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Abstract

We provide transformation matrices for arbitrary Lorentz transformations of mul-
tidimensional Hermite functions in any dimension. These serve as a valuable tool
for analyzing spacetime properties of MHS fields, and aid in the description of
the relativistic harmonic oscillator and digital image manipulation. We also focus
on finite boosts and rotations around specific axes, enabling us to identify the
Lorentz Lie algebra generators. As an application and to establish a contact with
the literature we construct a basis in which the two dimensional rotation operator
is diagonal. We comment on the use of hypergeometric functions, the Wigner d-
functions, Kravchuk polynomials, Jacobi polynomials and generalized associated
Legendre functions.
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1 Introduction

Modern theoretical high-energy physics is based on the assumption that on flat
Minkowski background elementary fields and particles are classified by irreducible uni-
tary representations of the Poincaré group or its generalizations, such as the conformal
group or the super-Poincaré one. In the seminal papers [1-3] the irreducible unitary
representations of the 4d Poincaré group were classified into massive, massless and
tachyonic ones, apart from the zero-momentum unfaithful representations. The mass-
less representations are in turn divided into discrete/finite spin ones, characterized by
helicity taking a finite set of values so that they have a finite number of components,
and continuous/infinite spin ones, (see e.g. [4] for a modern treatment of the subject),
characterized by a continuous value of the second quartic Casimir. Whereas tradi-
tionally the latter representations, with their infinite number of degrees of freedom
at any point in spacetime, have been neglected in field theory, in recent years they
have been the object of novel interest [5-14] due to their enticing properties which
seem to fit well into such distinctively stringy regimes as the tensionless limit, where
the onset of higher spin gravity is expected. In fact, the spectrum of helicities of a
continuous-spin particle coincides with the one in higher-spin gravity and the presence
of a dimensionful continuous parameter might help circumvent the no-go theorems for
interacting higher spin particles in flat background in a way similar to what happens
in the presence of a cosmological constant.

On the other hand, there are situations where it is not completely clear how the
physical solutions can retain Lorentz covariance without breaking unitarity. One cel-
ebrated such case is the relativistic harmonic oscillator, considered as a model for
bound states of quarks in a relativistic setting [15, 16] (see also [17] for a review),
but whose eigenvalue equation plays also a crucial role in determining the spectrum
of string theory. It was pointed out [18] that the standard approach in string theory
boils down to considering solutions of the relativistic harmonic oscillator equation in
a spacelike sector of every normal mode of the relativistic string. On the one hand
this ensures the elimination of most tachyonic modes and the absence of negative
norm states upon application of covariant quantization, on the other hand it is not
to be excluded that other solutions may exist. In particular it was pointed out there
are solutions supported on mixed spacetime and timelike sectors that are completely
free of negative norm states and realize infinite dimensional unitary representations
of the Lorentz group. Such representations were first considered by Dirac [19] in 1944
on a suitably defined space of infinite sums of polynomials of a real variable with the
coefficients in the sums named “expansors”. In this paper we are interested in an infi-
nite dimensional unitary representations of the Lorentz group constructed using fields
expanded in Hermite functions.

The need for studying such infinite dimensional unitary representations of the
Lorentz group comes in the context the Moyal-Higher-Spin (MHS) formalism, defined
and developed in [20-23]. It is an approach to study higher spin theory, built on a 2d-
dimensional manifold M xU with coordinates (2%, u), where M represents Minkowski
spacetime, and U an auxiliary space of equal dimension. Fields ®(z,u) that live on
such a manifold depend on both x and u coordinates.



To better understand the purely spacetime content of the MHS fields, one needs
a way of integrating out the dependency on the auxiliary coordinates, while ensuring
that physical observables remain well defined. This motivates expanding the MHS
fields in an orthonormal basis of functions in the auxiliary space, which ensures that
functionals quadratic in the field variables are finite;

e,u) = 3 6" (2) far(u), (1.1)
M

where {fy(u)} are orthonormal functions on the auxiliary space. A particularly con-
venient choice for the basis are Hermite functions defined below. The MHS models
developed primarily in [22] incorporate the Poincaré group of symmetries of spacetime,
of which the Lorentz group is a subgroup, thus creating a necessity to understand
the behavior of basis functions under Lorentz transformations fj,(u) = fa(A™1u),
particularly in the infinitesimal case.

The defining representation of the Lorentz group are finite dimensional matrices
A*,. which are not unitary, instead satisfying’

A'ua nuy Ayﬁ = naﬁ. (12)

In this work, we build a representation of the Lorentz group on a space of
multi-dimensional Hermite functions, which is unitary by construction, albeit, infinite-
dimensional. Since the group of rotations is a subgroup of the Lorentz group, the
results we obtain can also be used to represent Euclidean rotations on the space of
Hermite functions in an arbitrary number of dimensions. Results covering the case of
one-dimensional boosts were obtained in [24, 25] in the context of the relativistic har-
monic oscillator, while the problem of Euclidean rotations of Hermite functions was
also studied in the context of computer graphics [26-28]. The complete solution for
an arbitrary Lorentz transformation was so far not available.

We start with a reminder on representing groups on spaces of functions and outline
the method we used to construct the representation. Afterwards, we specialize to
Hermite functions and the Lorentz group and provide explicit representation matrices
for an arbitrary Lorentz transformation, as well as for particular cases of boosts in
specific directions and rotations around specific axes in D = 4. From the finite case,
we find the generators of the Lorentz Lie algebra in D = 4, calculate the Casimir
elements, and as an application we discuss a basis for the vector space of Hermite
functions for which the rotation operator around the z-axis is diagonal. The appendices
contain details necessary for the diagonalization procedure including the derivation
of the result with the help of the Kravchuk polynomials and a presentation of the
result in terms of the Wigner d-functions. Relation to hypergeometric functions, Jacobi
polynomials and generalized associated Legendre functions is also exhibited.

!Einstein’s summation convention is understood and we use the n~ (—,4+,...,+) signature.



2 Representing a group on a function space

Let a group G be represented on R” by linear operators g. The action on functions
on RP is given by

B (z) = h(g tx). (2.1)
Let us choose a complete orthonormal real basis of functions fy(z) which will
span L2(RP), indexed by a (possibly composite) index N. The orthonormality and
completeness conditions are given by

[ i@t =, S ix@in) =Py (22)
N

We can expand an arbitrary element h(z) € L?(RP) in the chosen basis as

h(z)=> hVfx(x). (2.3)

N

Since a transformed function h'(z) = h(g~'z) can be expanded in two ways

W)=Y BN fn(g e) =Y WM fula), (2.4)

N M

the orthogonality of the basis functions (2.2) can be used to express
WM =3"pN (/ dD:ch(x)fN(g_lx)> , (2.5)
N

which furnishes a representation of G' denoted by?

DY (9) = [ dPa fu@)fnls ). (2.6)
The transformation between function coefficients can now be written as

WM =>"DN(g)h" (2.7)

We indeed have a preserved group structure, since for h”(x) = h(g; *g5 '2) = h(g3 ')

one can obtain
D%(Q:&) = ZDAN4(92)DIA(4(91) . (2.8)
M

2The constructed matrices D%(g) are real since the choice of the basis functions fy(z) was real. The
procedure can be generalized to complex valued functions.



In case of special pseudo-orthogonal groups SO(p,q) (e.g. the Lorentz group or the
rotation group), the obtained matrices D! (g) will be unitary. To prove unitarity (i.e.
orthogonality in our case) we notice an equality

/ 4P fro(g~'e) far (g ) = / dPy () Far () = Snar (2.9)

owing to the Jacobian being equal to unity. By using equation (2.6)

fnlg™a) =Y DN (9)fu(x), (2.10)
M
we obtain
Z Dy Dy, = Z(DT)J}]D}{/[ =O0NM - (2.11)
J J

Below we will use this approach to construct a unitary representation of the Lorentz
group.

3 Representation of the Lorentz group on L%(RP)

3.1 Hermite functions and the generating integral

Our choice for the basis of L?(RP) are multi-dimensional Hermite functions defined
below. Partial results for the representation matrices of the Lorentz group on Hermite
functions were obtained by Ruiz [24] and generalized by Rotbart [25] in the context
of finding transformed eigenfunctions of a relativistic quantum harmonic oscillator.
Their results cover the case of one-dimensional boosts. The main idea we take from
their calculations is to integrate a product of generating functions and find the sought-
for result in the subsequent expansion. Our approach is more general and enables us
to calculate the representation matrices for arbitrary elements of the Lorentz group.
Here we note that the results we obtain cannot be simply deduced from the results
[24] and [25] e.g. using tricks involving covariance. The reason for this can be traced to
the form of the weight function. Namely, if for simplicity we restrict for the moment to
the 4-dimensional case, our basis functions are weighted using exp(—t% — 2% — y% — 22)
which makes the basis functions localized, but on the other hand complicates their
transformation properties since —t> — 22 — y? — 22 is not invariant under Lorentz
transformations (cf. footnote 5). Hence, here we do the calculation assuming a general
form of a Lorentz transformation matrix from the start.
To begin, we introduce H,(x), the (physicists’) Hermite polynomials

_ n x? d" —z?
H,(x)=(—1)"e L (3.1)
where the index n can attain arbitrary non-negative integer values. Next, the Her-
mite functions are defined as the Hermite polynomials multiplied by the suitable



normalization (and weight) factor as

Fal@) = =5 Hy(a). (3.2)

Cn

where

cn = \/2mn!/m (3.3)

Importantly, they are orthonormal and complete on R

| @) @) = §jﬁl fuly) = 6z — ). (3.4

We define a multi-dimensional Hermite function as a product?

fnomnpfl(x) = f’ﬂo (t)fnl (xl) e anfl(xD_l) = f{”u}(x) ’ (35)

with a multi-index notation, {n,} = {no...np_1}. To calculate the representation
matrices for A € SO(1,D — 1) we need to use (2.6). In order to evaluate the above
integral, we introduce the generating functions for Hermite polynomials

v—a* _ \- q"
P =3 () L (36)
m=0
and Hermite functions
Eq(z,q) = P Z cm fm (3.7)
m=0

Whigh are obtained by multiplying generating functions for Hermite polynomials by
e~*"/2. We can easily generalize to D dimensions

E(.’E, Q) = El(fEO, qO)El(xla ql) s El(zDila qul) . (38)
Next, we multiply two generating functions (3.8), integrate the product,

I(p,q,A) = /dDm E(z,q)E(A 2, p) (3.9)

and expand it as a series in the generating variables

Ip.g, ) => Y [Hcmycnu )" (P;)' DI (A, (3.10)
{m“} {n“} V. v

3An alternative generalization to higher dimensions is provided by Grad [29], which we have used in [23]
in the Euclidean approach to MHS theory. However, while Grad’s generalization provides a covariant way
to represent Euclidean rotations, it is not particularly suitable for representing the Lorentz group, since
their basis functions mix rank under Lorentz boosts.



We find on the right hand side of (3.10) the transformation matrices i.e. the coefficients

D;E:ZL“}}(A) defined by (2.6) i.e.

DA = /deC Fomay @) fny (A1) (3.11)

Below, we obtain the integral on the left hand side of (3.10) for any Lorentz
transformation. *
3.2 Generating integral for an arbitrary Lorentz transformation

To solve (3.9) we will rewrite it to recognize the form of a Gaussian integral. In addition
to ¢* = (¢°,¢*) and p* = (p°,p’), we introduce auxiliary variables

u' =(1,0,...,0), (3.12)
and define
n;lzlld =N + QUMUD s (3.13)

ie. n ~ (= + ++) and n°"! ~ (+ + ++). Even though ¢*, p*, and u* resemble
components of a Lorentz vector, they do not change under Lorentz transformations
(in other words, we never apply Lorentz transformations to them since they are tied
to the laboratory frame in which we work). Their purpose is to be a placeholder and
enable a more concise notation.” The generating function (3.8) now becomes

v U v U 1 174 u

E(z,q) = exp [296”61 U R e o I (3.14)

We rewrite the integral (3.9) as

1
/de E(z,q)E(A 2, p) = /de eXp[—§x°‘Aa3xB + Jox® + (], (3.15)
with

Aap = 2(1ap + uatts) +2(A7 oa(A™)os (3.16)
Jo = W Ao+ 20 (317)
C = —q"¢"nii — p'p st (3.18)

4In [24, 25] light-cone coordinates were employed and this integral was evaluated for the case of one-
dimensional boosts.
SEg. t2 + 2% +y% + 2% = z 2t + 2(uyzt)?



The result of the integral can now easily be obtained since it is of the Gaussian form ¢

I(p,q,A) _(emPr 1 (A2 Js + C (3.20)
p7q7 - \/m exp 2 [e% ,3 . .

We find the determinant det A = 2P ((Afl)OO)Z, and the inverse

af —1\0«,, —1\08,,«
[Afl]aﬁ :L + (A ) u” + (A ) u
2 2<A—1>OO

(3.21)

The generating integral (3.20) is now given by

D/2
I(p,q,\) = T(A—T)00] exp [2p°¢" Moo + 2p°p" Mo + 2¢°¢" Mo; + 2p°¢’ My;]  (3.22)

with the matrix M defined by components

1 Ao
MOO = - (A_l)oo 9 M’LO ((A_l))oo (3'23)
Afl j . Afl i Afl j
Mo; = EA_I};O, My = (A7), — D)ooy ([)\35)00 Joi

The formulas (3.22)-(3.23) represent the first important result of this paper. It fur-
nishes, through an expansion performed in Section 3.3 below, a transformation matrix
for Hermite functions for an arbitrary Lorentz transformation.

As a consistency check we calculate I(p, g, A) for the case of one-dimensional boosts,
eg. v¥ = v # 0 while v¥ = v* = 0. That case was covered by [25] in their formula (10).
To get their result we can set

P =%p"), ¢ =(¢"q"). (3.24)

The resulting integral

I(p,q,v) = w*\/1 — v2 exp [—onplv +2¢% v 4+ 2p°¢° V1 — 02 + 2t/ 1 — UQ}

(3.25)
agrees with [25] after appropriate identifications.
6See e.g. ch. 9 in [30]
/dDmexp [—%mTAm +JT + c] = % exp [%JTA’lJ + C] (3.19)



3.3 Extracting the representation matrices

From the expression (3.10) we can see that to extract the representation matrices, we
will have to expand I(q,p, A) in powers of p and q. *

pN nu q“) 82 natd m“-[(pa qvA)
» 3.26
et {;“}{%} [H my! ] l [T (@pr)me(@gryme || _ .

The representation matrices are then given by

m 1 a}jn +>"m I A
D (A) = T Hp.g; A) (3.27)
® HM Cm,Cn,, Hﬂ(ap#) “(aq#> " p=q=0
We expand the exponent in (3.22) as
xD/2 xD/2
I(p,q,A) = Weﬂp@ = 00| Z f (p,q, A)". (3.28)

Since in (3.27) we put p’s and ¢’s to zero at the end of the calculation, in order to
have a nonzero contribution, the numbers of derivatives in (3.27) must be related to
the powers f(p,q,A)" in the following way

r:moJani:noJeri (3.29)

This implies that there is only one term in the sum over r in (3.28) that contributes in
(3.27). Therefore, to get DEZ‘L}} (A) we need to write down an expression for f(p,q, A)",
identify the term containing J[,(p")"*(¢")™* and divide by ][, ¢, cn,,. We obtain

m,, 1 7m -+ m;
D}En;}}(A) = [(A—1)00| —n00+§ s H”u'mu Z H (3.30)
{nuw} wv

The symbol Zf{nw denotes D x D sums over each n,, from 0 to co, with the prime ’
on the sum denoting that the values of n,,,, are in addition constrained in the following

"For convenience, we report the formula (3.26) in D = 4 with all the indices spelled out

ran=3 =3 3%

np=0 ng=0mp=0 mg=0
()"0 ()" )" (°)" (¢°)™0 (¢)™ (¢*)™2 (6™
no! n1! ’I’LQI ’I’L3I mo! ml! m2! 7n3!

8n0+n1 +ng+tng+mg+mq+mo+mg

(ap0)n0 (8})1)"1 (8p2)n2 (8p3)"3 (8q0)vno (aqunl (8(]2)7”2 (aqa)m3

I(p, q, A)]

p=g=0



way:
mo =Y noy, Mi=» i (3.31)
v v
nO:Znuo, m]:ZnM
7 p

Here, we note that these constraints would look more symmetric if ng and mg were
interchanged. This “interchange” is visible also in (3.29) and in the fact that there
are minuses in front of ng and myg in the Kronecker symbol in (3.30). We trace this
to the exponent (3.22) where the terms pop; and gog; appear. The reason for that is
the pseudo-orthogonality of the Lorentz group; such terms are not present in case of
euclidean rotations as we show in the subsection below. It is also useful to note that
(3.29) and (3.31) imply

S o> my=2r (3.32)
u u
Zn,“, =r
ny

3.4 Representation matrices for boosts in D = 4

For a boost in a single direction (e.g. x) with velocity v, we find the same result as in
[25] but generalized to 4 dimensions

7T2 B
I(p,q,v) = ~exp [Q(qoq1 — v +2(0°¢° + p'¢") V1 — 02 + 2p°¢* + 2p°¢?
(3.33)

By expanding and identifying the coefficients (or just using (3.30)), we find that the
transformation matrices for boosts in the z direction are given by®

Ina!
momimams () &\ _ s—mo+mi+matmg sma gmg | 1110
Dnon1n2n3 (’UZ‘) - 6*n0+n1+n2+n3 6n2 5“3 nq! |
1-Myo:
< m n mi+mo+1-—2j
0 1 _ ; 1 ot+1— .
E ( ‘ ) (=D)mmmti /1 — g2 pHmmt (3.36)
J m1—1J

J=0

8Here, we used the following notation and conventions for boosts. E.g. for boosts in the z direction:

momimamsg o\ _ rymgmimgmsg N
DO (y2) = DIMOMLMA™S (A(v3)) (3.34)
with
00 vy
- 0100
A, = (O 01 O) . (3.35)
vy 00 «

10



Particular cases of boosts in y and z directions lead to

Ina!
momimsms AN —mo+mi+ma+ms smi sm3 maing:
Dnon1n2n3 (’Uy) - 67n0+n1+n2+n3 6711 6n3 n2|m0|
mo .
. 1-2 .
E "o " (—1)”"4”2“\/1—112m?+m0Jr ! y2i—matne (3.37)
— J ma —J
7=0
Ina!
momimsms/(,, s\ _ S—Mo+mit+mat+mscmy smo ms:ing:
Dngn1n2n3 (Uz) - 6fno+n1+n2+n3 6"1 6”2 n3!mg! %
mo .
. 1-2 .
) <m°>< s )(—1)’“L3—m3+7\/1—1)27"3“”“r Ty2immatns (3.38)
SNJ ) \ms =

The matrices (3.36)-(3.38) are unitary by construction, and they are infinite dimen-
sional as each index n, m ranges from 0 to co. The number N = —ng+ni +ns +nz =
—mo 4+ m1 + ma + ms3 is invariant (in the sense that SO(1, 3)-transformed basis func-
tions are linear combinations of basis functions of the same N), and can be used to
reduce the matrices (and basis functions) into sectors labeled by N. It is, however,
easy to see that each such sector is in itself infinite dimensional; there is an infinite
number of ways to combine one negative and three positive integers to obtain the same
N. For example, consider a function fogoo(x), and boost it in the z direction. We can
apply the transformation rule (2.10)

[ee] (oo} oo (oo}
Z Z Z Z Dggoe ™" (vE) fmgmamams (T)

mo=0m1=0mo=0ms3z=0

oo o0
=V1-0? E E O™ fmgmy00

mo =0 mi =0

=v/1 =02 (foooo + vf1100 + v* fa200 + - -- ) (3.39)

foo00() = foooo(A™ )

and find a truly infinite sum on the right hand side. This is consistent with formula
(65) of [31]. As a curiosity we note that (3.39) can be further simplified using the
Mehler’s formula [32]. We rewrite

foooo(A™'x) — 0 i
fo)fo(z) V1= 02y 0" fu(@) fult) (3.40)

n=0

and use the Mehler’s formula on the right hand side

o0 _ 2 _ 2
\/1—v2§v”fn($)fn(t):7r_2exp<—1+z(xzt) _iz(let) ) (3.41)

11



We emphasize again that our method defines a homomorphism from any Lorentz

transformation matrix A to the representation Dg:;“}} (A). In case of a boost param-

eterized by ¥ = (vg, vy, v,), we can either directly use (3.30), or see that the integral
(3.10) becomes

I=n%/1—-2exp

2 (poqov 1 — a2 — p°plu, — p°p?vy — p°p%v, + ¢°q¢'vs + ¢° vy + " v

v2 + 02 + 021 — 92 VgV VgV,
+p'q' 2 = PP VI (- V- )

U
2 2 2
VgV vz 4+ v7 +v2V/1 — 02 VU
_p2q1%(1_ 1_17»2)+p2q2x z 17274 o 23%(1_ 1_,1—}'2)
2 2 2 =
VgV VU vi+ v +viv1—v
—p’q" = (1 1—92) —p’g? fﬁz(l—\/l—zﬂ)wz”qi” — )1
(3.42)

from which it is possible to extract the representation matrix DE “}} (¥) through the

same procedure as above.
3.5 Representation matrices for rotations in D = 4
In the case of pure rotations, we use A, = R, with Rog = —1, Ro; = Rjo = 0, R;; #

0, where R;; is an orthogonal rotation matrix. The integral (3.10) becomes very simple;

I=nxP/? exp [2poqo] exp [2piq; Rji] - (3.43)

Through the same procedure, we can write down a general representation matrix for
an arbitrary (D — 1)-dimensional spatial rotation in D dimensions.

n”
Mu mo+ ml i

Enu}}(R)—@nolzz ni Ong. Hm'mz ST n] (3.44)
19

{ni;} 4

Similarly to above, by Ei{nij} we denote (D — 1) x (D — 1) sums over each n;; from
0 to 0o, where the prime ’ on the sum denotes that the values of n;; are restricted to
those that satisfy the constraints:

Z N5 = My
J
S =y (3.45)

The sums and products involving ¢ and j range from 1 to D — 1.
In case we restrict our attention solely to SO(D), i.e. to D-dimensional rotations
in D-dimensional Euclidean space, the formulas for representation matrices are of the

12



same form (with the same form of constraints (3.45)) except they do not contain the
factor 4,,)° and sums and products involving i and j range from 1 to D:

n”

{mu} Z m;
D{n#} (R) = 521’ n,

(3.46)

-+ Ny
{”w} ) Z]

Returning to the SO(1,3) case, for a generic rotation R, the matrices D(R) can
be written as

{mu} _ s—mog+mi+ma+tms sm,
Dy (R) = oo mdimakmagino /g Inglnglmy Imolma!x

11 nlz Rn21 Rn22
DIPID IR I .

I nys! noq! nas!
n11=0n12=0n21=0n22= 12 2 22

mi1—ni1—ni2 M2 —Nn21—"Nn22
« R13 R23 «
(m1 —ni1 — Tl12)! (m2 —N21 — 7122)!
Rnl—nll—nzl RnQ—n12—n22
« 31 32 %

(n1 — n11 — n21)! (N2 — n12 — nag)!
Rn3—m1—m2+n11+n12+n21+n22

X 33 ) (3.47)
(ng —my — mg 4+ n11 + N1z + nog + naa)!

For clarity and further uses, we provide the representation matrices for rotations of
angle @ around the z,y and z axes separately:’

mom1mams mo+mi+ma+msz smo sm1  /
Dn0n1n2n3 (0 ) = 6_n0+n1+n2+n3 6n0 5n1 TLQ!TLg!T)”LQ!mg!X

mg 2k+ms3—ns (o no+me—2k
" Z (cos 0) (sin ) (3.50)
kl(ng — (mg — ng + k)!(mg — k)!
Dyomamams (0 — 5_;7;;*,17;231@“%35510 52 /iy gy g
Z mgf (COS 9)2k+m17n3 (sin 0)n3+m372k (351)
k/" ’Il3 — (m1 —n3+ k‘)'(mg — k‘)'

momimams —mo+mi+ma+ms gmo sm3
D23 (02) = 0 o e 6 6t/ ma Inglmig Img I

9Here, we used the following notation and conventions for rotations. E.g. for rotations around the z
direction:

mgmyimgms — pmomimam3 2\) — pymomimazmsg N
D i tgrg 2 (02) = D00 033 (A(02) = Dyl oy - (1R(62)) (3.48)
with

1 0 0 0

0 cos® —sin6 0

0 sinf cos6 0] (3.49)
0 0 0 1

R(O2)", =

13



i (=1)™ =k (cos @)2ktm2—n (gin §)rrtma—2k

El(ng — k) (mg —ni +k)!(my — k)! (3.52)

k=0

Note that one can easily constrain the representation matrix (3.52) to cover only
rotations of Hermite functions on a Euclidean plane by setting mg = ng = m3 =nz =
0, and thus obtain a representation of SO(2).

In formulas written here factorials of a negative number can appear in denomi-
nators (e.g. in (3.52) when m; < my for k = ny). Such terms are excluded from the
sums, which is consistent with the definition of the factorial in terms of the gamma
function; an infinity in the denominator renders such terms effectively zero.

The matrices (3.50)-(3.52) are also infinite dimensional, but for spatial rotations,
due to the global factor of 4;,,°, we find a non-negative invariant number n = n; +
no + n3. This makes it obvious that the rotation matrices can be reduced to sectors
labeled by n, which are finite dimensional themselves, as there is only a finite number
of ways to sum ni,ns,n3 into a non-negative number.

4 Lorentz Lie algebra in D =4

To find the generators for the Lie algebra in the representation furnished by Hermite
functions, we use the convention

D = exp(K) (4.1)
which gives, symbolically
oD
= — . 4.2
90 oo (4.2)

Since the matrices D were orthogonal by construction, the generators will be
antisymmetric
K'=-K. (4.3)
For any one-parameter subgroup of boosts in a particular direction of the Lorentz Lie
group, rapidity ¥ = tanhfl(v) is the canonical coordinate [33].
In the 4-dimensional case, the three generators of boosts are

momimams mo+mi+ma+ms m2 mg my /
K lngningng 6—n0+”1+n2+7l3 Oy 0 (5n1+1 no + 1 n1 + 1 mf nlno)
momimaoms —mo+mi+mao+ms m1 77L3 / mo
K2ﬂon1n2n3 _57n0+n1+n2+n3 6 6 ( na +1 nO + 1 n2 + 1 5 na— ngno)

momimams mo+mi+ma+m3z smy m2 / mg
K3nonln2n3 5—n0+n1+n2+n3 5n1 6 ( n3+1 ’I'Lo + 1 ng + 1 5 3 n3n0
(44

and the three generators of rotations are

momimams mo+mi+mo+ms3 m1 mg mo / mo /
Jlnonlngng _5—n0+n1+n2+n3 5 5 (571 1V n2 713 + ]' 6n2+1 712 + ].)77,3

J moMmimams _ §— mg+m1+m2+m35m2 5m0 ( m3_ ns3 (nl + 1) _ 5::;11 (nS + 1)7’11)

2noninang —no+ni+nz+ns nz—1
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momimams mo+mi1+ma+m3 sma $mo mi my
J3n0n1n2n3 5—n0+n1+n2+n3 6n3 6n0 (5n1— ny (nQ =+ 1) I | (nl + 1)77’2) .

The Lie algebra satisfies the expected products'®

(i, J;) = €k
[Ji, KJ] = eiijk (47)
[K“KJ] = —Giijk .

This representation of the Lorentz Lie algebra is not irreducible, and it is a non-trivial
problem to reduce it completely. We already noted one level of reducibility, which
comes from fixing the number N = —ngy + n; + ny + ng. We leave open the question
of reducing the representation further.

For future reference, we note the values of the Casimir operators of the Lorentz
group SO(1,3) and the rotation group SO(3) in this representation. There are two
Casimir elements of the Lorentz group, both are quadratic

Clsz—[?Q, CQZJ'I? (48)

In the representation defined above, they become'!

C1

momimams =5 mo+m1+ma+ms3 %
nenin2n3 —no+ni+nz2+ns

—28TO ST G2 6 s s
FO O O 00y V (ng — 1)ng(ns + 1)(n3 + 2)
OO0 02 500 5/ (na + 1) (n2 + 2)(ng — L)ng

FOTOS L6260 o/ (ng — 1)ng(ny + 1) (n1 + 2)
87055255 o\ (ng + 1) (ng + 2) (n1 — L)y

)

( )

( )

( )
+5m°5::’117 n2+25m3 \/(nl —Dni(ng + 1)(ne +2)
5m°5n1+2 I \/(nl + 1)(n1 + 2)(ng — )ng

( )

( )

( )

+67
+5n0+2 026/ (ng + 1) (no + 2)(n1 + 1) (n1 + 2)
Ot 6;’;3\/ ng — 1)ng(ne — 1)ng

TLO 2 TLQ—

S ,0m28m3\/(ng — 1)no(ny — 1)ng

no 2 ’I’L1—

10 A more often used convention in physics for the exponential map from the Lie algebra to the Lie group
elements is D = e~ "/ which gives the familiar products

[Ji, J5] = i€ijn Tk
[Ji, Kj] = i€ Kk (4.6)
[Ki, Kj] = —ieijnJk -
1 Note that each term in the sum contains a product of five deltas, and that one of the deltas is redundant.

E.g. the overall delta 67::’00:7:'1127;3;;"5 can be deduced from the Kronecker delta’s in each term in the

bracket. We keep such deltas to make the invariance of —mg + m1 + mo 4+ m3 manifest.
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with

+5mo 57”1

no+2-n1

+5m0 6m1

no—2Yn1

mo m
+6n0+25n11

525072/ (no + 1) (g + 2)(n2 + 1) (n + 2)
5”7?22677‘733—2 \/(”0 - 1)”0(”3 — 1)713

5728722y no + 1) (g + 2)(ng + 1)(n3 +2) )

(4.9)

Unonynans = —3(24+n1+ns+ng)—2(nens+ning+nins+ne(3+n1+n2+ng)). (4.10)

The second Casimir operator vanishes

c momimoms
2noninans

(

—§~motmitmatms

—no+ni+natns

O 1007100 10 1/ mona (n2 + 1)ng

O Ot S 6 / (no + 1) (ny + 1) (ng + 1)ng
F0a 1010101V Nomana(ns + 1)

=m0 6 O 1673\ (no + 1) (g + D)na(ns + 1)
=m0 10ms 1004100, -1V non2(ng + 1)ng

004105 410054100, —1 V(no + 1) (ng +1)(n3 + 1)my
F0pet 10101002 1V Non2ng(ny + 1)

—Om O O 6 1\ (g + 1) (n2 + D)ng(n1 + 1)
O 10t 10t 10 1\ /mons(na + 1)ng

00 Ot 0 6 8/ (g + 1) (n + 1) (n1 + 1)ng
F0pe’ 1Ot 1Ot 10ty v/ oman (n2 + 1)
OO0 O/ (o + Dl + Dmi(m2 +1) )

=0.

The group SO(3) has a single Casimir element J 2. which is given by

=

(/)

2 mimoms *(le +mo+ms3 %
T Ynit+nz+ng

( — 2(5;'?16,%25%3(711 + N9 + N3 + ninge + nong + ’I’L3nl)

ninansg

mi $Mma ms
+5 6%2 —25n3+2

niy

no — 1)712(713 —+ 1)(713 —+ 2)

+5$15m2 (Sm?’ 2\/ ) —+ 1)(712 —+ 2)(”3 — 1)713

mi
05,200, 00, 0

+5m1_25$2+25,"1§3\/ ny — L)ni(ng + 1)(ng + 2)

ni

na+2-nz—

)
ns + 1)(713 + 2)(n1 — 1)711

o g

(
(
+5;’A;1+25;”225:g372\/(n3 — Dng(ni +1)(n1 +2)
(
(
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O a0 o D+ 2 (ne — Dz ). (412)

4.1 Diagonalization of J3

In this last part, we focus on a specific application of the newfound generators. In
the basis (3.5), none of the generators above are diagonal. The physical motivation
for building this representation came from an expansion we proposed in [23] for the
MHS field, and we aim to study the helicity content of the MHS fields through such
an expansion.

Since the conventional way of building the little group for a massless field is by
choosing the little momentum to be in the z direction we explicitly perform the diag-
onalization of J3. It turns out that a similar problem is encountered in a treatment
of the two dimensional isotropic quantum harmonic oscillator (see e.g. [34]) and it
also can be applied in the context of digital image analysis for precise image rotation
[26-28]. The further intent of this section is therefore to apply formulas obtained in
previous sections to a known example, which serves as a check and also to connect
the results of this work with the existing literature. Details of the calculations are
delegated to the appendices, and here we present the results.

An element of L?(IR*)

P = Z pmmnl’mgm3fm0mlm2m3 (413)
{mu}:O

is an eigenvector of the rotation operator Jz - ® = A® if the components p™o172m3
satisfy the equation
T AT s AT (4.14)

where the repeated indices are summer over. Since the chosen rotation generator leaves
invariant indices ng, ns, we suppress them and focus only on the part of interest

jmama — gt (5;%1171, frn(na + 1) — 67 y/(n + 1)n2) . (4.15)

The eigenvalue equation reduces to Jz;'172C™1"2 = AC™1"™2 or in terms of the new
components C"17*2

Cm1+1,m2—1\/ (m1 + 1)m2 - le_l’m2+1\/ mq (m2 + 1) = \g™mum2 (416)
Due to the presence of 5;";5;""@'2 in (4.15), the number r = n; + ng is invariant under
the action of the rotation generator, which makes any sector of the vector space with
a fixed r finite dimensional. This enables numerical calculations of the coefficients
and the eigenvalues, and we report some of them as an explicit example, in the form
C(TZ'X;” where » = m1 + mo and A is the eigenvalue.

Cpme <o o (4.17)
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C"nl m2 __

(1,—3) — \[

m1ma 1 - emq gmo my smo
Caly :ﬁ(_“so 67" 467" 05"%) (4.19)

To express the solution in a closed form we define

miy _ -\ +my . ﬁ it 5 r(matm) r T
Cra (B) = (=)m+ (Sm 2) <COS 2> <m1> (n1> .

X oF1(=ny, —mq, —r;sin~2 g) (4.20)

(ST o — 5T 52 (4.18)

— - mldr/2

ni—r/2,m;—r/2 (ﬂ)
= K (my, )

where the second and third equalities are a consequence of the definitions of the
Wigner d-functions and the functions K| T(ff ) (mq, r) defined and reviewed in Appendix A.
Since K,g? ) (mq,r) are the “normalized” Kravchuk polynomials, it is easy to check that
C™1 (B) inherit the orthogonality, completeness and symmetry:

N1

Z O *(B)CI, (B) = Gy (4.21)
miq= 0 !
> O (BYCT (B) = by (4.22)
n1=0

Clni(B) =Cp3 (B) - (4.23)

We show in Appendix B that the argument § = /2 provides for the eigenvectors of
Js with the eigenvalue A\ = i(2k — r) for each r and k:

mi,M2 __ smi+ma Ymi E -1 — < k<
cpe = gratmaCr (2) A=i(2k—1), 0<k<r (4.24)

When g = 7r/2 we use the index k instead of ny to emphasize this (i.e. ngl =

S O (3) B CI* (3) is diagonal)
The finite rotatlon matrix for states of fixed » = my + ma is found as follows:

> oo (5) e (5) ewemien (3) e (3)

b
- zk: e (5) etk —mer (3)

= MmO (28) = A2, 2my—ry2(—28) (4.25)

exp(fJ3)
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where we use the completeness relation to isolate exp(/J’Jg)ﬁl = exp(if(2k — r))é’,g/ and
we use the formula (B.23) in the second line. This agrees with [26-28]2.

For an arbitrary value of r we obtain the following result (i.e. the exponentiation
of (4.15))

m m 1 m m
exp(BJ5)™m2 = § 1+m2 g5 (mi+ 2)%(m_n2)7%(ml_m2)(—26) , (4.26)

ning ni+nz

which also agrees with (3.52)

momimaoam 2 m m m m l/I'n/l m
Drmomame 3(6'2):671005 1+ 26n33d2( + 2)%(n1—n2),§(m1—m2)(_2ﬁ>' (4.27)

noMnin2n3 ni+mnsa

5 Conclusion

We have constructed the infinite dimensional unitary representation of the Lorentz
group for multi-dimensional Hermite functions that form the basis of the represen-
tation space, and thus provided for the first time an explicit expression for the
transformation matrix for an arbitrary element of the Lorentz group in such a basis,
in any number of dimensions.

Even though our original motivation was rooted in the study of MHS fields, the
results obtained are, however, self-standing and could be used without reference to
the MHS formalism. In particular, our results complete those obtained in [24, 25],
and therefore might furnish a tool in studies of the relativistic harmonic oscillator in
arbitrary dimensions; the matrices (3.30) provide an overlap between wave functions
of the relativistic oscillator in the laboratory frame and any other Lorentz frame.

In section 4, we have calculated the generators of the Lorentz Lie algebra in this
representation and calculated the Casimir elements of the Lorentz group in D = 4
and the rotation group in D = 3. In the subsection 4.1, for a special case of a two
dimensional rotation, we provide a neat derivation for a finite rotation of the Hermite
basis. The derivation makes use of a related basis where the rotation generator Js is
diagonal. Such formulas are used in digital graphics to achieve accurate rotations of
two dimensional images by means of a Hermite basis expansion, as in [27, 28]. The
derivation here employs Kravchuk polynomials and makes a connection to the par-
ticular hypergeometric function representation. Takeaway message of this subsection
(and appendices) is the practicality of these quantities since they are regular for the
parameters of interest, as well as the convenience of using the Wigner d-functions to
express the result for the rotation formula as opposed to the generalized associated
Legendre functions.

In the context of field theory and the MHS formalism, we see possible applica-
tions in formulating infinite component fields, akin to [35-37]. Finally, the obtained
Lie algebra generators (4.4)-(4.5) will be beneficial in explicitly constructing the rep-
resentation of the quartic Casimir operator of the Poincaré group for an on-shell MHS
field using the little group approach. We leave this analysis to our future work.

12The factor of 2 that multiplies 8 on the right hand side of (4.25) is consistent with the fact that the
rotation of an element of the Hermite basis by 27 must be an identity, i.e. it is consistent since d/? (2m) = -1
and d'/2(47) = 1.
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A Kravchuk and Jacobi polynomials and
generalized associated Legendre functions

Here we would like to review the relation of the Wigner d-functions to Kravchuk
and Jacobi polynomials as well as to the generalized associated Legendre functions.
Kravchuk polynomials are an example of orthogonal polynomials and have been
treated extensively in mathematical texts [34], [39], [40]. They are closely related to
the perhaps more widely known Jacobi polynomials (see below). All these functions
can be represented in terms of the hypergeometric functions in various ways (some of
which are defined only for a subset of parameter space needed in physical applications).
The one we use in (4.20) and below, often used to define the Kravchuk polynomials, is
particularly useful for representing the Wigner d-functions since it is nonsingular for
the parameters of interest'3.

When relating the Wigner d-functions to other functions mentioned here it is
important to note that the Wigner d-functions are periodic, with the period of 4.
Kravchuk and Jacobi polynomials, of variable p, where p = sin? g, have a period of
27 in 8. When normalized, in a particular way (see footnote 15), they are known
as Kravchuk functions (which has a period of 47 in ) and are proportional to the
Wigner d-functions. In the case of generalized associated Legendre functions (that are
defined as functions of z = cos ) the rotation angle on one hand can be complex but
on another hand is restricted to 0 < Ref3 < 7.

The definition of the Kravchuk polynomials is

kP (2, N) = i(—l)"—i (N - x) (?)p"‘i(l -p), (A.1)

, n—1 )
1=0

13Comparing the representation (A.2) with the following one (often used to express the Jacobi polynomi-
als): kP (z, N) = P®=N=2=m) (1 _9p) = ((x+1—n)n/n!) 2F1(—n, N+ 1 —n,z+ 1 —n;p) we see that
the former avoids singularities that appear on the right hand side of the latter. E.g. for N =n =1, z =0,
the former contains the finite 2 F'1 (—1,0, —1; 1/p), whereas the latter contains the singular 2 F'1 (—1, 1, 0; p).
In that sense, (A.2) is more practical for our purposes.
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and they are related to the hypergeometric functions as'*

kP (2, N) = (—p)" (ZZ > 2F1(—n,—z,—N;1/p). (A.2)

This definition matches the definition of the Jacobi polynomials

Prga’b)(z>:Z(n—:a> (Z+2) <z;1)"_z<z;—1)z (A3

S

if we use

r=n+a, N=2n+a-+b. (A4)

In this way we get [34]
K (2, N) = Ple=nN=a-m)(1 _ gp). (4.5)

To compare these polynomials with the Wigner d-functions we express them in terms
of 5 which is related to p (or z) as follows:

1- 1
ZZ:sinQS, l-p= ;_Z:(:oszg. (A.6)

z=cosf, p=

Next, we “normalize” the Kravchuk polynomials, i.e. multiply them by P (z,N)
consisting of the square root of their weight divided by the square root of their norm
(listed in [34])'°. The resulting function (sometimes called the Kravchuk function, see
e.g. [41]) is

2B
KP(z,N) = c® (2, N) k5™ 2 (2, N) (A7)
= P (x, N) PE=mN=2=1)(cos ). (A.8)

where

1/2 —1/2 T—n N-n—x
D (x,N) = (Z) (JZ) <sin g) (cos g) (A.9)

We note that ¢’ )(x, N) has a period of 47 in 5. The Wigner d-functions are defined as

At (B) = /(L +m)(1 —m)(1 4+ m)!(1 —m)!x (A.10)

Some authors ([40], [39]) define the Kravchuk polynomials as 2 F'1 (—n, —x, —N; 1/p).

15In this step one needs to choose the branches of the square roots. An obvious choice, the one used
in (A.9) consists in taking \/p = sin g and /T —p = cos g This makes K% (z, N) proportional to the
Wigner d-functions as in (A.12) for all (real) .
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B

/ .
1)m —mts (smg cos 5

(_ 23+m/—m(
XXS: sli+m— )il —m' —s)l(s +m’ —m)!

)21—23—m’+m

and it is well known that the relation to the Jacobi polynomials reads

d o (B) = \/((l = m)Hl = m)! (sin §>m—m’ (cosg)m/+m x (A.11)

L+m)H(—m)!

% IDl(lnw:nL',m-‘rm/)(COS B)

Comparing (A.9) and (A.8) with (A.11) one gets (c.f. [34]) the relations between the
Wigner d-functions and the Kravchuk function valid for all (real) 5:

d' o (B) = (=)™ " (B) = K2 (1=, 20) (A.12)
= KO (14 m,21) = (=) " KP) (1 = m,20) = ()" KD (1 +n,20)

We show in the Appendix B how Kravchuk matrices naturally appear when construct-
ing eigenvectors and eigenvalues of the rotation operator for the 2-dimensional Hermite
basis, and use that in (4.25) to calculate the finite rotation. Here, we also mention
the generalized associated Legendre functions (see e.g. Chapter 6 of [40]). These are
related to the Jacobi polynomials in the following way

Pl (cosf) = mm (sin §>m_n (cos §>m+n X (A.13)

% ]:,l(:r:;n,'rn—&-n) (COS ﬂ)

Here, the right hand side is of the same form as (A.11), but due to the cos 3 on the
left hand side the definition (A.13) is valid only for 0 < Ref < 7. In this way, since
z = cos 3, P!, viewed as a function of z is single valued on the complex plane z. So
comparing (A.9) and (A.8) with (A.13), we see that generalized associated Legendre
functions match the Wigner d-functions only for 0 < 5 < m:

Pl (cosB) =K (1—n,20)=dpm(B), 0<B<m (A.14)
For that reason we find it more convenient to use d',, ,,(3) instead of P! (cos ) to
express the results such as (4.26).
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B Jj eigenvectors and Kravchuk polynomials

To solve (4.16) we use the following redefinition for the coefficients C’("T“)\’;’? which will
enable us to rewrite it in a simpler way.

e eiﬂ(mz—ml)/4
Cr,kl *=Neg

where r = my + ms, while & will correspond to the eigenvalue A\, with the exact
dependency to be determined. The normalization constant N, ;, does not affect (4.16).
Furthermore, we choose to work with a fixed r, and drop the msy labels since we can
express mo = 1 — Mmy.

eiﬂ(r—2m1)/4

O = Ny P (B.2)

VECmONRr —m )t "
The eigenvalue equation becomes
mi P (= my) PT — AP =0 (B.3)

Surprisingly, the solution to this equation is given by the Kravchuk matrices [42, 43].

They are defined as
= J\(N-i
N
K >:Z(_1)k(k) (l_k) (B.4)

k=0
and we can use them in the following way

P =i, = () () 5

=0

To prove that this is a solution and to find the eigenvalues, we will first rewrite the
Kravchuk matrices in terms of the Kravchuk polynomials. Since there is a connection
of the Kravchuk polynomials to the hypergeometric function, we will be able to re-
express (B.5) using the hypergeometric function. Then, we will use the known formulas
for the hypergeometric function and prove our solution.

Using (A.2) in (B.5) we set x = mq, N = my+mg =7, N —2 — mg, n — k and
p — 1/2, from which it follows

K mr) =30 (M) (T Yo (B.:6)

i=0
=(-DF2 kK (B.7)
=( 1)"2*(2) oF1(—k, —my, —1;2) (B.8)
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Therefore

r
PTTZ‘?I = <k> 2F1(7ka 7m17771;2) (BQ)

= (=1)*2%k P (my, ) . (B.10)

It is most easily seen from the equation above that the integer parameter k, due to
the binomial coefficient, can range from 0 to 7. We now use the consecutive recurrence

relation [44] for the hypergeometric functions :

(b—c¢)oF1(a,b—1,¢;2) + (¢ —2b+ (b—a)z)2F1(a,b,c; 2)
=b(z—1)2F1(a,b+1,¢;2). (B.11)

To adapt this recurrence relation to our problem, we set
z=2, a=-k, b=—-mq, ¢c=-r=—-mj—ms. (B.12)
The recurrence relation becomes

meo 2F1(7k, 7(m1 + 1), N 2) — (T‘ — Qk) 2F1(7k, —maq, —T; 2)
= —ma 2F1(—kz,—(m1 — 1),—7‘;2). (Blg)
This is now identical to the equation (B.3) with the eigenvalue A = i(2k — r). As we
have established above, the parameter k ranges from 0 to r, which means that the
eigenvalue A can, for a certain choice of r, attain values

Ar = —ir,—i(r+1),...,i(r — 1),ir. (B.14)
Finally, we choose the normalization factors N, j of Cf“kl such that:
1 r
277‘ (ml)
1 r
2k (k)

Besides solving the diagonalization problem (4.16), such C’;",gl satisfy the following
properties of orthogonality, completeness and symmetry

Oy =it k(Y (ma ) (B.15)

r

’m1:0
> Cr O = b (B.17)
k=0

Cr =CF (B.18)
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These properties are inherited from the corresponding properties of the Kravchuk
polynomials, as follows. The symmetry of the Kravchuk polynomials reads

(2t (o Y2 ) = 2 ()42 ) (B.19)

mi

It follows from the identity oF'1(—k, —mi, —7;2) = oF1(—mq, —k,—7;2) applied to
(B.8), and one can check that it implies (B.18). This property is manifest if we express
(B.15) in terms of the function 3 F

Crp = (—i)kmig=r/2 ( r >(£) oF1(—k,—my,—1;2). (B.20)

mi

The orthogonality of the Kravchuk polynomials reads (see e.g. [41])

L(ir 1 [r
Z 27( )k’(cl/Q) (ml,’f’)kl(;/z)(mh?") = 27]6 (k) 5kk’ (B21)

m
m1:0 1

and can be readily used to check (B.16). Finally, (B.17) is a consequence of (B.16)
and (B.18).

We now note that C!, are a special case for 3 = 7 of a more general function
1My
C’::;?ll,l (8) defined in (4.20). As shown in the second line of (4.20), C:ff;l/l is proportional

to the Wigner d-functions. Using one of the properties of d',,,,(3) known as Wigner’s
trick (see e.g. [45])

; o (D) espiBo)d s (<3) =dn(®  (B2)

and using (4.20) we obtain the following identity relating C”"1, (%) and C"!, (8)

T

kz_ocﬁ,;l* (g) exp(ig(% — o (g) = (6) (B.23)

25



References

[1]

2]
3]

[13]

Wigner, E.P.: On Unitary Representations of the Inhomogeneous Lorentz Group.
Annals Math. 40, 149-204 (1939) https://doi.org/10.2307/1968551

Wigner, E.P.: Relativistische Wellengleichungen. Z.Phys. 124, 665 (1948)

Bargmann, V., Wigner, E.P.: Group Theoretical Discussion of Relativistic Wave
Equations. Proc. Nat. Acad. Sci. 34, 211 (1948) https://doi.org/10.1073/pnas.
34.5.211

Bekaert, X., Boulanger, N.: The unitary representations of the Poincaré group
in any spacetime dimension. SciPost Phys. Lect. Notes 30, 1 (2021) https://doi.
org/10.21468/SciPostPhysLectNotes.30 arXiv:hep-th/0611263

Schuster, P., Toro, N.: On the Theory of Continuous-Spin Particles: Wave-
functions and Soft-Factor Scattering Amplitudes. JHEP 09, 104 (2013) https:
//doi.org/10.1007/JHEP09(2013)104 arXiv:1302.1198 [hep-th]

Schuster, P., Toro, N.: On the Theory of Continuous-Spin Particles: Helicity Cor-
respondence in Radiation and Forces. JHEP 09, 105 (2013) https://doi.org/10.
1007/JHEP09(2013)105 arXiv:1302.1577 [hep-th]

Schuster, P., Toro, N.: A Gauge Field Theory of Continuous-Spin Particles. JHEP
10, 061 (2013) https://doi.org/10.1007/JHEP10(2013)061 arXiv:1302.3225 [hep-
th]

Schuster, P., Toro, N.: Continuous-spin particle field theory with helicity corre-
spondence. Phys. Rev. D 91, 025023 (2015) https://doi.org/10.1103 /PhysRevD.
91.025023 arXiv:1404.0675 [hep-th]

Rivelles, V.O.: Remarks on a Gauge Theory for Continuous Spin Particles. Eur.
Phys. J. C 77(7), 433 (2017) https://doi.org/10.1140/epjc/s10052-017-4927-1
arXiv:1607.01316 [hep-th]

Bekaert, X., Skvortsov, E.D.: Elementary particles with continuous spin.
Int. J. Mod. Phys. A 32(23n24), 1730019 (2017) https://doi.org/10.1142/
S0217751X17300198 arXiv:1708.01030 [hep-th]

Alkalaev, K.B., Grigoriev, M.A.: Continuous spin fields of mixed-symmetry
type. JHEP 03, 030 (2018) https://doi.org/10.1007/JHEP03(2018)030
arXiv:1712.02317 [hep-th]

Buchbinder, I.L., Fedoruk, S., Isaev, A.P., Krykhtin, V.A.: Towards Lagrangian
construction for infinite half-integer spin field. Nucl. Phys. B 958, 115114 (2020)
https://doi.org/10.1016/j.nuclphysb.2020.115114 arXiv:2005.07085 [hep-th]

Schuster, P., Toro, N., Zhou, K.: Interactions of Particles with ”Continuous

26


https://doi.org/10.2307/1968551
https://doi.org/10.1073/pnas.34.5.211
https://doi.org/10.1073/pnas.34.5.211
https://doi.org/10.21468/SciPostPhysLectNotes.30
https://doi.org/10.21468/SciPostPhysLectNotes.30
https://arxiv.org/abs/hep-th/0611263
https://doi.org/10.1007/JHEP09(2013)104
https://doi.org/10.1007/JHEP09(2013)104
https://arxiv.org/abs/1302.1198
https://doi.org/10.1007/JHEP09(2013)105
https://doi.org/10.1007/JHEP09(2013)105
https://arxiv.org/abs/1302.1577
https://doi.org/10.1007/JHEP10(2013)061
https://arxiv.org/abs/1302.3225
https://doi.org/10.1103/PhysRevD.91.025023
https://doi.org/10.1103/PhysRevD.91.025023
https://arxiv.org/abs/1404.0675
https://doi.org/10.1140/epjc/s10052-017-4927-1
https://arxiv.org/abs/1607.01316
https://doi.org/10.1142/S0217751X17300198
https://doi.org/10.1142/S0217751X17300198
https://arxiv.org/abs/1708.01030
https://doi.org/10.1007/JHEP03(2018)030
https://arxiv.org/abs/1712.02317
https://doi.org/10.1016/j.nuclphysb.2020.115114
https://arxiv.org/abs/2005.07085

[22]

23]

[24]

[25]

Spin” Fields. JHEP 04, 010 (2023) https://doi.org/10.1007/JHEP04(2023)010
arXiv:2303.04816 [hep-th]

Schuster, P., Toro, N.: Quantum Electrodynamics Mediated by a Photon with
Generalized (Continuous) Spin (2023) arXiv:2308.16218 [hep-th]

Feynman, R.P., Kislinger, M., Ravndal, F.: Current matrix elements from a rela-
tivistic quark model. Phys. Rev. D 3, 27062732 (1971) https://doi.org/10.1103/
PhysRevD.3.2706

Kim, Y.S., Noz, M.E.: Covariant Harmonic Oscillators and the Quark Model.
Phys. Rev. D 8, 3521-3527 (1973) https://doi.org/10.1103/PhysRevD.8.3521

Kim, Y.S., Noz, M.E.: Integration of Dirac’s Efforts to Construct a Quantum
Mechanics Which is Lorentz-Covariant. Symmetry 12(8), 1270 (2020) https://
doi.org/10.3390/sym12081270

Bars, I.: Relativistic Harmonic Oscillator Revisited. Phys. Rev. D 79, 045009
(2009) https://doi.org/10.1103/PhysRevD.79.045009 arXiv:0810.2075 [hep-th]

Dirac, P.A.M.: Unitary representations of the lorentz group. Proceedings of the
Royal Society of London. Series A, Mathematical and Physical Sciences 183(994),
284-295 (1945)

Bonora, L., Cvitan, M., Dominis Prester, P., Giaccari, S., Pauligi¢, M.,
Stemberga, T.:. Worldline quantization of field theory, effective actions and
Lo structure. JHEP 04, 095 (2018) https://doi.org/10.1007/JHEP04(2018)095
arXiv:1802.02968 [hep-th]

Bonora, L., Cvitan, M., Dominis Prester, P., Giaccari, S., Stemberga, T.: HS in
flat spacetime. The effective action method. Eur. Phys. J. C 79(3), 258 (2019)
https://doi.org/10.1140/epjc/s10052-019-6660-4 arXiv:1811.04847 [hep-th]

Cvitan, M., Dominis Prester, P., Giaccari, S., Pauligi¢, M., Vukovi¢, I.: Gauging
the higher-spin-like symmetries by the Moyal product. JHEP 06, 144 (2021) https:
//doi.org/10.1007/JHEP06(2021)144 arXiv:2102.09254 [hep-th]

Cvitan, M., Prester, P.D., Giaccari, S.G., Pauligi¢, M., Vukovié, I.: Gauging the
Higher-Spin-Like Symmetries by the Moyal Product. II. Symmetry 13(9), 1581
(2021) https://doi.org/10.3390/sym13091581

Ruiz, M.J.: Orthogonality Relation for Covariant Harmonic Oscillator Wave
Functions. Phys. Rev. D 10, 4306 (1974) https://doi.org/10.1103/PhysRevD.10.
4306

Rotbart, F.C.: Complete Orthogonality Relations for the Covariant Har-
monic Oscillator. Phys. Rev. D 23, 3078-3080 (1981) https://doi.org/10.1103/

27


https://doi.org/10.1007/JHEP04(2023)010
https://arxiv.org/abs/2303.04816
https://arxiv.org/abs/2308.16218
https://doi.org/10.1103/PhysRevD.3.2706
https://doi.org/10.1103/PhysRevD.3.2706
https://doi.org/10.1103/PhysRevD.8.3521
https://doi.org/10.3390/sym12081270
https://doi.org/10.3390/sym12081270
https://doi.org/10.1103/PhysRevD.79.045009
https://arxiv.org/abs/0810.2075
https://doi.org/10.1007/JHEP04(2018)095
https://arxiv.org/abs/1802.02968
https://doi.org/10.1140/epjc/s10052-019-6660-4
https://arxiv.org/abs/1811.04847
https://doi.org/10.1007/JHEP06(2021)144
https://doi.org/10.1007/JHEP06(2021)144
https://arxiv.org/abs/2102.09254
https://doi.org/10.3390/sym13091581
https://doi.org/10.1103/PhysRevD.10.4306
https://doi.org/10.1103/PhysRevD.10.4306
https://doi.org/10.1103/PhysRevD.23.3078
https://doi.org/10.1103/PhysRevD.23.3078

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[37]

PhysRevD.23.3078

Park, W.: Inverse problems in structural biology and flexible needle steering.
PhD thesis, The Johns Hopkins University (2008). https://www.proquest.
com/dissertations-theses/inverse-problems-structural-biology-flexible/docview/
304614158 /se-2

Wooram Park, W.P.; Leibon, G., Rockmore, D.N., Chirikjian, G.S.: Accurate
image rotation using hermite expansions. IEEE Transactions on Image Processing
18(9), 1988-2003 (2009)

Reynolds, K.L.: Convolution, rotation, and data fusion with orthogonal expan-
sions. PhD thesis, The Johns Hopkins University (2018). https://www.proquest.
com/dissertations-theses/convolution-rotation-data-fusion-with-orthogonal /
docview /2212962501 /se-2

Grad, H.: Note on n-dimensional hermite polynomials. Communications on Pure
and Applied Mathematics 2(4), 325-330 (1949) https://doi.org/10.1002/cpa.
3160020402

Weinberg, S.: Quantum Theory of Fields, Vol. 2: Modern Applications. Cambridge
University Press, New York (1995)

Baskal, S., Kim, Y.S., Noz, M.E.: Entangled Harmonic Oscillators and Space-time
Entanglement. Symmetry 8(7), 55 (2016) https://doi.org/10.3390/sym8070055
arXiv:1607.05785 [quant-ph]

Mehler, F.G.: Ueber die Entwicklung einer Function von beliebig vielen Variabeln
nach Laplaceschen Functionen hoherer Ordnung. J. Reine Angew. Math. 66, 161—
176 (1866) https://doi.org/10.1515/crll.1866.66.161

Choquet-Bruhat, Y., Witt, C., DeWitt-Morette, C., DeWitt, C.M., Bleick, M.D.,
Dillard-Bleick, M.: Analysis, Manifolds and Physics Revised Edition. Analysis,
Manifolds and Physics. Elsevier Science, Amsterdam (1982)

Nikiforov, A.F., Uvarov, V.B., Suslov, S.K.: Classical Orthogonal Polynomials
of a Discrete Variable. Springer, Heidelberg (1991). https://doi.org/10.1007/
978-3-642-74748-9

Majorana, E.: Relativistic theory of particles with arbitrary intrinsic angular
momentum. Nuovo Cim. 9, 335-344 (1932) https://doi.org/10.1007/BF02959557

Casalbuoni, R.: Majorana and the Infinite Component Wave Equations.
PoS EMC2006, 004 (2006) https://doi.org/10.22323/1.037.0004 arXiv:hep-
th/0610252

Abers, E., Grodsky, I.T., Norton, R.E.: Diseases of Infinite-Component Field

28


https://doi.org/10.1103/PhysRevD.23.3078
https://doi.org/10.1103/PhysRevD.23.3078
https://www.proquest.com/dissertations-theses/inverse-problems-structural-biology-flexible/docview/304614158/se-2
https://www.proquest.com/dissertations-theses/inverse-problems-structural-biology-flexible/docview/304614158/se-2
https://www.proquest.com/dissertations-theses/inverse-problems-structural-biology-flexible/docview/304614158/se-2
https://www.proquest.com/dissertations-theses/convolution-rotation-data-fusion-with-orthogonal/docview/2212962501/se-2
https://www.proquest.com/dissertations-theses/convolution-rotation-data-fusion-with-orthogonal/docview/2212962501/se-2
https://www.proquest.com/dissertations-theses/convolution-rotation-data-fusion-with-orthogonal/docview/2212962501/se-2
https://doi.org/10.1002/cpa.3160020402
https://doi.org/10.1002/cpa.3160020402
https://doi.org/10.3390/sym8070055
https://arxiv.org/abs/1607.05785
https://doi.org/10.1515/crll.1866.66.161
https://doi.org/10.1007/978-3-642-74748-9
https://doi.org/10.1007/978-3-642-74748-9
https://doi.org/10.1007/BF02959557
https://doi.org/10.22323/1.037.0004
https://arxiv.org/abs/hep-th/0610252
https://arxiv.org/abs/hep-th/0610252

Theories. Phys. Rev. 159, 1222-1227 (1967) https://doi.org/10.1103/PhysRev.
159.1222

Paulisi¢, M.: Simetrije viSeg spina i bazdarni modeli. PhD thesis, University of
Rijeka (2023)

Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Poly-
nomials and Their g-Analogues. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-05014-5

Vilenkin, N.I.LA., Klimyk, A.U.: Representation of Lie Groups and Special
Functions. Kluwer, Dordrecht, Netherlands (1991)

Atakishiyev, N.M., Wolf, K.B.: Fractional fourier—kravchuk transform. J. Opt.
Soc. Am. A 14(7), 1467-1477 (1997) https://doi.org/10.1364/JOSAA.14.001467

Krawtchouk, M.: Sur une généralisation des polynomes d’hermite. Comptes
Rendus 189(620-622), 5-3 (1929)

Krawtchouk, M.: Sur la distribution des racines des polynomes orthogonaux.
Comptes Rendus 196, 739-741 (1933)

Wolfram Research, I.: Mathematical Functions Site; Hypergeometric
Function 2F1. https://functions.wolfram.com/HypergeometricFunctions/
Hypergeometric2F1,/23/01/0001/

Aubert, G.: An alternative to Wigner d-matrices for rotating real
spherical ~ harmonics. AIP  Advances 3(6), 062121 (2013) https:
//doi.org/10.1063/1.4811853 https://pubs.aip.org/aip/adv/article-
pdf/doi/10.1063/1.4811853/12848247/062121_1_online.pdf

29


https://doi.org/10.1103/PhysRev.159.1222
https://doi.org/10.1103/PhysRev.159.1222
https://doi.org/10.1007/978-3-642-05014-5
https://doi.org/10.1007/978-3-642-05014-5
https://doi.org/10.1364/JOSAA.14.001467
https://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/23/01/0001/
https://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/23/01/0001/
https://doi.org/10.1063/1.4811853
https://doi.org/10.1063/1.4811853
https://arxiv.org/abs/https://pubs.aip.org/aip/adv/article-pdf/doi/10.1063/1.4811853/12848247/062121_1_online.pdf
https://arxiv.org/abs/https://pubs.aip.org/aip/adv/article-pdf/doi/10.1063/1.4811853/12848247/062121_1_online.pdf

	Introduction
	Representing a group on a function space
	Representation of the Lorentz group on L2(RD)
	Hermite functions and the generating integral
	Generating integral for an arbitrary Lorentz transformation
	Extracting the representation matrices
	Representation matrices for boosts in D=4
	Representation matrices for rotations in D=4

	Lorentz Lie algebra in D=4
	Diagonalization of J3

	Conclusion
	Kravchuk and Jacobi polynomials and generalized associated Legendre functions
	J3 eigenvectors and Kravchuk polynomials

