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Abstract—Prediction of road users’ behaviors in the context
of autonomous driving has gained considerable attention by the
scientific community in the last years. Most works focus on
predicting behaviors based on kinematic information alone, a
simplification of the reality since road users are humans, and as
such they are highly influenced by their surrounding context. In
addition, a large plethora of research works rely on powerful
Deep Learning techniques, which exhibit high performance
metrics in prediction tasks but may lack the ability to fully
understand and exploit the contextual semantic information
contained in the road scene, not to mention their inability
to provide explainable predictions that can be understood by
humans. In this work, we propose an explainable road users’
behavior prediction system that integrates the reasoning abilities
of Knowledge Graphs (KG) and the expressiveness capabilities of
Large Language Models (LLM) by using Retrieval Augmented
Generation (RAG) techniques. For that purpose, Knowledge
Graph Embeddings (KGE) and Bayesian inference are combined
to allow the deployment of a fully inductive reasoning system that
enables the issuing of predictions that rely on legacy information
contained in the graph as well as on current evidence gathered
in real time by onboard sensors. Two use cases have been
implemented following the proposed approach: 1) Prediction
of pedestrians’ crossing actions; 2) Prediction of lane change
maneuvers. In both cases, the performance attained surpasses
the current state of the art in terms of anticipation and F1-
score, showing a promising avenue for future research in this
field.

Index Terms—Road users’ behaviors, explainable predictions,
pedestrian crossing actions, lane change maneuvers, autonomous
driving.

I. INTRODUCTION AND RELATED WORK

DESPITE the significant progress that the world has
experienced in the last years in terms of road safety,

road traffic deaths continue to represent a global health crisis,
according to the World Organization report on road safety
[1], especially for Vulnerable Road Users (VRUs), which
are involved in 53% of all road traffic fatalities. The same
report highlights the fact that 23% of fatal accidents involve
pedestrians. As a matter of act, pedestrians are the most
vulnerable road user group also on European Union roads,
being involved in 20% of road traffic fatalities [2]. Similarly,
the statistics published in 2023 by the National Highway
Traffic Safety Administration (NHTSA) reveal an increase in
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the number of deaths in motor vehicle traffic crashes in the
United States of America in 2021 as compared to 2020, and
a 17.3% increase compared to 2019 [3], being lane-changing
maneuvers one of the main causes for vehicle crashes, as the
same report indicates that 33% of all road crashes take place
during a lane change maneuver. These figures advocate for the
need to develop technologies aiming at enhancing road safety
by endowing automated vehicles with the capacity to anticipate
pedestrians’ and drivers’ behaviors and motion patterns, such
as road crossing actions (for pedestrians) and lane change
maneuvers (for drivers). The ability to characterize and predict
the behavior and motion patterns of road users, namely drivers
and vulnerable road users (pedestrians and cyclists), as well
as the explanation and understanding of the factors that rule
the interactions among them, is essential for increasing road
safety and traffic efficiency in the context of autonomous
driving. Furthermore, the possibility of deploying Autonomous
Vehicles (AVs) with the capability of understanding and an-
ticipating road users’ behaviors will also allow to increase the
perception of comfort and the feeling of “being understood and
respected” in all road users interacting with AVs (pedestrians,
cyclists, drivers of manually driven vehicles), a feature that
will definitely contribute to the social acceptance of AVs and,
consequently, to accelerate their commercial deployment. In
the context of Autonomous Driving, a large plethora of road
users’ behavior estimation algorithms have been developed to
predict forthcoming actions of pedestrians [4], cyclists [5],
and drivers [6], in an attempt to understand and anticipate
their behaviors. However, there is a missing component in
the literature, namely a holistic view of road users’ behavior
and decision making to identify the extent of factors that
affect their behaviors and to explain in what ways they are
interrelated. This is due to the fact that the majority of research
works in the literature disregard the theoretical findings of
traffic interaction and treat the problem as dealing with rigid
dynamic objects rather than a social being [7]. The behavior
of road users depends on a considerable number of factors,
such as human factors, gender and age, awareness level or
gaze direction, etc. For pedestrians and cyclists, their head
orientation and fully articulated body pose provide cues of
great relevance for prediction purpose. Something similar
can be said about the state of blinkers or braking lights in
the case of vehicles. A second set of factors accounts for
the influence of other road users, that can be considered
individually or in groups (especially, at cross walks). Third,
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some environmental factors are of utmost relevance, such as
the road topology structure and street layout, weather and
lighting conditions, traffic rules, signalization, state and type
of pavement, etc. On top of that, there are cross-cultural
differences that transversally affect the three aforementioned
types of factors, i.e., road users may behave differently in
the same road scenario depending on the region or country,
due to different social norms. This rationale suggests the need
for incorporating contextual information when developing road
users’ behavior understanding and prediction systems, where
the context can include information of different nature, such
as kinematic, body language, attention, gaze direction, traffic
status per lane, road layout and conditions, and, even, social
norms. In other words, context, in a holistic sense, is key
to behavior understanding. As an example, Figure 1 depicts
a situation involving several vehicles driving on a three-lane
highway. The green vehicle, which drives along the middle
lane, represents the vehicle under interest, also referred to as
target vehicle, while the blue vehicles represent the vehicles
around the target vehicle, being denoted as Left Following
(LF, i.e., the vehicle driving behind the target vehicle on the
left adjoining lane), Right Following (RF, i.e., the vehicle
driving behind the target vehicle on the right adjoining lane),
and Preceding (P, i.e., the vehicle preceding the target vehicle
along its ego-lane, which in this example is the middle lane),
respectively. The figure shows the situation at the current
time (in solid colors) as well as several future positions
of all vehicles (in semi-transparent colors) according to the
most likely predictions. In this scenario, the target vehicle is
approaching quickly and dangerously the preceding vehicle
due to a high difference in velocity between them, thus there
is a high risk of collision with P based on the analysis of the
estimated time to collision (TTC). Similarly, the LF vehicle
is driving even faster than the target vehicle, making a Left
lane change maneuver not advisable due to the high risk of
collision with LF in such case. In this situation the target
vehicle has two possible courses of action: 1) stay on the
same lane while decreasing velocity abruptly in order to avoid
a collision with P; 2) stay on the same lane and postpone
the left lane change maneuver, which seems to be the safer
maneuver for all the actors involved in the scene. Action two
(left lane change) appears to be a natural behavior that can
be executed in a soft, organic manner in coordination with
the three surrounding vehicles. Consequently, the behavior
understanding and prediction system of LF would regard the
left lane change maneuver of the target vehicle as a very
likely future behavior and would anticipate and prepare its ego-
actions accordingly in order to accommodate such a potential
maneuver of the target vehicle (most likely by decreasing
speed gently to make the left lane change maneuver of the
target vehicle even smoother and safer for all the actors
involved). Accounting for contextual information is essential
for understanding behavior in this situation. This context-based
reasoning approach can be extended and applied to many
other similar situations, involving pedestrians and drivers,
where contextual information is key for understanding and
anticipating behavior. For example, let’s consider an urban
avenue with two-lanes per direction of travel where the ego-

Fig. 1: The target vehicle (green) will most likely make a left
lane change maneuver based on the risk assessment of the
surrounding (blue) vehicles.

vehicle drives on the left most lane and tries to overtake
a car that drives on the right most lane. Suddenly, the car
on the right lane decelerates abruptly while approaching a
pedestrian crossing. From the position of the ego-vehicle no
pedestrian is visible, thus, the maneuver of the other car may
seem unjustified. However, when the ego-vehicle approaches
the pedestrian crossing, a pedestrian (previously occluded by
the car on the right most lane or by parked cars) becomes fully
visible. Anticipating the presence of the occluded pedestrian
can best be done by leveraging the semantic understanding of
the situation.

A large number of research works have dealt with road
users’ behavior prediction in the context of autonomous driv-
ing. Regarding the prediction of lane change maneuvers, in
[8] the authors used a Long Short-Term Memory (LSTM)
model to predict vehicle lane changes by considering the
vehicle’s past trajectory and neighbors’ states. In [9] two
machine learning models were utilized to predict lane changes
of surrounding vehicles on highways. The inputs were lon-
gitudinal/lateral velocities, longitudinal/lateral accelerations,
distance to left/right lane markings, yaw angle, and yaw rate
related to the road. These inputs were trained and tested
on Support Vector Machines (SVM) and Artificial Neural
Networks (ANN) models. In [10] the authors predicted lane
change intentions of surrounding vehicles using two different
methodologies and by only considering the visual information
provided by the PREVENTION dataset [11]. The first method
was Motion History Image - Convolutional Neural Network
(MHI-CNN), where temporal and visual information was
obtained from the MHI, and then fed to the CNN model. The
second model was the GoogleNet-LSTM model, in which a
feature vector was obtained from a GoogleNet CNN model
and then fed to the LSTM model to learn temporal patterns.
In [12] the authors trained LSTM and Recurrent Neural Net-
works (RNN) models on the PREVENTION dataset to predict
surrounding vehicles’ lane changing intentions by tracking the
vehicles’ positions (centroid of the bounding box). Sequences
of 10, 20, 30, 40, and 50 frames of (X, Y) coordinates
of the target vehicle were considered for comparison. It
was concluded that RNN models performed better on short
sequence lengths and the LSTM model outperformed RNN
at long sequences. The work implemented in [13] utilized
eXtreme Gradient Boosting (XGBoost) and LSTM to predict
the vehicle lane change decision and trajectory prediction,
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respectively, in scenarios in the HighD dataset [14]. The
models were based on the traffic flow (traffic density) level,
the type of vehicle, and the relative trajectory between the
target vehicle and surrounding vehicles. Vehicle trajectory
predictions were issued based on historical trajectories and the
predicted lane change decisions. In [15] a dual Transformer
model was proposed. The first Transformer was intended for
lane change prediction, while the second one was used for
trajectory prediction. Similarly, the prediction of pedestrians’
crossing actions is another task that has been intensively
targeted by the research community, focusing on forecasting
whether or not a target pedestrian will cross the road at some
point in the near future (typically in the next 1-5 seconds). This
task has been addressed through a diverse range of algorithms
and architectures. Among these approaches, it is particularly
noteworthy to highlight a number of methods as SingleRNN
based on Recurrent Neural Networks (RNNs) [16], CapFormer
which uses a self-attention alternative based on transformer
architecture [17], a 3D Convolutional model (C3D) based
on spatiotemporal feature learning [18], a stacked multilevel
fusion RNN (SFRNN) [19], and convolutional LSTM (Con-
vLSTM) [20]. Despite the abundance of models and research
focused on pedestrian crossing predictions, only a limited
number of them provide insights into explainability or are
specifically developed within the context of explainability. For
instance, the research [21] highlights that Transformers offer
an advantage in terms of interpretability, due to their attention
mechanism. Moreover, the utilization of pedestrian location
and body keypoints as features in predicting pedestrian actions
results in more human-like behavior. In [22], the authors
propose a dynamic Bayesian network model that takes into
account the influence of interaction and social signals. This
system leverages visual means and employs various inference
methods to provide explanations for its predictions, with a
specific focus on determining the relative importance of each
feature in influencing the probability of pedestrian actions.

While Deep Learning (DL) techniques have been reasonably
successful in solving road users’ behavior prediction tasks,
they may lack the ability to fully understand and exploit
the interdependences between road users and the semantic
relations implicit in a road scene. Not in vain, in real world
applications it is impractical and inefficient to learn all facts
and data patterns from scratch, especially when prior and
linguistic knowledge is available. As an alternative, neuro-
symbolic learning [23] has the capacity to exploit such in-
formation to further improve the ability to really understand
road scenes by utilizing well-formed axioms and rules that can
guarantee explainability, both in terms of asserted and inferred
knowledge. In neuro-symbolic systems, abstract knowledge
extraction is first carried out by means of neural Deep Learning
(DL) techniques, that transform the reality into symbols,
while logic (or symbolic) reasoning is then performed on
the grounds of such symbols. This human-like reasoning
approach is interpretable and disentangled, while allowing
for compositional, accurate, and generalizable reasoning in
rich, complex contexts, such as road scene understanding and
autonomous driving, that require identifying and reasoning
about entities (road users, road context, and events) that

are bundled together by means of spatial, temporal, social,
and semantic relations. Knowledge infused techniques, such
as Knowledge Graphs (KG) [24], enable the deployment of
neuro-symbolic reasoning given their capacity for representing
knowledge and interactions by means of directed graphs that
can represent multiple and heterogeneous relations among
entities. In addition, Knowledge Graph Embeddings (KGE)
[25] is a machine learning task that aims at learning a latent
continuous vector space representation (namely, embeddings)
of the nodes and edges of a KG, where the nodes represent
the road users, the road context, and events, and the edges
represent the semantic relations among them. Knowledge
completion with KGEs can be used for predicting missing en-
tities (e.g. occluded pedestrians) or relations (e.g. lane change
intention) in road scenes that may have been missed by purely
data-driven techniques. In this work, we aim at addressing
the need to understand and predict road users behaviors by
incorporating contextual features into a knowledge-based rep-
resentation that can also encode other sources of information,
such as human knowledge representing driving experience. For
that purpose, we propose a neuro-symbolic approach that will
combine expressive features (representing road users context)
and human experience (in the form of linguistic descriptions
and/or rules) in a Knowledge Graph (KG) representation. On
the one hand, the neural part of this approach will take care
of the following tasks: i) extracting road users and contextual
expressive features using Deep Learning (DL) approaches;
ii) converting human experience information into entities and
relations in the KG using DL generative techniques; iii) learn
embedded representations for all the entities and relations in
the KG using Knowledge Graph Embeddings (KGE). On the
other hand, the symbolic part will perform behavior predic-
tions on the grounds of the KG, using Bayesian inference as a
downstream task that will enable to perform fully inductive
reasoning while providing explainable descriptions of the
predicted behaviors. This explainable system has the potential
to provide AVs with the capability to best adapt to the driving
context, very much in the way human drivers do. The rest
of this article is organized as follows: Section II describes
the procedure followed to build a Knowledge Graph that
encodes road users’ behavioral models; Section III presents
the road users’ behavior prediction system using KGE and
Bayesian inference; Section IV dives into the details of how to
achieve explainability with the proposed approach; Section V
introduces the implementation and experimental results and
Section VI describes the conclusions and future work.

II. MODELLING ROAD USER’S BEHAVIORS USING
KNOWLEDGE GRAPHS

In the realm of knowledge representation, the Knowledge
Graph (KG) stands as a key tool encoding triples that reveal
real-world facts and semantic connections [26]. A triple, the
fundamental building block within the KG, comprises three
elements: subject, predicate, and object (alternatively termed
as head, relation, and tail). Conceptually, a KG manifests as
a graph wherein edges represent relations and nodes denote
entities. As previously mentioned, one of the applications of
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TABLE I: Pedestrian behavior ontology.

Class Class Description Instance Possible Relation
Pedestrian Generic entity pointing to every child pedestrian Pedestrian Any

Pedestrian ID Individual Pedestrian ID Ped1 HAS CHILD
Pedestrian instance ID ID for a pedestrian at a particular frame Ped1-30 INSTANCE OF

PREVIOUS
NEXT

Motion Activity Pedestrian motion activity Stand, Walk, Wave, Run, Na MOTION
Proximity Pedestrian closeness to the road NearFromCurb, MiddleDisFromCurb,

FarFromCurb LOCATION
Distance Pedestrian closeness to the ego-vehicle TooNearToEgoVeh, NearToEgoVeh,

MiddleDisToEgoVeh, FarToEgoVeh EGO DISTANCE
TooFarToEgoVeh

Orientation Pedestrian body orientation VehDirection, LeftDirection, ORIENTATION
OppositeVehDirection, RigthDirection

Gaze Pedestrian attention Looking, NotLooking ATTENTION
Cross Action Crossing behavior of the pedestrian crossRoad, noCrossRoad ACTION

KGs focuses on transforming them into low-dimensional vec-
tors that encode entities and relationships, a technique known
as Knowledge Graph Embedding (KGE). The resultant vector
is employed for learning and reasoning within embedding-
based machine learning models, which can rely on distance-
based measures or similarity-based scoring [27]. In this work,
we employ two different models for KGEs: a distance-based
model known as TransE [28] and a similarity-based model
named ComplEx [29].

In this section, we assess the effectiveness of our approach
through two real-world use cases focusing on different road
user behaviors, including both pedestrians and drivers. Also,
an overview of the datasets used in each scenario is provided
along with a description of the KGs creation process. This
includes a description of the associated ontologies, which
provide a formal and structured representation of the KG,
ensuring that it is understandable and explainable.

A. Pedestrian use case

The pedestrian use case focused on predicting whether a
pedestrian will cross the road in the next 30 frames. The entire
pipeline has been trained and tested using two datasets:

• Joint Attention for Autonomous Driving (JAAD)1. This
dataset comprises 348 short video clips, each extensively
annotated to depict various road actors and scenarios
across diverse driving locations, traffic, and weather
conditions. The dataset annotations encompass spatial,
behavioral, contextual, and pedestrian information.

• Pedestrian Situated Intent (PSI)2. The dataset comprises
104 training videos, 34 validation videos, and 48 test-
ing videos, collectively covering 196 scenes. It includes
bounding box annotations for traffic objects and agents,
which are accompanied by text descriptions and reason-
ing explanations [30].

1JAAD dataset is publicly available at: https://data.nvision2.eecs.yorku.ca/
JAAD dataset/

2PSI dataset is publicly available at: http://pedestriandataset.situated-intent.
net/

The process of modeling pedestrian behavior considered the
following characteristics:

1) Features extraction and linguistic transformation: from
the mentioned datasets, a set of pedestrian features is extracted
using a deep learning approach, and then they are transformed
from numerical to linguistic values, as detailed in [31]. The
features extracted for each annotated pedestrian include:

• Motion Activity: States the motion activity of the pedes-
trian

• Proximity to the road: Transforming from an assessment
of road segmentation and pedestrian location to a linguis-
tic representation indicating the pedestrian’s proximity to
the road in three levels, based on their closeness to it.

• Distance: Transforming from an estimated distance in
meters to a linguistic representation that indicates the
pedestrian’s proximity to the ego-vehicle.

• Body Orientation: Transforming from an angle ranging
from 0º to 360º to a linguistic representation that encodes
the pedestrian’s body posture from the perspective of the
ego-vehicle.

• Gaze: Transforming from a binary value to a linguistic
indicator that denotes whether the pedestrian is observing
the ego-vehicle.

2) Pedestrian behavior ontology: the pedestrian behavior
ontology, referred to as PedFeatKG in this study, was built
from pedestrian features and was outlined in Table I. It en-
compasses the classes (entities in the KG), their descriptions,
the instances of each class representing linguistic values, and
the potential relations associated with each class.

In the PedFeatKG ontology, each pedestrian from the
dataset’s training set was represented by a class with a unique
ID (noted as Pedestrian ID). At the same time, the Pedestrian
ID was associated with a specific pedestrian instance at a
particular frame (noted as Pedestrian instance ID). This
latter class comprised the pedestrian dataset ID and the frame
number. For instance, if a pedestrian has the ID “ped1”, there
will be as many classes as frames considered in the following
structure: “ped1-30”, “ped1-32”, “ped1-34”, and so on. Link-

https://data.nvision2.eecs.yorku.ca/JAAD_dataset/
https://data.nvision2.eecs.yorku.ca/JAAD_dataset/
http://pedestriandataset.situated-intent.net/
http://pedestriandataset.situated-intent.net/
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Fig. 2: (a) One KG instance where the vehicle has zero lateral acceleration and has medium Time To Collision (TTC) risk with
the preceding vehicle and high TTC with the left following vehicle. (b) PedFeatKG from explainable features with 1 instance.

ing the pedestrian ID with the pedestrian instance ID enabled
the association of all pedestrian instances, indicating to the KG
that they represent the same pedestrian across different frames.
Additionally, each pedestrian instance ID was linked with
its previous and next pedestrian instance ID, thus providing
temporal association information regarding pedestrian behav-
ior in a road scene within the KG. Likewise, all pedestrian
ID classes extracted were associated with a generalization
class called Pedestrian, enabling any specific pedestrian to
be linked to a general one. This linkage is considered a path
reification link. On the other hand, each pedestrian instance ID
was subsequently linked with the five pedestrian features that
represent the pedestrian’s state in the following triple format:
<pedestrian-instance-ID, FEATURE RELATION, value>. In
addition, it can be observed that the pedestrian instance ID
was also linked with a crossing behavior, delineated by two
possible class values: crossRoad or noCrossRoad. Figure 2b
shows a generated KG instance from the PedFeatKG ontology.
In this example, it represented the state of the pedestrian with
ID 0 12 57b in frame 40, its features, and its future crossing
action.

B. Drivers use case

In the lane change prediction use case scenario, the HighD3

dataset [32] is used. It is a German dataset that was recorded
using a camera mounted on a drone, providing a collection
of naturalistic top-view scenes of vehicle movements and
interactions on German highways. The process of modeling
lane change behavior considered the following characteristics:

1) Linguistic transformation: the inputs that will be used to
construct the KG are vehicle lateral velocity and acceleration,
the target vehicle intention, TTC with the preceding vehicle,
and TTC with the left/right preceding and following vehicles.
These inputs are extracted from the highD dataset in numerical
format. Then, they are converted to linguistic categories.
For example, the lateral acceleration numerical value is con-
verted to a category from a set of linguistic categories like

3The dataset is publicly available through the following link https://
levelxdata.com/highd-dataset

accelerating left, zero lateral acceleration, and accelerating
right. To divide each numerical feature into some linguistic
categories, some thresholds are determined. Following the
structure proposed in [33]. We used the normal distribution
of the lateral velocity and acceleration separation thresholds.
Regarding the other TTC numerical variables, the thresholds
are based on the studies in [33], [34], [35].

2) Drivers behavior ontology: the driver behavior ontology,
referred to as DriverKG in this study, is based on the reifi-
cation of nodes and relationships obtained from the HighD
dataset, to get reified triples. For example, if the vehicle
is accelerating to any direction and the TTC risk with the
left following vehicle is high, then the reified triples will
be <vehicle, LATERAL ACCELERATION IS, zeroAccelera-
tion>, and <vehicle, TTC WITH LEFT FOLLOWING VE-
HICLE IS, highRiskLeftFollowing>.

Table II shows the KG ontology for the lane change
prediction case. The table is divided into four columns. The
first column shows the possible classes in the KG. The
description of each class is indicated in the second column.
The third column shows the possible reified instances that can
be assigned to that class, given that the class can take only one
instance at a frame. The last column shows the relation that
points to that class. In this ontology, a generic entity named
vehicle is linked to various child vehicles via the HAS CHILD
relation. Each child vehicle is assigned a unique ID (known as
vehicleID) for each frame. It is important to note that even if
it is the same physical vehicle across different frames, it will
receive a new vehicleID in each frame. Consequently, while
both IDs in reality refer to the same vehicle, they are treated as
distinct vehicles within the ontology when generating triples
and constructing the KG.

Figure 2a shows a generated KG instance based on the
previously mentioned ontology. In this instance, the vehicle
with ID 741 is a child of the generic entity vehicle. This can
be described in a triple with format <vehicle, HAS CHILD,
741>. This child has latAcceleration class assigned to zeroAc-
celeration instance. Also, 741 has mediumRiskPreceding and
highRiskLeftFollowing TTC. vehicle 741 intention is LK.

https://levelxdata.com/highd-dataset
https://levelxdata.com/highd-dataset
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TABLE II: Vehicle behavior ontology.

Class Class Description Instance Possible Relation
LLC (Left Lane Change)

intention Lane changing intention LK (Lane Keep) INTENTION IS
of the vehicle RLC ( Right Lane Change)

movingLeft
latVelocity Vehicle lateral velocity movingStraight LATERAL VELOCITY IS

movingRight
leftAcceleration

latAcceleration Vehicle lateral accelera- zeroAcceleration (No lateral acceleration) LATERAL ACCELERATION IS
tion rightAcceletion

highRiskPreceding
ttcPreceding TTC with the preceding mediumRiskPreceding TTC WITH PRECEDING VEHICLE IS

(front) vehicle lowRiskPreceding
highRiskLeftPreceding

ttcLeftPreceding TTC with the left mediumRiskLeftPreceding TTC WITH LEFT PRECEDING VEHICLE IS
preceding (front) vehicle lowRiskLeftPreceding

highRiskRightPreceding
ttcRightPreceding TTC with the right mediumRiskRightPreceding TTC WITH RIGHT PRECEDING VEHICLE IS

preceding (front) vehicle lowRiskRightPreceding
highRiskLeftFollowing

ttcLeftFollowing TTC with the left mediumRiskLeftFollowing TTC WITH LEFT FOLLOWING VEHICLE IS
following (rear) vehicle lowRiskLeftFollowing

highRiskRightFollowing
ttcRightFollowing TTC with the right mediumRiskRightFollowing TTC WITH RIGHT FOLLOWING VEHICLE IS

following (rear) vehicle lowRiskRightFollowing

vehicleID Child vehicle ID which
changes every frame vehicle ID number (e.g. ‘741’) HAS CHILD

vehicle Generic entity pointing to
every child vehicle – Any
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Phase 2: KGE Learning Phase 3: Bayesian Inference & Prediction
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S,LK>
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Transformation

(Features extractor)
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Knowledge Graph

Knowledge Graph
Embedding

KGE Trained

Prediction

KGE Trained
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Pedestrians
case

Drivers
case

Application

Fig. 3: Pipeline architecture for modelling road user’s behaviors.

III. ROAD USERS’ BEHAVIOR PREDICTION APPROACH

Both Road Users’ Behavior Predictions use cases leverage the
proposed architecture based on feature extraction, KGs and
their associated ontologies. The overall workflow, depicted in
Figure 3, comprises three main phases: 1) KG Generation, 2)
KGE Learning, and 3) Bayesian Inference and Prediction. This
section provides the details on the three phases.

A. Phase 1: KG generation using all types of knowledge

To capture and encapsulate the data concerning road users’
behaviors, the initial step involved extracting the data and
features that describe each scene from both the driver’s and
pedestrian’s perspectives. The subsequent step was to convert
the extracted features into linguistic values. Following this,
utilizing the Ampligraph 2.0.0 library [36], the KG is con-
structed in the form of triples, where a set of triples represents
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the scene in a frame. Building the KG is a process executed
based on a KG ontology that generalizes the data applicable to
each road scene. This knowledge can originate from various
sources and formats, including annotations in datasets, fuzzy
rules, and textual explanations concerning road user behavior.

B. Phase 2: KGE Learning

In the second phase, Ampligraph 2.0.0 was employed to
construct a KGE model using the KG generated in the previous
phase. We used the ScoringBasedEmbeddingModel to imple-
ment a neural architecture that encodes concepts from a KG
into low-dimensional vectors, using a scoring layer such as
ComplEx and TransE. The training and validation process us-
ing the KGE model is conducted using the Ampligraph library.
As a result of this phase, optimal embeddings representing the
KG are obtained. These embeddings are then utilized in the
subsequent phase for inference and prediction over the KG.

C. Phase 3: Bayesian Inference & Prediction

Our approach is designed to leverage inductive reasoning by
incorporating specific structures, known as reifications, into the
knowledge graph by leveraging the properties of the ontology.
This allows us to perform Bayesian inference (phase 3 in
Figure 3) on the embeddings derived from the KG learning
phase (phase 2). Once these embeddings are obtained, it is
then possible to calculate the probabilities of reified triples
P (h, r, t) using the evaluation method from the AmpliGraph
library. Then, the Bayes rule in Equation (1) is used to compute
the probability of a hypothesis given some evidence, denoted
as P (h|e), where h represents the hypothesis (such as the
likelihood of a pedestrian intention to cross the road) and e
stands for the evidence, which in this context is data measured
by onboard sensors at a specific moment. The datasets (like
JAAD for pedestrians and HighD for vehicles) provide this
sensory data.

P (h|e) = P (h)P (e|h)
P (e)

(1)

For instance, if the hypothesis is that a pedestrian intends to
cross the road and the evidence includes observations such as
i) the pedestrian’s attention state is looking and ii) the pedes-
trian’s location is near to the vehicle, then the probability of the
hypothesis P (h) is determined by evaluating a reified triple,
e.g., reifying the intention of a pedestrian to cross the road
into the triple <pedestrian, INTENTION IS, crossRoad>.
Concerning the calculation of P (e), which actually involves a
series of multiple pieces of evidence, we employed equation
Equation (2) since each piece of evidence is considered
independent. Additionally, each element ei is reified from the
graph. For example, assuming that the evidence is composed
of two elements e1 and e2 indicating respectively that the
pedestrian is looking to the ego-vehicle and the pedestrian is
near to the ego-vehicle, the associated probabilities are given
by the reification of following two triplets <pedestrian, action,
looking> and <pedestrian, egoDistance, nearToEgoVeh>.

P (e) = P (e1)× · · · × P (en) (2)

The probability of the evidence given the hypothesis P (e|h)
is calculated based on Equation (3). It is computed as the
product of the probabilities of all pieces of evidence assuming
the condition that the hypothesis is true. These conditioned
pieces of evidence are also reified. For example, calculating
the probability of a pedestrian near to the vehicle given the
hypothesis that this pedestrian will cross the road can be
reified as <nearToEgoVeh, INTENTION IS, crossRoad>. The
computation of this conditional probability implies that we
take for granted that the object entity is a pedestrian who will
cross the road. Under these conditions, the likelihood of the
pedestrian being close to the vehicle in these circumstances
will be calculated. After that, all computed conditioned prob-
abilities are then multiplied together to determine P (e|h).

P (e|h) = P (e1, . . . , en|h) = P (e1|h)× · · · × P (en|h) (3)

Finally, with all these probabilities available from the graph
through the embeddings, the probability of a hypothesis given
the evidence P (h|e) can be calculated using the Bayes rule
in Equation (1). By analogy, the same concept applies to
vehicle lane change prediction. For example, let’s suppose
that we are interested in calculating the probability that a
vehicle will keep its current lane given that TTC risk with
the preceding vehicle is medium and TTC risk with the
left following vehicle is high. Then, the probability P (h) is
computed by evaluating the triple <vehicle, INTENTION -
IS, LK> from the KGE. In a similar way, the probability
P (e|h) is computed by the multiplication of the two eval-
uated triplets (1) <mediumRiskPreceding, INTENTION IS,
LK> and (2) <highRiskLeftFollowing, INTENTION IS, LK>.
Finally, P (h|e) is calculated using Equation (1). This process
combines structured knowledge representation with probabilis-
tic Bayesian inference to make predictions based on observed
data. This process is repeated for each label, so the probability
of LLC is computed given the generated linguistic inputs, the
same computation is done for LK and RLC, and the score
with the highest probability will be the model’s prediction.
In the pedestrian use case, the probabilities of crossRoad
and noCrossRoad are computed given the generated linguistic
inputs, and the highest probability will be considered as the
model’s prediction.

IV. EXPLAINABILITY

Although the KG inherently offers some insights into explain-
ability, in our study we chose to integrate additional tools to
support prediction explanations. Hence, we incorporated the
fuzzy logic approach and the Retrieval Augmented Genera-
tion (RAG) technique. In this section, we provide a detailed
overview of both approaches to enhance explainability.

A. Explanation using fuzzy rules

To integrate explainability into our approach we first adopted a
fuzzy logic approach, characterized by its multi-valued nature
that mirrors human thought and interpretation. The generation
of fuzzy rules entailed a rule mining process employing
various learning algorithms and classification systems. In this
study, we employed the IVTURS-FARC system [37], which
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linguistic-value_linguistic-value

action-weight

IF feature-1 IS linguistic-value AND feature-2 IS linguistic-value
... THEN Cross IS action  WEIGHT weight

Fig. 4: Fuzzy rule conversion definition.

utilizes interval-valued restricted equivalence functions to en-
hance rule relevance during inference. The learning process of
this system involved the FARC-HD algorithm [38] for fuzzy
association rule extraction. The rule mining process began with
the extracted pedestrian features from JAAD and PSI datasets,
then, employing the mentioned methods, we extract a set of
rules structured as follows:

Rule Rj : if x1 is Aj1 and...and xn is Ajn

then Class = Cj with RWj

(4)

In the given expression Rj denotes the label of the jth rule,
x = (x1, ..., xn) represents a n-dimensional pattern vector
(related to pedestrian features in our context), Aji stands for an
antecedent fuzzy set indicating a linguistic term, Cj signifies
the class label, and RWj denotes the weight of the rule [39].
In this work, we initially applied the fuzzy logic approach to
the pedestrian use case. In the pedestrian use case the rule
mining process produced 60 rules from the PSI data, while
51 rules originated from the JAAD data. To gain insights
into pedestrian behavior, we utilized these rules and integrated
them into the KG. Each fuzzy rule was transformed into two
classes (as illustrated in Figure 4) which were focused on: 1)
combining all feature values into one class and 2) integrating
the crossing action and rule weight. Introducing these two
new entities in the KG required to modify the associated
ontology to reflect the changes. Therefore, we established
another ontology labeled as PedFeatRulesKG, where pedes-
trians, alongside their feature states, are linked with rules
relevant to their states, thus offering more insights into their
behavior. The PedFeatRulesKG ontology can be considered as
an extension of the PedFeatKG ontology (see Section II-B2).
Figure 5 illustrates an example of the mentioned ontology for
a pedestrian in a frame, showcasing the explainable features
associated with its state and the correlation with fuzzy rules
that apply to this state.

B. Explanation using RAG

Retrieval Augmented Generation (RAG) is a machine learning
model that combines the power of pre-trained language models
with the ability of a retrieval system to retrieve relevant infor-
mation from a large database and then use this information
to generate precise and contextually rich responses to the
user’s query [40]. This large database can be a public database
or a private database that is specified for a certain domain.

The private database can be obtained by leveraging external
knowledge sources, which enhances the model’s responses to
be more accurate, informative, and specific to that certain
task or domain. The RAG process, schematically depicted in
Figure 6, consists of three modules: retrieval module, aug-
mentation module, and generation module. First, the document
which forms the source database is divided into chunks. These
chunks, transformed into vectors using an embedding model
like OpenAI or open source models available from Hugging
Face community, are then embedded into a high-dimensional
vector database (e.g., Chroma and LlamaIndex). When the user
inputs a query, the query is embedded into a vector using
the same embedding model. Then, chunks whose vectors are
closest to the query vector, based on some similarity metrics
(e.g., cosine similarity) are retrieved. This process is contained
in the retrieval module shown in the figure. After that, the
retrieved chunks are augmented to the user’s query and the sys-
tem prompt in the augmentation module. This step is critical
for making sure that the records from the retrieved documents
are effectively incorporated with the query. Then, the output
from the augmentation module is fed to the generation module
which is responsible for generating an accurate answer to the
query by utilizing the retrieved chunks and the prompt through
an LLM (like chatGPT by OpenAI, hugging face, and Gemini
by Google). We used the RAG procedure described in Figure 6
for both our use cases, pedestrian crossing behavior prediction
and vehicle lane change prediction. The only difference is the
source of knowledge and the query that will be fed to the
retrieval module.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section, we provide a detailed description of how
our behavior prediction approach was implemented for both
pedestrian and driver scenarios. While both scenarios share a
common KGE learning strategy and the Bayesian inference
scheme, as described in previous sections, here we highlight
specific details associated with each scenario, beginning with
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Fig. 6: RAG workflow (the numbers show the arrangement of
the RAG process flow throughout the figure).

the datasets and experiments considered. Subsequently, we
present and analyze the extensive experimental activity we
performed to evaluate the results with respect to other state-
of-the-art approaches.

A. Implementation details - Pedestrian use case

The implementation of our approach for the pedestrian use
case can be delineated in three segments: 1) Feature extrac-
tion, 2) Modeling pedestrian behaviors utilizing KG and 3)
Explainability using RAG. Firstly, we build a modular archi-
tecture employing Python and PyTorch to extract the features
specified in Section II-A. These extractions were facilitated
by various neural networks and processed estimations as it is
briefly described in Table III. All implementation details are
expounded upon in [41].

TABLE III: Pedestrian Features Extraction.

Feature Extraction
type

Description

Motion
activity

Neural
network

We implemented a transformer ar-
chitecture that processes the 2D
body pose and outputs the pedes-
trian action.

Proximity to
the road

Neural
network and
estimation

From YOLOPv2[42] was obtained
the drivable road area segmentation
and lane detection. Based on an
experimental minimum distance it
is estimated whether the pedestrian
is near to the road or not.

Distance Estimation Estimated using the triangle simi-
larity

Orientation Neural
network

Using the PedRecNet[43] the joint
positions of the human body and
the body orientation from the az-
imuthal angle φ were obtained.

Gaze Estimation We used the 2D body pose detec-
tion and the positions of the nose,
left eye, and right eye keypoints.

Secondly, we employed Python, TensorFlow, and the Ampli-
Graph 2.0.0 library to execute the pipeline for modeling

TABLE IV: Number of triples in the experimental setup.

Dataset Ontology Triples

PSI
PedFeatKG 238 795

PedFeatRulesKG 302 574

JAAD
PedFeatKG 139 624

PedFeatRulesKG 197 381

pedestrian behaviors utilizing KG. In this implementation, we
utilized the ComplEx scoring model, the Adam optimizer,
and the SelfAdversarialLoss. In terms of training parameters,
we utilized an embedding size of k = 150. The number of
corruptions generated during training ranges from 5 to 20,
depending on the quantity of triples and the dataset. Addition-
ally, we set learningRate = 0.0005, batchSize = 10 000,
and implemented an early stopping criterion using the Mean
Reciprocal Rank (MRR) as is described in [31]. The pedestrian
use case involved a set of videos for both training and testing
purposes. In the case of JAAD, 136 videos were utilized
for training and 35 for testing, whereas for PSI, 104 videos
were used for training and 48 for testing. From these datasets
and the ontologies described before (PedFeatKG and Ped-
FeatRulesKG), two KGs were generated, each composed of a
specific number of triples and entities, as detailed in Table IV.
The performance evaluation of the proposed pipeline was con-
ducted using precision, recall, and F1-score metrics. Precision
was calculated as the ratio of correct positive predictions to the
total predicted positives. Recall represents the ratio of correct
positive predictions to the total positive examples, while the
F1-Score is the harmonic mean of precision and recall. Finally,
the third segment was focused on RAG implementation. To
accomplish this explainability module, we utilized pedestrian
features extracted from the JAAD and PSI datasets to generate
a human-readable document that incorporates a basic expla-
nation of why pedestrians have or do not have the intention
to cross the road, for instance: ”The pedestrian will not cross
the street because, the pedestrian is looking, is oriented to
the left, is running, is at a moderate distance from the road
and the vehicle is too far”. Then, we utilized this document
containing all descriptions in the RAG module, based on the
LangChain framework. Within this module, we segmented the
document into chunks and transformed them into embeddings
using the OpenAI model. The embeddings were then stored in
the Chroma vector database. Subsequently, the final response
was generated using the OPENAI GPT-4 Large Language
Model (LLM), based on a prompt tailored for the pedestrian
use case and a query derived from the pedestrian features
within the prediction frame, as detailed in Figure 7.

B. Implementation details - Drivers use case

This section addresses two main topics regarding the driver
use case. The first one focuses on training the generated KG
obtained from phase 1. The training utilizes the Ampligraph
library, which creates the KGE from the HighD dataset. The
second topic discusses the generation of explanations using
the RAG technique. The dataset was divided based on tracks,
to ensure a clear distinction between training, validation and
testing data, taking into account the vehicles’ behaviors across
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Pedestrian Use Case Drivers Use Case

You are an expert on the pedestrian behavior on the road and you are an
expert assistant for question-answering tasks. 
 

- Context (input): Linguistic inputs describe the pedestrian state:
orientation, gaze, action, proximity to the road and distance.

- Output: Justification of the pedestrian behavior in clear and precise
English using a maximum of three sentences and do not use conditional
words as may.

- Command: Use the following pieces of retrieved context to answer the
question.If you don't know the answer, just say that you don't know.

Prompt

Explain why a pedestrian, who is walking in the same direction as the
vehicle, not looking the vehicle, positioned far from the curb, at a middle
distance to the vehicle, will not  cross the street

Query 

You are an expert in knowledge graphs and vehicle lane change analysis that can
justify why the vehicle did one of the following maneuvers (left lane change, or
right lane change, or kept lane).

- Context (input): Linguistic inputs describe the target vehicle lateral acceleration,
lateral velocity, TTC (Time To Collision) risk with (left preceding, preceding, right
preceding, left following, right following) surrounding vehicles, and the target
vehicle predicted lane change maneuver.

- Output: Justification of the lane change maneuver in clear and precise English
with a maximum of 75 words.

- Command: You will be shown the inputs of the current scene, and some
retrieved knowledge graphs in the form of triples. Use the most similar graph in
your justifications.

Prompt

Query 
(leftAcceleration, movingLeft, lowRiskLeftPreceding, lowRiskPreceding,
lowRiskRightPreceding, lowRiskRightFollowing, lowRiskLeftFollowing,
leftLaneChange)

Fig. 7: RAG prompt example for road users behavior.

different tracks. This division was crucial to prevent the
overlap of behaviors, especially since vehicles on the same
track could exhibit similar behaviors, such as vehicles moving
to the right because there is an exit on the right at the end of the
road. Consequently, the dataset was organized so that the first
48 tracks (80% of the data), were allocated for the training and
validation phases. The remaining 12 tracks (20% of the data)
were reserved exclusively for testing. A variety of triple counts
are explored for validation, including 500, 1000, 2000, 4000,
and 10 000 triples. Despite this range, the evaluation score
during testing remained consistent across these different triple
counts. Therefore, a decision was made to proceed with 2000
triples for validation, leveraging the train test split no un-
seen function provided by the Ampligraph library to facilitate
this choice. The final distribution of triples for the dataset was
established as 351 736 for training, 2000 for validation, and
12 222 for testing. Two distinct scoring models are compared:
TransE and ComplEx. To ensure a fair comparison, the training
parameters are fixed. This includes setting the embedding size
(k) to 100, employing the Adam optimizer with learning rate
= 0.0005, utilizing the SelfAdversarialLoss, generating five
negative triples for every positive triple by corrupting both
the subject and object and setting a batch size of 10 000.
Additionally, validation parameters were specified, with a
burn-in period and frequency both set at five, alongside a
validation batch size of 100. An early stopping criterion is
also used to monitor the MRR metric during validation, with
a patience threshold of five validation epochs. F1-score is
the used evaluation metric to choose the best model. Also,
precision and recall metrics are used for comparison purposes
results with other works. Regarding the RAG section the data
is divided into chunks with size of 384 tokens. Each chunk

represents a KG of one sample in the form of triples. Chunks
were transformed into embedding vectors using all-MiniLM-
L6-v2 Hugging Face embedding model and stored in Chroma
vector database. After that, OpenAI GPT-4 LLM was used
in the generation module to generate the final response. The
query is formed by extending the linguistic inputs which are
fed to the KGE and Bayesian inference model with the lane
change prediction output obtained from that model. Then, this
query is fed to the RAG model. Figure Figure 7 shows the used
system prompt with an example where the query is provided in
order to guide the LLM model when generating the responses.

C. KG-based Prediction Results - Pedestrian use case

The performance of our knowledge-based predictor approach
was evaluated over the test set of each dataset. The results
provided were compared with the following methods:

• In JAAD:
– Convolutional 3D (C3D): it is a state of the art model

that utilizes RGB frames and a fully-connected (fc)
layer to generate the final prediction [44] [45].

– Pedestrian crossing prediction with attention (PCPA):
it is a state of the art model that integrates a 3D
convolutional branch for encoding visual informa-
tion, alongside individual RNNs to process various
features [45].

– Decision Tree: to evaluate this technique, we used the
simple implementation of Decision Trees provided
by the KNIME Anaylitics Platform, using the Gini
Index as quality meter, a minimum records per node
set as 4 and with Minimal Description Length (MDL)
pruning method activated.
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– Fuzzy logic: as mentioned in Section Section IV-A,
we utilized the IVTURS-FARC method to extract
a set of fuzzy rules and membership functions.
Subsequently, employing a Takagi-Sugeno (TS) in-
ference system implemented in Python, we generated
predictions.

• In PSI:
– Pedestrian Trajectory Prediction (eP2P): it is a state-

of-the-art model that leverages context features and
LSTM encoder-decoder modules to forecast pedes-
trian intentions and trajectories [30].

– Ours Black Box: we developed the black box to
participate in the IEEE ITSS Student Competition
on Pedestrian Behavior Prediction, which took place
in 2023 at ITSC2023. This black box employed
transformer encoding blocks, pedestrian features, and
a many-to-one attention layer to predict crossing
intention.

– Decision Tree: we used the process described above
to generate predictions through this approach.

– Fuzzy Logic: we used the process described above to
generate predictions through fuzzy logic approach.

According to the results presented in Table V, experiments
conducted on both datasets, PSI and JAAD, demonstrate that
both KG models outperform other methods focusing on “black
box” strategies or explainability. Specifically, in the case of
JAAD, the KG models significantly enhance performance in
terms of F1-score, with PedFeatRulesKG showing a 22%
improvement compared to C3D and a 19% improvement
compared to PCPA. Similarly, compared to the decision tree
and fuzzy logic approach, our method demonstrates improve-
ments of 9% and 12%, respectively. While improvements in
precision and recall are also evident in our approach, accuracy
values in “black box” methods are higher. In the case of PSI,
improvements are evident in terms of F1-scores, precision, and
recall, while accuracy remains higher with the “black box”

TABLE V: Comparing the pedestrian behavior predictor with
various methods (The table includes the available results).

(a) JAADtest

Model F1 Precision Recall Accuracy
C3D 0.65 0.57 0.75 0.84
PCPA 0.68 - - 0.85
Decision Tree 0.78 0.78 0.78 0.78
Fuzzy Logic 0.75 0.69 0.81 0.69
PedFeatKG 0.86 0.77 0.96 0.79
PedFeatRulesKG 0.87 0.86 0.88 0.83

(b) PSItest

Model F1 Precision Recall Accuracy
eP2P 0.66 - - 0.76
Ours Black Box 0.75 0.74 0.75 0.62
Decision Tree 0.63 0.63 0.63 0.63
Fuzzy Logic 0.72 0.74 0.70 0.59
PedFeatKG 0.81 0.75 0.89 0.69
PedFeatRulesKG 0.84 0.75 0.94 0.72

approach. Specifically, PedFeatRuleKG shows improvements
in the F1-score compared to eP2P, our black box method, the
decision tree, and the fuzzy logic approach, by 18%, 9%, 21%,
and 12%, respectively. In addition, in both datasets, both KG
models yield similar results. However, the best performance
is achieved by the KG incorporating pedestrian features and
fuzzy rules (PedFeatRulesKG). This highlights the importance
of integrating various sources of information into the KG
to enhance pedestrian behavior predictions. Moreover, the
inclusion of fuzzy rules enhances the robustness of the KG
and provides additional evidence, which is included in the
Bayesian inference process, offering clues that differentiate
between crossing and non-crossing predictions. The presented
results demonstrated that our approach, in addition to offering
a novel strategy for incorporating explainability into pedestrian
behavior prediction tasks, included a pipeline based on KG and
Bayesian inference that delivered outstanding performance.
Furthermore, it is important to highlight that the incorpora-
tion of fuzzy rules to enrich the KG served as a valuable
complement to Bayesian inference.

D. KG-based Prediction Results - Drivers use case
After incorporating the KGE embedding and applying
Bayesian inference, we tested the model against the last 12
tracks of the HighD dataset. Initial tests compared the F1-
scores of the TransE and ComplEx models three seconds
before a lane change. With the TransE model achieving an f1-
score of 93.60% and the ComplEx model only reaching 12%,
the TransE model demonstrated superior performance. Thus,
subsequent experiments and discussions are focused on the
TransE model. We conducted tests at varying intervals before
a lane change, ranging from 1 to 4 seconds, in one-second
increments. The results are stated in Table VI, showing that
the model’s F1-score remains above 90% for three seconds
before the lane change event. We compared our model’s F1-
score with those reported in existing literature using the HighD
dataset, as detailed in Table VII. This comparison reveals that
our model performance is close to the scores in studies [46]
and [47] within the initial 0.5 to 1-second time frame, showing
only a 1% margin difference. However, starting from the 1.5-
second and higher, our model consistently outperforms the
aforementioned studies, maintaining an F1-score above 97% at
2.5 seconds, above 90% for up to three seconds, and over 80%
for 3.5 seconds before crossing the lane marking. To further
evaluate the effectiveness of our proposal, we compared it to a
standard machine-learning technique using a simple Decision
Tree implementation in the KNIME Analytics platform. Our
results showed that both approaches produced similar results
in the range from 1 second to 2 seconds, indicating that our
proposal can achieve comparable performance to traditional
machine learning techniques in certain scenarios. However, our
proposal began to outperform the Decision Tree implementa-
tion at 3.0 seconds before crossing, highlighting the superior
predictive capabilities of our Bayesian inference schema. This
result demonstrates the potential of our approach to provide
more accurate and reliable predictions in complex scenarios,
where traditional machine learning techniques may struggle to
capture the nuances and uncertainties of human behavior.
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continuing along the sidewalk rather than
preparing to cross

At 30 frame

Fig. 8: Examples of prediction explainability from JAAD dataset.

TABLE VI: Precision, recall, and F1-score metrics of the
predictions obtained from our proposed model at different
instants.

Our Proposal Decision Trees
1 Second Precision (%) Recall (%) F1-score (%) F1-score (%)

LK 98.33 96.96 97.64 97.69
LLC 97.98 97.50 97.74 98.03
RLC 97.00 99.42 98.19 97.91

Macro avg 97.77 97.96 97.86 98.88
2 Seconds Precision (%) Recall (%) F1-score (%) F1-score (%)

LK 98.86 96.96 97.95 97.19
LLC 97.50 99.15 98.32 97.36
RLC 96.52 98.66 97.58 97.04

Macro avg 97.66 98.25 97.95 97.20
3 Seconds Precision (%) Recall (%) F1-score (%) F1-score (%)

LK 92.53 96.96 94.70 93.19
LLC 95.71 91.77 93.70 90.38
RLC 95.46 89.50 92.38 91.71

Macro avg 94.56 92.74 93.60 91.76
4 Seconds Precision (%) Recall (%) F1-score (%) F1-score (%)

LK 69.63 96.96 81.05 79.04
LLC 91.30 46.00 61.16 46.19
RLC 88.75 42.39 57.37 53.61

Macro avg 83.22 61.78 66.52 59.61

E. Explainability Results - Pedestrian use case

For this use case, explainability can be explored from two per-
spectives: KG Models and RAG models. When it comes to KG
models, the PedFeatKG ontology only activates the pedestrian

TABLE VII: Comparison with other models using the F1-score
(%) metric.

Algorithm

Prediction
Time 0.5s 1.0s 1.5s 2.0s

[46] 98.20 97.10 96.61 95.19
[47] 99.18 98.98 97.56 91.76
Ours 97.72 97.86 98.11 97.95

features, which could provide a possible explanation for the
prediction. On the other hand, if we use the PedFeatRulesKG
ontology, the pedestrian features are supported by fuzzy rules,
offering additional insight into the prediction. In the second
case, the pedestrian features representing the pedestrian state
were queried to the retrieval module to explain why the
prediction was made and whether the pedestrian will cross
the road or not. The example depicted in Figure 8 showcases
two predictions derived from JAAD videos, encompassing
the prediction outcome, the frame of prediction, pedestrian
features, activated fuzzy rules, and the RAG explanation.
These examples underscore the significance of pedestrian body
orientation and proximity to the road as crucial factors in
explaining why pedestrians choose to cross or not cross the
road. In the case of video 044, two fuzzy rules were activated,
explaining the prediction of crossing the road due to: 1) the
pedestrian is near to the road and 2) the pedestrian is oriented



13

a) Frame capture at t = -6 s
(no action yet).

d) Frame capture at t = 0.5 s
(crossed lane marking).

c) Frame capture at t = -2 s
(vehicle is merging).

b) Frame capture at t = -4 s
(LLC prediction).
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Fig. 9: Scene explanation through four different frames.

to the left and is walking fast. Similarly, in the instance of
video 262 where the pedestrian will not cross, one fuzzy
rule was activated, indicating that pedestrians are oriented in
the same direction as the vehicle. This explanation is further
enhanced by the RAG, which also considers the distance
between the pedestrian and the ego-vehicle.

TABLE VIII: Different multimedia for results visualization in
the pedestrians and drivers use cases.

Use Case Link
Pedestrians https://www.youtube.com/playlist?list=

PLAeK3AuwxenEqDvdJAk8X9Ysn5egmGvKO

Drivers https://www.youtube.com/playlist?list=
PLAeK3AuwxenFsZslUIYk1CitWKAeAddgt

F. Explainability Results - Drivers use case

Regarding the explainability of the driver use case, Figure 9
and Figure 10 show a scenario that involves a left lane change.
The first figure captures various frames showing a white target
vehicle and its green neighboring vehicles during the lane
change. The second figure presents a graph detailing numerical
values and linguistic data inputs fed into the KG model for
analysis of the same scenario. This includes sub-figures show-
ing lateral velocity, lateral acceleration, and time-to-collision
(TTC) with the preceding vehicle, and both following and
preceding vehicles on the left and right. The final sub-figure
displays the prediction probabilities throughout the scene. The
aim is to demonstrate how the model employs interpretable
and explainable linguistic inputs for accurate prediction. The
scene begins six seconds before the lane change as shown in
Figure 9, at which point the target vehicle is moving straight
with zero lateral acceleration and low-risk TTC with the right
preceding and following vehicles, as well as the left preceding
vehicles. There is a medium risk with a center preceding
vehicle and a high risk with the left following vehicle. Us-
ing Bayesian reasoning, the model is asked to compute the
probability of LLC given the generated linguistic inputs, the
same question is addressed for LK and RLC, and the prediction
with the highest probability will be the model’s prediction. The
model uses the KGE to get all the triples probabilities after
reification as mentioned earlier in Section III-C and Figure 3.
During this instant, the model prediction is LK as it has a
higher probability than LLC and RLC. Two seconds later, the
risk associated with the left following vehicle decreases from
high to low, while the medium risk with a center preceding
vehicle remains. This change prompts the model to predict an
LLC represented by a red arrow pointing to the left of the
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Fig. 10: Temporal sequence of numerical variables and lin-
guistic categories.
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zeroAcceleration straightMotion

lowRiskLeftPreceding

zeroAcceleration

mediumRiskPreceding

lowRiskRightPreceding

highRiskLeftFollowing

lowRiskRightFollowing

straightMotion

lowRiskRightFollowing

lowRiskLeftFollowing

mediumRiskPreceding

lowRiskRightPreceding

lowRiskRightPreceding

Prediction 

At t = -6 s

Target Vehicle Features
RAG Explanation

laneKeep

The vehicle maintained its position due to lack of
lateral acceleration and motion in a straight line.
Furthermore, considering the collision
possibilities, there's a high risk with the left-
following vehicle, which discourages a left-lane
maneuver, and a medium risk with the preceding
vehicle, disfavoring a right lane change.
Therefore, staying in the current lane is the
safest option.

Prediction 

RAG Explanation

leftLaneChange

The target vehicle decided to switch to the left
lane because of the medium risk posed by the
vehicle directly ahead. Despite maintaining
straight velocity and zero lateral acceleration, the
left lane offered lower risk with the left preceding
and following vehicles.

At t = -4 s

Target Vehicle Features

Fig. 11: Examples of lane change prediction explainability based on the discussed scene from HighD dataset.

vehicle. After that, in the third captured frame represented in
Figure 9c. The target vehicle starts to accelerate in the left
direction, moving with lateral velocity in the left direction as
well. So, the vehicle started moving to merge and was about to
change lane. By the final frame, after the lane change by 0.5
seconds, the vehicle is merging into the left lane, accelerating
right while still moving left. The preceding vehicle that was
a high-risk before the lane change is now the right preceding
vehicle and the left preceding vehicle has shifted positions to
be directly ahead. These changes significantly affect the TTC
values. Table VIII contains links for some multimedia videos
that provide results of different scenes including the scene
discussed in this section.

Regarding the explainability of the driver use case using
RAG, Figure 11 shows the RAG explanation for the first two
instances in the scene described in Figure 9. The model gives
clear, reasonable, and precise explanations.

VI. CONCLUSIONS AND FUTURE WORK

In this work, a context-based road users’ behavior prediction
system has been developed using Knowledge Graphs, as
the main structure for representing knowledge, and Bayesian
inference with graph reifications as a means to implement a
fully inductive reasoning system as a downstream task. Two
use cases have been targeted following this predictive ap-
proach: 1) pedestrian crossing actions; 2) vehicle lane change
maneuvers. In both cases, the proposed KG-based solution
provides superior performance with respect to the state of the
art both in terms of anticipation and F1 metric. Especially
relevant is the demonstrated capability for predicting road
users’ behaviors in the absence of relevant kinematic clues,
given the ability of the proposed system for accounting for
contextual information. Different types of information sources
have been integrated, including datasets and rules, as a proof
of the capability to deal with numerical and linguistic in-
formation in a harmonized knowledge representation format
using Knowledge Graphs. This feature endows the system

with the capacity to incorporate human knowledge in the
form of linguistic descriptions representing experience and/or
rules. Finally, explainable descriptions of the behavioral pre-
dictions have been implemented using Retrieval Augmented
Generation Techniques (RAG), as a means to combine the
reasoning ability of Knowledge Graphs and the expressive
capacity of Large Language Models. Despite the progress
exhibited in the current work, a number of improvements are
envisaged with a view to extending and testing the predictive
capabilities in new use cases, such as: 1) near-miss (or crash)
lane change maneuvers, and 2) occluded children on urban
scenarios. Similarly, further research is necessary for getting
to understand road users’ behaviors in a more holistic manner,
especially in cross-cultural settings. For that purpose, new
data will be gathered in regions of the world with different
social rules, such as the MENA (Middle East and North of
Africa) region, South-East Asia, and Latin America. Finally,
the proposed predictive system will be integrated with the
behavior planner of an Autonomous Vehicle in order to make
AVs to behave in a more human-like fashion.
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