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Abstract. The use of automatic short answer grading (ASAG) models
may help alleviate the time burden of grading while encouraging edu-
cators to frequently incorporate open-ended items in their curriculum.
However, current state-of-the-art ASAG models are large neural networks
(NN) often described as "black box", providing no explanation for which
characteristics of an input are important for the produced output. This
inexplicable nature can be frustrating to teachers and students when
trying to interpret, or learn from an automatically-generated grade. To
create a powerful yet intelligible ASAG model, we experiment with a
type of model called a Neural Additive Model that combines the per-
formance of a NN with the explainability of an additive model. We use
a Knowledge Integration (KI) framework from the learning sciences to
guide feature engineering to create inputs that reflect whether a student
includes certain ideas in their response. We hypothesize that indicating
the inclusion (or exclusion) of predefined ideas as features will be suffi-
cient for the NAM to have good predictive power and interpretability,
as this may guide a human scorer using a KI rubric. We compare the
performance of the NAM with another explainable model, logistic regres-
sion, using the same features, and to a non-explainable neural model,
DeBERTa, that does not require feature engineering.

Keywords: Explainable AI · Automatic Grading · ASAG · Neural Ad-
ditive Models.

1 Introduction

It has been shown that the use of open-ended (OE) items is beneficial for student
learning due to the generation effect [3] or in combination with self-explanation
[6]. However, assessing OE items is time consuming for teachers [16] and con-
sequently, educators default to using multiple choice (MC) questions instead.
Automatic short answer grading (ASAG) may alleviate this time burden while
encouraging educators to frequently incorporate OE items in their curriculum.

Many of the best performing ASAG models include some variation of a deep
neural network (NN) [15]. NNs are impressive predictors for high dimensional
inputs like text embeddings, but predictive power tends to come at the cost of
intelligibility. These models are often described as "black box" which means that
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users only have access to inputs and outputs, yet no information as to the process
in-between. Further, unlike explainable models such as a logistic regression (LR),
with NN ASAG models, we are not choosing which features the model may
consider, and the model provides no explanation for which characteristics of an
input are important for the produced output. Whereas educators typically use
a scoring rubric to provide an explanation to stakeholders about which features
of a given response substantiate the assigned score, and despite that attempts
have been made to integrate scoring rubrics into ASAG models [8], NN ASAG
models provide no justification for their predictions. The inexplicable nature of
ASAG models can be frustrating to both teachers and students when trying
to make sense of, or learn from an automated grade. Teachers are unable to
monitor student understandings at a fine-grained level, and students may not
productively learn without knowing why they received a certain grade. It is
critical that researchers find more explainable models if ASAG systems are to
be of greater practical use.

In an effort to create a powerful yet intelligible ASAG model, we experiment
with a type of model that combines the performance of a NN with the explain-
ability of an additive model called a Neural Additive Model (NAM) [1]. NAMs
allow us to visually examine the contribution of each feature to the final pre-
dicted score for each response, similar to testing the significance of a regression
coefficient. For this type of model, we must engineer features of a response as
inputs to the model instead of allowing the model to create its own text features
like typical Large Language Model (LLM) classifiers do. The research questions
we seek to answer include, (1) can NAMs provide intelligible automatic grading
such that stakeholders can understand which features of a response are impor-
tant for its prediction, and (2) is the predictive performance of NAMs better than
that of legacy explainable models like a LR and commensurate with that of an
LLM classifier? This research is unique as NAMs have not yet been explored for
educational applications, or more specifically for explainable automatic grading.

We demonstrate our NAM approach for ASAG with one item designed un-
der a Knowledge Integration (KI) perspective from the learning sciences and
corresponding rubric to guide our feature engineering. KI is a framework for
strengthening science understanding that emphasizes incorporating new ideas
and sorting out alternative perspectives with evidence [22]. We hypothesize that
the inclusion (or exclusion) of predefined KI ideas as features will be sufficient
for the NAM to have good predictive power, as this is precisely what would guide
a human scorer using the KI rubric. We compare the performance of the NAM
with another explainable model, a LR, using the same features as those used for
the NAM, and to a non-explainable model, DeBERTa, an improved version of the
popular BERT model [17]. The DeBERTa model does not utilize the engineered
features that are used by the NAM or LR model, but creates its own features
from the text. For a more extensive comparison of the performance of these three
models, we extend our analysis to include results from five additional questions
from an open-source data set that has been used extensively in ASAG research -
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the Automatic Student Assessment Prize (ASAP) Short Answer Scoring (SAS)
data [28].

2 Related Work

In this section, we describe previous works relating to Explainable AI and more
particularly Explainable ASAG, as well as applications of NAMs.

2.1 Explainable AI and ASAG

A recent review article outlines the increase in demand for explainable AI (XAI),
especially for people who are affected by AI driven decisions [36]. They describe
the rising popularity of NN models for their state-of-the-art performance, despite
that their inference processes are not known or interpretable. Many researchers
aim to increase the explainability of AI systems. Initiatives such as DARPA’s
"Explainable AI (XAI) program" [14] and the European Union’s "General Data
Protection Regulation" which demands citizen’s rights to an explanation for
decisions made by AI [13] are contributing to an increased demand for XAI.

Only recently are researchers beginning to think about XAI in terms of ASAG
models. Schlippe et al. [31] surveyed over 70 educators about preferences for
explainability in ASAG and learned that most prefer to see matches between
student answers and exemplary answers to justify scores over other explainabil-
ity methods like highlighting the importance of certain words. Poulton et al.
[27] proposed an XAI framework using SHAP values to assess popular LLMs
for ASAG such as BERT and RoBERTa. Zeng et al. [37] investigated whether
autograding models align with human graders in terms of the important words
they use when assigning a grade by conducting a randomized controlled trial to
see if highlighting words deemed important by an autograder can assist human
grading. Singh et al. [32] introduced Summarize and Score (SASC) to explain
‘text modules’, which map text to scalar values within LLMs, providing a natural
language explanation of the module’s selectivity. Finally, Tornqvist et al. [33] in-
troduced ExASAG, an explainable framework for ASAG that generates natural
language explanations for predictions, and Condor and Pardos train a reinforce-
ment learning agent to alter students’ short responses so that these alterations
provide insight as to why a ASAG score was assigned [7].

2.2 Applications of Neural Additive Models

Although Neural Additive Models (NAMs) were introduced only a few years
ago [1], there has been substantial interest in their use as the machine learn-
ing community has increased efforts to promote understandable models. Some
researchers have proposed altered or improved versions of NAMs for specific
applications. Mariotti et al. [24] explored the tension between interpretability
and performance of NAMs and introduce a constrainable NAM (CNAM) which
includes specifications for model regularization. The CNAM model is able to
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consider the performance-interpretability tradeoff during training, and is demon-
strated to work well for both regression and classification tasks [24]. Luber et
al. [23] introduced Structural NAMs (SNAMs) which incorporate neural splines
to a typical NAM. SNAMs offer improved intelligibility over NAMs by enabling
direct interpretation of estimated parameters, as well as quantification of pa-
rameter uncertainty and post-hoc analysisr. Bouchiat et al. [4] take a Bayesian
perspective and develop a Laplace approximated NAM (LA-NAM) to enhance
interpretability, and Jo and Kim [18] introduced NAMs for multivariate time
series modeling called NAM nowcasting (NAM-NC). Others have used NAMs
for applications in finance [5], mortality prediction [26], and survival analysis
[34]. Importantly, we found no previous works that used NAMs for educational
applications.

3 Background

In this section, we provide a description of the data, and a brief overview of
NAMs, LR, and the DeBERTa model.

3.1 The Data

The KI item used for this project was collected during a previous research project
at the Web-based Inquiry Science Environment (WISE) research center at the
University of California, Berkeley consisting of OE science items designed for
middle school students [30]. Students accessed the items via an online classroom
system, and responses were scored with a Knowledge Integration (KI) rubric.
For this project, we use one item from a unit about the physics of sound waves
that engages students to refine their ideas about concepts such as wavelengths,
frequency and pitch. For this item, students must distinguish how the pitch of
sound made by tapping a full glass of water compares to the pitch made by
tapping an empty glass. They are asked to explain why they think the pitch of
the sound waves may be the same or different for the two glasses [30]. See Figure
1 for a visual of the Soundwaves item. The KI data include 1,313 OE student
responses that were carefully rated from 1 to 5 by subject matter experts. A
detailed rubric was created by researchers and used for scoring which includes
a description of the rating level, examples of correct/incorrect mechanisms and
conclusions, and exemplar student responses that would fall into each category.
2 provides a sample of the KI scoring rubric.

The ASAP data used to extend our model comparison is from a 2012 Kaggle
competition sponsored by the Hewlett Foundation, and consists of almost 13,000
short answer responses to 10 science and English questions [28]. We used only the
5 science questions to match the domain of the KI data. Each of the five items
have between 1300-1800 OE student responses and corresponding human-rated
scores between 1 and 4 with 4 being the most correct score. Each item has an
expert created scoring rubric, and we aggregate the 5 items for training, testing
and the resulting model comparisons.
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Fig. 1. The Sound Waves item bundle

Fig. 2. The KI Scoring Rubric
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3.2 Neural Additive Models

Neural Additive Models (NAMs) impose a restriction on the structure of NNs
in order to make the model interpretable. NAMs belong to a family of models
called Generalized Additive Models (GAMs) which have the form:

g(E[y]) = +f1(x1) + f2(x2) + ...+ fk(xk)

Where x = (x1, x2, . . . , xk) represents the input with K features and each fi is a
univariate shape function with E[fi] = 0 [1]. NAMs learn a linear combination
of jointly-trained NNs where each NN attends to a single input feature. They
can approximate complex, high-dimensional functions and their predictions are
easily interpretable. NAMs provide advantages over standard GAMs such as
their superior scalability with the use of GPU/TPU hardware developed for
NNs, differentiability, and visual interpretability [1].

3.3 Logistic Regression

Multinomial LR is a classification model that predicts probabilities of different
outcomes for a categorical dependent variable. To generalize to a K-class set-
ting, the model runs K-1 independent binary LR models where one outcome is
chosen as a “pivot” and other K-1 outcomes are separately regressed against
the pivot outcome. We use the Limited-memory Broyden-Fletcher-Goldfarb-
Shannon (LBfGS) algorithm for optimization [12], and incorporate L2 regular-
ization.

3.4 DeBERTa

DeBERTa (Decoding-enhanced BERT with disentangled attention) is a Large
Language Model (LLM) that improves upon the popular BERT [10] model by
using a different version of the standard attention mechanism [35] and a novel
position encoding method. DeBERTa uses a ‘disentangled attention’ mechanism
where each word is represented with two vectors - one to encode the word’s con-
text, and another to encode the word’s relative position. Further, an enhanced
masked decoder incorporates absolute positions to predict masked tokens dur-
ing training. Finally, DeBERTa uses a unique adversarial training method to
fine-tune the model’s generalizability performance on downstream tasks. We
use an improved yet smaller version of the original DeBERTa model called
DeBERTaV3-base [17], consisting of 12 layers, a hidden size of 768, and 86
million parameters.

4 Methods

To fit a NAM, we utilize the python library, "nam" [19], created by the re-
searchers who introduced NAMs for easy implementation of the model. We al-
tered the package code to accommodate our multi-class classification setting and
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allow for our evaluation procedure and corresponding metrics. Further described
in the "Evaluation" section below, we use a cross validation (CV) evaluation
procedure for model comparison, so for each model class, we train a total of 10
models on a different sample of the data. We train each of the 10 NAMs for
120 epochs with a batch size of 64 and a learning rate of 0.002. An epoch is
one complete pass of the training data through the model, batch size represents
the number of samples used in a single forward and backward pass through the
network, and the learning rate governs the pace at which the model updates its
parameter estimates. Further, we use a regularization technique called dropout
with a value of 0.15 to help avoid over fitting. Hyperparameters were chosen
using a standard grid search where different combinations of values are tested
on a held-out validation set, and those that result in the best performance are
chosen. Each of the DeBERTa models were trained for six epochs using a batch
size of eight, and a learning rate of 0.0007. The LR models were fit using the
scikit-learn "LogisticRegression" python library.

4.1 Feature Engineering

To create features from student response texts for the NAM and LR models,
we utilize KI phrases from the rubric that represent both correct, and incorrect
mechanisms and conclusions. We chose to use KI ideas to create features because
these are exactly what a human identifies to assign a grade to a student response
within the KI framework. Because students often express their ideas using a
variety of words (i.e., the idea that "sound moves faster in air" could be stated
as "sound travels faster through air"), we scan the responses for n-grams that
are similar to the chosen KI phrases. An n-gram is a series of n consecutive words
within a string of text. For example, 2-grams of the phrase "the dog ran" would
be "the dog" and "dog ran". We use n-grams of size n=1 through 5 for each
response as students can also express the same ideas in a different number of
words. Features for the ASAP science questions were created in the same manner
(and use the same number of features for each item), although we provide the
feature phrases only from the KI data for demonstration.

To calculate the similarity between a given feature phrase and an n-gram
from a student response, we first embed both the n-gram and the phrase using
sentence-BERT. Sentence-BERT utilizes siamese and triplet network structures
to create semantically meaningful sentence embeddings [29]. We then calculate
the cosine similarity of the KI phrase and the n-gram. Cosine similarity is a met-
ric used to measure the similarity of text using the cosine of the angle between
the vector embeddings of the two texts being compared. Once the KI phrase
has been compared with all respective n-grams in a response, we use the largest
cosine similarity found as the feature for that phrase. Thus the feature represen-
tation for each phrase provides a measure of whether or not some form of the
phrase is included in the student response. We use 34 phrases and 28 key words
from the KI Sound Wave Rubric (shown in Figure 2) for a total of 62 features.
The same number of phrases and words were chosen for each ASAP item from
their corresponding scoring rubrics. The KI phrases are shown below, and the
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individual words were chosen from the phrases:

"I don’t know", "idk", "sound bounces", "water blocks sound", "water mutes
ringing", "sound moves more in air", "sound moves less in water", "sound
echoes", "sound sinks in water", "sound moves fast in air", "frequency is height
of wave", "pitch higher in full glass", "the density is different", "water is more
dense", "water vibrates less", "affects vibration", "pitch is lower in water",
"pitch is different", "higher frequency in air", "frequency is different", "sound
moves faster in water", "water has more mass", "mass is different", "sound is
denser in water", "sound is slower in water", "amplitude is number of waves",
"pitch lower in empty glass", "air is less dense", "empty glass vibrates more",
"vibration is different", "pitch is higher in air", "lower frequency in water",
"sound moves slower in air", "empty glass less mass"

4.2 Evaluation

We use a standard ASAG evaluation metric in our results table: Quadratic
Weighted Cohen’s Kappa (QWK). QWK reports the agreeability between two
scores beyond random chance - a more robust measure than accuracy. A 5x2 cross
validation (CV) paired t-test was used to evaluate the statistical significance of
the difference in models. The 5x2 CV paired t-test is based on five iterations
of twofold cross-validation, and is presented in [11] as the recommended ap-
proximate statistical test for whether one machine learning model outperforms
another because of it’s more acceptable type I error, and stronger statistical
power than other methods such as McNemar’s test, or a paired t-test based on
10-fold CV. We used the QWK metric for the 5x2 CV paired t-tests (with 5 de-
grees of freedom). We perform a t-test comparing the QWK metric for the NAM
to the LR model and the DeBERTa model. The null hypothesis for each t-test
states that the QWK metric for the NAM is no different than the QWK metric
for LR and DeBERTa. Further, we report the magnitude of the difference in
performance of the NAM to LR and DeBERTa using the QWK metric from the
CV model fits with a Cohen’s D effect size. Cohen’s D is essentially a difference
of means, scaled by a standard deviation value [20]. A low value of Cohen’s D
which represents a small magnitude of difference is typically below 0.20, and a
large value would be around 0.80 or higher. We use a pooled standard deviation
to calculate Cohen’s D, which represents a weighted combination of the standard
deviations from each model.

5 Results

Comparisons of each ASAG model’s performance are presented in tables 1 and
2. In Table 1, we present results of the 5x2 CV paired t-test using the QWK
metric for both the KI data and the aggregate ASAP data. We compare the
NAM against both LR and DeBERTa. For the KI data, the NAM performs
better than LR at a significance level of 0.05 (t=2.1732, p=0.0409), and the
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NAM performs slightly worse than the DeBERTa model but not statistically at
a significance level of 0.05 (t=-0.8410, p=0.2194). Further, for the ASAP data,
the NAM does not perform significantly better than the LR at a significance
level of 0.05 (t=1.691, p=0.0758) although the p-value is quite small. For the
ASAP data, we also see that the NAM performs worse than the DeBERTa model
but not at a statistically significant level of 0.05 (t=-1.741, p=0.071), although
similarly, the p-value is quite small. As shown by the CV average metrics in
Table 2, on average, DeBERTa performs better than the NAM and the NAM
performs better than the LR across both data sets. Additionally, in Table 1 we
present the Cohen’s D effect sizes for the difference in performance from the
NAM to the two other models. The magnitude of difference between the NAM
and both models is quite large for the KI data, with effect sizes greater than
1.0 for each comparison. For the ASAP data, the effect size is moderate when
comparing the NAM and LR.

Table 1. 5x2 Cross Validation Paired t-test (5 df) and Cohen’s D Effect Sizes

NAM versus: t(5) p-val Cohen’s D

KI data

DeBERTa -0.8410 0.2194 -1.111
Log Reg 2.1732 0.0409 1.003

ASAP data

DeBERTa -1.741 0.0711 -1.070
Log Reg 1.691 0.0758 0.222

A visual of feature importance from the NAM for the KI data is presented
in Figure 3. We show the top 40 most important features in order of increasing
importance. We see that the feature importance for the words "density" and
"higher" is much larger than that of most other words and phrases. The phrase
"the density is different" also has a comparatively high importance. Further,
in Figure 4, we present NAM Shape functions for the top 8 important words
and phrases. As each feature of the NAM is handled independently by a learned
shape function, we can see how the model makes its predictions, or in our case
ratings, by graphing the shape functions for each feature. The scores are aver-
aged and centered so that the shape functions can be directly compared on the
same scale. As our NAM is a multi-class classifier, we can visualize five shape
functions for each feature representing each of the five classes. We choose to
show only the shape function for the lowest rating class and the highest rating
class to retain the most important information yet avoid a messy, undecipherable
visual. However, Figure 5 provides an example of shape plots with all five shape
functions shown for reference. A negative y-axis score signals a low probability
of a certain class, and a positive score represents a high probability. Noticeably,
the shape functions are jagged-like with sharp jumps. [1] emphasizes the unique
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capability of NAMs to model highly “jumpy” 1-dimensional functions due to the
use of an exponential-centered (ExU) non-linear function, whereas standard neu-
ral network models are bias towards smoothness with the use of Rectified Linear
Unit (ReLU) functions. We could hypothesize that the true shape functions for
the features in this project are more smooth, and in future work we could em-
ploy regularization techniques such as weight decay to provide smoother shape
functions. On the same plot, we see the data density in the form of pink shaded
bars. The darker the shade of pink, the more data there is in that region. In
some areas with a really low data density, the model may not have had enough
data to adequately learn the shape function.

Table 2. 5x2 Cross Validation QWK Averages

Model KI data ASAP data

DeBERTa 0.7475 0.7176
Log Reg 0.6929 0.6342
NAM 0.7174 0.6473

Fig. 3. NAM Mean Feature Importance

6 Discussion

The CV averages in Table 2 give us an idea for how well each model performs
for ASAG. We are not surprised to see that the NAM provides more predictive
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power than the LR, but not as much as the DeBERTa model. The DeBERTa
model uses the entire student response as input text and learns many hundreds of
features for its predictions, whereas with the NAM and LR, we are limited to the
particular features we choose and it would be an unreasonable task to engineer
the same number of features as the DeBERTa model learns. Additionally, the
results of the 5x2 CV paired t-test in Table 1 give evidence that the NAM
outperforms the LR model - across both data sets at a significance level of 0.10
and more notably with the KI data at a significance level of 0.05. Importantly,
the NAM and the LR model use the same exact features. Further, the Cohen’s
D effect size values show that the magnitude of difference in performance of
the models is quite large for the KI data, and smaller but still notable for the
ASAP data. Not only is the difference statistically significant, but it seems to
be practically meaningful.

Fig. 4. NAM shape functions of the highest and lowest rating category for the top
8 most important phrases/words. The y-axes show the log odds of predicting a given
rating category, and the x-axes represent the range of similarity scores. The pink shades
represent the data density at varying similarity scores.

Figure 3 allows us to visually interpret the ASAG NAM through overall
feature importance, and Figure 4 gives us more detail about how each feature
contributes with NAM shape functions. Human grading of OE responses can
often consist of identifying which ideas - correct or incorrect - are included in
a student’s response. The KI scoring rubric allowed us to identify which ideas
(phrases and words) may help guide the NAM to correctly rate student re-
sponses, and the resulting NAM visualizations enable us to discern how these
ideas contribute to an automated rating. The feature importance plot can help
stakeholders identify which ideas are most indicative of the student’s grade, and
the NAM shape function gives a notion of how the directionality of the model’s
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prediction changes for different values of different rating classes. For example,
for the “higher” feature, the probability for the highest rating class (shown by
the green line in Figure 4) goes down significantly with decreasing cosine sim-
ilarities. So, including the word “higher” in a response seems to correspond to
higher scores. Additionally, with the density shading in the NAM shape function
plots, we can infer the density of responses that include the given word or phrase.
For example, the words “more”, and “higher” both have dense regions near high
cosine similarities, so we can assume that many responses include these words
or similar words. This can give an educator insight into which ideas students are
more or less likely to write about.

Fig. 5. An Example of NAM shape functions with all rating categories

Limitations of using a NAM for ASAG include that the performance of the
model in terms of its match to human ratings is less than that of a LLM ASAG
model. Also, engineering features for the NAM is more costly than preparing
student responses for a LLM ASAG model, as the model will create features from
the text itself. Further, we only show results for science questions so we cannot
conclude that our results would generalize to other short answer items from
different subject areas. Our results suggest that the NAM may be a sufficient
alternative to legacy explainable models, like a LR. Not only did the NAM
generally perform better than the LR with the same features, but the NAM
provides easily interpretable visualizations of the model’s prediction functions
which can give an educator insights about their students’ understanding of the
item content. Many researchers in the field of Learning Analytics still use LR
over NNs for classification when the advantages of intelligibility outweigh that of
performance [21][9][2][25]. The Learning Analytics community may benefit from
investigating the use of NAMs for various classification tasks as well. In future
work, we hope to experiment with using NAMs for ASAG with different question
types from different domains, and perform qualitative interviews with educators
to see if the NAM visualizations are understandable and helpful.
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