensive review encompassing the latest
advancements and insights in the field. While some survey
papers focus on stream-based DAL [28], this paper concentrates
on pool-based DAL.

Specifically, we first introduce our strategy for collecting
reviewed papers and explain our criteria for selecting them
in Section II. Then, we give a specific formal definition for
DAL in Section III-A, and chronologically summarize the
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Fig. 2: Taxonomy for deep active learning methods.

most influential DAL baselines and the widely used datasets
in Section III-C. As Fig. 2 shows, in Section IV, we develop
a high-level taxonomy to provide a broad overview of this
field, categorizing previous studies from five perspectives.
In Section IV-A, we classify the annotation types into hard,
soft, hybrid, explanatory, and random/multi-agent annotations,
and give a detailed introduction to each annotation type. In
Section IV-B, we summarize query strategies into five distinct
categories, including uncertainty-based, representative-based,
influence-based, Bayesian-based and their hybrid methods, and
analyze the strengths and weaknesses of each query type. As
for deep model architectures, in Section IV-C, they are mainly
categorized into Recurrent Neural Networks (RNNs), CNNs,
GNNs, and Pre-trained methods. We discuss the benefits and
drawbacks of each type of architecture. In Section I'V-D, we are
pleased to discover that various emerging learning paradigms,
such as Curriculum Learning and Continual Learning, have
shown promising results when combined with DAL. For
each learning paradigm, we provide a detailed description
of its definition and how to integrate it with DAL. Finally,
in Section IV-E, three different training processes, including
traditional training, curriculum learning-based training, and pre-
training & fine-tuning will be introduced with typical examples.
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Fig. 3: Emerging challenges in deep active learning.

In Section V, we comprehensively show some domains in
which DAL methods have been successfully applied, including
NLP, CV, DM, etc. As depicted in Fig. 3, despite the remarkable
progress in DAL, this rapidly developing field is still fraught
with several crucial emerging challenges. In Section VI, we
analyze the causes and opportunities of each challenge, which
can be summarized as follows:

« Pipeline-related: inefficient & costly human annotation,
insufficient research on stopping strategies, and cold-start;

« Task-related: difficulty in cross-domain transfer, unstable
performance, and lack of scalability and generalizability;

« Dataset-related: outlier data & oracles, data scarcity &
imbalance, and class distribution mismatch.

Finally, after organizing and summarizing the current DAL-
related research, we have four intriguing findings that we would
like to share with the readers: (1) As shown in Section IV-E,
DAL has great potential as a sample selection strategy to
apply few-shot or one-shot setting for large-scale pre-trained
models with billions of parameters [29], [30]. Furthermore, as
discussed in Section III-C, many studies have shown that using
only 10~20% labeled samples for fine-tuning the pre-trained
language models with billions of parameters can yield even bet-
ter performance and be 5~10 times more efficient than training
with a full labeled dataset [31], [32]. (2) Intuitively, having more
high-quality samples can promote model performance for some
tasks. Thus, as shown in Section IV-D, many works integrate
DAL with semi-supervised strategies, allowing to obtain more
high-quality labeled samples without increasing the need for
human labor. However, as discussed in Section VI-C, semi-
supervised methods are highly sensitive to outliers and error
labels, easily fueling a vicious cycle, i.e., models continue to
label samples with wrong pseudo-labels. How to effectively
integrate DAL with semi-supervised strategies, using human-
labeled true signals to guide semi-supervised annotation and
avoid the mislabel circular, remains an open and challenging
issue waiting to be solved. (3) From the detailed analysis of
Scalability & Generalizability in Section VI-B, although DAL
has achieved great success in classification tasks, comparing
various DAL methods to choose the optimal one for a given
task remains time-intensive and unrealistic in practice. Thus,
there is an urgent need for a universal framework that is
friendly to various downstream tasks. (4) By summarizing
DAL applications for NLP in Section V-A, we find only a
few DAL studies focused on generative tasks. Generative
tasks, such as summarization and question answering, urgently
require more attention and research compared to classification
tasks. This is because generating informative objects, such as
annotations, is more difficult and time-consuming. Defining the
most meaningful samples for generation tasks and explaining
why those samples play an important role are two core problems
that need to be solved. We hope that future research can
promote the development of DAL for generation tasks.

Overall, the main contributions of this paper are as follows:

« This is the latest comprehensive and systematic survey paper
on DAL to help researchers review, summarize, and look
forward to the future about DAL.

« Based on the novel DAL texonomy, we detail the expla-
nations and discussions of the methodology, ranging from
annotation types, query strategies, deep model architectures,
learning paradigms, and training processes.

o The difficult challenges in DAL are presented from multiple
perspectives. By a detailed analysis of challenges and current
studies, we discuss possible advanced solutions for them.
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o A GitHub repository' is available with the most up-to-date
DAL techniques, including papers, code, and datasets.
Remaining part of this survey is organized as follows.

Section II shows the collection of DAL papers. Section III

introduces important DAL baselines and datasets. Section [V

details the taxonomy of DAL methods. Section V reviews DAL-

related applications. Section VI introduces DAL challenges and
opportunities. Section VII ends this article with the conclusions.

II. PAPER COLLECTION AND FILTERING

We first determine relevant keywords used to search articles
and create an initial keyword list, as shown in Fig. 4. We
perform searches across multiple databases using all possible
3-keyword combinations from defined keyword groups, such as
“Active Learning”, “Machine Learning”, and “Open-set”. The
databases searched include Google Scholar, Scopus, Semantic
Scholar, and Web of Science. We limit the number of papers
collected per query to 200, and the publication date ranges

from January 2013 to March 2023.

Group Name Keywords

Fundamental Active Learning.
Scope Artificial Intelligence, Machine Learning, Neural Network,
Computer Vision, Bioinformatics, Deep Learning.
Transfer Learning, Self-training, Data Augmentation,
Semi-supervised, unsupervised, User Demands,
Discrete Annotation, Human-in-the-loop, Human feed back,
Context

Crowd Annotation Framework, Label-Efficient,
Continual Learning, Open-set, Online Learning, Robust,
Data Acquisition, Interactive Learning, Decision Boundaries.

Publication trend analysis of 3,967 unique papers on DAL.

Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Number 142 175 184 198 267 370 456 542 671 685 268

Fig. 4: Keywords and publication trend on DAL.

We collect a total of 10,000 research papers from various
sources and obtain 3,967 unique papers after removing any
duplicates. Fig. 4 shows the trend of these articles over time,
revealing a growing interest in the topic we are investigating.
To ensure the relevance of the collected articles to DAL, we
conduct a detailed manual inspection of their abstracts. As a
result, we identify 1,273 articles that are considered interesting
and pertinent for our study. Based on the collected materials,
we employ these keywords to perform a final filtering process
and also consider the reputation of conferences or journals in
which the papers were published, as well as their impact. This
approach further refines our dataset, resulting in 405 articles that
are selected for systematic analysis, and 220 articles are finally
summarized and discussed, focusing on their key findings and
contributions. This rigorous analysis ensures that the articles
are relevant and provide valuable insight into the field of DAL.

III. DEEP ACTIVE LEARNING

In this section, we first introduce the basic notation and
definition of DAL and then discuss the most important DAL
baselines based on their relevance and chronological order.

Ihttps://github.com/Clearloveyuan/Awesome- Active-Learning

Algorithm 1 DAL procedure.

Input: Unlabeled Data Dpgol

Parameter: Batch Size b, Iteration Times 7', Query Function «
Output: The final trained model M

Qo < Initialization sampling from Dpee Where |Qo| = b;
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A. Notations & Definition

We focus on pool-based DAL methods since most DAL
methods belong to this category. Pool-based DAL methods
iteratively select the most informative samples from a large
pool of unlabeled datasets until either the base model reaches
a certain level of performance or a pre-defined budget is
exhausted. As shown in Algorithm I, we use a classification
task as an example for illustration, while other tasks follow the
typical definition of their task domains. Given an initial labeled
training dataset Dyain = {@;, ¥}~ and a large-scale pool of
unlabeled data Dpoot = {@;}_;, where m<n, x, represents
the feature vector of the i-th sample, and y; € {0,1} is the
class label for binary classification (or y; € {1,...,k} for
multi-label classification), the DAL procedure is carried out in
T iterations. In the i-th iteration, a batch of samples Q' with
batch size b is selected from Df,;oll on the basis of the base
model M and an acquisition function a( ). These samples Q°
are then labeled by an oracle and added to the i-th training
dataset Dfrain, with which the model M is then re-trained.
DAL terminates when the labeled budget () is exhausted or
the desired performance of the model is reached.

B. Comparisons between Traditional and Deep AL

The differences between traditional and Deep AL mainly
lie in the following two aspects: (1) most traditional AL
methods use fixed pre-processed features to calculate un-
certainty/representativeness. In deep learning tasks, feature
representations are jointly learned with Deep Neural Networks
(DNNs). Therefore, feature representations dynamically change
during DAL processes, and thus pairwise distances/similarities
used by representativeness-based measures need to be re-
computed in every stage. In contrast, for traditional AL
with classical ML tasks, these pairwise terms should be pre-
computed [22]. (2) DAL can leverage advanced large-scale pre-
trained language models to achieve comparable performance
in few-shot or one-shot settings. In contrast, traditional AL
methods with few-shot or one-shot settings may not meet the
minimum requirements for the number of training samples
needed to achieve comparable performance [30], [33]. On the
other hand, the most similar aspect between traditional and
deep AL methods is their utilization of a small number of the
most informative samples to train models, thereby improving
efficiency and reducing reliance on labeled samples.
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TABLE I: Detailed taxonomy of important Deep Active Learning baselines. Refer to Section IV for a detailed explanation of each category.

Any Types in Query Strategy means the proposed frameworks can be combined with any types of DAL query strategies.

Method Query Strategy  Architecture Learning Paradigm Annotation  Training Tasks
BCBA [2016] [34] Bayesian CNNs Traditional Hard Traditional Image Classification
DBAL [2017] [35] Bayesian CNNs Semi-supervised Learning Hard Traditional Image Classification
CEAL [2017] [36] Uncertainty CNNs Curriculum Learning Hybrid Curriculum Image Classification
ESNN [2017] [37] Uncertainty BNNs Adversarial Learning Hard Traditional Image Classification
PAL [2017] [38] Uncertainty BNNs Reinforcement Learning Hard Traditional Named Entity Recognition
LAL [2017] [39] Influence Random Forest Traditional Hard Traditional Regression Tasks
GAAL [2017] [40] Uncertainty GNNs Adversarial Learning Hard Traditional Image Classification
CoreSet [2018] [41] Representative CNNs Semi-supervised Learning Hard Traditional Image Classification
DFAL [2018] [42] Uncertainty CNNs Adversarial Training Hard Traditional Image Classification
ASM [2019] [43] Uncertainty CNNs Curriculum Learning Hybrid Curriculum Objective Detection
MIAL [2019] [44] Representative SVM Traditional Hard Traditional Image Classification
BatchBALD [2019] [45] Uncertainty BNNs Traditional Hard Traditional Image Classification
DRAL [2019] [46] Uncertainty CNNs Reinforcement Learning Hard Pre+FT Person Re-Identification
DLER [2019] [47] Uncertainty PLMs Transfer Learning Hard Pre+FT Entity Resolution
BGADL [2019] [48] Hybrid BNNs Semi-supervised Learning Hard Traditional Image Classification
VAAL [2019] [49] Representative VAE Adversarial Learning Hard Traditional Image Classification
AADA [2020] [50] Hybrid CNNs Transfer Learning Hard Pre+FT Object Detection
CSAL [2020] [51] Hybrid CNNs Traditional Hard Pre+FT Image Classification
SRAAL [2020] [52] Uncertainty CNNs Adversarial Learning Hard Pre+FT Image Classification
ALPS [2020] [31] Uncertainty PLMs Traditional Hard Pre+FT Cold-start Issue
Ein-Dor et al. [2020] [53] Any Types PLMs Traditional Hard Pre+FT Text Classification
TOD [2021] [54] Uncertainty CNNs Traditional Hard Pre+FT Image Classification
Cluster-Margin [2021] [55] Representative CNNs Traditional Hard Pre+FT Image Classification
LADA [2021] [56] Uncertainty CNNs Semi-supervised Learning Hard Traditional Image Classification
TA-VAAL [2021] [57] Influence VAE Adversarial Learning Hard Pre+FT Image Classification
Karamcheti et al. [2021] [58] Hybrid PLMs Traditional Hard Pre+FT Visual Question Answering
MAML [2022] [59] Any Types PLMs Meta Learning Hard Pre+FT Text Classification
BATL [2022] [32] Hybrid PLMs Traditional Hard Pre+FT Text Classification
TYROGUE [2022] [60] Hybrid PLMs Traditional Hard Pre+FT Text Classification
Schroder et al. [2022] [61] Uncertainty PLMs Traditional Hard Pre+FT Text Classification

C. Important DAL Baselines and Datasets

The most important baselines for DAL are carefully cate-
gorized in Table I from six perspectives to provide readers
with a complete understanding of the development of DAL and
the identification of the most relevant works. These influential
studies have achieved breakthroughs in designing new DAL
methods, tackling novel tasks, or integrating with emerging
learning paradigms. They have been published in influential
international conferences or high-quality journals in machine
learning, CV, NLP, etc., and have been highly cited with more
than 100 total citations or more than 10 citations per year.

BCBA [34] pioneers the combination of AL with Bayesian
neural networks (BNNs), using Monte Carlo dropout for a varia-
tional Bayesian approximation to apply for image classification.
Based on this, DBAL [35] proposes an uncertainty-based query
strategy for high-dimensional image classification. To expand
number of labeled samples without increasing human labors,
CEAL [36] combines DAL with semi-supervised strategies
by assigning pseudo-labels to high-confidence samples while
requesting annotations for the most uncertain samples. Relying
on a single query strategy may lead to errors. Thus, ESNN [37]
uses a deep ensemble of DNNs to measure sample uncertainty
from multiple aspects and achieves good robustness for
unbalanced datasets. However, the aforementioned methods are
criticized for being less effective for batch DAL [45]. To address

this issue, CoreSet [41] selects informative batches that cover
the whole data distribution and BatchBALD [45] uses mutual
information to identify the most informative batches. And
Cluster-Margin [55] aims to select informative and diverse
mini batches to improve accuracy and efficiency.

To better help DAL adjust to different tasks, reinforcement
learning provides detailed rewards for dynamically controlling
query strategies. For example, PAL [38] learns a deep rein-
forcement learning-based Q-network as an adaptive policy to
select data samples for labeling. Similarly, DRAL [46] uses a
reinforcement learning framework to dynamically adjust the
acquisition function via rewards to obtain high-quality queries.
UCBVI [62] provides a new modification to the Q-network
formulation for reward-free exploration, significantly reducing
query complexity. However, reinforcement learning requires
a large amount of training data and human-designed rewards,
which is difficult for many real-world applications. To address
this issue, meta learning and transfer learning have become
main solutions. LAL [39] trains a regressor to learn optimal
query strategies for downstream tasks. MAML [59] combines
meta learning and DAL by initializing an active learner with
meta-learned parameters obtained through meta-training on
tasks similar to the target task during DAL. DLER [47]
designs an architecture to learn a transferable model from
a high-resource setting to a low-resource one, allowing DAL
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to select a few informative samples based on the knowledge
of the source domain. AADA [50] jointly considers domain
alignment, uncertainty, and diversity for sample selection.

To enlarge the labeled training dataset for DNNs without
incurring additional human labor costs, semi-supervised, semi-
supervised, and self-supervised DAL methods have been
proposed. MIAL [44] pioneers semi-supervised DAL using
cluster-based strategies to measure sample informativeness.
ASM [43] collaborates with self-learning and DAL, designing
a selector function to selectively and seamlessly determine
the confidence of the samples, where high-confidence samples
are labeled by a pseudo-labeling module, and low-confidence
samples are labeled by humans. CSAL [51] first uses semi-
supervised learning to distill information from unlabeled
data during the training stage and then uses consistency-
based sample selection for DAL. TOD [54] leverages a
novel unlabeled data sampling strategy for data annotation
in conjunction with a semi-supervised training scheme to
improve the performance of the task model with unlabeled
data. Recently, data augmentation has expanded to become
a deep neural model that generates virtual instances to help
expand training datasets. GAAL [40] introduces a generative
adversarial network to the DAL query method to generate
informative samples to train the model. BGADL [48] expands
GAAL and combines generative adversarial DAL with Bayesian
data augmentation to generate diverse and informative samples.
DFAL [42] uses adversarial DAL to select samples close to the
decision boundary as the most informative samples for DAL.
VAAL [49] learns a latent space using a variational autoencoder
(VAE) to generate new informative samples and trains an
adversarial network to discriminate labeled and unlabeled data.
Inspired by these works, TA-VAAL [57] incorporates a learning
loss prediction module and a task ranker to enable task-aware
sample selection. SRAAL [52] proposes a relabel adversarial
model that aims to obtain the most informative unlabeled
samples. LADA [56] anticipates data augmentation impact by
scoring both real and virtually augmented instances, allowing
training in informative labeled and augmented data.

Large-scale pre-trained language models (PLMs) achieve
great success and become a milestone in artificial intelligence.
Due to sophisticated pre-training objectives and huge model
parameters, large-scale PLMs effectively captures knowledge
from massive labeled and unlabeled data. DAL also ushers in
a new paradigm by leveraging the prior knowledge in PLMs
to enable few-shot or zero-shot learning for many downstream
tasks. ALPS [31] extracts knowledge from PLMs to select the
first batch of data using masked language modeling loss, which
successfully solves the cold-start problem of DAL. Ein-Dor et
al. [53] use multiple DAL methods to select samples for fine-
tuning in BERT-based text classification. It achieves comparable
or higher performance than fine-tuning on full datasets only
with 10%~20% labeled samples. Karamcheti et al. [58] use
DAL to identify and remove noisy data, select balanced samples
to fine-tune PLMs, and achieve better performance in visual
question-answering. BATL [32] is a task-independent batch
acquisition method on a PLMs with triplet loss to determine
hard samples, which have similar features but difficult to
identify labels in an unlabeled data pool. TYROGUE [60]

TABLE II: Widely used DAL dataset information.

Dataset Size Domain Tasks

MNIST [6] 70,000 Images Classification
CIFAR-10 [63] 60,000 Images Classification
SVHN [64] 600,000 Images Classification, Localization
ImageNet [65] 1.2M Images Classification, Detection
MSCOCO [66] 123,287 Images Object detection
Cityscapes [67] 5,000 Images Semantic segmentation
Caltech-101 [68] 9,000 Images Classification

SST [69] 11,855 Text Sentiment analysis
TREC [70] 5,952 Text Question answering
SNLI [71] 570,000 Text Natural language inference
IMDB [72] 50,000 Text Sentiment analysis
AGNews [73] 31,900 Text Classification
PubMed [74] 19,717 Text Document classification
YouTube-8M [75] 237,000 Audio Classification
MIMIC-III [76] 112,000  Medical Healthcare analytic

designs an interactive DAL framework to flexibly select samples
to fine-tune PLMs for multiple low-resource tasks. Schroder
et al. [61] extend the PLMs using available unlabeled data for
greater adaptability and introduce effective fine-tuning for the
robustness of DAL in low-resource and high-resource settings.

As shown in Table II, we also conclude the most widely
used datasets in DAL including images, text, and audio.

IV. TAXONOMY OF DAL
A. Annotation Type

» Hard annotations provide one or multiple discrete categorical
labels independently for each sample. For example, Citovsky
et al. [55] annotate each image with a specific label such
as “balloon” or “strawberry” for an image classification task.
Wiechman et al. [77] design an online annotation system
to assign multiple labels to long documents based on their
sentiments, topics, and spam/non-spam status.

» Soft annotations allow continuous and subjective labels for
samples. For instance, ReDAL [78] annotate continuous 2D
region labels for 3D point clouds in semantic segmentation.
Kothawade et al. [79] use mutual information as an auxiliary
metric to select annotation regions in images for autonomous
vehicles. Xie et al. [80] propose a region-based approach to
automatically query a small subset of image regions to label
while maximizing segmentation performance.

» Hybrid annotations combine automatic pseudo-labels of high-
confidence predictions with human labeling of low-confidence
samples in an iterative self-paced manner [43]. For example,
Wang et al. [36] propose a complementary sample selection
strategy to progressively choose the most informative samples,
pseudo-labeling high-confidence predictions for training. Yu
et al. [81] jointly use the expertise of different annotation
groups, inter-relations between workers, and label correlations
within groups. By weighting groups, they reduce the impact
of low-quality workers and calculate reliable consensus labels.
» Explanatory annotations provide a hard or soft label along
with an explanation for each annotation. For example, Schroder
et al. [82] use topic-related annotations for environmental texts.
Similarly, Yan et al. [83] annotate the text and list keywords
as evidence of the accuracy of the label. Unlike the above
methods, Zhou et al. [84] annotate samples by minimizing
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correlations between tasks and provide explainable medical
knowledge to distinguish selected samples.

» Random/multi-agent annotations use multiple independent
pseudo-annotators to randomly label new unlabeled samples
without human input [85]. For example, Gong et al. [86] use
an agent team to collaboratively select informative images for
annotation based on the decisions from the other agents.

B. Query Strategy

» Uncertainty-based methods aim to select the most ambiguous
samples according to model predictions. Given an input x;:

Entropy(x;) = arg max(z P(g;lx;) log P(g;]2;)), (1)
: J

where P(y;|x;) represents the likelihood that x; is classified
into the ¢-th class [87]. Uncertainty-based methods focus on
designing various score functions to measure sample uncertainty
and informativeness, including predictive entropy [87], least
confidence [88], highest estimated dual variables [89], mutual
information between model posterior and predictions [79].
Some strategies check samples near the decision boundary
as the most uncertain ones [90], such as instances close to the
hyperplane [44] or close to the margin [91]. Others combine
multiple query strategies, forming a query-by-committee [92] or
disagreement-based [93] DAL strategy to decrease errors made
by a single query strategy. With the development of adversarial
learning, instead of selecting samples from unlabeled datasets,
models tend to generate the most informative and uncertain
synthetic samples to expand the training dataset [48].
However, they have some common drawbacks: (1) redundant
samples, as uncertain points, are continually selected yet in
short of coverage; (2) simply focusing on a single sample lacks
robustness to outliers; (3) these task-specific designs exhibit
limited generalizability.
> Representative-based methods aim to sample the most
prototypical data points that effectively cover the distribution of
the entire feature space. Existing methods can be categorized
into density-based and diversity-based approaches. Density-
based methods prefer to select samples that can represent
all unlabeled samples. They use clustering methods to select
cluster centers [94] as the most representative samples or select
samples that can maximize probability coverage of the whole
feature space of unlabeled datasets [41]. For example, Kim
et al. [95] design the density awareness coreset approach to
estimate sample densities and preferentially select diverse points
from sparse regions. Given the input x;:

2.

JEN (x4 ,k)

. 1
Density(x;) = — s — a;]3, (@)

where NV (x;, k) represents the k-nearest neighbors of x; [95].
Coleman et al. [96] and Gudovskiy et al. [97] achieve efficiency
by only considering nearest neighbors rather than all data
or matching feature densities with self-supervised methods.
Diversity-based methods prefer to select samples that are
different from the labeled samples. They use context-sensitive
methods [98] that take into account the distance between
a sample and its surrounding labeled samples to enrich the

diversity of the labeled dataset. BMAL [99] performs DAL
for the image labeling problem, where diversity is measured
by the KL-divergence of the class probabilities distribution of
similar neighboring instances, formulated as:
Divergence(x;, ;) = ; P(g;|lxs)— P(g;]x;) log %

Other diversity-based methods tend to train a model, such
as adversarial networks [57], contrastive networks [100],
hierarchical clustering [44], and pre-trained models [53], to
help discriminate labeled and unlabeled sets and select the
most different unlabeled samples. For example, Li et al. [101]
explicitly learn a non-linear embedding to select representative
samples. Parvaneh et al. [102] explore neighborhoods around
unlabeled data by interpolating features with labeled points.
Li et al. [103] propose an acquisition function that measures
mutual information between a batch of queries to encourage di-
versity. To further increase label efficiency, Citovsky et al. [55]
use hierarchical clustering to diversify batches, requiring only
40% of the labels to achieve the same target performance.
However, since they use ResNet-101 as their backbone, which
contains only 170 MB parameters, more than 20% labeled
samples are required for fine-tuning the model.

However, the aforementioned representative-based methods,

which solely focus on sampling diverse samples, are always
insensitive to samples that are close to the decision boundary
(excluding hybrid methods that jointly consider representative
and uncertainty), despite the fact that such samples are probably
more important to the prediction model, as suggested by Zhao
et al. [104]. In addition, representative-based methods work
well for a small sample of data and classifiers with a small
number of classes since their computational complexity is
almost quadratic with respect to data size [55].
» Influence-based methods aim to select samples that will have
the greatest impact on the performance of the target model.
These techniques can be categorized into three main groups.
(1) The first group is directly measuring the expected impact
on the modal through metrics such as gradient norm [105],
query complexity [106], kernel approximation [107], KL
divergence [97], change of loss function [108], or model
parameters [54], and expected error reduction (EER) [109].
Specifically, EER can be formulated as

EER(z;) = Eo {Ey, |a; [II;%XP(?JSWS: xi,yi)| — I%?Xp(ys"wsnv

“
where x refers to the labeled sample. (2) The second group is
incorporating different learning policies, such as reinforcement
learning and imitation learning, to select samples based on
reward signals or demonstrated actions. Despite the promising
advantages, this requires significant additional training [110].
For example, Wertz et al. [111] propose reinforced DAL, a
reinforcement learning policy that uses multiple elements of
the data and the task to dynamically pick the most useful
unlabeled subset during the DAL process; (3) The last group is
training a separate model to estimate the impact on the target
model [89]. For example, Peng et al. [14] propose a knowledge
distillation framework to evaluate the impact of samples based
on the knowledge learned by the student model. Elenter et
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al. [89] use the dual variables of the original model to measure
the impact on the target model.

However, despite recent advances, influence-based DAL

remains challenging. Directly measuring model changes or
incorporating new learning policies always requires huge time
and space costs, and training a new model will over-rely on
its accuracy and often lead to unstable results.
» Bayesian methods aim to minimize classification errors
and improve model beliefs by leveraging Bayes’ rule. Most
studies have treated Bayesian models (e.g., Gaussian pro-
cess [109], BNNs [35], Bayesian probabilistic ensemble [112])
as uncertainty-based methods, using them to estimate the
informativeness of the sample. However, Bayesian DAL is
better viewed as its own distinct system, with methods that
select batches by directly measuring impact on the target
model, such as BatchBALD [45] and Causal-BALD [113]. For
example, we define a Bayesian model with model parameters
w ~ Pp(wW|Dyain), and BALD can be defined to estimate the
mutual information between the model predictions and the
model parameters, formulated as:

H(?/? w|m, Dtrain) = H(y\m, Dtrain) - Ep(wmlmm)[H(ym w, Dtrain)]a
)]

where H represents the entropy and K is the expectation.

Compared to standard DNNSs, the aforementioned Bayesian

DAL methods, which leverage the advantages of probabilistic
graphical theory [35], can often provide reasonable explanations
for why these samples should be selected [45]. However, they
often require extensive accurate prior knowledge and tend to
underperform deep learning models in representation learning
and fitting capacity.
» Hybrid methods aim to take advantage of the above multiple
query strategies and to achieve a trade-off among them. Hybrid
methods can be further categorized according to interaction
patterns. Serial-form hybrids apply criteria sequentially within
an DAL cycle, filtering out non-informative samples until the
batch is filled [55]. Criteria-selection hybrids use only one
query strategy in one DAL iteration, in which they select the
best query strategy or network architecture with the highest
criterion. For example, DUAL [114] switches between density-
based and uncertainty-based selectors to choose the best
criterion for each DAL cycle. Unlike DUAL, iNAS [115]
searches a restricted candidate set to find the optimal model
architecture incrementally in each DAL iteration. Parallel-form
hybrids use multi-objective optimization methods or a weighted
sum to merge multiple query criteria into one for sample
selection. For example, Gu et al. [2] efficiently acquire batches
with discriminative and representative samples by proposing
procedures to update labeled and unlabeled sets, based on path-
following optimization techniques. Citovsky et al. [55] jointly
optimize the uncertainty and diversity criteria in batch mode
using multi-objective acquisition functions. TOD [54] selects
samples with high model uncertainty and outputs discrepancy
through a weighted combination of both metrics.

Hybrid methods combine the advantages of different query
strategies. However, determining the most effective combina-
tions and trade-offs between criteria is time consuming and
still remains open for further investigation.

C. Model Architecture

» Traditional Machine Learning architectures, such as For-
est [39] and Support Vector Machine (SVM) [44], are statistical-
based models that do not use neural networks. And they attract
great attention in the early stage of the DAL development.

» Bayesian Neural Networks (BNNs) combine neural networks
with Bayesian inference, quantifying the uncertainty introduced
by the models in terms of outputs and weights to explain the
trustworthiness of the prediction [116]. Many studies propose
DAL strategies based on BNNs, aiming to improve efficiency
and explainability in samples selection [38], [45].

> Recurrent Neural Networks (RNNs) [117] use their rea-
soning from previous experiences to predict upcoming events
and are able to learn features with long-term dependencies.
They have been widely used for sequential data such as text
and audio. DAL is seldom combined with RNNs since they
require large-scale labeled datasets for training. Some special
tasks that easily recognizable patterns, such as malicious word
detection on social networks [118], can be solved with DAL.
> Convolutional Neural Networks (CNNs) [6] are feedforward
neural networks that can extract features from data with
convolution structures and have been widely used for image
processing with three advantages: local connections, weight
sharing, and down-sampling dimensionality reduction. DAL
can be effectively combined with CNNs since Sener et al. [41]
proved that a subset of samples (coreset) can geometrically
characterize all features of the entire image set and can be
selected by minimizing a rigorous bound. Following their study,
more studies have been conducted [49], [55].

» Graph Neural Networks (GNNs) [5] learn node represen-
tations by aggregating neighborhood information and achieve
great success in various tasks, such as node classification.
However, effectively handling graph data with dense intercon-
nections between samples using limited labeled data remains an
open challenge [119]. DAL can help address this by selectively
querying labels for the most informative samples and executing
only one training epoch to reduce the annotation cost for
various types of graphs, such as homogeneous graphs [120],
heterogeneous graphs [121] and attribute graphs [122].

> Variational Autoencoders (VAEs) is a class of neural network
architecture designed with an encoder-decoder framework [123].
It aims to capture the underlying data distribution and learn
to generate samples that closely resemble the input data.
VAEs-based DAL methods usually generate samples to fool
discriminators in an adversarial training manner, thus improv-
ing discriminators’ ability to select the most challenging-to-
distinguish samples for training DAL models [49], [57].

» Pre-Trained Language Models (PLMs), based on Trans-
formers, utilize multi-head self-attention to capture long-term
dependencies. By pre-training on large unlabeled corpora,
PLMs embed substantial general knowledge and transfer to
downstream tasks, enabling state-of-the-art (SOTA) perfor-
mance [30]. For example, Seo et al. [32] identify the most
informative samples for a given task, focusing on PLMs fine-
tuning, to learn salient patterns with minimal annotation cost.
The combination of pre-training rich knowledge foundation
and DAL’s sample-efficient tuning unlocks PLMs ’s further
potential for many applications.
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Fig. 5: An example for contrastive learning based query strategies.

D. Learning Paradigm

» Traditional Learning Paradigm, as illustrated in Algorithm 1,
iteratively queries and labels samples to train the models in a
vanilla supervised learning manner, without incorporating any
advanced learning paradigms [32], [34].

» Semi-supervised Learning, also known as weakly-supervised
learning, aims to jointly use real-labeled samples and pseudo-
labeled samples to train the models. Current DAL methods
are designed with various efficient strategies to obtain pseudo-
labels for unlabeled samples. For instance, DBAL [35] and
CoreSet [41] first predict pseudo-labels using their models and
then calculate samples’ confidence scores to judge whether
these pseudo-labels should be trusted or not. On the other hand,
LADA [56] and BGADL [48] propose new data augmentation
methods to create more samples based on original labeled
samples, using their original real-labeled samples as pseudo-
labels. These studies effectively reduce human-labors and
achieve comparable performance compared with traditional
supervised learning using larger labeled samples.

» Contrastive Learning improves feature representation by
pulling similar instances closer together while pushing dissimi-
lar instances apart [124]. Contrastive methods extract discrimi-
native features, such as semantics [100] and distinctiveness [57],
to estimate the sample uncertainty during acquisition. For
example, as shown in Fig. 5, Du et al. [125] extract both
semantic and distinctive features with contrastive learning and
then combine them in a query strategy to choose the most
informative unlabeled samples with matched categories.

» Adversarial Learning enables a model to train fully differ-
entiable by solving minimax optimization problems [49]. This
approach can be used as a generative query technique for DAL.
For example, DAL can be combined with generative adversarial
network, which consist of a generator and a discriminator,
where the DAL model acts as the discriminator and the
generator explores the distribution of unlabeled data to generate
the most informative and uncertain synthetic samples for
training [57]. Li et al. [122] propose SEAL, as shown in
Fig. 6 which consists of two adversarial components. The graph
embedding network encodes all nodes into a shared space, with
the intention of making the discriminator treat all nodes as
labeled. Additionally, a semi-supervised discriminator is used to
differentiate unlabeled nodes from labeled ones. The divergence
score of the discriminator is used as an informativeness measure
to actively select the most informative node for labeling. The
two components form a loop to mutually improve DAL.

» Meta Learning enables DNNs to leverage the knowledge
acquired from multiple tasks, represented in the network with
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Fig. 6: An example for contrastive learning based query strategies.

their weights, to adapt faster to new tasks. Meta learning can
provide an acquisition function for DAL [39], [126] or favorable
model initialization during DAL by controlling the transfer of
knowledge from multiple source tasks. For example, Shao et
al. [127] propose Learning-to-Sample, where a boosting model
and sampling model dynamically learn from each other and
iteratively improve performance. Zhu et al. [59] combine both
paradigms by initializing an active learner with meta-learned
parameters via meta-training on tasks similar to the target task.
» Reinforcement Learning involves an agent that can in-
teract with its environment and learn to alter its behavior
in response to received rewards [119]. Given that almost
all DAL methods use heuristic acquisition functions with
limited effectiveness, Reinforcement learning frames DAL as
a reinforcement learning problem to explicitly optimize an
acquisition policy. In the DAL with reinforcement learning
setup, an autonomous agent (acquisition selector) controlled
by a deep learning algorithm that observes a state s; from
its environment (predictor) at time ¢. It takes an action a; to
maximize the reward 7, (prediction accuracy), where a; decides
whether to query unlabeled samples [62].

» Curriculum Learning mimic human and animal learning
processes, where the training progresses gradually from simple
to complex samples. This provides a natural way to exploit
labeled data for robust learning [10], [128]. Specifically,
curriculum learning uses a predefined learning constraint to
incrementally incorporate additional labeled samples during
training. Curriculum Learning introduces a weighted loss on all
labeled samples, acting as a general regularizer over the sample
weights. For example, Wang et al. [129] use a pseudo-labels
strategy which iteratively assigns pseudo-labels to unlabeled
samples with high prediction confidence.

» Continual Learning is developed for constraints on task-
based settings, where the model continuously learns a sequence
of tasks one at a time, where all data for the current task
are labeled and available in increments. However, real-world
systems do not have the luxury of large labeled datasets for
each new task. To address this issue, Mundt et al. [130]
present a detailed analysis of continual learning-based DAL
and out-of-distribution detection works. They suggest a unified
perspective with open-set recognition as a natural interface
between continual learning and DAL. Ayub et al. [30] develop
a method that allows a continue learning agent to continually
learn new object classes from a few labeled examples.

» Transfer Learning extracts knowledge from one or more
source tasks and applies it to a target task. It has two broad
categories: transductive and inductive. While transductive
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methods adapt models learned from a labeled source domain
to a different unlabeled target domain with the same task,
inductive methods ensure that the domains of source and target
are the same but tasks are different. DAL with transfer learning
can better enhance each other’s performance by selecting the
best target samples with a distribution similar to the source
domain [50]. In addition, transfer learning can minimize the
number of annotation labels needed and provide auxiliary
information for DAL acquisition functions. For example, as
shown in Fig. 7, Xie et al. [87] propose an energy-based active
domain adaptation that balances domain representation and
uncertainty when selecting target data.

Data distribution Entropy CoreSet IALE

Fig. 8: An example for imitation learning [131].

» Imitation Learning provides SOTA results in many structured
prediction tasks by learning near-optimal search policies [92].
Such methods assume access to an expert during training that
can provide the optimal action in any queried state, essentially
asking “what would you do here?” and learning to mimic that
choice. For example, Bullard et al. [132] use imitation learning
to allow an agent in a constrained environment to concurrently
reason about both its internal learning goals and externally

impose environmental constraints within its objective function.

Loffler et al. [131] propose an imitation learning scheme (IALE)
that mimics the selection of the best-performing expert heuristic
at each stage of the learning cycle in a batch-mode setting. As
shown in Fig. 8, IALE can well imitate the Entropy-based and
CoreSet-based methods and thus obtain better performance.

» Multi-task Learning (MTL) focuses on formulating methods
to maintain performance across multiple tasks rather than a
single task. Multi-task DAL (MTAL) methods combine multiple
individual task-related query strategies into a single unified
approach and jointly optimize the unified one. In contrast to
single-task query settings, where the uncertainty of a single
selected task classifier is used to query unlabeled samples, in
MTAL the uncertainty of an instance is determined by the
uncertainties from classifiers across all tasks. For example,
Ikhwantri et al. [133] propose an MTAL framework for
semantic role labeling with entity recognition as an auxiliary
task. This alleviated data needs and leverages entity information

to aid role labeling. Their experiments show that MTAL can
outperform single-task DAL and standard MTL, using 12% less
training data than passive learning. Zhou et al. [84] propose
a Multi-Task Adversarial DAL framework, where adversarial
learning maintains the effectiveness of the MTL and DAL
modules. A task discriminator eliminates irregular task-specific
features, while a diversity discriminator exploits heterogeneity
between samples to satisfy diversity constraints.

E. Training Process

» Traditional Training first trains a model on an initialized
training dataset and then selects unlabeled samples to annotate
based on the predictions of the current model. The newly
annotated samples are added to the training set for re-training
the model in the next iteration [134]. This iterative process
continues, with the model parameters randomly re-initialized
before each epoch of re-training [36], until either the sample
budget or number of DAL iterations is reached.

» Curriculum Learning Training gradually progresses from
easy to complex samples, mimicking human and animal
learning processes. This provides a natural and iterative way
to exploit labeled data for robust learning. For example, Tang
et al. [135] propose a self-paced DAL approach that jointly
considers the value and difficulty of a sample. It queries samples
from easy to hard to minimize annotation cost. Wang et al. [43]
show that curriculum learning alone improves the accuracy
of the object detection by 3.6%, while the combination of
curriculum learning and DAL improve the accuracy by 4.3%.
» Pre-training & Fine-tuning (Pre+FT) have become a
primary training process with the development of large-scale
PLMs [58]. It leverages the rich prior knowledge in PLMs to
solve different downstream tasks. DAL attracts attention as a
sample selection strategy for fine-tuning with only 10%~20%
of labeled data achieving competitive performance compared to
full data fine-tuning [32]. DAL iteratively selects and annotates
batches of informative samples to fine-tune the PLMs for the
downstream task. This satisfies task-specific needs, while also
enabling a few-shot learning [30].

V. APPLICATIONS OF DAL

As shown in Table III, the integration of DL and AL is
leading to an increasing application of AL methods in various
domains of life, ranging from agricultural development [82]
to industrial revitalization [82], and from artificial intelli-
gence [137] to biomedical fields [160]. In this section, we
aim to provide a systematic and detailed overview of existing
DAL-related work from a broad application perspective.

A. Applications in Natural Language Processing

With the emergence of large-scale language models, NLP
has achieved great success using computers to help understand
intricate languages. However, fine-tuning these language models
requires a substantial amount of data, computation resources,
and time. DAL provides a strategy for searching high-quality
small and high-quality samples to help fine-tune the model
and save resources. In the following, we introduce some of the
most influential DAL methods in NLP.
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TABLE III: Illustration of DAL-related applications in main fields, including classic methods with their advantages and disadvantages.

Areas  Applications Classic Methods Advantages Disadvantages
generate samples for training [83], [136]. make the selection process efficient. high time consumption, unstable performance.
Text Classification uncertainty sampling [61]. high efficiency and performance. vulnerable to outliers, unstable performance.
use pre-trained language models [137]. easily adapt to new datasets. vulnerable to outliers and imbalanced datasets.
Text Summarization PLMs with Monte Carlo dropout [138]. efficient and effectiveness. vulnerable to outliers, unstable performance.
diverse sampling [139]. remove outliers and diverse sampling. vulnerable to document embeddings.
Question Answerin DataMap [58]. eliminate outliers and improve accuracy. high time consumption, lack of generalizability.
NLP e interactive query strategy [140]. efficiently minimize costly data annotations.  wait for human reaction, need expert knowledge.
Information Extraction label identical subsequences [141] high efficiency and effectiveness. lack of generalizability, cold-start.
label most novel words [142]. high efficiency and effectiveness. unstable performance, cold-start.
Semantic Parsin hyperparameter selection [143]. reduce data annotation. high time consumption, lack of generalizability.
J hybrid query strategies [144]. select the most semantically varied samples.  vulnerable to outliers, lack of scalability.
Imase Captionin semantic adversarial DAL [145] overcome scarcity of labeled data. difficulty in cross-domain transfer, cold-start.
& P & domain transfer learning [146]. transfer knowledge from high-resource. vulnerable to outliers, data scarcity.
Semantic Seementation uncertainty-based DAL [147]. high efficiency and effectiveness. unstable performance, easily select outliers.
g region-based selection [80], [148]. balance between label efforts and effect. vulnerable to outliers, imbalance datasets.
Obiect Detection hybrid selection [43], [149]. avoid noisy samples and outliers. data scaricity, unstable performance.
cv ) instance uncertainty learning [150]. suppress noisy instances. unstable performance, lack of scalability.
Pose Estimation traditional DAL strategy [151], [152]. effectiveness, easy to apply. vulnerable to outliers, cold-start.
meta learning [86]. can learn an optimal sampling policy. vulnerable to outliers and imbalance datasets.
Tareet Trackin multi-frame collaboration [153] eliminate background noise, ensure diversity. unstable performance, lack of scalability.
g s multi-target object tracking [154]. high efficient and effectiveness. high time consumption, cold-start
. . . human-in-the-loop [46]. improve model performance. high time consumption, lack of generalizability.
Person Re-identification incremental annotation [155]. select diverse samples without redundancy. vulnerable to outliers, cold-start.
Node Classification semi-supervised adversatial DAL [122]. better performance gains. unstable performance, cold-start.
graph policy network [120]. stable performance. single sample selection costs much time.
DM  Link Prediction multi-view DAL [156]. query informative samples from multi-view.  lack of scalability and generalizability.

transfer learning DAL [157].

easily apply to new datasets.

unstable performance, cold-start.

topic-based [158].

Commumnity Detection geometric block model [159].

reducing the unreliable dataset.
efficient and effectiveness.

high time consumption, unstable performance.
unstable performance, cold-start.

» Text Classification aims to classify large-scale text with
particular labels such as topic or sentiment. Researchers propose
several methods to efficiently select informative samples for
training. For example, Yan et al. [83] generate the most
informative examples for training, efficiently skipping the
sample selection process. They approximate the generated
example with a few summary words, which significantly
reduces the labeling cost for annotators, as they only need
to read a few words instead of a long document. Tan et
al. [136] develop the Bayesian estimate of mean proper scores
(BEMPS) framework for DAL, which allows the calculation
of scores such as logarithmic probability to better help select
informative and uncertainty samples. Experiments demonstrate
that BEMPS is more effective than baselines in various
text classification datasets. On the other hand, Schroder et
al. [61] use transformers for uncertainty-based sample selection.
Interestingly, they achieve comparable performance in widely
used text classification datasets while training in less than
20% of the labeled data, which demonstrates their ability
to utilize limited labeled data. In another study, Jelenic et
al. [137] conduct an initial empirical study to investigate the
transferability of the DAL by using PLMs . They find DAL
can effectively adapt to new datasets with pre-trained models.

» Abstractive Text Summarization (ATS) aims to compress
a document into a brief, informative and readable summary
that retains the key information of the original document.
However, constructing human-annotated datasets is a time-
consuming and costly endeavor. DAL are explored to re-

duce the amount of annotation needed while achieving a
certain level of ATS performance. For example, Gidiotis et
al. [138] address the issue from a Bayesian view and study
uncertainty estimation for SOTA text summarization models.
They augment the pre-trained summarization models with
Monte Carlo dropout, forming the corresponding variational
Bayesian PLMs models. By generating multiple summaries
from these models, they approximate Bayesian inference
and estimate the summarization uncertainty. Experiments on
multiple benchmark datasets consistently demonstrate their
improved summarization performance with higher Recall-
Oriented Understudy for Gisting Evaluation (ROUGE) scores.
Unlike the above method, as Fig. 9 (a) shows, Tsvigun et
al. [139] propose an alternative query strategy for ATS based on
diversity principles. This strategy, known as in-domain diversity
sampling, involves selecting instances that are dissimilar from
annotated documents, but similar to the core documents of the
domain. Given limited annotation budget, they can improve
model performance and consistency scores.

» Question Answering involves answering questions about
images or passages of text [161]. However, current models
require large-scale training data to achieve high performance.
DAL methods, such as Datamap [58] and hierarchical dialog
policies [140], are designed to maximize performance with
minimal labeling effort. Specifically, in Fig. 9 (b), DataMap [58]
is able to detect and eliminate outlier examples from the
unlabeled set, resulting in a significant increase in model
accuracy with fewer labeled examples. Padmakumar et al. [140]
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develop a joint policy for clarification and DAL in an interactive
image retrieval task. Asking users for clarification while
querying new examples improves the model performance.

» Information Extraction refers to many NLP tasks, including
named entity recognition, keyword extraction, word segmenta-
tion, etc. Manual annotation of large-scale sequences is time
consuming, expensive, and thus difficult to realize. To address
this, Brantley et al. [92] design a new DAL annotation manner.
They use a noisy heuristic labeling function to provide initial
low-quality labels, train a classifier to decide whether to trust
these labels, and annotate the most uncertain samples with
trustable labels. Their model achieves high efficiency and
effectiveness on many information extraction tasks. Similarly,
Radmard et al. [141] focus on improving the efficiency of
DAL for naming entity recognition by querying subsequences
within each sentence and propagating labels to unseen identical
subsequences in the dataset. They demonstrate that the DAL
strategy requires only 20% of the dataset to achieve the same
results as training on the full dataset. Hua et al. [142] propose
two model-independent acquisition strategies for identifying
and understanding the structure of argumentative discourse,
achieving competitive results with fewer computations The
former selects samples with the most novel words for labeling,
while the latter seeks to identify more relation links by matching
any of the 18 prominent discourse markers from a manual.

» Semantic Parsing aims to convert a natural language utter-
ance to a logical form: a machine-understandable representation
of its meaning [162]. DAL can help reduce data requirements
and improve efficiency for semantic parsing. For example,
Duong et al. [143] design a simple hyperparameter selection
technique for DAL to accelerate data annotation. Experiments
show that their method significantly reduces the need for data
annotation and improves the model’s performance on semantic
parsing. Li et al. [163] also design a hyperparameter tuning
module to reduce the additional annotation cost. In addition,
they design a novel query strategy that prioritizes examples with
various logical form structures and more lexical choices, which
further improve the performance for semantic parsing. Cohen et
al. [144] propose a novel DAL method with two new annotation
manners, called HAT. Experiments show that HAT can pick
out the most semantically varied and illustrative utterances,
leading to the highest possible gains in parser performance.

B. Applications in Computer Vision

With the remarkable success of CNNs and Vision Trans-
formers, a valuable insight has been gained that more labeled
image datasets can promote to obtain better performance of
the task. However, as the amount of data increases, training
DNNs becomes time and resource consuming. Additionally,
even if the number of data increases, the presence of noise
often leads to limited performance improvement. DAL can
effectively reduce noise and time consumption in many CV
tasks. Hereafter, we provide detailed information on specific
tasks and their improvements achieved with DAL in CV.

» Image Classification aims to accurately classify images
based on the provided labels for many specific fields such
as remote sensing [16], medical imaging [164] and face
recognition [129]. We list the most successful DAL methods for
image classification in Section III-C, such as BCBA, DBAL and
CEAL, which can be referred to for more detailed information.
» Image Captioning aims to automatically generate descriptive
text about the content of an image. Achieving high-quality
captioning requires large-scale datasets with diverse images.
Unfortunately, creating such a dataset is time-consuming and
costly. To tackle this issue, Zhang et al. [145] devise a novel
adversarial DAL model, which uses visual and textual infor-
mation to select the most representative samples to optimize
the performance of image captioning. Experiments show that
they overcome the limitations of labeled data scarcity and
improve the practicality and effectiveness of image captioning.
In a similar vein, Cheikh et al. [146] introduce a knowledge-
transferable DAL framework for low-resorce datasets. They
take advantage of existing datasets, translating their captions
into Arabic, and train the model with translated caption datasets
as prior knowledge for low-resource ArabicFlickrl1K datasets
(which contain only 1,095 images). Their model achieves the
Bilingual Evaluation Understudy (BLEU) score of 47%, serving
as compelling evidence for the effectiveness of their approach.
» Semantic Segmentation aims to understand images at the
pixel level, serving as the basis for various applications,
including autonomous driving [80] and robot manipulation [30].
However, training segmentation models requires an extensive
amount of data with pixel-wise annotations, a process that is
burdensome and prohibitively expensive [78]. To solve this
challenge, Konyushkova et al. [147] propose an uncertainty-
based DAL method with geometric priors to expedite and
simplify the annotation process for image segmentation. Ex-
periments show that their method can be applied to both
background-foreground and multi-class segmentation tasks.
Qiao et al. [148] introduce a collaborative panoptic regional
DAL framework for partial annotated semantic segmentation.
By incorporating semantic-agnostic panoptic matching and
region-based selection and extension, their model strikes a
balance between labeling efforts and performance. Similarly,
Xie et al. [80] propose an automated region-based DAL
approach for semantic segmentation considering the spatial
adjacency of image regions and the confidence in prediction.
Experiments show that they can use a small number of labeled
image regions while maximizing segmentation performance.

» Object Detection is transformed into a region classification
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task by generating candidate regions of objects from the
input image. Features are typically extracted from candidate
object regions using CNNs and classifiers are subsequently
employed for the final detection. DAL can reduce labeled data
to better fit numerous parameters of CNN. Wu et al. [149]
propose a novel hybrid query strategy that jointly considers
uncertainty and diversity. Extensive experiments are conducted
on two object detection datasets that effectively demonstrate the
superiority and effectiveness of their model. Wang et al. [43]
introduce active sample mining with switchable selection
criteria to incrementally train robust object detectors using
unlabeled or partially labeled samples, avoiding the influence
of noisy samples and outliers. The effectiveness of the model
is demonstrated through extensive experiments on publicly
available object detection benchmarks. Yuan et al. [150] define
an instance uncertainty learning module that takes advantage of
the discrepancy of two adversarial instance classifiers trained
in the labeled set to predict the instance uncertainty of the
unlabeled set. With iterative instance uncertainty learning and
re-weighting, they suppress noisy instances, bridging the gap
between instance and image-level uncertainty.

» Pose Estimation aims to localize the positions of specific
key points in images, which has a wide range of applications,
such as augmented reality, translation of sign language, and
human-robot interaction. Obtaining pose annotations can be
extremely expensive and laborious. To address this issue,
Caramalau et al. [151] propose distribution-based methods for
the selection of diverse and representative samples. Experiments
demonstrate their high efficiency and effectiveness for pose
estimation. Similarly, Shukla et al. [152] use an uncertainty-
based query strategy and annotate samples with the lowest
confidence scores and further improve the performance with
fewer labeled samples. Gong et al. [86] design a novel
meta agent teaming DAL (MATAL) framework to actively
select and label informative images for effective learning.
MATAL formulates the sample selection procedure as a Markov
Decision Process and learns an optimal sampling policy that
effectively maximizes the performance of the pose estimator.
» Target Tracking aims to accurately track targets in images,
which can be applied for numerous applications, including
video surveillance, autonomous vehicles, etc. Using DAL can
better help train neural networks with limited labeled samples
for target tracking. Yuan et al. [153] present a new DAL
sequence selection method in a multi-frame collaboration way
for target tracking. To ensure the diversity of selected sequences,
they measure samples’ similarity by their temporal relation
between multiple frames in each video, and they use a nearest
neighbor discriminator to select the representative samples.
Experiments show that their method can eliminate background
noise and improve efficiency.

» Person Re-identification (Re-ID) aims to match a specific
pedestrian using different cameras, which is an essential task
for public security. Previous efforts mainly concentrate on
enhancing the performance of Re-ID models, relying on large
labeled datasets. However, these efforts often overlook data
redundancy issues that can arise in constructing Re-ID datasets.
To address data redundancy in Re-ID datasets, Liu et al. [46]
propose an alternative human-in-the-loop model based on

reinforce learning. In their method, a human annotator provides
binary feedback to fine-tune a pre-trained CNNs Re-ID model.
Extensive experiments prove the superiority of their method
compared to existing unsupervised, transfer learning, and
DAL models. On the other hand, Xu et al. [155] focus on
learning from scratch with incremental labeling through human
annotators and model feedback. They combine DAL with an
incremental annotation process to select informative and diverse
samples without redundancy from an unlabeled set in each
iteration. These samples are then labeled by human annotators
to further improve the performance of the model.
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C. Applications in Graph Data Mining and Learning

There are substantial increase in content-rich network from
various domains, such as social networks, citation networks,
and financial networks. Graphs have emerged as a powerful
tool for representing and discovering knowledge, with nodes
representing instances characterized by rich content features
and edges denoting relationships or interactions between nodes.
» Node Classification is to predict the labels of unlabeled
nodes in a partially labeled network. GNNs rely heavily on a
sufficient number of labeled nodes, which is costly and time-
consuming. To address this problem, many graph-based DAL
methods are proposed. For example, ICA-based methods [165]
leverage label dependence among neighboring nodes to select
diverse samples for node classification, while AGE [166] and
ANRMAB [167] integrate GCNs with three traditional DAL
query strategies and achieve good performance on many node
classification datasets. As Fig. 10 shows, Hu et al. [120] present
a graph policy network for transferable DAL on graphs, which
formalizes DAL on graphs as a Markov decision process and
learns the optimal query strategy with reinforce learning. The
state is defined based on the current graph status, and the
action is to select a node for annotation at each query step.
The reward is defined as the performance gain of the GNNs
trained with the selected nodes.

» Link Prediction aims to predict missing or potential links
between nodes in a given network. It involves using existing
connections or relationships to infer the likelihood of forming
new connections. In the context of link prediction, the challenge
arises from the limited availability of existing link information
between nodes in a network. DAL can help alleviate this
issue, for example, DALAUP [168] uses neural networks to
obtain vector representations of user pairs and utilizes multiple
query strategies to select informative user pairs for labeling
and model training, achieving superior performance compared
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to existing methods. Cai et al. [156] design a multi-view
DAL method that reduces the annotation cost by selectively
querying metadata for the most informative examples, using a
mapping function from the visual view to the text view. They
demonstrate that multi-view DAL can use richer information
to help improve performance than using single view. Zhao et
al. [157] propose a DAL-based transfer learning framework
for link prediction in recommender systems, which iteratively
selects entities from source systems for target systems using
uncertainty-based criteria. Experiments show that their method
successfully improves efficiency and effectiveness.

» Community Detection aims to accurately partition nodes
into distinct classes based on the topological structure of the
networks. However, in many practical scenarios, unsupervised
methods struggle to achieve the exact community. To solve
this issue, Gupta et al. [158] propose community trolling,
a DAL-based method for topic-based community detection.
Their method selects relevant samples from polluted big data,
reducing the unreliable dataset to a reliable one for studying
communities. Chien et al. [159] propose a novel DAL method
for geometric community detection. They first remove many
cross-cluster edges while preserving intra-cluster connectivity to
avoid noise. Then, they interactively query the label of one node
for each disjoint component to recover the underlying clusters.
Experiments show that they can achieve SOTA performance
in community detection.

D. Other Selected Interesting Applications

» Engineering Systems. DAL methods exhibit remarkable
performance in computationally demanding engineering sys-
tems by significantly reducing running time and computational
costs. For example, Yue et al. [169] introduce two novel
DAL algorithms: the variance-based weighted AL and the
D-optimal weighted AL, designed specifically for Gaussian
processes with uncertainties. Numerical studies demonstrate the
effectiveness of their approach, notably improving predictive
modeling for automatic shape control of composite fuselage
structures. In another vein, Lee et al. [170] optimize their
DAL acquisition function by jointly considering safe variance
reduction and safe region expansion tasks, aiming to minimize
failures without explicit knowledge of failure regions. This
approach is tailored for real systems with uncertain failure
conditions, as demonstrated in the predictive modeling of
composite fuselage deformation, achieving zero failures by
considering the composite failure criterion. Furthermore, Lee
et al. [171] introduce a partitioned DAL method, comprising
two systematic steps: global searching for uncertain design
spaces and local searching using local Gaussian processes. They
apply their method to aerospace manufacturing and materials
science, achieving superior performance in prediction accuracy
and computational efficiency compared to benchmarks.

» Personalized Medical Treatment explores how patient health
is affected by taking a drug and how user questions are
answered by search recommendation [172]. Although modern
methods can achieve impressive performance, they need a
significant amount of labeled data. To solve this issue, Deng
et al. [160] propose the use of DAL to recruit patients and
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Fig. 11: The framework for efficiently annotation.

assign treatments that reduce the uncertainty of an Individual
Treatment Effect model. Sundin et al. [173] propose to use a
Gaussian process to model the individual treatment effect and
use the expected information gain over the S-type error rate,
defined as the error in predicting the sign of the conditional
average treatment effect, as their acquisition function. Jesson
et al. [113] develop epistemic uncertainty-aware methods for
DAL of personalized treatment effects from high-dimensional
observational data. In contrast to previous work that only uses
information gain as the acquisition objective, they propose
Causal-BALD because they consider both information gain
and overlap between the treatment and control groups. Li et
al. [174] used DAL to help people by recognizing their emotion.

VI. CHALLENGES & OPPORTUNITIES OF DAL

As Table IV shows, hereafter, we summarize the challenges
and the corresponding potential solutions and opportunities.

A. Pipeline-related Issues

> Inefficient & Costly Human Annotation. DAL assumes that
human annotators are readily available to label new samples
once they are required. However, this assumption may not hold
in some real-world applications. Human annotators can get tired
or need breaks, forcing the DAL process to be suspended until
they reappear. Moreover, human annotation is time-consuming
and needs expert knowledge, resulting in long waits before
models can be re-trained with new labeled data.

To improve efficiency, DAL methods incorporate additional
techniques to reduce human annotation. Wang et al. [36]
use self-supervised learning by adding pseudo-labels with
high confidence to help reduce human effort and improve
the performance of the model. Go one step further, Yang et
al. [85] introduce multiple pseudo-annotators that provide labels
for unlabeled samples, achieving good performance without
requiring human expert knowledge. On the other hand, as shown
in Fig. 11, Huang et al. [134] propose a new annotation strategy
to allow servers, workers, and annotators to cooperate efficiently
for sharing candidate queries and annotations. Experiments
show that their model can avoid annotation noise and save
much time for re-checking annotations. To further reduce expert
knowledge, others tend to reduce the search scope in each
iteration to improve efficiency. For example, Yang et al. [94]
restrict candidate samples to their nearest neighbors of the
labeled set rather than scanning all data.

» Insufficient Research on Stopping Strategies. Few studies
are designed for stopping strategies of DAL methods [196].
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TABLE IV: Summary of various challenges and opportunities.

Challenge Types Challenges

Opportunities

servers, workers and annotators share information [134].

Inefficient & Costly human annotation

self-supervised pseudo-labels to reduce human efforts [36], [85].

incorporate additional knowledge to reduce expert knowledge [94], [148].

the confidence among the selected samples does not increase [175].

Pipeline-related Issues  pqufficient research on stopping strategies

stop when all instances lie between two contour lines [176].

upper bound in expected generalization errors as stopping criterion [177].

use pre-trained embeddings [31], [178].

Cold-start

design initial queries [179], [180].

use diverse sampling [181], [182].

select samples in regions of joint disagreement between models [84], [154], [183].

Difficulty in cross-domain transfer

source and target domain distribution matching [110], [184].

transferable DAL policies between the source and target graphs [120].

avoid DAL’s sensitivity to the initial labeled set [31], [53], [94], [176], [185].

Tasks-related Issues Unstable performance

use distribution information to improve model’s robustness [186], [187], [187].

use pre-trained language model [61], [188].

hybrid strategies for sample selection [60], [104].

Lack of scalability & generalizability

nearest-neighbor classifiers [189].

combining annotation and counterfactual sample construction [190], [191].

find the best balance between purity and informativeness [89], [126].

Outlier Data & Noisy Oracles

knowledge distillation [14].

relabeling frameworks for correst oracle labels [81], [192], [193].

data augmentation and large PLMs [12], [32], [97].

Datasets-related Issues ., Scarcity & Imbalance

cost-sensitive learning [176], [194].

design new query strategies for imbalanced datasets [195]-[197].

new DAL query strategy [125], [198].

Class distribution mismatch

new DAL framework [199].

incoporate additional detector [200].

However, stopping strategies are essential for DAL because
they reduce the amount of human labor by limiting the number
of samples that need to be labeled and prevent the inclusion
of noisy and redundant samples, which can negatively affect
the performance of DAL models.

McDonald et al. [175] design two novel stopping strategies
for DAL methods in the document classification task. The
first strategy measures the overall confidence of the classifiers
in correctly classifying the remaining unlabeled documents.
It assumes that when the classifier’s mean confidence level
for the remaining documents stabilizes, the model stops the
DAL process, since its effectiveness would no longer improve.
The second strategy measures the confidence of the classifiers
among the selected documents to be reviewed. It assumes
that when the classifier’s confidence stops increasing for these
documents, it has reached its maximal confidence and stops
the DAL process. Benefiting from the idea of the margin
exhaustion criterion, Yu et al. [176] identify two corresponding
contour lines in the instance space and assume that the DAL
process can only be stopped when all instances lying between
these two contour lines have been labeled. They achieve
good performance in many classification tasks. Based on the
Bayesian theory, Ishibashi et al. [177] derive a novel upper
bound for the difference in expected generalization errors before
and after obtaining new training data. They then combine this
upper bound with a statistical test to derive a stopping criterion
for DAL and significantly improve efficiency.

» Cold-start. Most DAL methods fail to improve over ran-

dom selection when the annotation budget is very small, a
phenomenon sometimes term as “cold-start” [179]. Uncertainty
sampling has been shown to be inherently unsuitable for low
budgets, possibly explaining the cold-start phenomenon [201].
Low budgets can be seen in many applications, especially those
that require an expert tagger whose time is expensive. If we
want to expand deep learning to new domains, overcoming the
cold-start problem is an ever-important task.
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Fig. 12: An example for cold-start data selection.

To relieve the cold-start issue, Yuan et al. [31] use pre-
trained embeddings on unsupervised tasks, decreasing budget
dependency while remaining faithful to uncertainty sampling.
Similarly, Yu et al. [178] try to use pre-trained knowledge
from PLMs to avoid cold-start. They select few shot samples
to fine-tune large-scale PLM, achieve SOTA performance
in six datasets, and improve the efficiency of labeling over
existing baselines by 3.2%—-6.9% on average. On the other
hand, in Fig. 12 (a-b), Yehuda et al. [180] develop a new DAL
initialization strategy to solve the cold-start issue for low-budget
image classification, which significantly outperforms CoreSet
initialization in the low-budget regime. They also theoretically
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analyze different DAL strategies in embedding spaces and
improve performance on both low- and high-budget scenes. In
Fig. 12 (c), Cao et al. [181] apply the informative sampling
policy on the v tube to solve the cold-start sampling problem.
Mahmood et al. [182] query a diverse set of examples with
minimal Wasserstein distance from unlabeled data. They report
a significant performance boost in the low-budget regime.

B. Task-related Issues

» Difficulty in Cross-domain Transfer. We discuss two
difficulties of cross-domain transfer in DAL. First, machine
learning systems are always deployed on various devices
with the same labeled dataset. However, DAL is often model-
dependent and not directly transferable, i.e., data queried for
one model may be less effective for another [183]; Second,
transfer learning biases DAL to select samples that match the
distribution of the source domain to the target domain, leading
to sampling bias and the high cost of transfer learning.
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To benefit multiple target models, some methods aim to
select samples in joint disagreement regions across mod-
els [183], adopt multi-agent reinforcement learning for optimal
selection [154], or leverage multi-task learning to transfer
common knowledge from the source domain as shown in
Fig. 13. To avoid sampling bias, Farquhar et al. [184] apply
corrective weighting using an unbiased risk estimator to
maintain the target distribution during pool-based sampling.
Trang et al. [110] introduce a heuristic query strategy that
matches the distribution of the source domain while retrieving
valuable target samples. Hu et al. [120] learn transferable DAL
policies on labeled source graphs that generalize selection
to unlabeled target graphs. Experiments show that the above
methods can achieve excellent performance and transferability.
» Unstable Performance. DAL methods always have unstable
performance, i.e., results for the same method vary significantly
with different initialized seeds [108]. Two primary reasons can
explain this instability. First, the DAL methods are sensitive
to the initial labeled dataset. The initial selected samples
have a great influence on the eventual outcome of the current
approaches. With insufficient initial labeling, subsequent DAL
cycles become highly biased, resulting in poor selection.
Second, current DAL methods always separate active learning
and deep learning methods into two separate processes, easily
leading to sub-optimal and unstable performance [202].

To solve DAL’s sensitivity to the initialization, current
methods always use diverse sampling and pre-trained models.

Yu et al. [176] adopt hierarchical clustering to select 10%
samples near each clustering center as representative samples.
Their new initialization greatly helps stabilize the performance.
Zlabinger et al. [185] take into account both diversity and
polarization to effectively select initial samples for DAL
methods that further stabilize the performance of the DAL
process. Yang et al. [94] select initial samples by evaluating
the total distance between the unlabeled samples and the initial
samples, showing that the same distance between them can
result in better and stable performance. On the other hand, Yuan
et al. [31] incorporate language information as prior knowledge
to help learn node representations and use clustering methods
to select the initial data. Similarly, Ein-Dor [53] uses BERT
to learn the representations of the input sentences and uses a
hybrid query strategy to select the most uncertain and diverse
samples as the initialized training data.
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To bridge the gap between AL and deep learning models,
Kwak et al. [186] introduce Trustworthy AL (TrustAL), a label-
efficient DAL framework by transferring distilled knowledge
from deep learning models to the data selection process. As
Fig. 14 shows, they jointly optimize knowledge distillation
and DAL to obtain a more consistent and reliable performance
compared to the two best performing baselines on three bench-
marks. Similarly, Ma et al. [187] learn nonlinear embeddings to
map inputs into a latent space and introduce a selection block
to choose representative samples in the learned latent space to
achieve stable performance. Margatina et al. [61] extend the
PLMs to continually pre-train on available unlabeled data to
tailor it to the task-specific domain, where they can benefit
from both labeled and unlabeled data at each DAL iteration.
Their experiments show considerable enhancements in data
efficiency and stability compared to the standard fine-tuning
approach, emphasizing the importance of a suitable training
strategy in DAL. Mamooler et al. [188] try to combine DAL
with PLMs in the legal domain, where they use unlabeled data
in three stages: training the model to adjust it to the downstream
task, using knowledge distillation to direct the embeddings to
a semantically meaningful space, and identifying the initial set.
» Lack of Scalability & Generalizability. Current DAL methods
lack scalability, as they always require significant modifications
to neural network architectures for adapting to different query
strategies. Another issue with current methods is their heavy
reliance on DAL’s weight parameters, while the parameters may
not be generalizable to different datasets. Users are required to
prepare additional labeled samples as a validation set to tune
parameters by cross-validation, which contradicts the goal of
minimizing the need for labeled data.
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In response to the above issues, Maekawa et al. [60] introduce
a novel DAL method, called TYROGUE, that uses a hybrid
query strategy to improve model generalization and reduce
labeling costs. As Figure 15 shows, uncertainty-based methods
tend to acquire similar data points from a specific area within an
iteration, diversity-based methods tend to acquire data points
similar to the samples acquired in previous iterations, and
TYROGUE balances diversity and uncertainty by acquiring
samples that are diverse and also closer to the model decision
boundary. RMQCAL [104] is a novel scalable DAL method,
which allows for any number and type of query criteria,
eliminates the need for empirical parameters, and makes the
trade-offs between the query criteria self-adaptive. On the
other hand, Wan et al. [189] propose an embedded network
of nearest-neighbor classifiers to enhance the generalization
ability of models trained in labeled and unlabeled sub-spaces
in a simple but effective manner. Deng et al. [190] focus
on combining sample annotation and counterfactual sample
construction in the DAL procedure to enhance the model’s
out-of-distribution generalization. Wang et al. [191] introduce
a new training manner to improve model’s generalizability and
show a strong positive correlation between convergence speed
and generalization performance under ultra-wide conditions.

C. Dataset-related Issues

» Outlier Data & Noisy Oracles. DAL methods tend to acquire
outliers since models always assign high uncertainty scores
to outliers. Outliers can damage a model’s learning ability
and fuel a vicious cycle in which DAL methods continue to
select them [43]. Identifying and removing outliers has become
an important direction in improving DAL performance and
robustness. On the other hand, classic DAL methods assume
that annotators have high labeling accuracy. However, in real-
world settings, sample difficulty and annotator expertise can
significantly affect the quality and accuracy of annotation,
which may further degrade model performance.

To remove outliers, Park et al. [126] propose MQ-Net to
adaptively find the best balance between purity and informa-
tiveness of samples, filtering out noisy open-set data. Elenter
et al. [89] introduce a new query strategy based on Lagrangian
duality to select diverse samples, efficiently removing redundant
data. Other studies [14] use knowledge distillation to compress
useful knowledge into a small model, effectively identifying
and removing outliers. To make high-quality annotations,
AMCC [81] measures worker annotations considering both
their commonality and individuality to reduce the impact of
unreliable workers and improve effectiveness. Zhao et al. [192]
actively select samples that are relabeled multiple times through
crowd-sourcing majority voting. EMMA [193] relabels samples
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to remove noisy annotations by analyzing the stimulus based
on model memory retention and greedy heuristics. BALT [203]
improves human expertise during labeling to improve re-
label quality and significantly improve model performance.
Zlabinger [185] trains human annotators on a set of pre-
labeled samples to improve the quality of annotations. Huang
et al. [134] propose a multi-server, multi-worker framework for
DAL, where servers and workers cooperate to select diverse
samples and improve model performance.

» Data Scarcity & Imbalance. Data scarcity poses two critical
challenges. First, datasets are difficult to collect and anno-
tate [204]; Second, DAL methods have the common underlying
assumption that all classes are equal, while some classes have
more samples than others (skewed class distribution [176]) or
some classes may be more difficult to learn than others, leading
to sampling bias in the acquisition process [205].

For scarce datasets, Chen et al. [12] used data augmentation
to generate diverse samples to expand training data. Other
studies used PLMs as prior knowledge and fine-tuned them
to reduce the required labeled samples [32]. For difficult
annotations, Gudovskiy et al. [97] introduce several novel
self-supervised pseudo-labels estimators to correct acquisition
bias by minimizing the distribution shift between unlabeled
data and weakly labeled validation data. To mitigate the classes
imbalance, Yu et al. [176] are the first to use cost-sensitive
learning. They choose the extreme weighted learning machine
as the base learner to select samples based on the class
imbalance ratio, class overlap, and small disjunction. They
investigate why DAL can be impacted by a skewed instance
distribution and improve DAL performance on imbalanced
datasets. Choi et al. [194] solve the issue of data imbalance
by considering the probability of mislabeling a class, the
probability of the data given a predicted class, and the prior
probability of the abundance of a predicted class, during
querying samples of DAL. Experiments show that they can
significantly enhance the ability of existing DAL methods to
handle unbalanced datasets. As shown in Fig. 16, Zhao et
al. [195] propose an alternate query strategy by using the
medial distribution to find a compromise between importance
weighting and class-balanced sampling. Experiments show that
their model can be easily combined with various DAL methods
and successfully select balanced samples in imbalanced datasets.
Hartford et al. [196] present an exemplar guided DAL method
that shows strong empirical performance under extremely
skewed label distributions by using exemplar embedding.
Zhang et al. [197] propose a graph-based DAL method that
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applies a more sophisticated version of uncertainty sampling.
Their strategy can select more evenly distributed examples for
labeling than standard uncertainty sampling.

» Class Distribution Mismatch. DAL methods assume that
the labeled and unlabeled data are drawn from the same class
distribution, which means that the categories of both datasets
are identical [200]. However, in real-world scenarios, unlabeled
data often come from uncontrolled sources, and a large portion
of the examples may belong to unknown classes. For example,
when crawling images for binary image classification using
keywords like “dog” and “cat,” over 50% of the images in
the unlabeled dataset are irrelevant to the task (e.g., “deer,
“horse”). Annotating these irrelevant images will lead to a waste
of annotation budget as they are unnecessary for training the
desired classifier. Despite this challenge, existing DAL systems
tend to select these irrelevant images for annotation, as they
contain more uncertain knowledge.

To address this issue, As shown in Fig. 17 (a), He et
al. [198] propose the energy discrepancy to measure the
density distribution between the seen and unseen classes. Then,
they propose an iterative optimization strategy to facilitate
the teacher-student distillation network to avoid selecting
samples from unseen classes. Furthermore, Tang et al. [199]
propose a dual DAL framework that simultaneously performs
model search and data selection. Their framework effectively
addressed the issue of distribution mismatch and significantly
improves model performance. In Fig. 17 (b), Ning et al. [200]
introduce a detector-classifier DAL framework, where the
detector filters unknown classes using Gaussian Mixture Models
and the classifier selects uncertain in-distribution samples for
retraining. By actively acquiring purer in-distribution query
sets, this framework improves the model generalization on
class distribution mismatch.

i

VII. CONCLUSION

Due to the advantages of DAL, such as high efficiency, good
effectiveness, and strong robustness, DAL has been deployed
in both research and industry projects. This article provides
a comprehensive survey on DAL, including its collection,
definition, influential baselines and datasets, taxonomy, ap-
plications, challenges, and some inspiring prospects. First, we
discuss the collection and filtering of DAL papers to ensure
their high-quality. Second, we give the definition of DAL
tasks, and present its basic pipeline, influential baselines, and
widely used datasets. Third, we present our taxonomy for DAL
methods from several perspectives and discuss their strengths

and weaknesses. From them, we obtain some guidelines for
selecting different query strategies, deep model architectures,
and learning paradigms to apply for different tasks. In addition,
different annotation strategies can significantly reduce manual
labor while also bringing certain drawbacks. In terms of training
process, curriculum learning training and Pre+FT can better
adapt to the current era of large language models. Fourth,
we discuss some typical applications of DAL. Other than the
commonly used and popular DAL methods used for CV tasks,
we also introduce the carefully designed DAL method for NLP,
DM, etc. Finally, even though DAL has many benefits, we
reckon that they can be refined further in terms of pipeline,
tasks, and datasets. Specifically, there are many problems that
DAL is hard to handle, such as inefficient human annotation,
difficulty in cross-domain transfer, unstable performance, lack
of scalability, data imbalance, and class distribution mismatch.
We share DAL-related resources on Github. We hope that this
work will be a quick guide for researchers and motivate them
to solve important problems in the DAL domain.
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