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Abstract

Being the fountainhead of transverse distortion and asymmetries in accordance to “S S A = GPD ∗FS I ”,

we study the spin flip generalized parton distribution. We demonstrate this transverse deformation by using

the quark-scalar diquark model and unveil a comparison among the low-lying strange baryons for distinct

feasible combinations of quark-diquark pairs. Final-state interaction originating the correlation of a target

spin and a virtual photon to the generated pion plane in semi-inclusive deep inelastic scattering has also

been analyzed.

I. INTRODUCTION

Several groups within the hadron physics community are making significant progress in an-

swering the questions related to the building blocks of our universe such as genesis of nucleon

mass [1–4], spin [5, 6], nucleon interactions [7, 8] and the tomographic imaging of constituent

partons (quarks and gluons) inside nucleons [9–12] with the baseline of quantum chromodynam-

ics (QCD). Three-dimensional (3D) mapping of an internal structure of these nucleons and nucleon

like structures such as baryons can be unwound theoretically by employing distribution functions

[13]. Hadron structure study has been upgraded from one-dimensional (1D) structure function in

terms of collinear parton distribution functions (PDFs) [14] to the multi-dimensional portraits [15]

in terms of generalized parton distributions (GPDs) [16] and transverse momentum-dependent

distributions (TMDs) [17]. Experimentally, GPDs can be computed via deeply virtual Compton

scattering (DVCS) [18] which is similar to the traditional Compton scattering with the replace-

ment of a real photon by a virtual photon to scatter off a target hadron X with the production of a

real photon. If a meson is produced instead of a real photon, then this scattering process is coined

as deeply virtual meson production (DVMP) [19, 20]. On the other hand, TMDs correlate the

transverse momentum and the polarizations of the constituent partons and hadrons illustrating a

unique perspective on 3D tomography of a hadron [21]. These TMDs measurements can be made

from the semi-inclusive deep inelastic scattering (SIDIS) experiments [22, 23].

GPDs are the matrix elements of the non-local light-cone operators [24]. An inherent physical

picture of hadrons can be prevailed in both momentum as well as impact parameter space [25, 26].
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Chiral even GPDs for purely transverse momentum transfer, Hq
X(x, 0, t) and Eq

X(x, 0, t) have deep

pockets and can be used to explore the Dirac and Pauli form factors [27]. In the forward limit,

they can reduce to PDFs [28], charge distribution [29], magnetization densities [30] etc. GPDs in

impact parameter space illustrate the spatial distribution of partons in the plane transverse to the

momentum of a fast moving hadron [31]. The spin flip matrix element of GPDs Eq
X(x, 0, t) carries

substantial information about the asymmetries. The physical significance of this spin flip GPD

in the infinite momentum frame can be understood in terms of the distorted partonic distributions

of q flavored quarks in the transverse plane when the target state is transversely polarized. The

fountainhead of this distortion is the existence of a non zero spin flip GPD [32]. This mechanism

predicts a left-right asymmetry that shows the presence of single-spin asymmetry (SSA) as it is

connected to the GPDs by the relation “S S A = GPD ∗ FS I ” as demonstrated in Ref. [33] for a

scalar diquark model where FSI corresponds to final-state interaction.

The experimental observation of HERMES [34] and SMC [35] collaborations have shown a

significant amount of correlation between the spin of a target proton and the virtual photon to

the generated pion plane in SIDIS with large virtuality as large as Q2 = 6 GeV2. This observa-

tion inspired the theoretical physicists to unfurl the fundamental concepts behind this correlation.

SSA is time reversal odd and arises in QCD via phase difference in the different amplitudes of

spin. In order to observe the correlation of hadron target spin and the virtual photon to hadron

production plane, there must be two hadron spin amplitudes M[γ∗X(Jz) → F] with total spin

Jz = ⇑ / ⇓ which couple to the same final state, however, with different complex phases. These

correlations are directly connected to the imaginary part of the product of these amplitudes as

(M[Jz = ⇑]∗M[Jz = ⇓]). Therefore, to analyze this SSA, understanding of QCD at amplitude level

is necessary. Both initial-state interaction (ISI) [36] as well as FSI [37] in gauge theory can be

employed to demonstrate this mechanism. It has been shown in Ref. [38] that, at leading twist in

perturbative QCD, the FSI with gluon exchange between an outgoing quark q and the spectator n

leads to SSA in deep inelastic lepton-proton scattering.

GPDs, TMDs and the related physical observables that can be extracted from these distributions

have been extensively explored to scrutinize the internal structure of nucleons not only at leading

twist but also for higher twists [39–41]. These nucleons have spin-parity quantum number, JP = 1
2
+

and in accordance to group theory, they belong to a baryon octet in which nucleons are the isospin

companions with light up u and down d flavor of quarks. Other members of octet baryon such

as Λ, isospin companions Σ and Ξ with same spin-parity quantum number have a comparatively
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heavier strange s flavor of quark. Due to the presence of this s flavor of quark, their lifetimes are

very small and it becomes difficult to access them in the experimental scattering processes. In this

present work, we will analyze the amount of transverse distortion and SSA corresponding to each

constituent flavor of quarks in strange baryons to unveil its mass effect in the scalar diquark model.

A QCD inspired scalar diquark model of a hadron represents a simplistic view of an active

quark and a spectator of diquark. Electromagnetic form factors have been studied in this model

and the results are in good agreement with experimental data [42]. Along with this, the distribution

functions such as GPDs, charge densities [29] and angular momentum [43] have also been inves-

tigated successfully with simple scalar diquark model. This model contains the tree and one-loop

amplitudes required for SSA and have all the Lorentz symmetries as the light-front wavefunc-

tions (LFWFs) attributed to quarks along with FSI are formulated perturbatively. Because of this

feature, the representation of the Wilson line becomes crucial as the phase factor in Wilson line ex-

plains the FSI in SIDIS [44]. Basically, Wilson line phase factor for an active quark demonstrates

the phase factor of a propagator when an active quark leaves its parent hadron and this phase factor

is not invariant under time-reversal as a consequence of which asymmetry pop up [33]. We have

adopted the scalar diquark model to present the qualitative analysis of trannsverse distortiona and

SSA among low-lying octet baryons.

The present paper is organized as follows. Section II comprises the description of the scalar

diquark model. All the necessary feeds required to do the calculations have been presented in

Section III followed by discussion over the transverse distortion of strange baryons in Section IV.

Further, comparative analyzes of the azimuthal transverse and longitudinal SSAs are illustrated

and discussed in SectionV. We conclude our outcomes in Section VI.

II. SCALAR DIQUARK MODEL

An invariant mass square is the eigenvalue of an invariant light-cone Hamiltonian, HQCD
LC =

P+P− − P2
⊥ with a hadron as an eigenstate. Here, P+ and P⊥ are the momentum generators which

are kinematical quantities as they do not vary with an interaction. On the other hand, P− is the

generator that governs the light-front time translations. The composition of a hadron can be de-

scribed by its wavefunction in terms of the momenta and spin projection of the building blocks of

the hadron. So, the eigensolution of a baryon, projected on its color singlet eigenstate |N⟩ of the
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free Hamiltonian HQCD
LC at fixed light-cone time τ = t + z/c [45], can be written as [46]

|ψX(P+,P⊥)⟩ =
∑
N

N∏
i=1

dx d2k⊥i

2(2π)3√xi
16π3 δ

(
1 −

N∑
i=1

xi

)
δ(2)
( N∑

i=1

k⊥i

)
× ψN (xi,k⊥i, λi)|N ; xiP+, xiP⊥ + k⊥i, λi⟩ , (1)

where k⊥i and λi symbolize the light-cone intrinsic transverse momentum and helicity carried by

an ith component of a hadron respectively. xi = k+i /P
+ is its longitudinal light-front momentum

fraction. We have adopted the light-cone gauge, A+ = 0. The LFWFs ψN/X are free from the

dependence of hadron’s momenta, P+ and P⊥ which project the hadron state on the Fock state

|N⟩. The LFWF of a hadron corresponding to each Fock-state with total spin Jz is represented by

ψJzX
N

(xi,k⊥i, λi) with

ki = (k+i , k
−
i ,k⊥i) =

(
xiP+,

k2
⊥i + m2

i

xiP+
,k⊥i

)
. (2)

The states are normalized as

⟨N ; p′+i ,p
′
⊥i, λ

′
i |N ; p+i ,p⊥i, λi⟩ =

N∏
i=1

16π3 p+i δ(p′+i − p+i ) δ(2)(p′⊥i − p⊥i) δλi
′λi . (3)

Based on one-loop quantum fluctuations of the Yukawa theory [47], there are two possible spin

combinations for the two particle Fock state. For a hadron with Jz = ⇑ it can be written as

|ψ⇑X
2particle(P

+,P⊥ = 0⊥)⟩ =
∫

dx d2k⊥i

2(2π)3
√

x(1 − x)

[
ψ⇑X
+ 1

2
(x,k⊥)

∣∣∣∣∣ + 1
2

; xP+,k⊥
〉

+

[
ψ⇑X
− 1

2
(x,k⊥)

∣∣∣∣∣ − 1
2

; xP+,k⊥
〉]
, (4)

where

ψ⇑X
+ 1

2
(x,k⊥) =

(
MX +

mq

x

)
φX ,

ψ⇑X
− 1

2
(x,k⊥) = −

(k1 + ιk2)
x

φX . (5)

Similarly, corresponding to Jz = ⇓ hadron, the two particle Fock state is given by

|ψ⇓X
2particle(P

+,P⊥ = 0⊥)⟩ =
∫

dx d2k⊥i

2(2π)3
√

x(1 − x)

[
ψ⇓X
+ 1

2
(x,k⊥)

∣∣∣∣∣ + 1
2

; xP+,k⊥
〉

+

[
ψ⇓X
− 1

2
(x,k⊥)

∣∣∣∣∣ − 1
2

; xP+,k⊥
〉]
, (6)

where

ψ⇓X
+ 1

2
(x,k⊥) =

(k1 − ιk2)
x

φX ,

ψ⇓X
− 1

2
(x,k⊥) =

(
MX +

mq

x

)
φX . (7)

5



The scalar part φ has the form

φX = φX(x,k⊥) =
g
√

1−x

M2
X −

k2
⊥+m2

q

x −
k2
⊥+µ

2
n

1−x

. (8)

With the help of Fourier transformation, momentum space can be swapped to the impact parameter

space as

ψ(x,b⊥) =
1

1 − x

∫
d2k⊥
4π2 e

i k⊥·b⊥
1−x ψ(x,k⊥) , (9)

where b⊥ = b⊥(cos ϕb, sin ϕb). By employing this transformation, we have [43]

ψ⇑X
+ 1

2
(x,b⊥) = −

g
2π

xMX + mq
√

1 − x
K0(Z) , (10)

ψ⇑X
− 1

2
(x,b⊥) =

ig
2π

√
Mun

X (x)eiϕb

√
1 − x

K1(Z) , (11)

ψ⇓X
+ 1

2
(x,b⊥) =

−ig
2π

√
Mun

X (x)e−iϕb

√
1 − x

K1(Z), (12)

ψ⇓X
− 1

2
(x,b⊥) = −

g
2π

xMX + mq
√

1 − x
K0(Z) , (13)

where

Z =

√
Mun

X (x)|b⊥|
1 − x

, (14)

Mun
X (x) = m2

q(1 − x) + µ2
nx − M2

X x(1 − x) , (15)

and Kp is the pth order modified Bessel function of the second kind.

III. NUMERICAL PARAMETERS

The calculations performed to study the transverse distortion and SSA have MX, mq and µn as

the input parameters which respectively denote the masses of baryons, quarks and diquarks under

consideration. Following the particle data group and Ref. [27], we have tabulated the values of

these parameters in Table I and II. Along with these input parameters, we have CF and αs which

symbolize the color factor and coupling constant respectively. Their values are considered to be
4
3 and 0.3 respectively [38]. Contour plots of transverse distortion are in the units of g2

4π . For

convenience, we have treated u and d quarks alike as a result of which outcomes for Σ+ and Σo do

not show noteworthy dissimilarities and Σ (=Σ+=Σo).
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Particle (X) Λ Σ+ Σo Ξo

Mass, MX (GeV) 1.115 1.189 1.192 1.314

Table I. Masses of strange baryons used in the present calculations.

Quark flavor u/d s uu/ud us/ds ss

Mass (GeV) 0.33 0.48 0.80 0.95 1.10

Table II. Masses of quark flavors and their combinations used in the present calculations.

IV. TRANSVERSE DISTORTION OF THE PARTON DISTRIBUTIONS

A comprehensive illustration of the microscopic structure of a baryon in terms of its constituent

quarks can be obtained via GPDs. The distributions of GPDs are categorized as chiral even and

chiral odd based on chiral symmetry concept. Among chiral even GPDs, there are Hq
X(x, 0, t) and

Eq
X(x, 0, t) GPDs which do not depend on an active quark helicity. GPD Hq

X(x, 0, t) conserves the

baryon helicity, describes the distribution of an unpolarized quarks inside an unpolarized baryon

and is labeled as “unpolarized GPD”. Whereas GPD Eq
X(x, 0, t) involves baryon flip helicity, de-

scription of a transversely polarized quark distribution inside an unpolarized baryon and is labeled

as “transversely polarized GPD”. These quark helicity independent, chiral even GPDs can be

obtained from the matrix elements of the bilinear vector currents as [48]

1
2

∫
dy−

2π
eixP+y−

〈
P′
∣∣∣∣∣ψ̄(−y

2

)
γ+ ψ
(y
2

)∣∣∣∣∣P〉∣∣∣∣∣
y+=0,y⊥=0

=
1

2P̄+
ū(P′)

[
Hq

X(x, 0, t) γ+ + Eq
X(x, 0, t)

iσ+α(−∆α)
2MX

]
u(P) . (16)

Here, P̄ denotes the average momentum of the initial and final state of a baryon with u(P) and

ū(P′) as the light-cone spinors of the initial and final baryons. For a transversely polarized target,

whenever a spin-flip GPD exists, a distortion in the parton distributions of quarks is observed. To

develop an interpretation of these distortions, one has to consider amplitudes where the baryon

and/or quark helicity flips. Therefore, we have considered Eq
X(x, ζ = 0, t) which corresponds to the

helicity flip amplitude of a baryon. To investigate the density interpretation of the Eq
X(x, ζ = 0, t),

consider a state that is polarized in the y-direction in the infinite momentum frame. We have

|Y⟩ =
1
√

2

[
|p+,R⊥ = 0⊥, ↑⟩ + i |p+,R⊥ = 0⊥, ↓⟩

]
, (17)
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where

|p+,R⊥ = 0⊥, λ⟩ = N
∫

d2p⊥|p+,p⊥, λ⟩ . (18)

By employing the Fourier transformation on GPDs, obtained from Eq. (16), the unpolarized quark

distribution for the above defined state can be written in terms of the impact parameter space

coordinates as

qXq

ŷ (x,b⊥) =
∫

d2∆⊥

(2π)2 ei∆⊥·b⊥
[
Hq

X(x, 0, t) + i
∆x
⊥

2MX
Eq

X(x, 0, t)
]

= H
q
X(x,b⊥) +

1
2MX

∂

∂bxE
q
X(x,b⊥) . (19)

Using the LFWFs expressed in the impact parameter space, the unpolaized chiral-even GPDs can

be written as follows

H
q
X(x,b⊥) =

1
2(2π)

[∣∣∣ψ↑X
+ 1

2
(x,b⊥)

∣∣∣2 + ∣∣∣ψ↑X
− 1

2
(x,b⊥)

∣∣∣|2] , (20)

−
1
2

(
i
∂

∂bx +
∂

∂by

)
E

q
X(x,b⊥) =

1
2(2π)

[
ψ↑∗X
+ 1

2
(x,b⊥)ψ↓X

+ 1
2
(x,b⊥) + ψ↑∗X

− 1
2

(x,b⊥)ψ↓X
− 1

2
(x,b⊥)

]
. (21)

The explicit expression of these GPDs, on substituting the values of LFWFs, come out to be

H
q
X(x,b⊥) =

g2

16π3(1 − x)

[
(xMX + mq)2[Ko(Z)]2 +Mun

X (x)[K1(Z)]2
]
, (22)

E
q
X(x,b⊥) =

g2

16π3 2MX(xMX + mq)2[Ko(Z)]2 . (23)

Transverse distortion observed for each constituent flavors of quark in strange baryons are pre-

sented in Figs. 1-6 for different values of x (0.2, 0.4, 0.6 and 0.8). In context to corporeal picture

of Eq. (19), left side distortion in the parton distribution has been observed for a transversely

polarized baryon moving with high momentum. Both GPDsHq
X(x,b⊥) and Eq

X(x,b⊥) are positive

smooth functions of |b⊥|. The bx-derivative of the positive function of Eq
X(x,b⊥) gives a positive

value for negative bx and a negative value for positive bx. Therefore, on adding Hq
X(x,b⊥) to bx-

derivative of Eq
X(x,b⊥), shifting effect in the parton distribution is obvious. This shifting effect

can also be viewed from a semi-classical window in which the superposition of translatory and

orbital motion of the quarks gives rise to the distortion when a baryon is transversely polarized

with respect to the motion of a baryon. For a baryon accelerated in the z-direction, spin and orbital

angular momentum are parallel to each other but directed in perpendicular direction with respect

to motion of a baryon. This orientation adds up an orbital motion to the momentum towards the
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Figure 1. (Color online) Transverse distortion for u quark flavor in Λ for longitudinal momentum fraction

x = 0.2, 0.4, 0.6 and 0.8 respectively.

right side of the baryon whereas it gets subtracted from the left side. It implies that quarks on

the right side get elevated to large momentum fraction x whereas left side quarks deaccelerated to

small momentum fraction x. Acceleration and deacceleration gets reversed if the spin and orbital

angular momentum become anti-parallel to each other. In our case, as the shifting for all the fla-

vors of quark is towards the left side, it corresponds to a situation in which spin and orbital angular

momentum are anti-parallel to each other.

The transverse distortion corresponding to each flavor of quark portrayed in Figs. 1-6 shows

that the distortion for an active u flavored quark spreads out on moving from momentum fraction

x = 0.2 to 0.4 and thereafter shrinks down for x > 0.4. This spread near x ≈ 0.4 is more

pronounced for Σ+ with lighter diquark than Ξo carrying heavier diquark which clearly indicates

the dominance of heavier diquark in carrying more momentum fraction x. However, Λ being

similar to Σ portrays an alike trend of plots with comparatively little less spread and magnitude of

the distortion which is because of its smaller mass.

Comparative analysis of s flavored quark in Λ, Σ+ and Ξo also shows an expansion on moving

to x = 0.4 but beyond this a slow contraction for Σ+ presents its ability to carry momentum fraction
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Figure 2. (Color online) Transverse distortion for s quark flavor in Λ for longitudinal momentum fraction

x = 0.2, 0.4, 0.6 and 0.8 respectively.
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Figure 3. (Color online) Transverse distortion for u quark flavor in Σ+ for longitudinal momentum fraction

x = 0.2, 0.4, 0.6 and 0.8 respectively.
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Figure 4. (Color online) Transverse distortion for s quark flavor in Σ+ for longitudinal momentum fraction

x = 0.2, 0.4, 0.6 and 0.8 respectively.

(a)
-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

bx

b
y

2

4

6

8

10

12

14

(b)
-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

bx

b
y

0

2

4

6

8

10

12

14

(c)
-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

bx

b
y

1

2

3

4

5

(d)
-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

bx

b
y

-0.10

-0.05

0

0.05

0.10

0.15

0.20

Figure 5. (Color online) Transverse distortion for u quark flavor in Ξo for longitudinal momentum fraction

x = 0.2, 0.4, 0.6 and 0.8 respectively.
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Figure 6. (Color online) Transverse distortion for s quark flavor in Ξo for longitudinal momentum fraction

x = 0.2, 0.4, 0.6 and 0.8 respectively.

larger than 0.4 which is because of the presence of s flavor of quark and a lighter diquark in Σ+.

However, as the diquark in Ξo becomes heavier, the ability of carrying a momentum fraction larger

than 0.4 starts declining for an active s flavored quark. In the sequence of slow contraction, Λ lies

in between Σ+ and Ξo as it also contains a lighter diquark just as Σ but again small mass of Λ

baryon influences the positioning of it in this sequence.

In general, on comparing the transverse distortion between an active u and s flavored quark,

one can observe a similar spread for momentum fraction for x = 0.4 but a very slow shrink for

x > 0.4 in case of s flavor of quark which implies that a massive flavored quark has a tendency of

holding comparatively large momentum fraction than lighter flavored quark.

V. SINGLE SPIN ASYMMETRIES

FSI between an active quark that has been already influenced by the virtual photon and its

unaffected spectator is demonstrated in Fig. 7. To produce single-spin asymmetry, the required

phase can be incorporated by the inclusion of this FSI and interference among the amplitudes of

a process X + γ∗ → q + µ0
n, the superscript on the diquark mass corresponds to zero spin. Fig. 8
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Figure 7. (Color online) Final-state interaction in the semi-inclusive deep inelastic scattering.

represents the tree and one-loop Feynman graphs that can be employed to obtain amplitude of the

mentioned process. The structure of amplitudes [38]

A
q
X(⇑→↑) =

(
MX +

mq

∆

)
C
(
hX + i

e1e2

8π
I1X

)
, (24)

A
q
X(⇓→↑) =

(r1 − i r2

∆

)
C
(
hX + i

e1e2

8π
I2X

)
, (25)

A
q
X(⇑→↓) =

(
−

r1 + i r2

∆

)
C
(
hX + i

e1e2

8π
I2X

)
, (26)

A
q
X(⇓→↓) =

(
MX +

mq

∆

)
C
(
hX + i

e1e2

8π
I1X

)
, (27)

with

C = −g e1P+
√
∆ 2∆(1 − ∆) , (28)

hX =
1

r⊥ +Mun
X (∆)

, (29)

I1X =

∫ 1

0
dα

1
α(1 − α)r2

⊥ + αµ
2
g + (1 − α)Mun

X (∆)
, (30)

I2X =

∫ 1

0
dα

α

α(1 − α)r2
⊥ + αµ

2
g + (1 − α)Mun

X (∆)
. (31)

Here, e1 and e2 are the electric charges of an active flavor of quark and a scalar spectator diquark

respectively with g as a coupling constant of the baryon- active quark- scalar spectator vertex. In

the structure of amplitudes, the first term is a result of the Born contribution of tree representation

whereas the second term corresponds to the one-loop representation that contains two different
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(a) (b)

Figure 8. (Color online) Tree and one-loop Feynman diagrams for X + γ∗ → q + µ0
n.

contributions I1X and I2X. Their difference is infrared finite which can be regulated by the gauge

particle mass µg. In the Bjorken scaling limit, when Q2 and laboratory energy of the photon ν

is large with fixed ∆ = xb j, the light-cone laboratory frame and usual laboratory frame becomes

alike.

We have availed the light-cone gauge, A+ = 0 which reduces the gauge link associated with an

active quark (Wilson line) to unity. Hence, an active outgoing quark does not experience any FSI.

This paradox was unraveled in Ref. [44] by assuming the production of a hidden strange pair by

gluon cleaving. As per the requirement of the Wilson line, the struck s quark interacts in the final

state through gluon exchange. For the four one-loop amplitudes, the covariant expressions can be

jotted down as

A
one−loop
X(q) (I) = i g e2

1e2

∫
d4k

(2π)4

×
N

q
X(I)

(k2 − m2
q + iϵ)((k + q)2 − m2

q + iϵ)((k − r)2 − µ2
g + iϵ)((k − P)2 − µ2

n + iϵ)
. (32)

From the Feynman diagram of these interaction, the numerator N(I) can be obtained as

N
q
X(⇑→↑) = 2P+

√
∆ x
(
MX +

mq

x

)
q− , (33)

N
q
X(⇓→↑) = 2P+

√
∆ x (k1 − ik2) q− , (34)

N
q
X(⇑→↓) = −2P+

√
∆ x (k1 + ik2) q− , (35)

N
q
X(⇓→↓) = 2P+

√
∆ x
(
MX +

mq

x

)
q− , (36)

where x = k+
P+ and q− = Q2

∆P+ . The term q− arises from the contribution of the gauge propagator in

the Feynman diagram. The integration of Eq. (32) gives a non-zero value for x ∈ [0, 1] and in the
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Figure 9. (Color online) Juxtapose of azimuthal single-spin asymmetry as a function of light-front momen-

tum fraction ∆ for for (a) u and (b) s flavor of quarks in Λ, Σ and Ξo.

∆ < x < 1 region we have

A
one−loop
X(q) (I) = i g e2

1e2 (2πi)
∫

d2k⊥
2(2π)4

∫
P+dx

N
q
X(I)

P+4x x(x − ∆)(1 − x)

×
1(

P− − (µ2
n+k2

⊥)−iϵ
(1−x)P+ −

(m2
q+k2

⊥)−iϵ
x P+

)(
P− − (µ2

n+k2
⊥)−iϵ

(1−x)P+ + q− − (m2
q+(k⊥+q⊥)2)−iϵ

x P+

)
×

1(
P− − (µ2

n+k2
⊥)−iϵ

(1−x)P+ + r− − (µ2
g+(k⊥+q⊥)2)−iϵ

x P+

) . (37)

The obtained result is identical to the light-cone time-ordered perturbation theory. The phase

required to get single-spin asymmetries arrives from the imaginary part of Eq. (37) that emerges

from the potentially real intermediate state allowed before the re-scattering. The imaginary part of

the propagator gives

−i π δ
(
P− −

(µ2
n + k2

⊥)
(1 − x)P+

+ q− −
(m2

q + (k⊥ + q⊥)2) − iϵ

x P+

)
= −i π

1
P+
∆2

q2
⊥

δ(x − ∆ − δ̄) , (38)

where

δ̄ = 2∆
q⊥ · (k⊥ − r⊥)

q2
⊥

. (39)

Since the exchanged momentum is small, the light-cone energy denominator for a gauge boson

propagator gets dominance due to the presence of
(k2
⊥−r2

⊥)+µ2
g

(x−δ) term. The presence of one more (x−δ)

term in the denominator gives only (k2
⊥ − r2

⊥) + µ2
g which is independent of whether the photon

is absorbed or emitted. The yield from the 0 < x < ∆ region offers compliment to the yield of

∆ < x < 1. The single-spin asymmetry can be defined in terms of the amplitudes as

PX(q)
y = 1

C

(
i (Aq

X(⇑→↑)∗Aq
X(⇓→↑) −Aq

X(⇑→↑)Aq
X(⇓→↑)∗)

+ i (Aq
X(⇑→↓)∗Aq

X(⇓→↓) −Aq
X(⇑→↓)Aq

X(⇓→↓)∗)
)
, (40)
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Figure 10. (Color online) Juxtapose of azimuthal single-spin asymmetry as a function of |r⊥| for for (a) u

and (b) s flavor of quarks in Λ, Σ and Ξo.

where the normalization C for the unpolarized cross section is

C = |A
q
X(⇑→↑)|2 + |Aq

X(⇓→↑)|2 + |Aq
X(⇑→↓)|2 + |Aq

X(⇓→↓)|2. (41)

For convenience, it was assumed that FSI produce a phase when exponentiated and the rescattering

phases eiXi (i = 1, 2) with Xi = tan−1( e1e2
8π

gi
h ) are different for the spin-parallel and spin-antiparallel

amplitudes. The phase difference in the spin-flip amplitudes originates from the orbital angular

momentum k⊥ factor and the difference X1 − X2 which is the cause of SSA is infrared finite. The

azimuthal SSA transverse to the production plane ẑ − x̂, defined by virtual photon and produced

baryon is given by

PX(q)
y = −

e1e2

8π

2
(
∆MX + mq

)
r1(

∆MX + mq

)2
+ r2
⊥

[
r2
⊥ +M

un
X (∆)

] 1
r2
⊥

ln
r2
⊥ +M

un
X (∆)

Mun
X (∆)

. (42)

The presence of linear factor r1 in the above Eq. (42) assures the fact that SSA is proportional

to the S X · (q⊥ × r⊥) term. FSI from gluon exchange has the strength of e1e2
4π → CF αs(µ2). The

transferred momentum carried by the gluon µ2 =
(k⊥−r⊥)2

e5/3 has been used to to set the scale of αs in

the MS scheme.

The dependence of SSA on the quark light-front momentum fraction ∆ and the magnitude

of an active quark momentum jet r⊥ relative to the virtual photon direction has been pictorially

represented for composite quark flavors of stranged baryons in Figs. 9 and 10 respectively. We

observe that the SSA is recognizable at smaller values of quark light front momentum fraction

implying that, in this region, correlation of the targeted baryon spin and the virtual photon is

more effective to the hadron production plane. For a fixed value of momentum carried by an

outgoing active quark i.e. r⊥ = 0.15, comparative demonstration of SSA for u quark in Λ,Σ and
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Figure 11. (Color online) Juxtapose of azimuthal single-spin asymmetry as a function of light-front

momentum fraction ∆ for for (a) u and (b) s flavor of quarks in Λ, Σ and Ξo.

Ξo baryons shows that Σwith lighter diquark has the most SSA, gains a peak at ∆ = 0.206 and then

decreases slowly. However, peak comparatively at smaller value of ∆ = 0.171 and fast decrement

has been observed for Ξo baryon due to the dominance of a heavy diquark. For u flavord quark

in Λ, a decrement in the amplitude, shifting of a peak towards smaller value of ∆ = 0.174 and

slow reduction with ∆ are the key attributes of the smaller mass of Λ baryon because beside the

difference of baryon masses, Λ and Σ have similar contribution of diquark. The logarithmic term

contributes the most in the variation of SSA for different baryons. Similar trend for an active s

flavored quark can be observed which contains Σ baryon on the top of the list with the maximum

amplitude and a peak at ∆ = 0.311. Next, there is a Ξo baryon for which amplitude is reduced

with the shifting of peak towards smaller value of ∆ at 0.252 due to the effect of comparatively

heavier diquark us than uu in Σ. At last, we have a Λ baryon with the smallest amplitude and

peak at ∆ = 0.254 as a result of the mass of a Λ baryon. A comparison between u and s flavored

quark of same baryons suggests that s quark flavor can carry more light-front momentum fraction

as the peaks for s flavored quarks are at higher value of ∆ than u flavored quarks however, with a

spread over large region of light-front momentum fraction and a lower chance of having SSA as

their amplitude is less than u flavored quarks.

Fig. 10, representing the dependence of SSA on the magnitude of an active quark momentum jet

r⊥ relative to the virtual photon direction at ∆ = 0.15, shows that for an outgoing u flavored quark,

SSA in Σ shows minimal difference as compared to SSA in Ξo but there is a significant difference

from the value for Λ. Such difference may be arising due to the dominance of diquark mass in Ξo

and mass of a baryon in Λ. However, for an outgoing s quark, there is a small distinction among

all three baryons with less amplitude of SSA and queued according to the decreasing order of the
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Figure 12. (Color online) Juxtapose of azimuthal single-spin asymmetry as a function of |r⊥| for (a) u and

(b) s flavor of quarks in Λ, Σ and Ξo.

masses of baryons. Comparison between u and s quark shows that active u quark momentum jet

have more SSA with respect to r⊥ and significant difference lies only for Λ baryon.

The transverse azimuthal spin asymmetry Py can be compared with experimentally measured

HERMES transverse asymmetry Asin ϕ
UT in which the polarization of the targeted baryon transverse

to the incident lepton direction [49]. The longitudinal asymmetry Asin ϕ
UL which corresponds to the

targeted baryon, polarized along the direction of an incident lepton direction can be extracted from

the transverse asymmetry by introducing a kinematical factor

K =
Q
ν

√
1 − y =

√
2 x MX

E

√
1 − y

y
, (43)

and the longitudinal asymmetry can be can be obtained as

Asin ϕ
UL = K Asin ϕ

UT . (44)

The resulting predictions of the longitudinal asymmetry Asin ϕ
UL for strange baryons are presented in

Figs. 11 and 12 as a function of ∆ and r⊥ respectively for the constituent flavor of quarks. We

have used the input for E as 27.6 GeV [50, 51]. The queue of the strange baryons and the trend

of peak positioning of the longitudinal SSA as a function of ∆ is same as in the case of transverse

SSA. The more ability of a massive quark to carry comparatively larger momentum fraction ∆

is reassured here. Fig. 12 illustrates the decrement of the amplitude of longitudinal SSA as the

mass of a baryon increases and this mass effect attributes to the presence of a baryon mass term

in kinematical factor K. The decrement in the portray of K Py at large values of r⊥ has been

observed and the pace of this decrement is very slow for s quark due to the presence of lighter

diquark implying the tendency of massive s flavor quark to carry large quark momentum.
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VI. CONCLUSION

We have presented the mapping of transverse distortion and single-spin asymmetry of strange

octet baryons carrying same spin-parity quantum number. Their spatial mappings have been

demonstrated by using the QCD inspired quark-scalar diquark model and the mass effect of the

parent baryon and constituent quarks on the deformation has also been studied. The presence

of finite spin-flip quantum fluctuations of GPD is a measure of the transverse deformation in an

active quark distribution. These transverse distortions show that a massive quark undergoes left-

right asymmetry to greater extent and has a tendency of carrying more longitudinal momentum

fraction than a light quark as the distribution undergoes a slow contraction for high longitudinal

momentum fraction.

The dependence of single-spin asymmetry on quark light-front momentum fraction reassures

the capacity of a massive quark of carrying significantly high longitudinal momentum fraction but

with less likeliness of single-spin asymmetry. On the other hand, the difference in the mass of

diquark is not proven effective to produce a difference in single-spin asymmetry with the mag-

nitude of momentum carried by an outgoing quark but the tendency of having single-spin asym-

metry decrease with decrement of a baryon mass. Further, to relate these theoretical predictions,

we demonstrate the azimuthal longitudinal asymmetry that is accessible in scattering processes

in HERMES and JLab experiment projects. JLab has a project over beam spin asymmetry and

proposed the measurements of azimuthal modulations in SIDIS for different types of hadron tar-

gets, and polarizations over a broad kinematic range [52] which can act as a baseline to study the

asymmetries in baryons.
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