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Abstract

Recent years have witnessed the prosperity of reference-
based image super-resolution (Ref-SR). By importing the
high-resolution (HR) reference images into the single im-
age super-resolution (SISR) approach, the ill-posed na-
ture of this long-standing field has been alleviated with
the assistance of texture transferred from reference images.
Although the significant improvement in quantitative and
qualitative results has verified the superiority of Ref-SR
methods, the presence of misalignment before texture trans-
fer indicates room for further performance improvement.
Existing methods tend to neglect the significance of details
in the context of comparison, therefore not fully leveraging
the information contained within low-resolution (LR) im-
ages. In this paper, we propose a Detail-Enhancing Frame-
work (DEF) for reference-based super-resolution, which in-
troduces the diffusion model to generate and enhance the
underlying detail in LR images. If corresponding parts are
present in the reference image, our method can facilitate
rigorous alignment. In cases where the reference image
lacks corresponding parts, it ensures a fundamental im-
provement while avoiding the influence of the reference im-
age. Extensive experiments demonstrate that our proposed
method achieves superior visual results while maintaining
comparable numerical outcomes.

1. Introduction

Single image super-resolution (SISR) refers to a computa-
tional imaging technique that aims to enhance the resolu-
tion and level of detail in a single low-resolution (LR) im-
age, typically achieved by estimating and generating a cor-
responding high-resolution (HR) counterpart. The essence
of SISR lies in the prediction of the pixel values for the
required additional pixels from the information present in a
single input image. Limited by the ill-posed nature of SISR,

a single LR image may generate multiple different HR im-
ages, thus resulting in the artifact and hallucination in the fi-
nal output against the only corresponding ground-truth (GT)
image. To ensure the authenticity of the super-resolution
(SR) result, it becomes imperative to incorporate supple-
mentary information within the reference images. The se-
mantic information present in reference images, including
content and texture, is crucial in restoring input images.
Besides, obtaining similar HR reference images is signifi-
cantly more feasible than acquiring strictly corresponding
HR ground-truth (GT) images. To summarize, transferring
HR textures from related but different HR reference images
to LR input images may recover a faithful result, yielding
the idea of reference-based image super-resolution (Ref-
SR).

The network architecture of Ref-SR typically comprises
the following four components: feature extraction, feature
alignment, texture transfer, and texture aggregation. Among
them, correspondence is matched between the LR image
and the reference image in the feature alignment proce-
dure, which is considered to be the most crucial component.
However, image pairs consisting of the LR image and ref-
erence image do not share the same resolution, which leads
to misalignment. To conquer the misalignment issue, recent
advancements in this procedure have shifted the research fo-
cus of spatial alignment from point-wise matching [22, 34]
to patch matching [1, 8, 13, 21, 29, 31, 33] to improve the
matching accuracy. Apart from that, in order to mitigate the
resolution gap and obtain domain-consistent image pairs,
previous methods tend to simply resize the input LR im-
age to the same resolution of the corresponding reference
image, e.g., bicubic interpolation. Lu et al.[13] choose
to downsample reference images to fit into the matching
process for the purpose of reducing computational com-
plexity. While such an approach can somewhat alleviate
the misalignment issue to some extent, it neglects the en-
hancement of details, potentially sabotaging the subsequent
image-restoration results. In cases where there are corre-
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Figure 1. In the existing Ref-SR methods, such as TTSR [31], performance often deteriorates due to misalignment. To address this issue,
we propose enhancing the fine-grained textures within images using a pre-trained diffusion model, thereby aiding the alignment process.

sponding features, mere resizing of LR images solely relies
on the pixel values in the vicinity to predict the target pixel
value, the resulting diminutive receptive field is inadequate
for the comprehensive utilization of inherent information.
Thus certain corresponding features between image pairs
cannot be accurately aligned due to the lack of abundant de-
tails during alignment. Meanwhile, specific features within
the LR image lack corresponding counterparts in the refer-
ence image, rendering them incapable of identifying aligned
patches. These unaligned features remain unchanged after
bicubic interpolation, hampering the visual quality of out-
put as a result of the lack of details. Therefore, there is still
room for improvement in the preprocessing of the LR image

due to the absence of detail enhancement in the alignment
process.

A natural idea comes up that we enhance the detail of
the LR image with generative-based models ahead of align-
ment. Within the domain of SR, prevalent generative-based
models primarily encompass two paradigms: generative ad-
versarial networks (GANs) and diffusion models. Com-
pared with GAN-based models, diffusion models [17] are
more stable and robust to various distributions of images.
Even though diffusion models exhibit ideal performance
in generating details, owing to the ill-posed nature of SR,
the intrinsic randomness of diffusion models, and the defi-
ciency in generalization capability, it is prone to generate
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artifacts.
To address the misalignment issue and the artifact issue

altogether, we first employ theoretical analysis to elucidate
the significance and positioning of details in the task of im-
age SR. Then we propose a novel framework, which we
dub, Detail-Enhancing Framework (DEF), for reference-
based methods that replace the resizing of LR images with
a pre-trained diffusion model. The modification of the
model structure compensates for inherent limitations from
both perspectives. As for Ref-based models, the introduc-
tion of diffusion models enriches the detail-wise informa-
tion within the LR images, thereby benefiting the alignment
between the LR image and reference image. In the mean-
time, to remove the artifacts, textures are transferred from
reference images to guide the output of diffusion models
as a procedure in the Ref-based model. Experiments have
been done on five benchmark datasets, including CUFED5,
Manga109, Urban100, Sun80, and WR-SR. Results demon-
strate that our proposed framework attains better visual
quality with comparable performance with state-of-the-art
methods quantitatively.

To summarize, our primary contributions are as follows:
1) We conduct an in-depth investigation into the significant
importance of detail enhancement in Ref-SR, which has
been overlooked in previous approaches. 2) We proposed
the Detail-Enhancing Framework (DEF) that introduces the
diffusion models into the Ref-SR models, which not only
facilitates a more precise alignment but also reduces arti-
facts for LR images after alignment. 3) Experimental results
demonstrate that our proposed method achieves leading vi-
sual performance while maintaining comparable numerical
fidelity.

2. Related Work
We will briefly review the historical issue of image SR in
this section. Image SR can be roughly classified into two
categories: 1) Single image super-resolution (SISR) and 2)
Reference-based Image Super-Resolution (Ref-SR).

2.1. Single Image Super-Resolution

Restoring the information of the given LR images is the pri-
mary concern of SISR methods. The emergence and pros-
perity of deep learning contribute to the progress of SISR
to a large extent. SRCNN [5] is the pioneer of applying
deep learning to SR area. Extensive research based on CNN
[9, 12, 20, 24] mostly focuses on prolonging the depth of the
network. Limited by the structure of CNN and the design
of the loss function, the visual quality of the result did not
improve. Then some researchers resorted to GAN-based
methods [10, 26, 32] and introduced perceptual loss [18]
and adversarial loss [10], which greatly enhance the per-
ceptual quality. However, GAN-based methods require a
lot of time and are hard to train, so GLEAN [2] and PULSE

[15] utilize latent-bank to reduce consumption and formu-
late specific categories of images. In the meantime, trans-
former [25] was also introduced to computer vision [6]. To
be more accurate, the implementation in the SR field in-
cludes swinSR [11] and [3], etc. Most recently, diffusion
models [16, 17] have proved to be efficient in generating
details in the SR process, which include a forward process
employed for training and a reverse process utilized for in-
ference. As generative models, diffusion models [23] share
difficulty in the training process with GAN-based models,
but the latter ones tend to suffer the threat of mode col-
lapse and posterior collapse due to the additional training
of discriminator, making the diffusion models the more sta-
ble ones.

2.2. Reference-based Image Super-Resolution

Without additional information, SISR tends to suffer the
hallucination and artifacts caused by unsubstantiated pre-
diction of pixel value. To conquer this issue, Ref-SR trans-
fers details from relevant reference images to input images.
Crossnet [34] first proposed an end-to-end CNN network
with cross-scale wrapping to achieve pixel-level alignment.
However, different images may share pixels in mismatched
areas which affects the construction of long-distance corre-
lation. Thus patch-level alignment is utilized in subsequent
methods. SRNTT [33] laid the foundation of patch-level
transferring which has proved to be more effective. TTSR
[31] inherited the cross-scale aggregation from SRNTT and
introduced transformer and attention mechanism into Ref-
SR, achieving more precise feature transfer. MASA [13]
took the potential large disparity in distributions between
the LR and reference images and computation efficiency
into consideration, raising coarse-to-fine correspondence
matching schemes, which is also adopted by AMSA [29].
Yet the correspondence matching still lacked robustness due
to the transformation gap, so C2-matching [21] brought in
contrastive learning and knowledge distillation for better
performance.

To the best of our knowledge, we find the current Ref-
SR methods failed to fully exploit the detail in input LR
images during the matching process. Brutely resizing the
LR images only narrows the resolution gap between LR
images and reference images, yet ruins the correlation be-
tween them at the detail level. Inspired by recent works
[1, 8, 21, 22], we apply Deep Convolutional Networks
(DCN) [4, 35] in our network which requires explicit edges
and contours. With the aid of our detail-enhanced input im-
ages, our approach facilitates the achievement of substan-
tially improved alignments through the utilization of DCN.
This solution effectively addresses the aforementioned chal-
lenge, offering a highly promising resolution to a significant
extent.
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3. Analysis of the Super-Resolution framework
3.1. Range-null space decomposition

The visual quality of the results of image SR has long been
a tricky issue since it is too complex to propose a well-
received metric to evaluate or improve it intentionally. Most
current methods resort to narrowing the gap between pixel
values, yielding an output characterized by a dearth of de-
tails, excessive smoothness, and a visual presentation that is
less conducive to human perception.

Inspired by [19, 28], images can be decomposed into
range-space and null-space which represent the data-
consistency and realness, respectively. In a more advanced
context, data consistency signifies the structural character-
istics of an image, while realness tends to reflect the finer
details inherent in the image. Given a noise-free image SR
model:

y = Ax (1)

where x ∈ RD×1, A ∈ Rd×D, and y ∈ Rd×1 denote the
ground-truth (GT) image, the linear degradation operator,
and the degraded image, respectively. To derive the GT x̂
from input y, two constraints have to be set to ensure the
visual quality of SR:

Consistency : Ax̂ ≡ y, Realness : x̂ ∼ q(x) (2)

Where q(x) denotes the distribution of the GT image.
By implementing Singular Value Decomposition (SVD) on
A, we can solve its pseudo-inverse A† in matrix form, and
the pseudo-inverse A† can be used to project the original
image x to the range-space of A since

AA†Ax = Ax (3)

conversely, (I−A†A) map x to null-space of A due to

A(I−A†A)x = 0 (4)

Note that any image x can be decomposed into range-
space and null-space, i.e.

x ≡ A†Ax+ (I−A†A)x (5)

3.2. Analysis of precise details generation

Due to the great success of PSNR-oriented models [13, 29,
31, 33], existing Ref-SR methods tend to focus on the con-
sistency of restored images, which is highly related to the
MSE between the input and the output, rather than realness
oriented from details of images. The negligence of detail
generation usually leads to over-smoothed results. To inves-
tigate this issue, we retrain the TTSR[31] model to evaluate
whether details can be enhanced by the aggregation of the
existing two kinds of model:

Ref-based models: current Ref-based algorithms can be
roughly divided into three parts: feature extraction, match-
ing, and fusion, in which fusion can be further decomposed
into texture transfer and texture aggregation. By matching
the most relevant patch between reference and LR images,
texture can be directly transferred from HR images to LR
images. This operation guarantees the data consistency of
the texture that has been transferred, while there are still
some drawbacks, including texture mismatch and texture
undermatch.

In a reference-based dataset, textures that are similar but
have slight differences may appear multiple times in the ref-
erence images. This can pose a challenge when trying to
accurately match the correct texture between the reference
and input images. On the other hand, reference and input
images may not share the same brightness, contrast, and
hue, etc. Simple execution including transferring texture
without any essential adjustment can be devastating to the
perceptual quality of the final output. Texture mismatch
can occur under both circumstances.

Even under circumstances where there are multiple ref-
erence images, reference images may not cover all the tex-
tures that need to be transferred to the input images. So
there could be a certain amount of unmatched textures
which results in texture undermatch.

Generative-based models: Generative models and,
more recently, Denoising Diffusion Probabilistic Models
(DDPMs) are well-known for their ability to reproduce
high-frequency details. Furthermore, in terms of recon-
struction quality, it has been observed that DDPMs ex-
hibit superior subjective perceived quality in comparison
to regression-based methods [9, 12, 20, 24], which is ideal
for refining the input images in null-space iteratively. By
applying general pre-trained weight, we can drastically re-
duce the computational complexity and acquire stable out-
put. however, as we have mentioned above, every image has
its unique distribution, which is not completely predictable
by the general pre-trained weights. In this case, generative
models tend to generate fake details.

To summarize, Ref-based models utilize similar refer-
ence images to guide the restoration of LR images, but the
detail deficiency in correspondence matching hinders the
accuracy. In contrast, the diffusion model is fully capable
of generating details, whereas specific prior information is
missing, resulting in artifacts in output. By aggregating the
Ref-based model and diffusion model, the details generated
by the latter can be utilized to enhance the correspondence
map and make up for the missing details.
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Figure 2. Detail-Enhancing Framework overview. For the input LR image, we commence by subjecting it to a diffusion process to
enhance its fine details. Subsequently, both the detail-enhanced image and the reference image undergo feature extraction through a
structurally identical network. The extracted features are aligned to obtain an index map and a confidence map, serving as the basis for the
final multi-scale aggregation process.

4. Our Approach

4.1. overview

In order to resolve the detail-enhancing issue, we pro-
pose a novel framework that inherits the main structure of
Ref-based models while introducing the diffusion model.
The whole detail-enhancing issue can be decomposed into
two subtasks: detail-generation and detail-transfer. In-
tuitively, the input images are deemed to go through the
reverse process of the diffusion model to form the essen-
tial details. Due to its low credibility, generated details are
proportionally replaced by the corresponding part of refer-
ence images, while the rest can tackle the undermatch issue
mentioned above.

For detail-generation task, instead of applying the
downsampled input images directly which compromises the
prior information severely, we upsample the input images
by a pre-trained diffusion model which is known for its abil-
ity to generate rich details, obtaining detail-enhanced input
images.

As for detail-transfer task, we follow the conventional
Ref-based SR procedure. Firstly, we conduct feature extrac-
tion on both detail-enhanced images and reference images:

FTexture = FTE(IRef, IDE) (6)

where FTexture, FTE , IRef and IDE denote the texture
feature, texture extraction module, reference images, and
detail-enhanced images, respectively. When it comes to
alignment, detail-enhanced input images are utilized to cal-
culate the similarity between reference images and input
images. The challenge associated with accurately comput-
ing the correspondence map is effectively alleviated by sub-
stituting detail-deficient input images with detail-enhanced
input images. Finally, we use multi-scale aggregation mod-
ule FMSA to obtain the final result ISR from the feature of
the post-transferred image FDE and the feature of the ref-
erence image FRef :

ISR = FMSA(FRef ,FDE) (7)

4.2. detail enhancement

In contrast to the traditional Ref-SR framework, wherein
feature extraction is initiated from both LR images and
reference images from the outset, DEF introduces a novel
paradigm by integrating a diffusion model as an initial step
in the enhancement process. By decomposing the images
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under consideration into distinct range-space and null-space
components as in (5), our method prioritizes the enhance-
ment of image details by directing primary attention to-
ward the null-space component. We use a simple down-
sample operator A to extract the null-space information
(I−A†A)x. Note that the extracted information is under
the surveillance of the data consistency constraint we men-
tioned in (2):

Ax̂ = AA†y +A(I−A†A)xn = y + (A−A)xn = y
(8)

where xn denotes the null-space information separated
from the images.

The operation of extracting null-space information is
performed at each step during the reverse process of the
diffusion model, which entails progressively recovering the
image from pure Gaussian noise. At timestep t in the reverse
process, the current noisy image xt undergoes a denoising
operation, yielding a clean image x0|t . Then, a weaker
noise is added to it to obtain the next noisy image xt−1.
This iterative procedure continues until the final result x0 is
obtained. Instead of utilizing x0|t directly, we first decom-
pose the x0|t into null-space information (I−A†A)x0|t
and range-space information A†Ax0|t . Then we replace
the range-space information of x0|t with y to achieve a
higher data consistency. Finally, a weaker noise is added
to the combination of A†y and (I−A†A)x0|t .

Subsequent to the iterative refinement of the null-space
information within the diffusion model, we derive the final
output by:

x̂ = A†y + (I−A†A)xn (9)

Different from other generative models, the output of dif-
fusion models encounter rigorous constraint on image size.
To evaluate our method on datasets with arbitrary image
size, inspired by patch-wise methodologies, we cut the im-
ages into patches that meet the requirement of image size
limitations and input them into diffusion models. A logi-
cal approach that emerges involves partitioning the images
into distinct patches and subsequently concatenating them
during the post-processing stage. For example, if we have
an image with the size of 128*256, we can cut it into two
128*128 divisions which satisfy the input demand of the
diffusion model. But this will bring significant block arti-
facts between each division.

To conquer the question above, instead of dividing
the image into unrelated patches, we take the above ex-
ample and cut the 128*256 image into four 128*64 di-
vision [y(0),y(1),y(2),y(3)]. For the i-th turn we take
[y

(i)
i ,y

(i+1)
i ] as input and utilize diffusion model to get SR

result x. Then we further divide it into [x
(i)
i ,x

(i+1)
i ]. It is

obvious that x(i+1)
i and x

(i+1)
i+1 which represent the i-th and

(i+1)-th output of same region overlap in the final concate-

nation, so we replace the i-th output with (i + 1)-th output
to ensure the coherent between each division.

4.3. feature extraction and alignment

To achieve precise alignment between input images IDE ∈
RH×W×3 and reference images IRef ∈ RH

′
×W

′
×3, fea-

ture of both images must be extracted. By slicing the pre-
trained classification model into multiple parts, we calculate
the multi-scale feature of detail-enhanced images and refer-
ence images, i.e.,

Fs
DE = FTE(IDE),F

s
Ref = FTE(IRef) (10)

where Fs
DE and Fs

Ref are feature encoders at the s-th scale.
Previous methods tend to preprocess the reference images
by downsampling and then upsampling to match the fre-
quency band. Since the diffusion model alleviates the res-
olution gap and reproduces rich details in the input LR im-
ages, upsampling is unnecessary.

The accuracy of alignment lies in the computation of
similarity between corresponding patches. Cosine similar-
ity is the most common metric for doing so. We first un-
fold Fs

DE and Fs
Ref into patches Fs

DE

′
= [q1, ..., qHW ] and

Fs
Ref

′
= [k1, ..., kH′W ′ ], then we evaluate the relevance de-

gree ri,j by calculating the inner product of elements in
Fs

DE

′
and Fs

Ref
′
:

ri,j =

〈
qi

∥qi∥
,

kj

∥kj∥

〉
(11)

As for the i-th element in Fs
DE

′
, index map Pi and con-

fidence map Ci can be obtained by:

Pi = argmax
j

ri,j , Ci = max
j

ri.j (12)

which represents the position in reference images to be
transferred and the relevance degree it holds.

4.4. texture transfer and integration

Current Ref-SR methods encounter a pronounced decline in
performance attributed to the prevalent problem of texture
mismatch, as discussed in Sec.3.2. This issue encompasses
not only errors arising from the alignment procedure but
also inherent deficiencies in the conventional design of con-
volution. Unlike regular convolution kernels, the shape of
textures to be transferred may not be concrete, which leads
to inaccurate mapping. To address this issue, we employ
the deformable convolution network (DCN) [21] with an
adjustable receptive field. Given the position pi in input im-
ages, the correspondence position pki in index map Pi and
the confidence cki of transferred texture in confidence map
Ci acquired in the alignment section can be utilized to cal-
culate l-th scale feature Ti

l in this position:

Ti
l = cki

∑
j
wjF

l
ref (p

k
i + pc +∆pj)mj (13)
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Where wj denotes the convolution kernel weight, pc ∈
{(−1, 1), (−1, 0), , , , , (1, 1)}, ∆pj and mj denote the j-
th learnable offset and learnable mask, respectively. After
warping Fl

Ref and l-th scale index map Pl, ∆pj and mj can
be learned by implementing convolution on the warping re-
sult wl and l-th scale feature extracted from IDE .

Finally, the multi-scale transferred feature needs to be in-
tegrated to output the SR images. Here, we inherit the cross-
scale integration module proposed by TTSR [31] which ag-
gregates textures from lower scale to upper scale step by
step. Specifically, this module exhibits ideal performance in
terms of information utilization which satisfies our claims.

4.5. Implementation details

The overview network can be decomposed into two sec-
tions: 1) The diffusion model which is in charge of the SISR
subtask. 2) The Ref-SR architecture which includes texture
extraction and transfer.

Dataset Preprocessing. We augment the datasets by
randomly rotating images within the range of 0 to 360 de-
grees with intervals of 90 degrees and randomly flipping
images horizontally and vertically.

Implementation of Diffusion Model. We use the bicu-
bic downsampler as the degradation operator to ensure fair
comparisons. As for noise schedule and input image con-
straint, we choose linear noise schedule and 256*256 pre-
trained model. To achieve a fine-grained diffusion process
during training, we set the time step to 1,000. We avoided
other time-step evaluations as they would affect compa-
rability. The linear noise schedule has the endpoints of
1− α0 = 10−6 and 1− αT = 10−2.

Training of Texture Transfer Network. For fair com-
parison, we train DEF on the scale of 4x, and feature ex-
tractors share the same architecture. More specifically, we
train our network using Adam optimizer with parameter
β1 = 0.9 and β2 = 0.999. The learning rate is set as 1e-4,
and the batch size is 9, which contains 9 LR, HR, and ref-
erence images in each batch. Note that the weight of the
given extractor should be fixed, since the comparison af-
terward needs to be stable, and a changeable extractor can
affect the performance of correspondence matching.

Loss Function. Given the focal point of our approach
on enhancing the visual quality of the reconstructed im-
age, coupled with the inherent emphasis on preserving in-
tricate details through the utilization of spatial structure and
semantic information of images, it becomes imperative to
introduce reconstruction loss as an indispensable element,
meticulously guiding the training process at its fundamen-
tal essence. To enhance the detail of SR images, perceptual
loss, and adversarial loss are also introduced, so the overall
loss function is written as:

L = Lrec + λ1Lper + λ2Ladv (14)

To allocate greater emphasis on detail, we set weight co-
efficients of Lrec, Lper and Ladv as 1, 1e-2 and 1e-4, re-
spectively. Reconstruction loss is the only loss involved in
the training process of the first two epochs for warming up
the network while perceptual loss and adversarial loss are
added in the following epochs to the end.

5. Experiments
5.1. Dataset and metrics

Training Dataset. The entire training process of our model
is completed on the CUFED5 [27] dataset, which consists
of 11871 pairs of images, including an input image and a
reference image for each pair. Since the resolution of both
input and reference images is 160x160, we resize the im-
ages in the input folder to 40x40 for the upcoming x4 SR.

Testing Dataset. To demonstrate the generalization
ability of our network, we adopt five test sets, including
CUFED5 [27], Sun80 [23], Urban100 [7], Manga109 [14]
and WR-SR [21]. The test set of CUFED5 has 126 images,
each image has 4 reference images with different similarity
scales. Proposed by Shim et al. [21], WR-SR has 80 pairs
of images, each containing an input image and a reference
image. The source of reference images is the most relevant
search result of Google. Sun80 [23] also has 80 natural im-
ages, each paired with multiple reference images. Urban100
has 100 building images and Manga109 has 109 manga im-
ages in which style is shared in most images. They are SISR
datasets which have no reference image, thus we follow set-
tings in [31]: Urban100 adopts its LR images as reference,
while in Manga109 we randomly select another HR image
as its reference.

Evaluation Metrics. We evaluate the outcomes
achieved by both our proposed approach and alternative
methods through the application of PSNR and SSIM met-
rics. For a more comprehensive review of these metrics,
readers could refer to [30]. Specifically, these metrics are
computed on the luminance (Y) channel of the YCrCb color
space.

5.2. Comparison with State-of-the-art Methods

We compare our method with the previous state-of-the-art
SISR methods and the single-reference Ref-SR method.
SISR methods include SRCNN, EDSR, ESRGAN, and
RankSRGAN, in which half of the methods we select are
Gan-based due to their strong ability to generate rich details.
Single-reference Ref-SR methods include SRNTT, TTSR,
MASA, and C2-matching.

Quantitative Comparison. For a fair comparison, we
train all the candidate methods on the CUFED5 dataset
and evaluate them on the testsets of CUFED5, Manga109,
Sun80, Urban100, and WR-SR. The scale factor of all men-
tioned methods is x4. Tab. 1 indicates that our methods
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Table 1. Quantitative comparisons (PSNR and SSIM) of SR models

Method CUFED5 WR-SR Urban100 Manga109 Sun80
SRCNN 25.33/0.745 27.37/0.767 24.41/0.738 27.12/0.850 28.26/0.781
EDSR 25.93/0.777 28.07/0.793 25.51/0.783 28.93/0.891 28.52/0.792

ESRGAN 21.90/0.633 26.07/0.726 20.91/0.620 23.53/0.797 24.18/0.651
SISR

RankSRGAN 22.31/0.635 26.15/0.719 21.47/0.624 25.04/0.803 25.60/0.667
SRNTT 25.61/0.764 26.53/0.745 25.09/0.774 27.54/0.862 27.59/0.756
TTSR 25.53/0.765 26.83/0.762 24.62/0.747 28.70/0.886 28.59/0.774
MASA 24.92/0.729 23.78/0.712 27.34/0.848 27.12/0.708

C2-matcing 27.16/0.805 27.80/0.780 25.52/0.764 29.73/0.893 29.75/0.799
Ref-SR

OURS 27.47/0.826 27.60/0.777 25.92/0.780 30.21/0.893 29.77/0.800

Figure 3. Visual comparison with other methods. We zoom in on the key areas for a better view.
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outperform most of the previous state-of-the-art methods
and achieve comparable performance against C2-matching
on the WR-SR dataset, which emphasizes the superiority of
the unique detail-generating structure we propose in the fea-
ture alignment and aggregation process. However, numer-
ical inferiority does not necessarily imply a lack of detail.
As previously mentioned, image restoration can be divided
into two components: range-space and null-space. Numeri-
cal metrics primarily correspond to the range-space aspect,
which is not the main focus of our proposed approach. The
WR-SR dataset consists of 150 images selected from an-
other dataset and website, serving as query images to re-
trieve 50 similar images from Google Images. Furthermore,
these similar images undergo size normalization, resulting
in 80 pairs of image sets. The normalization process un-
doubtedly compromises the details in the reference images,
further affecting subsequent alignment procedures. Addi-
tionally, images sourced online exhibit differences in var-
ious aspects, such as lighting and contrast, making them
more suitable for C2-matching due to their robustness un-
der different conditions.

Qualitative Evaluation. Fig. 3 shows the visual results
of our method, a SISR method, and previous state-of-the-art
Ref-SR methods. We compare our method with ESRGAN,
TTSR, MASA, and C2-matching. By comparing the se-
lected part of the result from the same input LR image, it
is obvious that our method can restore more accurate detail
in various aspects. The first row of Fig. 3 focuses on the
synthesis of natural human faces, while the focal point of
the second and third rows are the recovery of letters and ob-
ject textures. ESRGAN’s incapacity to thoroughly exploit
information from reference images results in its failure to
generate reliable details. TTSR, MASA, and C2-matching
can not fully utilize the information in reference images due
to their detail-wise gap between input LR images and refer-
ence images, which in turn hamper the alignment and trans-
fer procedure. For Ref-based methods, detail-enhanced in-
put images smooth the edge of objects, which makes the
alignment more accurate in the feature domain, thus rein-
forcing the transfer and integration procedure, exhibiting a
higher visual quality image in the end.

Alleviation to the texture mismatch and texture un-
dermatch issues. From the images in the first row, it can be
observed that the reference images contain more faces than
the images to be restored, and in the fourth image, the light-
ing conditions between the two images are dissimilar. In
previous Ref-SR methods, this could easily lead to texture
mismatch issues, ultimately resulting in distorted recovered
information. However, it can be noted that through the pre-
enhancement of fine details in the LR images, the accu-
racy of the final alignment is significantly improved, lead-
ing to more satisfactory restoration results. Additionally, in
the first image, the background behind the individuals and

Table 2. Quantitative evaluation for ablation study of the
decouple framework.

Method DEF DCN PSNR SSIM
Base 25.53 0.765

Base + DEF ✓ 27.37 0.816
Base + DCN ✓ 27.39 0.819

Base + DCN + DEF ✓ ✓ 27.47 0.826

the light tube in the last image does not have correspond-
ing parts in the reference images to assist in the recovery
of the original image. This presents a challenge related to
texture undermatch. Similarly, following the enhancement
of details in the LR images, regions that originally lacked
corresponding HR information have also been partially re-
constructed, ensuring an enhancement in the overall image
restoration performance.

5.3. Ablation study

In this section, we conduct an ablation study to validate the
effectiveness of our improvements on the baseline. Includ-
ing detail-enhancing framework and feature transfer mod-
ule.

5.3.1 Detail-enhancing framework

Instead of resizing the input LR images simplistically, our
detail-enhancing framework alleviates the resolution gap by
applying a diffusion model before feature extraction. We
re-implement TTSR as our baseline. Ablation results are
shown in Tab. 2. The table reveals a substantial increase
in both PSNR and SSIM values, exceeding 2dB. Previous
methods usually upsample the LR image by bicubic inter-
polation, which exploits the surrounding 16 pixels to gen-
erate a target pixel value, matching the resolution between
input images and reference images. Though the basic align-
ment requirement has been satisfied, the over-smooth im-
age tends to produce artifacts in the final output. Results
demonstrate that DEF outperforms the baseline by a large
margin, verifying the feasibility of detail-enhancing tasks
in the alignment and transfer section.

5.3.2 Feature transfer module

Due to the preprocess of reference images to obtain domain-
consistent images between reference images and LR im-
ages, the baseline adopts transformer for alignment. To pre-
serve the detail in reference images, we keep the original
reference images, thus the transformer structure is unnec-
essary. We adopt relevance embedding in acquiring index
map, and then according to the index, we upgrade the con-
volution networks to the deformable convolution networks,
strengthening its robustness to irregular texture transfer.
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The statistic in Tab. 2 exhibits significant improvement in
performance in PSNR. Since detail has been sabotaged in
the preprocessing of reference images, the enhancement of
SSIM is limited.

6. Conclusion
In this paper, we propose a novel detail-enhancing frame-
work to alleviate the hamper to reconstruction quality by
the ill-posed nature of SR. Based on the theoretical analy-
sis, we set two criteria in an ideal SR model to guarantee the
realness and data consistency of the SR image. Specifically,
we decompose the image and refine the partial content iter-
atively in DEF with the assistance of the diffusion model.
By implementing the new framework, we are able to gen-
erate rich details in LR images and resolve the mismatch
and undermatch issues in the feature alignment stage. Fur-
thermore, the deformable convolution network is utilized to
accomplish a more precise feature transfer between detail-
enhanced LR images and reference images. Experiment re-
sults, especially qualitative results, demonstrate the feasi-
bility of our proposed framework in optimizing the current
Ref-SR structure.
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