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Abstract: In this paper, the pricing of financial derivatives and the calculation of their delta Greek are
investigated as the underlying asset is a jump-diffusion process in which the stochastic intensity component
follows the CIR process. Utilizing Malliavin derivatives for pricing financial derivatives and challenging to
find the Malliavin weight for accurately calculating delta will be established in such models. Due to the
dependence of asset price on the information of the intensity process, conditional expectation attribute to
show boundedness of moments of Malliavin weights and the underlying asset is essential. Our approach is
validated through numerical experiments, highlighting its effectiveness and potential for risk management
and hedging strategies in markets characterized by jump and stochastic intensity dynamics.
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1 Introduction

Stochastic intensity is the most important attribute of financial markets which represent the realism of
the arrival rate of events in the models better. Flexibility in randomness of intensity, in spite of con-
stant intensity, can remarkably capture the arrival of new information, changes in the behavior of investors
in the market and the arrival rate of jumps such as market crashes, large price movements, or sudden
changes in volatility. Financial institutions, portfolio managers, and investors can use these models to as-
sess the likelihood and potential consequences of extreme events, leading to more informed decision-making
and the development of effective risk mitigation strategies, see [Brigo and Alfonsi(2005)] and [Leung and
Kwok(2009)] respectively. In addition, the stochastic jump intensity to the rate of default of firms for risk
assessments and portfolio managements have been exposed in [Feng(2017)] and [Lévy dit Véhel and Lévy
Véhel(2018)].
The self-exciting point process in which the current intensity of events is determined by events in the past
is firstly introduced by [Hawkes(1971)]. The crucial role of jumps with stochastic intensity in option pricing
are supported by the empirical results in [Fang(2000)] and its role in modeling the jump intensity risk is
supported in [Santa-Clara and Yan(2010)], empirically. In Markov intensity models with discrete state,
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which the model called Markov-modulated jump model, pricing of the risky underlying assets is considered
by [Elliott et al.(2007)], [Bo et al.(2010)], [Chang et al.(2013)] and recently by [Shan et al.(2023)] in which
the Markov-modulated jump diffusion process is used to model the discrete dividend process in financial
markets. In the continuous framework, [Brigo and Alfonsi(2005)] have derived an analytical formula for
pricing of credit derivatives under CIR stochastic intensity models. Later, [Brigo and El-Bachir(2006)]
have considered a smile-extended jump stochastic intensity to price credit default swaptions. Non-Gaussian
intensity models have been investigated by [Bianchi and Fabozzi(2015)]. In 2019, the authors [Yang et
al.(2019)] proposed these models for variance exchange rate to price the variance swaps. This subject
in [Huang et al.(2014)] and in [Chang and Wang(2020)] and recently in [Ma et al.(2023)] was dealt with
option pricing under double exponential jump model with stochastic volatility and stochastic intensity using
Fourier transform.
On the other hand, Malliavin calculus is a sophisticated mathematical tool that extends the traditional
calculus to differentiate random variables and quantify their sensitivities, the accurate calculation of delta
and pricing of financial derivatives, hedging strategies, and investment decision-making, see for instance,
[Alos and Ewald(2008)], [Hillairet et al.(2018)], [Yilmaz(2018)], [Kuchuk-Iatsenko et al.(2016)], [Fournié
et al.(2001)]. In 2004, [El-Khatib and Privault(2004)] have computed Greeks in a market driven by a
discontinuous process with Poisson jump times and random jump sizes using the Malliavin calculus on
Poisson space. Numerical simulations are presented for the delta and gamma of Asian options, and confirm
the efficiency of this approach over classical finite difference Monte-Carlo approximations of derivative.
In [Huehne(2005)] the stochastic weights for the fast and accurate computation of Greeks for options whose
underlying is driven by a pure-jump Levy process have been derived. Later, Bavouset and Messaoud
discuss this subject [Bavouzet and Messaoud(2006)] by both the Malliavin derivative with respect to the
jump amplitudes and to the Wiener process. Also, The computation of delta with Malliavin calculus
for options on the underlying asset modeled by Levy processes are stated in [Mhlanga(2011)], [Khed-
her(2012)], [Matchie(2009)], [Coffie et al.(2021)], as we refer the readers to [Nunno et al.(2009)], [Nualart
and Nualart(2018)] for more details about the Malliavin calculus on Levy processes. Recently, sensitivity
analysis with respect to the stock price for singular SDEs is considered in [Coffie et al.(2021)] and regularity
of distribution-dependent SDEs with jump processes is proved in [Song and Wang(2022)] by using Malliavin
calculus. [Hudde and Rüschendorf(2023)] have represented a closed-form expression for Asian Greeks in an
exponential Levy process model.
In general, in this article, we are interested in the jump-diffusion models with stochastic intensity as follows
in the CIR model, called self-exciting Cox process. We will investigate the pricing of financial derivatives
and will derive an expression for the delta calculation by a Malliavin weight. In the presence of the Malli-
avin derivative of the intensity in the Malliavin derivative of the underlying process, some Wiener-direction
which belongs to the domain of Skorokhod operator in the Gaussian case is found, Theorem 3.3, to be used
in the duality formula appeared in calculating the delta and the price of financial derivatives. Meanwhile,
the use of conditional expectation with respect to the information of the intensity is unavoidable. We
should point out here that there are two different approaches to define the Malliavin derivative with respect
to jump processes {chapters 10, 11 of [Nualart and Nualart(2018)]}. So that we will find two different
Skorokhod integrals as the Malliavin weight associated to each approach in computation of delta.
This article is organized as follows: In section 2, we recall Malliavin concepts on Wiener spaces and Poisson
spaces. In section 3, we will introduce the main model with a stochastic intensity process and check the
necessities to exist the solution of the model and to be bounded of its moments, We will demonstrate the
Malliavin derivative of the solution and find some direction which its derivative is invertible in. In section
4, we will calculate the delta and price of the European option . In section 5, We express the numerical
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results and compare them with the finite difference method. Finally, we introduce the fund that supported
us and we present the conclusion.

2 A review on Malliavin calculus

Let us review some concepts of Malliavin calculus on Wiener space and in the Poisson framework, See
standard reference [Nualart and Nualart(2018)].

2.1 Malliavin calculus concepts on Wiener space

For a positive real number T , suppose that Ω := C0([0, T ]) is the space of real continuous functions w on
[0, T ] with w(0) = 0 equipped with the uniform norm

∥w∥∞ = sup
t∈[0,T ]

|w(t)|. (2.1)

Consider
(
Ω,F ,Ft, P

)
as a filtered probability space, with coordinate map t → W (t, w) for Brownian

motion B(t) corresponding to the filtration {Ft}. For every γ ∈ Ω of the Cameron-Martin space, the set of
the functions in the form γ(t) =

∫ t

0
g(s)ds for some g ∈ L2([0, T ]), and a random variable F : Ω → R, the

directional derivative of F in the γ direction, have defined as the following form, if the limit exists. In fact,

DW
γ F (w) =

d

dϵ
[F (w + ϵγ)]ϵ=0.

If there exists some ψ ∈ L2([0, T ]× Ω) satisfying the following equation

DW
γ F (w) =

∫ T

0

ψ(t, w).g(t)dt.

the variable F is Malliavin differentiable in Wiener space and DWF = (DW
t F )0≤t≤T := (ψ(t, w))0≤t≤T . We

define the set of all F : Ω → R such that F is differentiable by D1,2
W . In fact, if we denote by S the set of

all functionals F = φ(θ1, θ2, ..., θn) where ϕ is a smooth function with bounded derivatives of any order and

θi =
∫ T

0
fi(t)dBt with fi ∈ L2([0, T ]), Then F ∈ D1,2

W and the derivative of F is

DW
t F (w) =

n∑
i=1

∂φ

∂xi
(θ1, ...., θn)fi(t).

For every integer n and p ≥ 2, the space Dn,p
W is the closure of S with respect to the norm defined by

∥F∥n,p = ∥F∥Lp(Ω) + ∥(DW )nF∥Lp([0,T ]n×Ω).

The Skorohod operator is the adjoint operator of DW from L2([0, T ] × Ω) to D1,2
W . Later, we will use the

following duality relation, which states that for given F ∈ D1,2 and u ∈ Dom(δW )

E
( 〈
DWF, u

〉
L2[0,T ]

)
:= E

(∫ T

0

(DW
t F )utdt

)
= E

(
FδW (u)

)
.
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For every adapted process u, δW (u) can be represented by the stochastic integral
∫ T

0
u(s)dWs.

2.2 The Malliavin calculus on Poisson space

There are two different approach to introduce the Malliavin derivative of Levy processes. One is introduced
by the chaos expansion criteria which does not satisfy in the rule chain, and the other is introduced on the
closure of the set of Poisson functionals that satisfies the chain rule. We recall some concepts and for more
details, we refer to [Nualart and Nualart(2018)].

2.2.1 First approach

Consider a Levy process N with the Levy measure v on a complete separable metric space (R0,B). Let
L2([0, T ]×Rn

0 ) be the space of symmetric square integrable functions on the ([0, T ]×Rn
0 ,m× v× · · · × v),

where m is an atomless measure on [0, T ]. Given h ∈ L2([0, T ] × Rn
0 ) and fixed z ∈ R0, we write h(t, ., z)

to indicate the function on Rn−1
0 given by (z1, ..., zn−1) → h(t, z1, ..., zn−1, z). Denote the set of random

variables F in L2(Ω) with a chaotic decomposition F =
∑∞

n=0 In(hn) by D1,2
N , that hn ∈ L2

s([0, T ] × Rn
0 ),

satisfying∑
n≥1

nn!∥hn∥2L2([0,T ]×Rn
0 )
<∞.

Then, if F ∈ D1,2
N we define the Malliavin derivative DN of F as the L2([0, T ]×R0)-valued random variable

given by

DN
t,zF =

∑
n≥1

nIn−1(hn(t, ., z)), z ∈ R0.

The operator DN is a closed operator from D1,2
N ⊂ L2(Ω) into L2(Ω× [0, T ]×R0) and satisfy the following

rules.

Lemma 2.1. [Nualart and Nualart(2018)] Let F,G ∈ D1,2
N Suppose that FG ∈ L2(Ω) and (F +DNF )(G+

DNG) ∈ L2(Ω× [0, T ]× R0).Then the product FG also belongs to D1,2
N and

DN
t,z(FG) = FDN

t,zG+GDN
t,zF +DN

t,zFD
N
t,zG.

proposition 2.2. [Nualart and Nualart(2018)] Let F be a random variable in D1,2 and let φ be a real
continuous function such that φ(F ) belongs to L2(Ω) and φ(F +DNF ) belongs to L2(Ω× Z). Then φ(F )
belongs to D1,2 and

DN
t,zφ(F ) = φ(F +DN

t,zF )− φ(F ).

Now, given stochastic process u in L2(Ω× [0, T ]× R0) admits a unique representation of the following
form that for each (t, z) ∈ [0, T ]× R0

u(t, z) =
∑
n≥0

In(hn(t, ., z)),
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where the function hn ∈ L2([0, T ]× Rn
0 ). If∑

n≥0

(n+ 1)!∥hn∥2L(Rn+1
0 )

<∞,

we say u is in the domain of the divergence operator δN , denoted by DomδN and

δN(u) =
∑
n≥0

In+1(h̃n),

where h̃n stands for the symmetrization of h as a function in the last n + 1 variables. For instance, if
u(z) = h(z) is a deterministic function in L2(R0) then δ(u) = I1(h). If u(z) = I1(h(., z)), with h ∈ L2(R0),
then δ(u) = I2(h).
The following result characterizes δN as the adjoint operator of DN .

proposition 2.3. [Nualart and Nualart(2018)] If u ∈ DomδN , then δN(u) is the unique element of L2(Ω)
such that, for all F ∈ D1,2

N ,

E(
〈
DNF, u

〉
L2([0,T ]×R0)

) = E(FδN(u)).

Conversely, if u is a stochastic process in L2(Ω × [0, T ] × R0) such that, for some G ∈ L2(Ω) and for all
F ∈ D1,2

N ,

E(
〈
DNF, u

〉
L2([0,T ]×R0)

) = E(FG),

then u belongs to DomδN and δN(u) = G.

The divergence operator δ satisfies the following product rule.

proposition 2.4. [Nualart and Nualart(2018)] Let F ∈ D1,2
N and u ∈ Domδ such that the product uDF

belongs to DomδN and the right-hand side of (2.2) below belongs to L2(Ω). Then Fu ∈ Domδ and

δN(Fu) = FδN(u)−
〈
DNF, u

〉
L2([0,T ]×R0)

− δN(uDF ). (2.2)

2.2.2 Second approach

We make use of the notation

N(h) :=

∫
[0,T ]

∫
R0

h(t, z)N(dt.dz)

for every h ∈ L1([0, T ] × R0,m × v). Denote by C0,2
0 ([0, T ] × R0) the set of continuous functions h :

[0, T ] × R0 → R that have compact support and are twice differentiable on R0. We consider the set S of
cylindrical random variables of the form

F = φ(N(h1), ..., N(hn)), (2.3)

where φ ∈ C2
0(Rn) and hi ∈ C0,2

0 ([0, T ] × R0) for 1 ≤ i ≤ n. It is easy to show that the set S is dense in
L2(Ω). The Malliavin derivative of a simple random variable F in S of the form (2.3) is defined as the two
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parameter process

DNP
t,z F =

n∑
k=1

∂φ

∂xk
(N(h1), ..., N(hn))∂zhk(t, z), (t, z) ∈ [0, T ]× R0.

In particular, DNP
t,z (N(h)) = ∂zh. Define the scalar product < ., . > for every u, ũ ∈ L2(Ω) as

< u, ũ >N :=

∫ T

0

∫
R0

u(s, z)ũ(s, z)N(ds, dz),

and denote ∥.∥N as its associated norm. Also, let D1,p
Np
, for every p ≥ 1, the closure of S, as the domain of

the operator DNP
t,z , with respect to the seminorm

∥F∥p1,N := E(|F |p) + E(∥DNPF∥pN).

The next result is the chain rule for the Malliavin derivative in the Poisson framework.

proposition 2.5. [Nualart and Nualart(2018)] Let φ be a function in C1(R) with bounded derivative, and
let F be a random variable in D1,2

Np
. Then, φ(F ) belongs to D1,2

Np
and

DNP
t,z (φ(F )) = φ′(F )DNP

t,z (F ).

The authors in [Song and Wang(2022)] have stated a powerful tool called integration by parts formula
for this type of derivative in the following form in some Sobolev spaces we recall here. For every p ≥ 1,
denote by Lp the set of all predictable processes ψ on [0, T ]× R0 with finite norm

∥ψ∥Lp =
[
E
(∫

R0

∫ T

0

ψ(s, z)m(ds)ν(dz)
)p] 1

p
+
[
E
(∫

R0

∫ T

0

ψp(s, z)m(ds)ν(dz)
)] 1

p
,

and denote by Vp the set of all predictable processes ψ on [0, T ]× R0 with finite norm

∥ψ∥Vp = ∥∂ψ
∂z

∥Lp + ∥ρψ∥Lp ,

where ρ(z) = |z|−1. We shall write V∞ :=
⋂

p≥1Vp.

proposition 2.6. Given F ∈ D1,p
Np
, for p ≥ 2, and w0 ∈ V∞ we have

E
(
< DNP (F ), w0 >N

)
= E

(
F

∫
R0

∫ T

0

1

θ

∂(θw0)

∂z
(t, z)Ñ(dt, dz)

)
,

where ν(dz) = θ(z)dz.
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3 Stochastic jump processes with stochastic intensity

In this section, we recall the concept of stochastic intensity desired by Bérmaud in Chapter 5 of [Brèmaud(2020)]
and introduce the model and state the assumptions and some lemmas we need in the main results.
Let (Ω,F ,P) be a Wiener-Poisson space with a risk neutral probability P . Assume that Nt is a Poisson
process and FN

t is an σ-field generated by N with the density of jumps sizes Cz, as z ∈ R0 and stochastic
intensity process λ. For given σ-field Ft, the process λt is an Ft-intensity of Nt if for every s, t ∈ [0, T ]

E
(∫

R0

∫ s

t

N(du, dz)|Ft

)
= E

(∫
R0

∫ s

t

Czλududz|Ft

)
,

and so that Ñ(t, z) = N(t.z)−
∫
R0

∫ t

0
Czλsdsdz is an Ft-martingale. Also, obviously, for every 0 ≤ t, s ≤ T

and for every Ft-predictable function k

E
(∫

R0

∫ s

t

k(u, z)N(du, dz)|Ft

)
= E

(∫
R0

∫ s

t

k(u, z)Czλududz|Ft

)
.

We refer the reader to Chapter 5 of [Brèmaud(2020)] for more details. It is worth mention that one
can easily show [Brèmaud(2020)] that if λ is G-measurable, for every measurable function k such that

E
( ∫

R0

∫ t

0
(k(t, s))2λsdsCzdz

)
<∞,

E
(
exp{iu

∫
R0

∫ t

0

k(s, z)N(ds, dz)}
∣∣∣G) = exp

{∫
R0

∫ t

0

(eiuk(t,z) − 1)λsCzdsdz
}
. (3.1)

In this manuscript, we assume that the underlying asset price S = (St)t∈[0,T ] with the jump stochastic
intensity process λ = (λt)t∈[0,T ] of Poisson process Nt can be governed by the following system of SDEs:{

dSt = µStdt+ σ1StdW
S
t +

∫
R0
(eJt,z − 1)StÑ(dt, dz),

dλt = κ(Θ− λt)dt+ σ2
√
λtdWt,

(3.2)

where (Wt)t∈[0,T ] and (W S
t )t∈[0,T ] are independent Brownian motions, Nt is independent ofW

S
t , µ denotes the

riskless interest rate, J is a cadlag function, the mean-reverting speed parameter κ, σ2 and σ1 are positive
constants and the long term mean Θ satisfying 2κΘ > σ2

2.
For Fλ

t , σ-field generated by λ, let Ft = FN
t ∨ Fλ

t and G = Fλ
t . In this case, obviously, Ft = FN

t and for
every 0 ≤ t, s ≤ T and for every Ft-predictable function k

E
(∫

R0

∫ s

t

k(u, z)N(du, dz)|Fλ
t

)
=

∫
R0

∫ s

t

k(u, z)Czλududz.

We also assume the following conditions throughout the paper.
Condition H1:

• For every p ≥ 1 and for almost everywhere 0 ≤ t ≤ T∫
R0

(eJt,z − 1)pCzdz ≤ up <∞, vt :=

∫
R0

(eJt,z − 1)Czdz ̸= 0. (3.3)
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• There exists some p0 ≥ 2 such that 2up0σ
2
2 ≤ k.

•
∫ T

0
1
v2u
du <∞.

we know that the solution to the stochastic differential (3.2) is as follows, see [Øksendal and Sulem(2019)].

St = S0 exp
{
(µ− σ2

1

2
)t+ σ1W

S
t +

∫ t

0

∫
R0

(Js,z − eJs,z + 1)Czλsdzds

+

∫
R0

∫ t

0

Js,zÑ(ds, dz)
}

=: S0 exp
{
Xt

}
=: S0Yt exp

{
(µ− σ2

1

2
)t+ σ1W

S
t

}
,

where Yt satisfying

dYt = Yt(e
Jt,z − 1)Ñ(dt, dz), Y0 = 1. (3.4)

It follows that this solution is in Lp-space for every 2 ≤ p ≤ p0, as we see in the following lemma.

Lemma 3.1. The solution St of (3.2) is unique and uniformly is in
⋂

2≤p≤p0
Lp(Ω), i.e., for every 2 ≤ p ≤

p0,

E
(

sup
0≤t≤T

|St|p
)
<∞.

Proof. We know that for any p ≥ 2,

E
(

sup
t∈[0,T ]

exp
{
p(µ− σ2

1

2
)t+ pσ1W

S
t

}
) <∞.

So, it is sufficient to show that equation (3.4) has a unique solution. To do this, with the same proof of
Lemma 2.3. in [Song and Zhang(2015)] and Section 5.1.1 of [Menaldi(2008)], we derive that for any p ≥ 2
and every step time h, there exists a constant Cp > 0 such that:

E
(

sup
s∈[t,t+h]

∣∣∣∣ ∫
R0

∫ s

t

(eJu,z − 1)YuÑ(du, dz)

∣∣∣∣p|Fλ
t

)
≤ CpE

([∫ t+h

t

∫
R0

Y 2
u (e

Ju,z − 1)2Czλudzdu

] p
2

|Fλ
t

)
+ CpE

([∫ t+h

t

∫
R0

Y p
u (e

Ju,z − 1)pCzλudzdu|Fλ
t

)
.

Define the new probability measure p1(A) = λs1A(s)/
∫ t+h

t
λsds, for every A ⊂ [t, t+h] as 1A is the indicator
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function, and applying Young inequality to result

E
(

sup
s∈[t,t+h]

Y p
s |Fλ

t

)
≤ E

(
Y p
t |Fλ

t

)
+ Cp

1∫ t+h

t
λsds

E
([∫ t+h

t

∫
R0

Y p
u (e

Ju,z − 1)pCzλudzdu|Fλ
t

)
+ CpE

([∫ t+h

t

∫
R0

Y p
u (e

Ju,z − 1)pCzλudzdu|Fλ
t

)
≤ E

(
Y p
t |Fλ

t

)
+ Cp

up∫ t+h

t
λsds

∫ t+h

t

E
(

sup
t≤s≤u

Y p
s |Fλ

t

)
λudu

+ Cpup

∫ t+h

t

E
(

sup
t≤s≤u

Y p
s |Fλ

t

)
λudu. (3.5)

Now apply Gronwall inequality for m(s) =
∫ s

t
E
(
supt≤s≤u Y

p
s |Fλ

t

)
λudu, 0 ≤ s ≤ T , and derive that

m(s) ≤ E
(
Y p
t |Fλ

t

) ∫ s

t

λuexp
{
up

∫ s

u

λr(1 +
1∫ s

t
λvdv

)dr
}
du

≤ E
(
Y p
t |Fλ

t

)
eup

∫ s

t

λuexp
{
up

∫ s

u

λrdr
}
du

≤ E
(
Y p
t |Fλ

t

)eup

up
exp

{
up

∫ s

t

λrdr
}
. (3.6)

Substituting (3.6) into (3.5) obtain

E
(

sup
s∈[t,t+h]

Y p
s |Fλ

t

)
≤ E

(
Y p
t |Fλ

t

)(
1 + Cp(1 +

1∫ t+h

t
λsds

)exp
{
up + up

∫ s

t

λrdr
}
)

)
. (3.7)

Therefore, in the sequence, we should show that the expectation of the right hand side of equation (3.6), as
t = 0 and 2 ≤ p ≤ p0, is bounded. For this purpose, we note that using Ito formula, for a positive constant
γ, we have

deγλt = γκ(Θ− λt)e
γλt + σ2γe

γλt
√
λtdWt +

σ2
2

2
γ2eγλtλtdt

= κΘγeγλtdt+ (
γ2σ2

2

2
− κγ)λte

γλtdt+ σ2γe
γλt

√
λtdWt.

Taking the expectation on both sides and applying Gronwall inequality to deduce

E(eγλt) ≤ eγλ0 + κΘγeγλ0eκΘγt = eγλ0(1 + κΘγeκΘγt),

Now, set γ = up0 and γ = 2up0 in above inequality to use in the expectation of the following equation.∫ t

0

κΘγeγλsds = eγλt − eγλ0 +

∫ t

0

κγλse
γλsds− γ2σ2

2

2

∫ t

0

λse
γλsds− γσ2

∫ t

0

√
λse

γλsdWs.
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Thus,

κΘγE
( ∫ t

0

eγλsds
)
≤ E(eγλt)− eγλ0 + κγE

( ∫ t

0

λse
γλsds

)
≤ E(eγλt)− eγλ0 + κγ

∫ t

0

[2E(λ2s) + 2E(e2γλs)]ds <∞,

which results that

E
(
exp{up0

∫ t

0

λsds}
)
≤

∫ t

0

E(exp{up0λs})ds <∞.

This fact and taking the expectation from (3.7) complete the proof. The inequality (3.7) will obviously
prove the uniqueness of the solution.

remark 3.2. We mention that if supp≥2up <∞, then Lemma 3.1 is held for every p ≥ 2.

In the last part of this section note that getting the partial derivatives of St with respect to S0 show
that the stochastic flow of St exists and it is

∂St

∂S0

=
St

S0

= exp{Xt} = Yt exp{(µ− σ2
1

2
)t+ σ1Wt}. (3.8)

Therefore, this flow is in Lp-space for every 2 ≤ p ≤ p0.

3.1 Malliavin derivative of the solution on Wiener space

In this section, we obtain Malliavin derivative of the solution St and also we will consider some Skorokhod
integrable directions in which the inverse of directional derivatives are in Lp(Ω), for all 2 ≤ p ≤ p0.
Due to the representation of the solution with respect to Xt, it needs to find its derivative. Gaussian
Malliavin derivative of Xt comes as follows:

DW
u Xt = −

∫ t

u

DW
u λs

∫
R0

(eJs,z − 1)Czdzds =: −
∫ t

u

vuD
W
u λsds, (3.9)

In [Altmayer and Neuenkirch(2015)], the authors have shown that using the Ito formula and taking the
Malliavin derivative with respect to the Brownian motion, for every s ≤ t

DW
s λt = σ2

√
λt10≤s≤t exp

{
−

∫ t

s

(
κ

2
+
Cσ

λr
)dr

}
, (3.10)

E( sup
0≤t≤T

λpt ) <∞ ∀p ≥ 1, and sup
0≤t≤T

E(λ−p
t ) <∞, ∀p ≥ 1 s.t. 2κθ > pσ2

2, (3.11)

where Cσ = κΘ
2
− σ2

2

8
is a positive number. Here, we represent that the inverse of directed Malliavin derivative

of Xt in some directions, which are also in the domain of Skorokhod operator, can belong to all Lp spaces
for any p ≥ 2.
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Theorem 3.3. When 2κθ > 3σ2
2, there exists a direction h(.) ∈ dom(δW ), defined as the following

h(u) =
1

vu
(
κ

2
+
Cσ

λu
), 0 ≤ u ≤ T,

such that BT =
〈
DW

. XT , h(.)
〉
is almost surely invertible and( 〈

DW
. XT , h(.)

〉 )−1

∈
⋂
2≤p

Lp.

Proof. From (3.9), Fubini theorem and the expression (3.10), we derive

BT = −
∫ T

0

〈
v.D

W
. λs, h(.)

〉
ds

= −
∫ T

0

[
σ2
√
λsexp{−

∫ s

0

(
κ

2
+
Cσ

λr
)dr}

∫ s

0

(
κ

2
+
Cσ

λu
)exp{

∫ u

0

(
κ

2
+
Cσ

λr
)dr}du

]
ds

= −
∫ T

0

[
σ2
√
λs(1− exp{−

∫ s

0

(
κ

2
+
Cσ

λr
)dr})

]
ds. (3.12)

Applying the Gamma function results

E(
1

|BT |p
) =

1

Γ(p)
E
( ∫ ∞

0

zp−1e
−z

∫ T
0

[
σ2

√
λs(1−exp{−

∫ s
0 (

κ
2
+Cσ

λr
)dr})

]
ds
dz

)
≤ 1

Γ(p)
E
( ∫ ∞

0

zp−1e−z(1−e−
Tκ
2 )

∫ T
0 σ2

√
λsdsdz

)
=

1

σp
2(1− e−

Tκ
2 )p

E
( 1

(
∫ T

0

√
λsds)p

)
<∞,

thanks to Lemma 5.2. of [Altmayer and Neuenkirch(2015)] in the last inequality. So, we conclude that for
every p ≥ 2, BT ∈ LP (Ω). In the sequel, we will show that h(.) ∈ Dom(δW ). According to Proposition
1.3.1 in [Nualart(2000)], it is sufficient to show that h(.) ∈ D1,2

W . To do that, from these facts that for every
x, y ∈ R, (x+ y)2 ≤ 2x2 + 2y2 we result

E(
∫ T

0

h2(t)dt) + E(
∫ T

0

(DWh)2(t)dt)

≤ κ2
∫ T

0

1

2v2u
du+ 2C2

σ

∫ T

0

1

v2u
E(

1

λ2u
)du+ σ2

2C
2
σ

∫ T

0

1

v2u
E(

1

λ3u
)du <∞, (3.13)

where we used form (3.11) in the last inequality.

4 Pricing and Delta calculation

In this section, we discuss the pricing of the payoff function by weighted Malliavin described in the previous
section.we also present an explicit formula to calculate the delta Greek. To do this, we state a representation
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of the delta as a combination of the Wiener-Malliavin weight and the Poisson-Malliavin weight. We assume
the following condition on the payoff functions.
Condition H2: The payoff function f : R+ → R+ is a measurable function with at most polynomial
growth p0

2
, and locally Riemann integrable, possibly, having discontinuities of the first kind.

Let us introduce the following notations presented in [Bezborodov et al.(2019)]: for every x ≥ 0,

F (x) =

∫ x

0

f (z)dz, g(y) = f (ey), G(y) =

∫ y

0

g(z)dz.

In this notation, we have Ef (ST ) = Eg(XT ) and

G(x) =
F (ex)

ex
+

∫ x

0

F (ey)

ey
dy − F (1).

Theorem 4.1. Under condition H2, the price of a simple derivative can be represented as

E
(
f (ST )

)
= E

(F (ST )

ST

(1 + ZT )
)
= E

(
G(XT )ZT

)
, (4.1)

where ZT = δW (h(.)BT
).

Proof. Suppose that the function K is a locally Lipschitz function with K′(x) = k(x) almost everywhere with
respect to the Lebesgue measure. Assume additionally that k is of exponential growth and K(XT ) ∈ D1,2

W .
Namely, the Skorokhod integral is the adjoint operator to the Malliavin derivative, therefore

E
(
k(XT )

)
= E

(∫ T

0

k(XT )
DW

u XTh(u)

⟨DW
. XT , h(.)⟩

du
)

= E
(∫ T

0

DW
u K(XT )h(u)

⟨DW
. XT , h(.)⟩

du
)
=

1

T
E
(∫ T

0

K(XT )
h(.)

⟨DW
. XT , h(.)⟩

dWu

)
= E

(
K(XT )

∫ T

0

h(u)

⟨DW
. XT , h(.)⟩

dWu

)
= E

(
K(XT )ZT

)
. (4.2)

In particular, for the function G which is a locally Lipschitz function and g is of exponential growth, we
rewrite (4.2) for k = g as follows:

E(f(ST )) = E(g(XT )) = E(G(XT )ZT )

= E
((F (ST )

ST

+

∫ XT

0

F (ey)

ey
dy − F (1)

)
ZT

)
= E

(F (ST )

ST

ZT

)
+ E

(
ZT

∫ XT

0

F (ey)

ey
dy

)
− E

(
F (1)ZT

)
= E

(F (ST )

ST

ZT

)
+ E

(∫ XT

0

F (ey)

ey
dyZT

)
,
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Applying equation (4.2) to k(x) = F (ex)
ex

, we get that

E
(∫ XT

0

F (ey)

ey
dyZT

)
= E

(F (eXT )

eXT

)
= E

(F (ST )

ST

)
.

Hence

E
(
f(ST )

)
= E

(F (ST )

ST

ZT

)
+ E

(F (ST )

ST

)
= E

(F (ST )

ST

(1 + ZT )
)
.

4.0.1 Delta with Wiener-Malliavin weight

Now, we are ready to present an explicit formula to calculate the Delta Greek. To do this, we state a
representation of the delta as a combination of the Wiener-Malliavin weight and the Poisson-Malliavin
weight.

Theorem 4.2. Under condition H2, the delta display with respect to the Wiener -Malliavin weight as

∆W =
∂

∂s
E
(
f(ST )

)
= E

(
f(ST )

ZT

S0

)
.

Proof. From the fact that ∂ZT

∂S0
= 0, we derive

∆W =
∂

∂S0

E
(
f(ST )

)
=

∂

∂S0

E
(F (ST )

ST

(1 + ZT )
)

= E
( ∂F (ST )

∂S0
ST − F (ST )

∂ST

∂S0

S2
T

(1 + ZT ) +
F (ST )

ST

∂ZT

∂S0

)
= E

(
(
F ′(ST )

ST

− F (ST )

ST
2 )

∂ST

∂S0

(1 + ZT )
)

= E
(f(ST )

ST

ST

S0

(1 + ZT )
)
− E

(F (ST )

ST
2

ST

S0

(1 + ZT )
)

= E
(f(ST )

S0

(1 + ZT )
)
− E

(F (ST )

ST

1

S0

(1 + ZT )
)

= E
(f(ST )

S0

ZT

)
,

where we used Theorem 4.1 in the last equality.

4.0.2 Delta with Poisson-Malliavin weight

We will use the literature in [Coffie et al.(2021)] and calculate the delta with a Malliavin weight regarding
the Poisson random measure in two approaches.
In the first approach.
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Due to Proposition 2.2, we know that DN
u,zXt = Ju,z1u≤t and then DN

u,zSt = St(exp{DN
u,zXt} − 1) satisfying

DN
s,zSt = Ss(e

Js,z − 1) +

∫ t

s

µDN
s,zSudu+

∫ t

s

σ1D
N
s,zSudWu

+

∫ t

s

∫
R0

(eJu,z − 1)DN
s,zSuÑ(du, dz). (4.3)

It is remarkable that in this approach of Malliavin derivative with respect ot the Poisson random measure,
the following lemma will be held.

Lemma 4.3. Let F = 1A ∈ D1,2
N , where 1A is the indicator function of the set A ∈ F . Then DNF = 0

almost everywhere.

Proof. From Proposition 2.2 and Lemma 2.1, we have

DN1A = DN(1A)
2 = (1A +DN1A)

2 − 12A = 21AD
N1A + (DN1A)

2,

DN1A = DN(1A)
3 = (1A +DN1A)

3 − 13A = 31AD
N1A + 31A(D

N1A)
2.

Then, DN1A = 0.

Thanks to Theorem 5.6.1 in [Mhlanga(2011)] and Proposition 2.3, if there exists a random variable
u(., .) ∈ Dom(δN) such that

E
(
f ′(ST )

∂ST

∂S0

)
= E

(∫ T

0

∫
R0

u(t, z)(f(ST +DN
t,zST )− f(ST ))Czλtdzdt

)
= E

(∫ T

0

∫
R0

u(t, z)(f(ST e
Jt,z)− f(ST ))Czλtdzdt

)
, (4.4)

then ∆N := ∂
∂S0

E
(
f(ST )

)
= E

(
f(ST )δ

N(u)
)
.

Now we calculate the delta with respect to the Poisson process in the following examples desired in
[Huehne(2005)].
Example: Consider the European call option with the payoff function f(ST ) = max(ST −K, 0). In fact,
one can define the function u of the form

u(t, z) =



∂ST
∂S0

HK(ST )∫ T
0

∫
R0

Dt,zSTCzλtdzdt
ifDt,zST + ST −K ≥ 0

∂ST
∂S0

HK(ST )∫ T
0

∫
R0

(K−ST )Czλtdzdt
ifDt,zST + ST −K < 0,

(4.5)

where Hy(x) = 1x≥y is the Heaviside function and 1A is the indicator function of the set A. Obviously, the
equality (4.4) will be held for this function. Also, it is in the domain of δN , due to the similar proof of

Lemma 5.1 in [Alos and Ewald(2008)] for every p ≥ 2 instead of 1
2
, we have E

(
(
∫ T

0
λtdt)

−p
)
<∞. Rewrite
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the definition of the function u in (4.5) in the following form.

S0u(t, z) =
HK(ST )∫ T

0
vtλtdt

1ST eJt,z−K≥0 +
HK(ST )∫ T

0
λtdt

ST

K − ST

1ST eJt,z−K<0.

Therefore,

∆N =
∂

∂S0

E(f(ST )) = E(f ′(ST )
∂ST

∂S0

) = E
(
f(ST )δ

N(u)
)

= E
(
f(ST )

1

S0

δN
( HK(ST )∫ T

0
vtλtdt

1ST eJt,z−K≥0 +
HK(ST )∫ T

0
λtdt

ST

K − ST

1ST eJt,z−K<0

))
.

According to (2.2), Proposition 2.4 and Lemma 4.3,

δN
(
HK(ST )1ST eJt,z−K≥0

)
= HK(ST )δ

N
(
1ST eJt,z−K≥0

)
,

and

δN
(
HK(ST )

ST

K − ST

1ST eJt,z−K<0

)
= HK(ST )δ

N
( ST

K − ST

1ST eJt,z−K<0

)
.

Thus,

∆N = E
( ST −K

S0

∫ T

0
vtλtdt

HK(ST )δ
N
(
1ST eJt,z−K≥0

))
+ E

( ST −K

S0

∫ T

0
λtdt

HK(ST )δ
N
( ST

(K − ST )
1ST eJt,z−K<0

))
= E

( STHK(ST )

S0

∫ T

0
vtλtdt

∫ T

0

∫
R0

1ST eJt,z−K≥0(e
Jt,z − 1)Czλtdzdt

)
− E

( S2
THK(ST )

S0(ST −K)
∫ T

0
λtdt

∫ T

0

∫
R0

1ST eJt,z−K<0(e
Jt,z − 1)Czλtdzdt

)
.

In the second approach.
In this part, we need the following assumption.

Assumption 4.4. For α ∈ (0, 2) and some constants c0 and c,

C. ∈ C1(R0), | ∂
∂z
logCz| ≤ c0ρ(z),

and

lim
ϵ→0

ϵα−2

∫
|z|≤ϵ

|z|2Czdz = c. (4.6)
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As a result of the assumption (4.6), shown in [Song and Wang(2022)] Lemma 2.5, for any p ≥ 2, there
exist some constants c0,p and c1,p such that

c0,pϵ
p−α ≤

∫
|z|≤ϵ

|z|pCzdz ≤ c1,pϵ
p−α. (4.7)

Condition K1: First and second derivatives of the function J with respect to z is bounded, i.e., there
exists some non-negative constant γ and cJ > 0 such that

sup
0≤t≤T,z∈R0

|∂Jt,z
∂z

|−1 ≤ cJ |z|−γ, sup
0≤t≤T,z∈R0

|∂
2Jt,z
∂z2

| ≤ cJ |z|γ−1.

In the same way as the proof of Lemma 4.1 in [Song and Wang(2022)], one can show the following lemma.

Lemma 4.5. Under Assumption 4.4, for every p ≥ 2 and θ ≥ 2, there exists some constant cp such that
for every t ∈ [0, T ] and ϵ ∈ (0, 1),

E
([ ∫

0<|z|≤ϵ

∫ t

0

|z|θN(ds, dz)
]−p

|Fλ
t

)
≤ cp

(
ϵθ−α

∫ t

0

λsds
)−p

+
(∫ t

0

λsds
)− θp

α
.

Proof. According to (3.1) and the proof of Lemma 4.1 in [Song and Wang(2022)], we have

E
([ ∫

0<|z|≤ϵ

∫ t

0

|z|θN(ds, dz)
]−p

|Fλ
t

)
≤ 1

Γ(p)

∫ ∞

0

rp−1exp{
∫
{0<|z|≤ϵ}

∫ t

0

(e−r|z|θ − 1)λtCzdtdz}dr

≤ 1

Γ(p)

∫ ∞

0

rp−1exp{
∫
{0<|z|≤ϵ∧r−

1
θ }

∫ t

0

c0r|z|θλtCzdtdz}dr

≤ cp

(
ϵθ−α

∫ t

0

λsds
)−p

+
(∫ t

0

λsds
)− θp

α
.

for some c0 > 0 that 1− e−x ≥ c0x as |x| ≤ 1.

Now, we calculate the delta with respect to the Poisson process when the Malliavin derivative is defined
in the second approach. To do this, we note that from the definition of Malliavin derivative in this approach
and (3.8), we know

DNp
r,zST =

∂Jr,z
∂z

ST , (4.8)

satisfying the following equation for every 0 ≤ s ≤ t

DNp
s,zSt = Ss

∂Js,z
∂z

eJs,z +

∫ t

s

µDNp
s,zSudu+

∫ t

s

σ1D
Np
s,zSudWu

+

∫
R0

∫ t

s

(eJu,z − 1)DNp
s,zSuÑ(du, dz).
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With a similar way to [Song and Wang(2022)], set A(t, z) := 1
S0

(
∂Jt,z
∂z

)−1

ξ(z) where ξ is a non-negative

smooth function that

ξ(z) = |z|3+γ if |z| ≤ 1

4

(∫ T

0

E(λs)ds
) 1

α
, ξ(z) = 0 if |z| ≥ 1

2

(∫ T

0

E(λs)ds
) 1

α
,

and | ∂
∂z
ξ(z)| ≤ c1|z|2+γ and |ξ(z)| ≤ c1|z|3+γ, for some constant c1. Then, according to Lemma 4.5, under

Assumption 4.4 and condition K1, one can arrive at

E
(
Nξ

)−p

:= E
(∫

R0

∫ T

0

ξ(z)N(dr, dz)
)−p

≤ 2cp

(∫ T

0

E(λs)ds
)− (3+γ)p

α
,

and for some constant cJp, in connection with (4.7),

∥A∥pVp
≤ 2p−1(∥∂A

∂z
∥pLp

+ ∥ρA∥pLp
)

≤ cJp

[
E
(∫

0<|z|≤(
∫ T
0 E(λs)ds)

1
α

∫ T

0

|z|2λsdsCzdz
)p

+ E
(∫

0<|z|≤(
∫ T
0 E(λs)ds)

1
α

∫ T

0

|z|2pλsdsCzdz
)]

≤ c1,pcJp

[( ∫ T

0

E(λs)ds
) p(2−α)

α E
(∫ T

0

λsds
)p

+
(∫ T

0

E(λs)ds
) 2p

α
]
<∞.

Now, multiply (4.8) in A and get integration to derive the Poisson-Malliavin weight of the computation of
delta.

< DNpST ,A >N=

∫
R0

∫ T

0

DNp
r,zST

(∂Jr,z
∂z

)−1

ξ(z)N(dr, dz) = STNξ,

and then, in connection with Propositions 2.5 and 2.6,

∆N
p :=

∂

∂S0

E(f(ST )) = E
(
f ′(ST )

∂ST

∂S0

)
= E

(
< DNpf(ST ),A >N

1

Nξ

)
= E

(
f(ST )

1

Nξ

∫
R0

∫ T

0

1

Cz

∂(C.A)(s, z))

∂z
Ñ(ds, dz)

)
=: E

(
f(ST )

1

Nξ

δNp(A)
)
.

Lemma 4.6. Under Assumption 4.4 and Condition K1, for every p ≥ 2,

E
(
δNp(A)

)p

<∞.
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Proof. From Assumption 4.4 and Section 5.1.1 of [Menaldi(2008)], there exist constants cjp and a such that

E
(
δNp(A)

)p

≤ cjpE
(∫ T

0

∫
R0

1

C2
z

[
∂(C.A)(s, z))

∂z
]2λsdsCzdz

) p
2

+ cjpE
(∫ T

0

∫
R0

1

Cp
z
[
∂(C.A)(s, z))

∂z
]pλsdsCzdz

)
≤ 2pcjpE

(∫ T

0

∫
R0

(| ∂
∂z
logCz|2A2(s, z)λsdsCzdz

) p
2

+ 2pcjpE
(∫ T

0

∫
R0

(| ∂
∂z
logCz|pAp(s, z)λsdsCzdz

)
+ 2pcjpE

(∫ T

0

∫
R0

A2(s, z)λsdsCzdz
) p

2
+ 2pcjpE

(∫ T

0

∫
R0

Ap(s, z)λsdsCzdz
)

≤ aE
(∫ T

0

∫
R0

|z|2λsdsCzdz
) p

2
+ aE

(∫ T

0

∫
R0

|z|2pλsdsCzdz
)

+ aE
(∫ T

0

∫
R0

|z|6λsdsCzdz
) p

2
+ aE

(∫ T

0

∫
R0

|z|3pλsdsCzdz
)
<∞.

5 Numerical Example

In this section, we calculate the delta in both cases of the Malliavin derivative for the European option and
show the results.
Let Jt,z = z for z ∈ R and consider an European call option with the expiration date T and the strike price
K, as

f(ST ) = max(ST −K, 0).

The exact expression for ∆ is

∆ = E[HK(ST )
ST

S0

],

whereas for the symmetric Finite Difference approach gives

∆ =
∂

∂S0

E[max(ST −K, 0)] =
F (S0 + h)− F (S0 − h)

2h
,

where F (S0) = E[f(ST )|S0], and h is an arbitrary small constant.
Figure 1 shows the pricing of a European option for parameters σ1 = 0.40, σ2 = 0.10, Θ = 1, κ = 0.15,
µ = 1, T = 1, λ0 = 0.10, S0 = 5, the number of simulated paths is 1000 and K = S0 × u which
u = 0.3, 0.45, 1.00, . . . , 6.45, 7. In figures 2 and 3, sensitivity of the price of call option are presented with
respect to the parameters of the stochastic intensity model; κ and σ.
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Figure 1: Pricing of European call option for T = 1, S0 = 5 and the function Jt,z = z with Guassian jump
distribution.

Figure 2: sensitivity of price with respect to k

Figure 3: sensitivity of price with respect to sigma2
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Figure 4: Greek Delta for European call option in the first approach for Jt,z = z and Gaussian jump
distribution.

Figure 5: Greek Delta for European call option in the second approach for Jt,z = z and Gaussian jump
distribution.

5.1 Delta in the first and second approach

Figures 4 and 5 show the behaviour of these four expressions ∆, ∆W , ∆N and ∆W/2+∆N/2 for σ1 = 0.10,
σ2 = 0.05, Θ = 0.30, κ = 0.05, µ = 0.01, T = 1, λ0 = 0.10, S0 = 5, K = S0 × 1.2 and time discretization
h = 0.0001. The jumps are generated by a normal distribution with a mean of −0.10 and a standard
deviation of 0.50 which satisfies Condition H1. The exact solution is 0.0481509. The execution time of the
program code in Malliavin method and finite difference method in the first approach are 2.2104× 104 and
4.4111× 104, and in the second approach are 2.2817× 104 and 4.5626× 104 respectively. The specifications
of the computer system with which the program is implemented are Intel(R) Core i7− 9700K CPU and 64
GB Memory.
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Table 1: The mean square error of four methods
The Method MSE of the first approach MSE of the second approach

Winner −Malliavin(WM) Weight 0.0004 0.0003
Poisson−Malliavin(PM) Weight 0.0023 0.0021

Mean WM and PM Weight 0.0003 0.0002
Symmetric F inite Difference 0.0254 0.0190

7 Conclusions

The main purpose of this article is to study the pricing of financial derivatives and to calculate the delta
of them in a stochastic model with stochastic jump and intensity by using the Mallivain calculation. In
the presence of the Malliavin derivative of the intensity, some Wiener-direction is found to be used in the
duality formula of the Gaussian case appeared in calculating the delta and the price of financial derivatives.
This subject, delta computation, is also considered in Poisson space with two different approaches. Finally,
through the numerical results, we compare the price sensitivity computation in two methods, the finite dif-
ference method and the Malliavin method, with the exact solution in the models with jumps and stochastic
intensity on asset prices and financial derivatives. The method developed in this paper can be extended to
other pricing problems and Greeks associated with stochastic volatility processes and fractional Brownian
motion. We leave these problems for our future work.
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