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CrossMatch: Enhance Semi-Supervised Medical
Image Segmentation with Perturbation
Strategies and Knowledge Distillation

Bin Zhao, Chunshi Wang, and Shuxue Ding

Abstract— Semi-supervised learning for medical image
segmentation presents a unique challenge of efficiently
using limited labeled data while leveraging abundant un-
labeled data. Despite advancements, existing methods of-
ten do not fully exploit the potential of the unlabeled
data for enhancing model robustness and accuracy. In
this paper, we introduce CrossMatch, a novel framework
that integrates knowledge distillation with dual perturba-
tion strategies—image-level and feature-level—to improve
the model’s learning from both labeled and unlabeled
data. CrossMatch employs multiple encoders and decoders
to generate diverse data streams, which undergo self-
knowledge distillation to enhance consistency and reliabil-
ity of predictions across varied perturbations. Our method
significantly surpasses other state-of-the-art techniques in
standard benchmarks by effectively minimizing the gap
between training on labeled and unlabeled data and im-
proving edge accuracy and generalization in medical image
segmentation. The efficacy of CrossMatch is demonstrated
through extensive experimental validations, showing re-
markable performance improvements without increasing
computational costs. Code for this implementation is made
available at https://github.com/AiEson/CrossMatch.
git.

Index Terms— Semi-supervised segmentation; Self-
knowledge distillation; Image perturbation

I. INTRODUCTION

SEMANTIC segmentation, as a precise classification tech-
nique at the pixel level, plays a vital role in the field of

medical image analysis. Especially when dealing with complex
three-dimensional CT and MRI data, although fully supervised
learning methods can achieve high-precision segmentation
results, their application is severely limited by the high cost
of manual annotation and the complexity of operation. In
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order to overcome this bottleneck, semi-supervised medical
image segmentation methods have emerged and demonstrate
great potential [1]. The core of these approaches lies in the
effective combination of a small amount of annotated data
and a large amount of unlabeled data, aiming to reduce the
high cost of annotation and achieve accuracy segmentation
while promoting the widespread application in clinical and
other scenarios.

The main challenge in semi-supervised learning (SSL) is
how to effectively exploit the potential of unlabeled data.
Recent research has shifted from relying on adversarial train-
ing mechanisms based on Generateve Adversarial Networks
(GANs) [2], [3] to incorporating various methods including
consistency regularization and self-training [4]–[8]. In particu-
lar, collaborative teaching and mutual learning paradigms [9]–
[13] have proven to be highly promising strategies, often
involving the parallel training of two models. Knowledge
distillation strategies have also been widely employed to
optimize model structures, enabling efficient training and good
performance by simplifying models.

In handling unlabelled image data, the application of both
image-level and feature-level perturbations has become a
common strategy. Image-level perturbations, such as random
rotations, scaling, flipping, and color adjustments, enhance
model robustness to input variations through controlled de-
formations and modifications of the input images. Moreover,
more complex image-level perturbations like CutMix [14]
and MixUp [15] create new training samples by blending
regions between images and combining them at the pixel level,
thus simulating a more diverse data distribution and further
improving the model’s generalization to unseen data. Feature-
level perturbations, particularly those applied to features ex-
tracted by the Encoder, have not been fully explored and hold
substantial potential. This approach introduces weak to strong
feature perturbations during the Decoder decoding process,
utilizing the model’s prediction consistency under various
perturbation conditions to train the model, which ensures
stability in performance when the model faces the same image
segmentation tasks. For example, feature-level perturbations
can be achieved by adding random noise, applying various
types of Dropout, etc. [8], [16]. These perturbations not only
simulate potential variations in the data but also promote
generalization in the model’s deep feature abstraction and
decoding processes, thereby achieving more accurate and
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robust predictive performance on unlabeled data.
Knowledge Distillation(KD) has demonstrated significant

potential in semi-supervised learning for medical image seg-
mentation [13], [17]. Typically, KD involves a pre-trained
teacher model and a student model that needs to learn.
However, Self-KD methods [18], [19] primarily rely on soft
labels generated within a single model to guide the training
process, instead of depending on traditional hard labels or
an additional teacher model. These methods use the model’s
self-generated predictions during training as guidance, refining
the model’s feature extraction and classification capabilities
through iterative processes. This self-teaching method not only
reduces dependence on costly manually annotated data but also
significantly enhances the model’s adaptability and prediction
accuracy on unlabeled data. Self-KD promotes deeper feature
learning and more stable model behavior by reinforcing the
model’s reliance on its own predictions. Particularly for med-
ical imaging data, this strategy effectively improves model
robustness and accuracy when dealing with highly variable
and individually distinct medical images.

Inspired by Self-KD and image perturbation, we have
designed an innovative self-training consistency regularization
framework called CrossMatch for semi-supervised medical im-
age segmentation. This framework employes a range of image-
level and feature-level perturbations from weak to strong
and explores the potential of unlabeled data through a more
systematic and in-depth approach. Specifically, CrossMatch
applies two types of image-level and two types of feature-
level perturbations to unlabeled data to create four distinct data
streams. These data streams vary in accuracy of output predic-
tion depending on the degree of perturbation to which they are
subjected, where the stronger streams guide the weaker ones.
In this process, image-level perturbations are implemented
as applications of different encoders, while feature-level per-
turbations are used to generate varied outputs for the same
decoder. Through these perturbations, CrossMatch engages
in internal knowledge distillation by leveraging the model’s
consistency across different perturbation intensities, which
not only optimizes the model’s learning from unlabeled data
but also enhances its generalization capability. CrossMatch
ensures the stability and accuracy of model outputs, thereby
exhibiting superior performance in applications requiring high
precision, such as medical image segmentation.

In summary, our contributions are fourfold:
(1) We propose a consistency regularization framework based

on knowledge distillation and image perturbations, which
focuses on the exploration of unlabeled data and the
transfer of self-knowledge.

(2) We equate different feed-forward flows to different en-
coders and decoders, applying the concept of knowledge
distillation to semi-supervised semantic segmentation.

(3) We compute adjacent Self-KD losses between the same
decoders, which can bridge the capability gap between
the teacher and student models.

(4) Experimental results on two benchmark datasets demon-
strate that CrossMatch achieves significant performance
improvements compared to previous state-of-the-art
methods.

II. RELATED WORK

A. Semi-Supervised Learning
In the field of SSL, a key challenge is designing effec-

tive supervision signals for unlabeled data. Currently, there
are two main strategies to address this issue: entropy min-
imization [20]–[23] and consistency regularization [6], [8],
[24], [25]. Entropy minimization, popular for its simplicity,
involves automatically assigning pseudo-labels to unlabeled
data and using them for retraining along with labeled data.
And consistency regularization is based on the assumption
that a model’s predictions for the same unlabeled sample
under different perturbations should remain consistent. For
example, FixMatch [6] combines the advantages of entropy
minimization and consistency regularization to apply strong
perturbations to unlabeled images and use the predictions
from their weakly perturbed versions to guide model training.
Advanced methods like FreeMatch [26] further refine this
strategy, providing rigorous mathematical justification for its
motivation and using thresholds to filter out low-confidence
labels, thereby enhancing the model’s accuracy and reliability.
Our CrossMatch draws on the basic framework of FixMatch,
without any bells and whistles. It only uses the most common
way to verify the theoretical effectiveness of this method, and
also demonstrates its important value in practical applications.

B. Semi-Supervised Semantic Segmentation
Semi-supervised learning based methods have achieved ex-

citing results in classification task, of which several works
have been further developed for semantic segmentation. A
popular class of methods [9], [27], [28] is based on the Mean
Teacher [29] setting. For instance, UA-MT [27] introduces a
self-aware model of uncertainty to design thresholds to filter
out uncertain regions between teachers and students to get
more meaningful and reliable predictions. BCP [28] notes
that in semi-supervised learning, the distributions learned in
labeled and unlabeled data are not consistent, and proposes
a symmetric approach to use both kinds of data so as to
maintain the consistency between the two distributions, thus
allowing the model to learn common features. CAML [9]
pays further attention to the potential of labeled data and
proposes Correlation Aware Mutual Learning framework to
utilize labeled data to guide the extraction of information from
unlabeled data. CPS [4] utilizes a cross-teacher module to
simultaneously reduce the coupling among peer networks and
the error accumulation between teacher and student networks.

Another mainstream class of semi-supervised segmentation
methods is based on the idea of co-training. The networks
learn together and transfer knowledge to each other [10],
[13]. To transfer knowledge efficiently between networks,
knowledge distillation is also a common strategy in semi-
supervised semantic segmentation [13]. Besides, some method
uses pseudo segmentation map obtained from one network to
supervise the other one [30]. MC-Net [11] and MC-Net+ [12]
use a shared encoder for feature extraction, and then feed the
features into multiple decoders with the same structure but
different parameters to get multiple outputs. All these methods
require multiple networks, encoders or decoders for training.
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Methods based on self-training have begun to evolve rapidly
since FixMatch [6] introducing consistency regularisation to
self-training, and FixMatch has gradually become the baseline
for many methods. DTC [31] uses a dual-task deep network
to jointly predict pixel segmentation maps and geometrically-
aware level-set representations of a target by introducing
dual-task consistency regularisation between level-set derived
segmentation maps and directly predicted segmentation maps
for labelled and unlabelled data. SASSNet [32] introduces a
multi-task deep network that jointly predicts semantic segmen-
tation and symbolic distance maps (SDM) of object surfaces,
while introducing adversarial loss in order to capture shape-
aware features. URPC [33] enhances pyramid-consistent reg-
ularisation using multi-scale uncertainty correction for more
efficient semi-supervised medical image segmentation. SS-
Net [34] addresses the challenges of semi-supervised medical
image segmentation by simultaneously exploring pixel-level
smoothness and inter-class separation. UniMatch [8] achieves
better segmentation results by consistency regularisation us-
ing multiple strongly augmented branches and a dual-stream
perturbation feature perturbation. Our CrossMatch also follows
this single-stage framework, i.e., there is only one model in our
approach. Unlike the above works, our CrossMatch introduces
Self-KD and feature perturbation into semi-supervised medical
image segmentation, achieving efficient self-knowledge trans-
fer under a broader perturbation space.

III. METHOD

A. Preliminaries
Semi-supervised medical image segmentation aims to fully

explore an unlabeled image set Du = {xu
1 , . . . , x

u
n} and inte-

grate it with a labeled image set Dl = {(xl
1, y

l
1), . . . , (x

l
n, y

l
n)}

that contains limited annotations for precise semantic segmen-
tation. The performance of series methods like FixMatch [6]
largely depends on well-designed image-level perturbation
strategies. Specifically, each unlabeled input is subjected to
two types of perturbations: Aw denotes a weak perturbation
operator, and As denotes a strong perturbation operator. Given
an unlabeled input xu, we have{

xw = Aw (xu)
xs = As (Aw (xu)) ,

(1)

where xw and xs represent the weakly perturbed image and
the strongly perturbed image, respectively.

B. Knowledge Distillation
In machine learning tasks, Kullback-Leibler (KL) diver-

gence is often used to measure the discrepancy between
different probability distributions. In knowledge distillation, it
is commonly employed to gauge the performance gap between
teacher and student models,

LKL
kd (pwi , pwj ) = KL (σ(pwi/T ), σ(pwj/T )) , (2)

where pwi and pwj represent the probability distribution out-
puts by the teacher and student models for unlabeled samples,
respectively. Here, σ(·) denotes the softmax function, which
transforms logits into normalized probability distributions, and
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Fig. 1. Comparison of different types of KD and SSL methods. (a)
Traditional KD that requires pre-training of the teacher model. (b) Self-
KD based on data augmentation. (c) Mean Teacher. (d) FixMatch.

T is a hyperparameter known as the temperature coefficient.
This coefficient smooths the probability distributions, allowing
the student model not only to focus on the most likely
predicted category but also to learn more about the relative
information between categories from the teacher model. Thus,
within the framework of knowledge distillation, the KL di-
vergence loss function LKL

kd aims to minimize the difference
between the probability distributions of the teacher model wi

and the student model wj that after softmax processing and
temperature reduction. Through this way, the student model
can emulate the teacher model’s ’soft’ output predictions,
thereby facilitating effective transfer of complex and high-
quality knowledge.

DMD [13] delves into knowledge distillation methods
specifically for semi-supervised medical image segmentation,
and proposes to use Dice loss as an alternative to KL diver-
gence loss. This approach effectively addresses the common
issue of foreground and background class imbalance in seg-
mentation tasks. Compared to KL divergence loss, Dice loss
can more aptly handle such imbalances, thereby enhancing the
model’s segmentation performance,

LDice
kd (pwi , pwj ) = Dice (σ(pwi/T ), σ(pwj/T )) . (3)

As illustrated in Figure 1, a careful comparison of KD
methods and SSL methods reveals remarkable similarities in
the structure, design and development of the networks. Based
on this observation, we hypothesize that KD methods can be
readily adapted to SSL tasks.

C. Feature Pertubation
The performance of FixMatch [6] and its related works, such

as UniMatch [8] and ReMixMatch [24], largely depends on
the effectiveness of the well-designed image-level perturbation
strategies. As mentioned earlier, pseudo-labels generated from
the weakly perturbed images xw are used to supervise the
strongly perturbed images xs to achieve consistency learning.
The greater the difference in the degree of perturbation be-
tween xw and xs, the larger the perturbation space during
training. Generally, the perturbation space should be within
an appropriate range according to [35]: too small a difference
may diminish the effect of consistency regularization, while
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excessive perturbation can have a catastrophic impact on the
clean data distribution.

Although image-level perturbations have widely used in
numerous methods, their performance in semi-supervised im-
age segmentation tasks highly depends on how researchers
meticulously tailor perturbation schemes for specific datasets
to ensure an appropriate perturbation space is constructed. This
process often involves a high demand for expert knowledge
and trial-and-error costs, especially in the field of medical im-
age processing, where finding suitable perturbation strategies
can become one of the main challenges demanding significant
effort.

To mitigate the aforementioned issues, the literature [8], [16]
suggests perturbing the high-dimensional features of xw at
the bottleneck section of the segmentation network by using
different levels of perturbation to create varied feed-forward
flows. Segmentation models typically employ an encoder-
decoder structure, where e denotes the encoder and d denotes
the decoder. For FixMatch, the weak perturbation feed-forward
flow for an unlabeled sample xu can be represented as:

xu → Aw → e → d → pw, (4)

where xu → Aw = xw. Based on this format, we can consider
inserting a new perturbation Pr between e → d to achieve a
larger perturbation space and obtain a new perturbation feed-
forward flow:

xu → Aw → e → Pr → d → pwr , (5)

where r differentiates the intensity of feature perturbations,
which will be detailed later. Similarly, the feature perturbation
flow for the strongly perturbed input can be represented as:

xu → Aw → As → e → Pr → d → psr. (6)

For consistent notation, the aforementioned flows can be
succinctly expressed as follows:

xw → e → Pr → d → pwr
xs → e → Pr → d → psr

. (7)

Let Pn denote no feature perturbation applied, then pw can be
obtained through the flow xw → e → Pn → d → pw. Based
on this, we can compute the loss function for FixMatch with
feature perturbation as:

1

Bu

∑
1 (max (pw) ≥ τ) (H (pw, psr) + H (pw, pwr )) , (8)

where H(·) denotes the entropy minimizing the discrepancy
between two probability distributions. 1(· > τ) is the indicator
function for confidence-based thresholding with the threshold
τ . Bu is the batch size for unlabeled data.

D. Multiple Encoders and Decoders

In Eq. 5 and Eq. 6, we re-examine Aw → e and Aw →
As → e, whose aim is to achieve consistency in model predic-
tions by applying varying degrees of image-level perturbations.
In contrast, Mean Teacher (MT) [29] and UA-MT [27] achieve
a similar effect by the utilization of Exponential Moving
Average (EMA), which allows a model to derive one or more
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Fig. 2. Overview of our proposed CrossMatch. CrossMatch integrates
the core ideas of Self-KD and SSL by enhancing performance through
the derivation and mutual distillation of multiple encoder-decoder archi-
tectures.

other models for training. By integrating this different method
of achieving consistency with knowledge distillation, we can
consider different levels of perturbations as encoders with
varying capabilities. Hence, let ew = Aw → e represent
the weak perturbation encoder and es = Aw → As → e
represent the strong perturbation encoder, where ew is clearly
outperforms es, that is, ew is less perturbed and its resulting
prediction is clearly more accurate.

Similarly, based on the relationship between the encoders
and perturbations mentioned above, the newly introduced
feature perturbations can be viewed as perturbations to the de-
coder’s capabilities, where dr = Pr → d represents the high-
dimensional features entering the decoder being perturbed by
Pr. Consistent with the form of the encoders, here we propose
using both strong and weak feature perturbations, namely Pw

and Ps, thus yielding three different decoders dn, dw and ds.
Consequently, we now have two equivalent encoders and three
equivalent decoders.

E. CrossMatch

Fig. 1 demonstrates various KD and SSL methods, revealing
a high similarity between them, thus prompting the idea of
integrating knowledge distillation into SSL tasks. The pur-
pose of knowledge distillation is to transfer more accurate
knowledge to another network model. Self-KD represents
a unique distillation mode where the student model learns
from knowledge generated from its own outputs, typically
involving the backpropagation of deep information to guide the
training of earlier layers. This approach incorporates image-
level perturbations to achieve varying capabilities, as depicted
in Fig. 1 (b), a process very similar to that in Fig. 1 (c).

Based on this, we propose CrossMatch, whose overall
structure is depicted in Fig. 2. CrossMatch employs multiple
different encoders and decoders, namely ew, es, dn, dw and ds

as mentioned in Sec. III-D, to generate diverse outputs. These
combinations produce outputs denoted as pij . Specifically,
xu passes through the following feed-forward flow to form
different outputs:

xu → ei → dj → pij , (9)

where ei ∈ {ew, es} and dj ∈ {dn, dw, ds}. Notably, pwn
experiences the least perturbation and is the most accurate.
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Here, we designate pwn as the Teacher, with all other out-
puts, which have undergone feature perturbations, acting as
students. The Teacher is required to impart knowledge to all
students, leading to the following teacher distillation loss:

Ltkd =
1

Bu

∑
1 (max (pwn ) ≥ τ)

∑
i

∑
j

H
(
pwn , p

i
j

)
. (10)

Observing that a decoder outputs two segmentation results
with varying degrees of perturbation, we can facilitate mutual
distillation between these outputs. Specifically, we consider pww
and pws as teaching assistants, each imparting knowledge to
psw and pss, respectively. These teaching assistants are relative
to the same decoder, hence this is referred to as decoder
distillation loss:

Ldkd =
1

Bu

∑
1
(
max

(
pwj

)
≥ τ

)∑
j

H
(
pwj , p

s
j

)
. (11)

Eq. 10 and Eq. 11 correspond to the black and colored arrows
in Fig. 2, respectively.

In practical implementation, as shown in Fig. 3, we also
introduce two image-level strong perturbations (xs1 and xs2 ),
which are applied with the same degree of perturbation but
differ in perturbation parameters. This aligns with the princi-
ples of contrastive learning and has been proven meaningful
for our tasks in previous works [8], [36], [37].

Finally, by combining the supervised loss Lsup, the image-
level perturbation loss Lip, we can derive the total loss:

Ltotal = Lsup + Lip + (1− η)Ltkd + ηLdkd, (12)

where Lsup consists of Dice and CrossEntropy losses, and Lip

denotes the supervision of pwn over ps1 and ps2 as shown in
Fig. 3, which involves calculating Dice for the two strongly
perturbed unlabeled predictions and averaging them. η is used
to balance the proportions between the two distillation loss.

F. Performance-Friendly Implementation
The multi-encoder and decoder architecture of CrossMatch

is straightforward and intuitive, and it conveniently allows
for the introduction of knowledge distillation at the output
stage. However, each image-level and feature-level pertur-
bation requires multiple forward propagations, significantly
increasing training costs. In response, we introduce methods
for equivalent and performance-friendly implementations.

1) Equivalent Multi-encoders: For image-level perturbations,
we follow the practice of most existing works by applying
data augmentation operations before the input reaches the
encoder stage. Specifically, we perform weak perturbation
operator Aw and strong perturbation operator As in parallel
on CPUs to ensure that the augmentation process does not
occupy additional computational time resources during model
iterations, efficiently utilizing hardware parallel capabilities.

2) Equivalent Multi-decoders: As shown in Fig. 2, our
CrossMatch requires four feature perturbations to produce four
different outputs from two decoders. For ease of explanation,
let hi = xu → ei denote the intermediate features produced by
different encoders. Considering that each Mini Batch operates
independently during gradient computation, suppose hi ∈

(a) CrossMatch (b) FixMatch

Encoder Encoder
Decoder Decoder

Fig. 3. (a) Our proposed CrossMatch method with Weak Drop denoting
Pw and Strong Drop denoting Ps. (b) FixMatch.

R
B×H×W×C , we can denote hi

w,s ∈ R2B×H×W×C , thereby
stacking each feature perturbation in the Batch dimension
to achieve more efficient computation while maintaining the
independence between different feature perturbation outcomes.

As shown in Fig. 3, our CrossMatch does not introduce any
additional parameter overhead and adheres to the principles
of Self-Training and Self-KD. It only uses image-level and
feature perturbations to expand the perturbation space of
FixMatch, proving to be more efficient than the EMA method
and introducing knowledge distillation into semi-supervised
learning tasks. Theoretically, multiple encoders and decoders
are introduced, but the implementation employs a more ef-
ficient coding method, achieving significant performance im-
provement while ensuring computational friendliness.

G. The pseudocode of CrossMatch

In summary, we present a self-training framework for multi-
ple encoders and decoders based on knowledge distillation and
provide a performance-friendly implementation. Algorithm 1
provides pseudocode in PyTorch style.

IV. EXPERIMENTS

1) Dataset: In this study, we utilize the 2018 Left Atrium
Segmentation Challenge (LA1) as a platform to evaluate the
proposed CrossMatch. The challenge provides data consisting
of 3D Magnetic Resonance Imaging (MRI) scans and their
corresponding left atrium segmentation masks, divided into
training and validation sets in an 80/20 ratio, with an isotropic
resolution of 0.625 × 0.625 × 0.625 mm3. Furthermore,
we extend our experimental work to the Automatic Cardiac
Diagnosis Challenge (ACDC2). To ensure a fair comparison
with previous works, we follow the same experimental setup
when reporting the performance on the validation set.

1www.cardiacatlas.org/atriaseg2018-challenge/
2www.creatis.insa-lyon.fr/Challenge/acdc/

www.cardiacatlas.org/atriaseg2018-challenge/
www.creatis.insa-lyon.fr/Challenge/acdc/
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Algorithm 1 Pseudocode of CrossMatch.

for x_w, x_s1, x_s2 in loader_u:
# x_w:aug_w(x_u),x_s1:aug_s(x_w),x_s2:aug_s(x_w)
# features of perturbed images
h_w, h_s = e(x_w), e(x_s2)
# perturbed feature
pert_wn = h_w # none drop
pert_ww, pert_ws = P_w(h_w), P_s(h_w)
pert_sw, pert_ss = P_w(h_s), P_s(h_s)
# concat in the batch dimension
perts = cat(

pert_wn, pert_ww, pert_ws, pert_sw, pert_ss
)
# decode and split
p_wn, p_ww, p_ws, p_sw, p_ss = d(perts).chunk(5)
p_s = d(e(cat(x_s1, x_s2)))
# hard (one-hot) pseudo mask
mask_wn = pert_wn.argmax(dim=1).detach()
# loss from image-level perturbation
L_ip = criterion(p_s, mask_wn.repeat(2, 1, 1))
# loss from feature-level perturbation
stus = cat(p_ww, p_ws, p_sw, p_ss)
L_tkd = criterion(stus, mask_wn.repeat(4, 1, 1))
# loss from TA and student distillation
L_dkd1 = criterion(p_sw, p_ww.argmax(dim=1))
L_dkd2 = criterion(p_ss, p_ws.argmax(dim=1))
L_dkd = (L_dkd1 + L_dkd2) / 2.0
# final unsupervised loss
L_u = (L_ip + (1-eta) * L_tkd + eta * L_dkd)/2.0

2) Implementation Details: The CrossMatch is implemented
based on PyTorch and use V-Net and U-Net as the baseline
network for experiments on the LA and ACDC dataset, respec-
tively. Specifically on the LA dataset, CrossMatch is optimized
using the AdamW [38] optimizer for 9000 iterations, while
on the ACDC dataset, it is trained using the SGD optimizer
for 300 epochs. Different batch sizes are set for different
datasets, with LA at 4 and ACDC at 12, ensuring an equal
number of labeled and unlabeled samples per batch. For image
preprocessing, images from the LA dataset are randomly
cropped to 112×112×80, and images from the ACDC dataset
ware cropped to 256× 256. We set η = 0.3 for both datasets,
and set τ =0.85 and τ =0.95 for LA and ACDC, respectively.
For performance evaluation, the LA dataset uses a sliding
window strategy to achieve comprehensive segmentation of
the cardiac area, while the ACDC dataset is evaluated by
merging predicted slices into a 3D image. The evaluation
metrics including Dice, Jaccard, 95% Hausdorff Distance
(95HD) and Average Surface Distance (ASD) are used in this
paper. In all CrossMatch experiments, feature perturbations
are set as standard dropout. The dropout rates for weak and
strong perturbations are set at 25% and 75% respectively. The
selection of dropout type and discussion on dropout rates are
elaborated in Sec. IV-D.

Notably, to ensure the fairness of the experiments, our
results are calculated using the final model weights rather than
the best weights saved during training, which also demon-
strates the stability of our method.

A. Qualitative Comparison
The Fig. 4 presents some 3D visualization examples of all

the compared methods and the corresponding ground truth
on LA dataset. It can be observed that our CrossMatch

outperforms other methods in terms of segmentation results.
Particularly, our segmentation edges are smoother, with fewer
misclassified voxels, more closely mirroring ground truth.

B. Quantitative Comparison

Table I summarizes the quantitative results and reveals that
CrossMatch surpasses state-of-the-art (SOTA) techniques on
LA dataset. When using 5% of the data with labels (4-
label setting), although our Dice and Jaccard are close to
those of SOTA methods, CrossMatch achieves significantly
better results in the remaining evaluation metrics. Furthermore,
significant performance improvements are realized in the sce-
narios with 8 and 16 labels. Especially using only 10% of the
data with labels, CrossMatch exceeds the segmentation results
obtained by fully supervised learning of V-Net on 100% of
the data with labels, achieving a Dice of 91.33%.

Quantitative results on the ACDC dataset summarized in the
Table II further demonstrates the effectiveness of CrossMatch.
Particularly our method is more outstanding in terms of
performance enhancement, where Dice is increased by 3.89%
in the setting of 3-label. The experimental setups listed in both
Table I and Table II are the same as those in [9], meaning all
results are derived from the final iteration outcomes.

C. Computational Performance Analysis

TABLE III
COMPARISON OF ITERATION TIMES FOR DIFFERENT METHODS. TIME IS

RECORDED FROM THE BEGINNING OF DATA MIGRATION TO THE CUDA
DEVICE TO THE END OF BACKPROPAGATION. THE TIME AVERAGES ARE

TAKEN AFTER 1k ITERATIONS.

Time (ms)↓ Method #Params (M)↓ #Flops (G)↓

22 V-Net 9.443 187.409

273 UA-MT 9.443 187.409
501 SASSNet 20.463 249.194
545 DTC 9.443 187.538
486 MC-Net 12.348 380.394

1269 MC-Net+ 15.247 572.229
1057 CAML 19.725 450.677
379 BCP 9.443 187.409
210 ours 9.443 187.409

As described in section III-F, our method also exhibits
excellent computational efficiency. For comparative analysis,
we have compiled computation performance data from a range
of similar works, evaluating them based on their publicly
available source codes. The experimental setup is standardized,
with all hyperparameters and optimizer configurations identi-
cal, and we record the average duration of a single iteration
from full data loading onto CUDA devices to the completion
of backpropagation, as shown in Table III.

After 1000 iterations, as a straightforward fully supervised
learning method, V-Net requires 22 ms per iteration, whereas
these semi-supervised learning methods that require a combi-
nation of labeled and unlabeled data for training need more
time, such as UA-MT [27], MC-Net [11] , MC-Net+ [12]
and CAML [9] take 273 ms, 486 ms, 1269 ms and 1057 ms
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TABLE I
COMPARISONS ON THE LA DATASET. "↑" AND "↓" INDICATE THE LARGER AND THE SMALLER THE BETTER, RESPECTIVELY.

#Scans used Metrics
Method Lab. Unlab. Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓

V-Net 4(5%) 0 43.32 31.43 40.19 12.13
V-Net 8(10%) 0 79.99 68.12 21.11 5.48
V-Net 16(20%) 0 86.03 76.06 14.26 3.51
V-Net 80(All) 0 91.14 83.82 5.75 1.52

UA-MT [27] (MICCAI’19) 4(5%) 76(95%) 78.07 65.03 29.17 8.63
SASSNet [32] (MICCAI’20) 79.61 67.00 25.54 7.20
DTC [31] (AAAI’21) 80.14 67.88 24.08 7.18
MC-Net [11] (MICCAI’21) 80.92 68.90 17.25 2.76
URPC [33] (MedIA’22) 80.75 68.54 19.81 4.98
SS-Net [34] (MICCAI’22) 83.33 71.79 15.70 4.33
MC-Net+ [12] (MedIA’22) 83.23 71.70 14.92 3.43
BCP [28] (CVPR’23) 87.52 78.15 8.41 2.64
UniMatch [8] (CVPR’23) 86.08 75.83 12.04 2.85
CAML [9] (MICCAI’23) 87.34 77.65 9.76 2.49
Ours 88.96 80.21 7.75 2.38

UA-MT [27] (MICCAI’19) 8(10%) 72(90%) 85.81 75.41 18.25 5.04
SASSNet [32] (MICCAI’20) 85.71 75.35 14.74 4.00
DTC [31] (AAAI’21) 84.55 73.91 13.80 3.69
MC-Net [11] (MICCAI’21) 86.87 78.49 11.17 2.18
URPC [33] (MedIA’22) 83.37 71.99 17.91 4.41
SS-Net [34] (MICCAI’22) 86.56 76.61 12.76 3.02
MC-Net+ [12] (MedIA’22) 87.68 78.27 10.35 1.85
DMD [13] (MICCAI’23) 89.70 81.42 6.88 1.78
BCP [28] (CVPR’23) 89.55 81.22 7.10 1.69
UniMatch [8] (CVPR’23) 89.09 80.47 12.50 3.59
CAML [9] (MICCAI’23) 89.62 81.28 8.76 2.02
Ours 91.33 84.11 5.29 1.53

UA-MT [27] (MICCAI’19) 16(20%) 64(80%) 88.18 79.09 9.66 2.62
SASSNet [32] (MICCAI’20) 88.11 79.08 12.31 3.27
DTC [31] (AAAI’21) 87.79 78.52 10.29 2.50
MC-Net [11] (MICCAI’21) 90.43 82.69 6.52 1.66
URPC [33] (MedIA’22) 87.68 78.36 14.39 3.52
SS-Net [34] (MICCAI’22) 88.19 79.21 8.12 2.20
MC-Net+ [12] (MedIA’22) 90.60 82.93 6.27 1.58
DMD [13] (MICCAI’23) 90.46 82.66 6.39 1.62
BCP [28] (CVPR’23) 90.18 82.36 6.64 1.61
UniMatch [8] (CVPR’23) 90.77 83.18 7.21 2.05
CAML [9] (MICCAI’23) 90.78 83.19 6.11 1.68
Ours 91.61 84.57 5.36 1.57

SS-Net MCNet+ DTC SASSNet CAML BCP UniMatch Ours GroundTruth

Fig. 4. some visualization examples of several semi-supervised segmentation methods with 10% labeled data and ground truth on LA dataset.
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TABLE II
COMPARISONS ON THE ACDC DATASET. "↑" AND "↓" INDICATE THE LARGER AND THE SMALLER THE BETTER, RESPECTIVELY.

#Scans used Metrics
Method Lab. Unlab. Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓

U-Net 3(5%) 0 47.83 37.01 31.16 12.62
U-Net 7(10%) 0 79.41 68.11 9.35 2.70
U-Net 70(All) 0 91.44 84.59 4.30 0.99

UA-MT [27] (MICCAI’19) 3(5%) 67(95%) 46.04 35.97 20.08 7.75
SASSNet [32] (MICCAI’20) 57.77 46.14 20.05 6.06
DTC [31] (AAAI’21) 56.90 45.67 23.36 7.39
MC-Net [11] (MICCAI’21) 62.85 52.29 7.62 2.33
URPC [33] (MedIA’22) 55.87 44.64 13.60 3.74
SS-Net [34] (MICCAI’22) 65.82 55.38 6.67 2.28
DMD [13] (MICCAI’23) 80.60 69.08 5.96 1.90
UniMatch [8] (CVPR’23) 84.38 75.54 5.06 1.04
Ours 88.27 80.17 1.53 0.46

UA-MT [27] (MICCAI’19) 7(10%) 63(90%) 81.65 70.64 6.88 2.02
SASSNet [32] (MICCAI’20) 84.50 74.34 5.42 1.86
DTC [31] (AAAI’21) 84.29 73.92 12.81 4.01
MC-Net [11] (MICCAI’21) 86.44 77.04 5.50 1.84
URPC [33] (MedIA’22) 83.10 72.41 4.84 1.53
SS-Net [34] (MICCAI’22) 86.78 77.67 6.07 1.40
DMD [13] (MICCAI’23) 87.52 78.62 4.81 1.60
UniMatch [8] (CVPR’23) 88.08 80.10 2.09 0.45
Ours 89.08 81.44 1.52 0.52

per iteration, respectively. In contrast, thanks to its stream-
lined structure and self-training pipeline, our CrossMatch
only requires 210 ms per iteration, which is significantly
lower than other semi-supervised segmentation methods, thus
highlighting its efficient computational characteristics.

D. Ablation Study

TABLE IV
ABLATION STUDY OF η AT ALL METRICS ON THE LA DATASET. 10% OF

LABELED DATA ARE USED FOR TRAINING IN THIS ABLATION STUDY.

η Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓

0.1 90.88% 83.35% 7.80 1.93
0.15 90.55% 82.92% 7.93 2.51
0.2 91.03% 83.62% 6.44 1.99

0.25 91.28% 84.01% 5.77 1.62
0.3 91.33% 84.11% 5.29 1.53

0.35 90.78% 83.21% 6.91 1.88
0.4 87.25% 77.80% 9.80 2.37

0.45 90.53% 82.78% 6.54 1.83
0.5 87.78% 79.22% 6.76 1.90

Table IV displays the results of ablation experiments on the
parameter of η in the setting of 10% of the data with labels
on LA dataset. The results indicate that an η value of 0.3
yields the best performance, surpassing other values across all
metrics. Consequently, we have set η at 0.3 for all experiments
in this study.

Table V presents the results of ablation studies on the
performance gap between decoders using 10% of the data
with labels on LA dataset. It is observed that the optimal
model performance is achieved when the performance gap is
0.5. Notably, we also explore the scenario where the decoders
are completely consistent, that is, when the performance gap
is zero. In this case, the strong perturbation encoder and the

TABLE V
ABLATION STUDY OF THE PERFORMANCE GAP BETWEEN STRONG AND

WEAK DECODERS. 10% OF LABELED DATA ARE USED FOR TRAINING IN

THIS ABLATION STUDY.

Bottom Top Perf. Gap Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓

0.500 0.500 0.00 91.20 83.87 5.41 1.80
0.375 0.625 0.25 91.07 83.65 5.47 1.59
0.250 0.750 0.50 91.33 84.11 5.29 1.53
0.125 0.875 0.75 90.22 82.32 6.59 1.76
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Fig. 5. Ablation study on the efficacy of various feature perturbation
strategies in our method.

weak perturbation encoder apply identical perturbations, and
the model degenerates into a UniMatch with an additional
Ldkd.

Fig. 5 shows the results of ablation studies on the type
of Dropout used under different training sample ratios on
LA dataset. We investigate three different types of Dropout
available in PyTorch: standard Dropout3D, AlphaDropout, and
FeatureAlphaDropout [39]. It is evident that using the standard
Dropout3D as our feature perturbation strategy results in the
best performance across all three data splits, followed by
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AlphaDropout and FeatureAlphaDropout. This may be due to
the latter two inducing stronger feature perturbations, resulting
in an increased Performance Gap between decoders, which is
detrimental to the correct transfer of knowledge in knowledge
distillation.

V. CONCLUSION

We have re-evaluated the role of Self-Knowledge in semi-
supervised medical image segmentation and cleverly inte-
grated feature perturbation, consistency regularization and
Knowledge Distillation to propose a Self-Training segmen-
tation method named CrossMatch. We rethink the role of
perturbations in semi-supervised tasks and suggest using
multiple equivalent encoders and decoders to play roles at
different learning stages to expand the traditional teacher-
student model, aiming to reduce the capability gap between
different roles. Specifically, we derive two encoders from
image-level perturbations and three decoders from feature-
level perturbations, designating the unperturbed feed-forward
flow as the teacher, to perform knowledge distillation on the
four groups of outcomes produced by the aforementioned
encoder and decoder combinations. Additionally, we utilize the
properties of Mini Batches to optimize the performance of our
method and provide a quantitative iteration time comparison
table. Our CrossMatch demonstrate robust performance on
two benchmark datasets (LA and ACDC), showing significant
improvements over SOTA methods. Extensive ablation studies
further validate the assumptions and design of our method.
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