
ULLER: A UNIFIED LANGUAGE
FOR LEARNING AND REASONING

A PREPRINT

Emile van Krieken∗

University of Edinburgh
Samy Badreddine∗

Sony AI
Fondazione Bruno Kessler

UniTrento

Robin Manhaeve
KU Leuven

Eleonora Giunchiglia
TU Wien

May 2, 2024

ABSTRACT

The field of neuro-symbolic artificial intelligence (NeSy), which combines learning and reasoning,
has recently experienced significant growth. There now are a wide variety of NeSy frameworks, each
with its own specific language for expressing background knowledge and how to relate it to neural
networks. This heterogeneity hinders accessibility for newcomers and makes comparing different
NeSy frameworks challenging. We propose a unified language for NeSy, which we call ULLER,
a Unified Language for LEarning and Reasoning. ULLER encompasses a wide variety of settings,
while ensuring that knowledge described in it can be used in existing NeSy systems. ULLER has
a neuro-symbolic first-order syntax for which we provide example semantics including classical,
fuzzy, and probabilistic logics. We believe ULLER is a first step towards making NeSy research
more accessible and comparable, paving the way for libraries that streamline training and evaluation
across a multitude of semantics, knowledge bases, and NeSy systems.

1 Introduction

Deep learning has driven innovation in many fields for the past decade. Among the many reasons behind its central
role is the ease with which it can be applied to a multitude of problems. Recently, neuro-symbolic (NeSy) methods
(see, e.g., [30, 4, 49, 21, 35, 56, 24]), which belong to the NeSy subfield informed machine learning, [20, 52] have
overcome some well-known problems affecting deep learning models by exploiting background knowledge available
for the problem at hand. For example, knowledge can help in training models with fewer data points and/or incomplete
supervisions, creating models that are compliant by-design with a set of requirements, and being more robust in out-
of-distribution prediction.

However, the presence of background knowledge makes it more challenging to obtain “frictionless reproducibil-
ity” [17] which characterises machine learning (ML). Indeed, in ML, shared datasets and clear evaluation metrics
allow ML practitioners to quickly get started with evaluating new methods and comparing it to existing work. To
achieve this goal for NeSy research, we also need frictionless sharing of knowledge. Current NeSy frameworks all
have different approaches to encode the background knowledge: some use logical languages, like first-order [4, 35],
propositional [2, 55, 21], logic programming [30] or answer set programming [56] - with a wide array of different
syntaxes - while other methods use plain Python programs [14]. See Section 5 for an overview. To compare the per-
formance of different NeSy systems, a researcher needs to specify the same knowledge in many languages. This is a
significant barrier for researchers new to the field, and, even for experts, is a time-consuming and error-prone task.

*Equal contribution.
Correspondence to Emile.van.Krieken@ed.ac.uk and samy.badreddine@sony.com

ar
X

iv
:2

40
5.

00
53

2v
1

 [
cs

.A
I]

 1
 M

ay
 2

02
4

https://orcid.org/0000-0001-5502-4817
https://orcid.org/0000-0003-1624-9188
https://orcid.org/0000-0001-9907-7486
https://orcid.org/0000-0001-9313-753X
Emile.van.Krieken@ed.ac.uk
samy.badreddine@sony.com

ULLER: A Unified Language for Learning and Reasoning A PREPRINT

1.0.1 ULLER, a Unified Language for LEarning and Reasoning

We take a first step towards frictionless sharing of knowledge in the NeSy field by proposing a Unified Language for
Learning and Reasoning (ULLER, pronounced “OOH-ler” like the god of the Norse mythology). ULLER allows
us to express the knowledge used in informed machine learning. The long-term goal is to create a Python library
implementing ULLER to be shared among the significant NeSy systems. First, the user expresses the knowledge in
ULLER. Then, they load the data, after which they call different NeSy systems with a single line of code to train neural
networks, or to use the knowledge at prediction time. This allows the NeSy community (i) to define benchmarks that
include both data and knowledge, (ii) to easily compare the available NeSy systems on such benchmarks, and (iii) to
lower the barrier to entry into NeSy research for the broader machine learning community.

To achieve the above requires decoupling the syntax of the knowledge representation from the semantics given by
the NeSy system. The syntax of ULLER, defined in Section 2, is syntactic sugar around first-order logic (FOL),
with specifically designed statement bindings. Statements simplify the process of writing down function application
and composition - and hence dealing with data sampling and processing pipelines. We opt for a FOL-like syntax. It
generalises propositional logic, while being a common language for declaring general constraints. We adapt the FOL
syntax to one that is more familiar to ML researchers, who are mostly used to writing procedural statements like in
Python, while having a well-defined semantics for logicians. Furthermore, FOL is highly expressive: We believe that
it can express all knowledge currently used in NeSy methods.

The semantics of ULLER (Section 3), depends on (i) an interpretation, often referred to as a “symbol grounding”
[23], which maps symbols to meanings, and (ii) a “NeSy system”, which takes knowledge and its interpretation, and
computes loss functions and outputs accordingly. We formalise the differences between NeSy systems by what they
compute given a program in ULLER and an interpretation. We also provide examples for several common systems,
such as classical logic, fuzzy logic (such as Logic Tensor Networks [4]), probabilistic logic (such as Semantic Loss [55]
and DeepProbLog [30]). This highlights the flexibility of our language, as it can be used to express knowledge in many
formalisms.

2 Syntax of ULLER

Let V be a set of variable symbols, C be a set of constant symbols, D be a set of a set of domain symbols, P be a set
of predicate symbols, T be a set of property symbols, and F be a set of function symbols. We then define the syntax
of ULLER LULLER as a context-free grammar:

F ::= ∀x ∈ D (F) | ∃x ∈ D (F)

F ::= F ∧ F | F ∨ F | F ⇒ F | ¬F | P(T, ..., T) | (F)

F ::= x := f(T, ..., T) (F)

T ::= x | c | T.prop | T + T | T − T | . . .

(1)

where D ∈ D, x ∈ V , c ∈ C, f,+,− ∈ F , P ∈ P and prop ∈ T . The nonterminal symbol F is a formula and T is a
term. We call x := f(T, . . . , T)(F) a statement binding, or just statement, which we discuss in Section 2.1. Notice
that, except for basic arithmetic operations (+, −, . . .), functions only appear in statements.

The syntax of ULLER does not include a special syntactic construct for neural networks. Instead, we treat them
as functions, where the intended meaning is given by the semantics specified by the NeSy system. We therefore
hide how the NeSy system uses the neural networks to the user, so the focus is on specifying constraints rather than
implementation details.

Syntactic Sugar. We use ∀x1 ∈ D1, x2 ∈ D2(F) as syntactic sugar for ∀x1 ∈ D2 (∀x1 ∈ D2 (F)) for the quan-
tifiers. We also use x1 := f1(T, . . . , T), x2 := f2(T, . . . , T) (F) as syntactic sugar for x1 := f1(T, . . . , T) (x2 :=
f2(T, . . . , T) (F)). Finally, we also allow for binary predicates in infix notation, such as T ≤ T .

Typing. ULLER is a dynamically typed language. We do not guarantee syntactically nor via type checker that
functions and predicates only take arguments from the domain defined in their interpretations. This mimics the design
of the type system of Python.

2.1 Statements

A key design choice of ULLER is the use of special statement bindings x := f(T, ..., T) (F) to declare (possibly
random) variables obtained by applying (possibly non-deterministic) functions. The function symbols f appear only
in statements, and not in the definition of terms T , like in standard FOL. Statements simplify the composition of

2

ULLER: A Unified Language for Learning and Reasoning A PREPRINT

functions. They give a syntax that is both familiar to ML researchers who are used to writing Python, and gives a
clear separation between the machine learning pipeline that processes data and the constraints on the data given by the
logic. We will motivate statements with the two following examples.
Example 2.1 (Procedural composition of functions). Consider the MNISTAdd example from Appendix A. To em-
phasise the ease of composing functions in ULLER, consider a scenario where (i) the two MNIST digits always
represent different digits, and (ii) the classifier f expects greyscale images while the data points in the dataset T are
RGB images. We can easily apply transformations and formulate the new condition using ULLER statements:

∀x ∈ T (

x′
1 := greyscale(x.im1), x′′

1 := normalise(x′
1),

x′
2 := greyscale(x.im2), x′′

2 := normalise(x′
2),

n1 := f(x′′
1), n2 := f(x′′

2),

((n1 + n2 = x.sum) ∧ n1 ̸= n2)

)

(2)

◁

Example 2.2 (Scoping independence). Another key feature of ULLER statements is that they explicitly delimit the
scopes of variables, giving control over the memoisation and independence assumptions. Consider a non-deterministic
function dice() which associates a probability to each outcome of a six-sided dice throw. Consider the following
program written in ULLER:

x := dice() (x = 6 ∧ even(x)). (3)
The formula asks whether a die-throw outcome is both a six and even. For a fair dice, the probability of the formula is
1
6 under probabilistic semantics.

Now consider the alternative ULLER program:

(x := dice() (x = 6)) ∧ (x := dice() (even(x))). (4)

In this program, we throw two independent dice, and check if the first lands on six and the second is even. For fair
dice, the probability of this formula is 1

6 · 1
2 = 1

12 .

Consider a similar program in regular FOL (which is not allowed in ULLER):

(dice() = 6) ∧ even(dice()) (5)

Here, it is ambiguous whether the outcomes of the dice are shared like in the ULLER program of (3) or not, like in
(4). Many probabilistic NeSy frameworks choose the first option and memorise the outcome of the function. We argue
that this behaviour should not be a default assumption from the NeSy system. Instead, dependence and memoisation
scopes should be explicitly defined by the program. ULLER statements give researchers control over these scopes. ◁

3 Semantics of ULLER

In this Section, we define the semantics of ULLER. In Section 3.1 we discuss how ULLER interprets the symbols in
the language, such as the function and domain symbols. Then, in Section 3.2, we discuss how different NeSy systems
interpret the formulas in ULLER.

3.1 Interpretation of the Symbols

To assign meaning to ULLER programs, we need to interpret the non-logical symbols in LULLER, that is, D, P , F ,
and C, using an interpretation function I .
Definition 3.1. An interpretation I is a function assigning a meaning to the symbols in LULLER under the following
rules, where Ω1, ...,Ωn,Ωn+1 are sets.

1. The interpretation of a domain D ∈ D is a set Ω.

2. The interpretation of a predicate P of arity n is a function of n domains to {0, 1}. That is, I(P) : Ω1 × ...×
Ωn → {0, 1}.

3. The interpretation of the predicate true ∈ P is the identity function on {0, 1}, that is, I(true) : {0, 1} →
{0, 1} such that I(true)(x) = x.

3

ULLER: A Unified Language for Learning and Reasoning A PREPRINT

4. The interpretation of a constant c is an element of a domain I(c) ∈ Ωi.

5. The interpretation of a function f of arity n is a conditional probability distribution1 I(f) : Ω1 × ...×Ωn →
(Ωn+1 → [0, 1]). That is, for any set of inputs x1 ∈ Ω1, ..., xn ∈ Ωn, I(f)(x1, ..., xn) is a probability
distribution on the domain Ωn+1. If for all x1 ∈ Ω1, ..., xn ∈ Ωn the probability distribution I(f)(x1, ..., xn)
is a deterministic distribution, we say that I(f) is a deterministic function.

We give a probabilistic interpretation to both domains and functions. In particular, we treat functions, such as neural
networks, as a conditional distribution given assignments x1 ∈ Ω1, ..., xn ∈ Ωn to input variables. This allows
us to represent the uncertainty of the neural networks, which NeSy systems using, for example, probabilistic and
fuzzy semantics can use to compute probabilities and fuzzy truth values. We will also frequently want to use regular
(deterministic) functions f : Ω1 × ...× Ωn → Ωn+1. A regular function is a special case of a conditional distribution
that we refer to as a deterministic function. We define deterministic functions with a conditional distribution using
the Dirac delta distribution at f(x1, ..., xn) for continuous distributions, and a distribution that assigns 1 to the output
value f(x1, ..., xn) for finite domains, and 0 to the other values.

3.2 Semantics of neuro-symbolic systems

We next define the meaning of a formula in LULLER, which requires both an interpretation I and a NeSy system JK.
Here, JK is a function that interprets the semantics of the program statements in LULLER. We also need a variable
assignment η : V → O that maps variables v ∈ V to an element of a domain O = ∪iΩi, where Ωi = I(Di) is a set
associated to a domain Di ∈ D.

Definition 3.2. A NeSy structure is a tuple (I, η,B, JKI,η) where I is an interpretation, η : V → O is a variable
assignment, B is a set of outputs and JKI,η : LULLER → B ∪ O is a neuro-symbolic system which is a function that
assigns an output in B to each formula in LULLER and a domain element in O for terms T . If the interpretation and
variable assignment are clear from the context, we write JK for JKI,η.

We discuss several NeSy systems and their semantics for the NeSy language in the following sections, and provide a
visual overview in Figure 1. Each NeSy system is defined over some set of outputs B. For example, classical logic is
defined over the output {0, 1}, while fuzzy logics are defined over the interval [0, 1]. A neuro-symbolic system JKI,η
defines the semantics of a language expression. When a language expression is a term T , JKI,η returns an element of
the universe O. When the language expression is a formula F , it returns an element in B.

Notation. We use η[x 7→ a] to update a variable assignment η with the assignment of a to x:

η[x 7→ a](x) = a

η[x 7→ a](x′) = η(x′) for x′ ̸= x
(6)

We also define pf (a|T1, ..., Tn) = I(f)(JT1K, ..., JTnK)(a), which computes the probability of the element a ∈ Ωn+1

under the distribution I(f), conditioned on the interpretation of the terms T1 to Tn. That is, under JT1K, ..., JTnK. In
the coming sections, we will frequently use this shorthand to talk about the semantics of the different NeSy systems.

3.3 Classical semantics

We first define the semantics of the NeSy language if we “choose” an option deterministically from a conditional
distribution. Then, under the classical semantics of the logical symbols, ULLER is a regular first-order logic. A
common way to make a deterministic choice from a distribution is to take its mode, that is, the most likely output
according to the neural network.

1To be precise, our definition is equivalent to a probability kernel or Markov kernel, which is a formalisation of the concept of a
conditional probability distributions in measure theory.

4

ULLER: A Unified Language for Learning and Reasoning A PREPRINT

Figure 1: The meaning of an example ULLER formula under classical, probabilistic and fuzzy semantics. We interpret
the function symbols as conditional distributions f : {x1, ..., xn} → ({a1, a2, a3} → [0, 1]) and g : {(a1, a3, a3} →
({0, 1} → [0, 1]). With abuse of notation, we ignore I() and JK.

5

ULLER: A Unified Language for Learning and Reasoning A PREPRINT

Definition 3.3. The classical structure (I, η, {0, 1}, JKC
I,η) is defined on boolean outputs {0, 1} as:

J∀x ∈ D (F)KC
I,η = min

a∈I(D)
JF KC

I,η[x 7→a] (7)

J∃x ∈ D (F)KC = J¬∀x ∈ D (¬F)KC (8)

JF1 ∧ F2KC = min(JF1KC, JF2KC), JF1 ∨ F2KC = J¬(¬F1 ∧ ¬F2)KC (9)

J¬F KC = 1− JF KC, JF1 ⇒ F2KC = J¬F1 ∨ F2KC (10)

JP (T1, . . . , Tn)KC
I,η = I(P)(JT1KC, . . . , JTnKC) (11)

JxKC
I,η = η(x), JcKC = I(c) (12)

JT1 + T2KC = JT1KC + JT2KC (13)

JT.propKC = get(JT KC,prop) (14)

Jx := f(T1, ..., Tn)(F)KC
I,η = JF KC

I,η[x 7→argmaxa∈Ωn+1
pf (a|T1,...,Tn)]

(15)

In Equation 14, get(JT KC,prop) is a deterministic function that retrieves the value of an object property.

Equation 15 demands some explanation. The argmax takes the probability distribution given by the interpretation of
the function f and chooses a value from the codomain Ωn+1. In the classical structure, this choice is made determinis-
tically by picking the mode of the distribution: the most likely element a. Then we assign this element a to the variable
x through the variable assignment η[x 7→ a], and evaluate the rest of the formula F under this new assignment.

Importantly, the classic semantics allows us to prove whether a neuro-symbolic system “is faithful” to classical logic
when all functions are deterministic. We formally introduce this notion by noting we can transform any program into
a deterministic program by choosing the mode of the distribution like in Equation 15.

Definition 3.4. For some interpretation I , the mode interpretation Î , is another interpretation such that for all function
symbols f ∈ F , Î(f) returns the mode of pf . That is, p̂f (a|T1, ..., Tn) = δ(a−argmaxa′ pf (a

′|T1, ..., Tn)), where δ
is the Dirac delta distribution. Then a neuro-symbolic system JK is classical in the limit if for all language statements
L ∈ LULLER, JLKÎ,η = JLKC

I,η .

3.4 Probabilistic Semantics

Probabilistic semantics, also known as weighted model counting or possible world semantics in the literature, com-
putes the probability that a formula is true. This is done by iterating over all possible assignments to the variables.

In the next sections, we will not redefine semantics whenever it is equal to the classical semantics, up to domain
differences. For instance, we will not repeat constants and variable semantics.

Definition 3.5. The probabilistic structure (I, η, [0, 1], JKP) is defined on probabilities [0, 1] as:

J∀x ∈ D (F)KP =
∏

a∈I(D)

JF KP
I,η[x→a] (16)

JF1 ∧ F2KP = JF1KP · JF2KP (17)

Jx := f(T1, ..., Tn) (F)KP = Ea∼pf (·|T1,...,Tn)

[
JF KP

I,η[x7→a]

]
(18)

In probabilistic semantics, a function f(x) is interpreted as a conditional distribution conditioned on x. In this case, we
require computing the expectation of the formulas being true under the interpreted functions. This happens in Equa-
tion 18. The computation of the expectation depends on whether the output domain Ωn+1 is discrete or continuous.
For discrete domains, Equation 18 equals

Jx := f(T1, ..., Tn) (F)KP =
∑

a∈Ωn+1

pf (a|T1, ..., Tn) · JF KP
I,η[x 7→a], (19)

while for continuous domains it equals

Jx := f(T1, ..., Tn) (F)KP =

∫
a∈Ωn+1

pf (a|T1, ..., Tn) · JF KP
I,η[x7→a]da. (20)

6

ULLER: A Unified Language for Learning and Reasoning A PREPRINT

We should note that probabilistic semantics in most practical cases will be intractable because of the exponential
recursion introduced in Equation 19, not to mention the usually intractable integral in Equation 20 [5]. We can speed
this up with techniques that compile formulas into representations where computing the probability of the formula is
tractable [8, 11]. The probabilistic semantics is classical in the limit (Appendix C.1), and is connected to the standard
weighted model counting semantics used in, for example, Semantic Loss [55], SPL [2] and DeepProbLog [30]. See
Appendix D for details.

We can generalise the probabilistic semantics to algebraic model counting [25, 15] by considering semirings B together
with a product and a sum operation. This, for example, allows us to compute the most likely assignment to the variables
in a formula, or to compute the gradient of the probabilistic semantics using dual numbers.

3.5 Fuzzy Semantics

The setup for fuzzy semantics is very similar to that of the probabilistic semantics. The two differences are using
t-norms and t-conorms to connect fuzzy truth values, and the interpretation of sampling from boolean distributions.
Definition 3.6. The fuzzy structure (IF , η, [0, 1], JKF), where IF is an interpretation I except that the predicate symbol
true is interpreted as the identity function on [0, 1], is defined on fuzzy truth values [0, 1] as:

J∀x ∈ D (F)KF
IF ,η =

⊗
a∈I(D)

JF KF
IF ,η[x→a] (21)

J∃x ∈ D (F)KF
IF ,η =

⊕
a∈I(D)

JF KF
IF ,η[x→a] (22)

JF1 ∧ F2KF = JF1KF ⊗ JF2KF, JF1 ∨ F2KF = JF1KF ⊕ JF2KF (23)

Jtrue(x)KF
I,η = η(x), if η(x) ∈ [0, 1] (24)

Jx := f(T1, ..., Tn)(F)KF =


JF KF

IF ,η[x 7→pf (1|T1,...,Tn)]
if Ωn+1 = {0, 1}⊕

a∈Ωn+1

pf (a|T1, ..., Tn)⊗ JF KF
IF ,η[x7→a] if Ωn+1 is finite (25)

where ⊗ : [0, 1]× [0, 1] 7→ [0, 1] is a fuzzy t-norm and ⊕ : [0, 1]× [0, 1] 7→ [0, 1] is a fuzzy t-conorm [4, 48].

In the first case of Equation 25, fuzzy semantics manipulates distributions over boolean codomains Ωn+1 = {0, 1} as
a single truth value pf (1|T1, ..., Tn). The second case is defined for discrete, non boolean codomains. Fuzzy semantics
reasons disjointly over all possible outcomes a ∈ Ωn+1 by interpreting the probability pf (a|T1, . . . , Tn) ∈ [0, 1] as
truth degrees. This truth degree is then conjoined with the interpretation of the rest of the formula F . Intuitively, they
ask if there “exists a such that f(T1, . . . , Tn) maps to a and that a verifies the rest of the formula F ”. We do not give
a semantics for continuous or infinite domains in the fuzzy semantics, as we do not know of a standard definition in
the neuro-symbolic literature. The fuzzy semantics is classical in the limit (see Appendix C.2), and is closely related
to differentiable fuzzy logics such as Logic Tensor Networks [48, 4] (see Appendix E).

In addition to Fuzzy Logics with t-norms and t-conorms for conjunction and disjunction, other NeSy frameworks such
as DL2 [18] and STL [51] can also be implemented with this semantics. While fuzzy logic acts on truth values in
[0, 1], DL2 acts on truth values in [−∞, 0] and STL in [−∞,∞]. They choose appropriate differentiable operators to
implement the conjunction and disjunction. We refer the reader to [42] for details.

3.6 Sampling semantics

The sampling semantics JKS is a simple modification to the classical semantics. It samples a value from each con-
ditional distribution and uses that value to evaluate the formula. Therefore, the only difference in JKS with classical
semantics in Definition 3.3 is in Equation 15:

Jx := f(T1, ..., Tn) (F)KS = JF KS
I,η[x 7→sample(pf (·|T1,...,Tn))]

(26)

Here, sample is a (random) function that takes a probability distribution and samples a value from the codomain
Ωn+1 under the distribution pf (·|T1, ..., Tn). We can repeat the computation of the sampling semantics JKS to reduce
variance, like in standard Monte Carlo methods. This semantics can be combined with gradient estimation methods
to learn the parameters of neural networks [39, 50]. A recent implementation of gradient estimation in the context of
NeSy is the CatLog derivative trick [14], but any type of estimator based on the score function (commonly known as
REINFORCE) can be used [26]. See Appendix B for a short discussion.

7

ULLER: A Unified Language for Learning and Reasoning A PREPRINT

4 Learning and Reasoning

This section describes how to use ULLER for neuro-symbolic learning and reasoning. For a learning setting, we
extend the definition of an interpretation (Definition 3.1) to a parameterised interpretation. A parameterised imple-
mentation allows us to implement neural networks with learnable parameters. For instance, a function model() can be
interpreted as a neural network Iθ(model) = NN θ.

Definition 4.1. A parameterised interpretation is an interpretation Iθ that is uniquely defined by a set of parameters
θ ∈ Rd.

Let F ∈ LULLER denote a ULLER formula that has a quantifier ranging over a dataset symbol T (for instance Example
2.1). Learning a parameterised interpretation typically involves searching for an optimal set of parameters θ∗ ∈ Rd

maximising the neuro-symbolic system on F over a dataset ΩT . In most machine learning settings, we are interested
in minimising a loss function over a random minibatch x1, ..., xn ∼ ΩT . We can define such a loss function and
corresponding minimisation problem with

L(θ) = −JF KIθ∪{T 7→{x1,...,xn}},{}, θ∗ = arg max
θ∈Rd

L(θ). (27)

To allow for minibatching, we interpret the domain symbol T as the minibatch {x1, ..., xn}. We can easily implement
variations of this loss. For instance, we can combine multiple formulas and give each different weights. Notice that,
for probabilistic and fuzzy semantics, L(θ) is differentiable, allowing us to use common optimisers. However, not all
NeSy structures can be optimised over: This loss only makes sense when a semantics returns a value in an ordered set
B, but we also allow NeSy structures to return other kinds of values.

A different pattern, more related to reasoning, is to find the input x that maximises or minimises the neuro-symbolic
system:

x∗ = arg max
x′∈X

JF KIθ∪{T 7→{x}},{} (28)

This strategy can be combined with adversarial learning to first find the input that most violates the background
knowledge, and then corrects that input [34].

5 Related Work

The last decade has seen the rise of neuro-symbolic frameworks that allow for specifying knowledge about the be-
haviour of neural networks symbolically [31]. However, unlike ULLER they are restricted to a single semantics,
usually variations of probabilistic (Section 3.4) or fuzzy semantics (Section 3.5). The majority of current frameworks
use the syntactic neural predicate construct as discussed in Section 3.1. DeepProbLog [30] is a probabilistic logic
programming language [12] with neural predicates. Variations of its syntax are used in multiple follow-up works
[13, 53, 28]. Scallop [24] chooses to restrict its language to Datalog to improve scalability, among others [29]. For
ULLER, we choose to use an expressive first-order language, leaving scalable inference to the implementation of
the NeSy system. Other NeSy frameworks are based on Answer Set Programming [56, 41, 3], relational languages
[36, 33, 9], temporal logics [45] and description logics [54, 43, 44], while Logic Tensor Networks [4] is also based on
first-order logic, among others [32, 16]. Finally, many commonly used NeSy frameworks are restricted to propositional
logic [55, 2, 27, 10, 21, 18].

Logic of Differentiable Logics (LDL) [42] defines a first-order language to compare formal properties of several
NeSy frameworks. Compared to ULLER, LDL is strongly typed, while ULLER is weakly typed, and LDL does
not model probabilistic semantics. In LDL, uncertainty comes from predicates, rather than functions, and does not
have a syntactic construct like ULLERs statement blocks. Pylon [1] is a Python library similar in goal to ULLER. It
also allows for expressing propositional logic (CNF) formulas, which can then get compiled into a Semantic Loss or
fuzzy loss functions. However, by being restricted to a propositional language, Pylon is limited in expressiveness, and
requires the user to manually ground out formulas.

ULLER is also heavily inspired by probabilistic programming languages [22] such as Stan [7] that specify probabilis-
tic models in a high-level language. In particular, ULLER can be considered a first-order probabilistic programming
language (FOPPL) [46] defined on boolean outputs. These boolean outputs represent the conditioning (observations)
of the probabilistic model. By being first-order, the language is restricted to having a finite number of random vari-
ables. Other FOPPL languages centred on neural networks include Pyro [6] and ProbTorch [40]. These languages
enforce a probabilistic semantics corresponding to that of ULLER defined in Section 3.4. However, ULLER does not
enforce this semantics and also supports, for instance, fuzzy semantics. We leave an in-depth analysis of the relations
between ULLER and aforementioned probabilistic programming languages for future work.

8

ULLER: A Unified Language for Learning and Reasoning A PREPRINT

Other related work attempts to define building blocks for neuro-symbolic AI [47] or to categorise existing approaches
[38]. We instead focus on a particular set of informed machine learning approaches, and develop a unifying language
to allow communicating with them.

6 Conclusion

We introduced ULLER, a Unified Language for LEarning and Reasoning. ULLER is a first-order logic language
designed for neuro-symbolic learning and reasoning, with a special statement syntax for constraining neural networks.
We showed how to implement the common fuzzy and probabilistic semantics in ULLER, allowing for easy com-
parison between different NeSy systems. For future work, we want to implement ULLER as an easy-to-use Python
library to increase the “frictionless reproducibility” of NeSy research. In this library, a researcher can easily write and
share knowledge, and develop new NeSy benchmarks. We also believe such a library is a good avenue for reducing
the barrier of entry into NeSy research.

Acknowledgements

We would like to thank Frank van Harmelen, Tarek Richard Besold, Luciano Serafini, Antonio Vergari, Pasquale Min-
ervini, Thiviyan Thanapalasingam, Guy van den Broeck, Connor Pryor, Patrick Koopmann, and Mihaela Stoian for
fruitful discussions during the writing of this paper. This work was supported by the EU H2020 ICT48 project “TAI-
LOR” under contract #952215. Emile van Krieken was funded by ELIAI (The Edinburgh Laboratory for Integrated
Artificial Intelligence), EPSRC (grant no. EP/W002876/1).

References

[1] Ahmed, K., Li, T., Ton, T., Guo, Q., Chang, K., Kordjamshidi, P., Srikumar, V., den Broeck, G.V., Singh, S.: PY-
LON: A pytorch framework for learning with constraints. In: Thirty-Sixth AAAI Conference on Artificial Intel-
ligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022,
The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, Febru-
ary 22 - March 1, 2022. pp. 13152–13154. AAAI Press (2022). https://doi.org/10.1609/AAAI.V36I11.21711,
https://doi.org/10.1609/aaai.v36i11.21711

[2] Ahmed, K., Teso, S., Chang, K., den Broeck, G.V., Vergari, A.: Semantic probabilistic layers for neuro-symbolic
learning. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) Advances in Neu-
ral Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022 (2022), http://papers.nips.cc/
paper_files/paper/2022/hash/c182ec594f38926b7fcb827635b9a8f4-Abstract-Conference.html

[3] Aspis, Y., Broda, K., Lobo, J., Russo, A.: Embed2Sym - Scalable Neuro-Symbolic Reasoning via Clustered
Embeddings. In: Proceedings of the Nineteenth International Conference on Principles of Knowledge Repre-
sentation and Reasoning. pp. 421–431. International Joint Conferences on Artificial Intelligence Organization,
Haifa, Israel (Jul 2022). https://doi.org/10.24963/kr.2022/44

[4] Badreddine, S., d’Avila Garcez, A., Serafini, L., Spranger, M.: Logic Tensor Networks. Artificial Intelligence
303, 103649 (Feb 2022). https://doi.org/10.1016/j.artint.2021.103649

[5] Belle, V., Passerini, A., Van den Broeck, G.: Probabilistic inference in hybrid domains by weighted model
integration. In: Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI). vol. 2015,
pp. 2770–2776. IJCAI-INT JOINT CONF ARTIF INTELL (2015)

[6] Bingham, E., Chen, J.P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R., Szerlip, P.A.,
Horsfall, P., Goodman, N.D.: Pyro: Deep universal probabilistic programming. Journal of Machine Learning
Research 20, 28:1–28:6 (2019)

[7] Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M.A., Guo, J., Li,
P., Riddell, A.: Stan: A probabilistic programming language. Journal of statistical software 76 (2017)

[8] Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting. Artificial Intelligence
172(6), 772–799 (Apr 2008). https://doi.org/10.1016/j.artint.2007.11.002

[9] Cohen, W.W.: TensorLog: A Differentiable Deductive Database. arXiv:1605.06523 [cs] (Jul 2016)
[10] Daniele, A., van Krieken, E., Serafini, L., van Harmelen, F.: Refining neural network predictions using

background knowledge. Mach. Learn. 112(9), 3293–3331 (2023). https://doi.org/10.1007/S10994-023-06310-
3, https://doi.org/10.1007/s10994-023-06310-3

9

https://doi.org/10.1609/aaai.v36i11.21711
http://papers.nips.cc/paper_files/paper/2022/hash/c182ec594f38926b7fcb827635b9a8f4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/c182ec594f38926b7fcb827635b9a8f4-Abstract-Conference.html
https://doi.org/10.1007/s10994-023-06310-3

ULLER: A Unified Language for Learning and Reasoning A PREPRINT

[11] Darwiche, A.: SDD: A new canonical representation of propositional knowledge bases. IJCAI International Joint
Conference on Artificial Intelligence pp. 819–826 (2011). https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-
143

[12] De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Machine Learning 100(1), 5–47 (Jul
2015). https://doi.org/10.1007/s10994-015-5494-z

[13] De Smet, L., Martires, P.Z.D., Manhaeve, R., Marra, G., Kimmig, A., De Raedt, L.: Neural Probabilistic Logic
Programming in Discrete-Continuous Domains (Mar 2023). https://doi.org/10.48550/arXiv.2303.04660

[14] De Smet, L., Sansone, E., Zuidberg Dos Martires, P.: Differentiable sampling of categorical distributions using
the catlog-derivative trick. Advances in Neural Information Processing Systems 36 (2024)

[15] Derkinderen, V., Manhaeve, R., Dos Martires, P.Z., De Raedt, L.: Semirings for probabilistic and neuro-symbolic
logic programming. International Journal of Approximate Reasoning p. 109130 (2024)

[16] Diligenti, M., Gori, M., Sacca, C.: Semantic-based regularization for learning and inference. Artificial Intelli-
gence 244, 143–165 (2017)

[17] Donoho, D.: Data science at the singularity. arXiv preprint arXiv:2310.00865 (2023)
[18] Fischer, M., Balunovic, M., Drachsler-Cohen, D., Gehr, T., Zhang, C., Vechev, M.: Dl2: training and querying

neural networks with logic. In: International Conference on Machine Learning. pp. 1931–1941. PMLR (2019)
[19] Foerster, J., Farquhar, G., Al-Shedivat, M., Rocktäschel, T., Xing, E., Whiteson, S.: DiCE: The infinitely differ-

entiable monte carlo estimator. In: International Conference on Machine Learning. pp. 1529–1538 (2018)
[20] Giunchiglia, E., Stoian, M.C., Lukasiewicz, T.: Deep Learning with Logical Constraints. In: Raedt, L.D. (ed.)

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna,
Austria, 23-29 July 2022. pp. 5478–5485. ijcai.org (2022). https://doi.org/10.24963/ijcai.2022/767

[21] Giunchiglia, E., Tatomir, A., Stoian, M.C., Lukasiewicz, T.: CCN+: A neuro-symbolic framework
for deep learning with requirements. International Journal of Approximate Reasoning p. 109124 (2024).
https://doi.org/10.1016/j.ijar.2024.109124

[22] Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic programming. In: Future of software
engineering proceedings, pp. 167–181 (2014)

[23] Harnad, S.: The symbol grounding problem. Physica D: Nonlinear Phenomena 42(1-3), 335–346 (1990)
[24] Huang, J., Li, Z., Chen, B., Samel, K., Naik, M., Song, L., Si, X.: Scallop: From Probabilistic Deductive

Databases to Scalable Differentiable Reasoning. In: Advances in Neural Information Processing Systems (May
2021)

[25] Kimmig, A., Van den Broeck, G., De Raedt, L.: Algebraic model counting. Journal of Applied Logic 22, 46–62
(2017)

[26] Kool, W., van Hoof, H., Welling, M.: Buy 4 REINFORCE samples, get a baseline for free! p. 14 (2019)
[27] van Krieken, E., Thanapalasingam, T., Tomczak, J.M., van Harmelen, F., ten Teije, A.: A-nesi: A scal-

able approximate method for probabilistic neurosymbolic inference. In: Oh, A., Naumann, T., Glober-
son, A., Saenko, K., Hardt, M., Levine, S. (eds.) Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023 (2023), http://papers.nips.cc/paper_files/paper/2023/hash/
4d9944ab3330fe6af8efb9260aa9f307-Abstract-Conference.html

[28] Maene, J., Raedt, L.D.: Soft-Unification in Deep Probabilistic Logic. In: Thirty-Seventh Conference on Neural
Information Processing Systems (Nov 2023)

[29] Magnini, M., Ciatto, G., Omicini, A.: On the Design of PSyKI: A Platform for Symbolic Knowledge Injection
into Sub-symbolic Predictors. In: Calvaresi, D., Najjar, A., Winikoff, M., Främling, K. (eds.) Explainable and
Transparent AI and Multi-Agent Systems, vol. 13283, pp. 90–108. Springer International Publishing, Cham
(2022). https://doi.org/10.1007/978-3-031-15565-9-6

[30] Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., De Raedt, L.: DeepProbLog: Neural probabilistic
logic programming. In: Proceedings of NeurIPS (2018)

[31] Marra, G., Dumančić, S., Manhaeve, R., De Raedt, L.: From Statistical Relational to Neural Symbolic Artificial
Intelligence: A Survey. arXiv:2108.11451 [cs] (Aug 2021)

[32] Marra, G., Giannini, F., Diligenti, M., Gori, M.: Lyrics: A general interface layer to integrate logic inference and
deep learning. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. pp.
283–298. Springer (2019)

10

http://papers.nips.cc/paper_files/paper/2023/hash/4d9944ab3330fe6af8efb9260aa9f307-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/4d9944ab3330fe6af8efb9260aa9f307-Abstract-Conference.html

ULLER: A Unified Language for Learning and Reasoning A PREPRINT

[33] Marra, G., Kuželka, O.: Neural markov logic networks. In: Uncertainty in Artificial Intelligence. pp. 908–917.
PMLR (2021)

[34] Minervini, P., Riedel, S.: Adversarially regularising neural NLI models to integrate logical background knowl-
edge. In: Korhonen, A., Titov, I. (eds.) Proceedings of the 22nd Conference on Computational Natural
Language Learning. pp. 65–74. Association for Computational Linguistics, Brussels, Belgium (Oct 2018).
https://doi.org/10.18653/v1/K18-1007, https://aclanthology.org/K18-1007

[35] Pryor, C., Dickens, C., Augustine, E., Albalak, A., Wang, W.Y., Getoor, L.: NeuPSL: Neural Probabilistic Soft
Logic. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence. pp. 4145–
4153. International Joint Conferences on Artificial Intelligence Organization, Macau, SAR China (Aug 2023).
https://doi.org/10.24963/ijcai.2023/461

[36] Pryor, C., Dickens, C., Augustine, E., Albalak, A., Wang, W.Y., Getoor, L.: Neupsl: Neural proba-
bilistic soft logic. In: Proceedings of the Thirty-Second International Joint Conference on Artificial In-
telligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, China. pp. 4145–4153. ijcai.org (2023).
https://doi.org/10.24963/IJCAI.2023/461, https://doi.org/10.24963/ijcai.2023/461

[37] Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1–2), 107–136 (Jan 2006).
https://doi.org/10.1007/s10994-006-5833-1, http://dx.doi.org/10.1007/s10994-006-5833-1

[38] Sarker, M.K., Zhou, L., Eberhart, A., Hitzler, P.: Neuro-symbolic artificial intelligence. AI Communications
34(3), 197–209 (2021). https://doi.org/10.3233/AIC-210084

[39] Schulman, J., Heess, N., Weber, T., Abbeel, P.: Gradient estimation using stochastic computation graphs. In:
Advances in Neural Information Processing Systems (2015)

[40] Siddharth, N., Paige, B., van de Meent, J.W., Desmaison, A., Goodman, N.D., Kohli, P., Wood, F., Torr, P.:
Learning disentangled representations with semi-supervised deep generative models. In: Guyon, I., Luxburg,
U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information
Processing Systems 30. pp. 5927–5937. Curran Associates, Inc. (2017)

[41] Skryagin, A., Stammer, W., Ochs, D., Dhami, D.S., Kersting, K.: SLASH: Embracing Probabilistic Circuits into
Neural Answer Set Programming. arXiv:2110.03395 [cs] (Oct 2021)

[42] Slusarz, N., Komendantskaya, E., Daggitt, M.L., Stewart, R., Stark, K.: Logic of differentiable logics: Towards a
uniform semantics of dl. In: Proceedings of 24th International Conference on Logic. vol. 94, pp. 473–493 (2023)

[43] Tang, Z., Hinnerichs, T., Peng, X., Zhang, X., Hoehndorf, R.: Falcon: faithful neural semantic entailment over
alc ontologies. arXiv preprint arXiv:2208.07628 (2022)

[44] Tang, Z., Pei, S., Peng, X., Zhuang, F., Zhang, X., Hoehndorf, R.: TAR: Neural Logical Reasoning across TBox
and ABox (Aug 2022)

[45] Umili, E., Capobianco, R., De Giacomo, G.: Grounding ltlf specifications in image sequences. In: Proceedings
of the International Conference on Principles of Knowledge Representation and Reasoning. vol. 19, pp. 668–678
(2023)

[46] van de Meent, J.W., Paige, B., Yang, H., Wood, F.: An Introduction to Probabilistic Programming (Oct 2021).
https://doi.org/10.48550/arXiv.1809.10756

[47] van Harmelen, F., ten Teije, A.: A Boxology of Design Patterns for Hybrid Learning and Reasoning Systems.
Journal of Web Engineering 18(1), 97–124 (2019). https://doi.org/10.13052/jwe1540-9589.18133

[48] van Krieken, E., Acar, E., van Harmelen, F.: Analyzing differentiable fuzzy logic operators. Artificial Intelligence
302, 103602 (2022). https://doi.org/10.1016/j.artint.2021.103602

[49] van Krieken, E., Thanapalasingam, T., Tomczak, J., van Harmelen, F., Ten Teije, A.: A-NeSI: A scalable ap-
proximate method for probabilistic neurosymbolic inference. In: Oh, A., Neumann, T., Globerson, A., Saenko,
K., Hardt, M., Levine, S. (eds.) Advances in Neural Information Processing Systems. vol. 36, pp. 24586–24609.
Curran Associates, Inc. (2023)

[50] van Krieken, E., Tomczak, J., Ten Teije, A.: Storchastic: A framework for general stochastic automatic differ-
entiation. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural
Information Processing Systems. vol. 34, pp. 7574–7587. Curran Associates, Inc. (2021)

[51] Varnai, P., Dimarogonas, D.V.: On robustness metrics for learning stl tasks. In: 2020 American Control Confer-
ence (ACC). pp. 5394–5399. IEEE (2020)

[52] von Rueden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R., Kirsch, B., Pfrommer, J., Pick,
A., Ramamurthy, R., Walczak, M., Garcke, J., Bauckhage, C., Schuecker, J.: Informed Machine Learning – A

11

https://aclanthology.org/K18-1007
https://doi.org/10.24963/ijcai.2023/461
http://dx.doi.org/10.1007/s10994-006-5833-1

ULLER: A Unified Language for Learning and Reasoning A PREPRINT

Taxonomy and Survey of Integrating Prior Knowledge into Learning Systems. IEEE Transactions on Knowledge
and Data Engineering 35(1), 614–633 (Jan 2023). https://doi.org/10.1109/TKDE.2021.3079836

[53] Winters, T., Marra, G., Manhaeve, R., De Raedt, L.: Deepstochlog: Neural stochastic logic programming. In:
Proceedings of the AAAI Conference on Artificial Intelligence. vol. 36, pp. 10090–10100 (2022)

[54] Wu, X., Zhu, X., Zhao, Y., Dai, X.: Differentiable Fuzzy \mathcal{ALC}: A Neural-Symbolic Representation
Language for Symbol Grounding (Dec 2022)

[55] Xu, J., Zhang, Z., Friedman, T., Liang, Y., den Broeck, G.V.: A semantic loss function for deep learning with
symbolic knowledge. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Conference on Ma-
chine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Proceedings of Machine
Learning Research, vol. 80, pp. 5498–5507. PMLR (2018), http://proceedings.mlr.press/v80/xu18h.
html

[56] Yang, Z., Ishay, A., Lee, J.: NeurASP: Embracing neural networks into answer set programming. In:
Bessiere, C. (ed.) Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,
IJCAI-20. pp. 1755–1762. International Joint Conferences on Artificial Intelligence Organization (Jul 2020).
https://doi.org/10.24963/ijcai.2020/243

A Practical Examples

Example A.1 (MNIST Addition). Suppose we want to express the standard (single-digit) MNIST addition program
using ULLER. In this setting, we have a domain T that represents a training dataset I(T). In Section 4, we discuss
how this training dataset can also be a minibatch of examples.

Each data point x consists of a pair of images (which we access with the properties im1 and im2) associated to a label
representing the value of their sum (which we can intuitively access via the property sum). Finally, we have a function
f that we interpret as a neural network classifying MNIST images. Then, if we want to write that for every input the
outputs of the neural network should be equal to the sum of the inputs, we can write:

∀x ∈ T

(n1 := f(x.im1), n2 := f(x.im2)

(n1 + n2 = x.sum))

Example A.2 (Smokes Friends Cancer). In this classical example of Statistical Relational Learning introduced by [37],
uncertain facts in a population group are modeled using the neural predicates Friends(x, y) for friendship, Smokes(x)
for smoking, and Cancer(x) for cancer. As ULLER relies on functions rather than predicates to model uncertainty,
we must use true(a) to formalise the problem in our language as explained in Section 3.1. For simplicity, we use
(A ⇔ B) ≡ ((A ⇒ B) ∧ (B ⇒ A)) to denote logical equivalences.

Here is an example of a knowledge base for this problem. Friends of friends are friends:
∀x ∈ People, y ∈ People, z ∈ People

(a1 := Friends(x, y), a2 := Friends(y, z), a3 := Friends(x, z)

((true(a1) ∧ true(a2)) ⇒ true(a3)))

If two people are friends, either both smoke or neither does:
∀x ∈ People, y ∈ People

(a1 := Friends(x, y), a2 := Smokes(x), a3 := Smokes(y)

(true(a1) ⇒ (true(a2) ⇔ true(a3))))

Friendless people smoke:
∀x ∈ People

(¬∃y ∈ People (a1 := Friends(x, y)(true(a1)))

⇒ a2 := Smokes(x)(true(a2)))

Smoking causes cancer:
∀x ∈ People

(a1 := Smokes(x), a2 := Cancer(x)

(true(a1) ⇒ true(a2)))

12

http://proceedings.mlr.press/v80/xu18h.html
http://proceedings.mlr.press/v80/xu18h.html

ULLER: A Unified Language for Learning and Reasoning A PREPRINT

Notice that, according to the definitions of Section 3.1, the probabilistic interpretation of the above formula will assume
conditional independence between a1 ∼ pSmokes(·|x) and a2 ∼ pCancer(·|x). To model a dependence of cancer on
smoking, i.e. a2 ∼ pCancer(·|x, a1), we can make the probability explicitly depend on the previous variable:

∀x ∈ People

(a1 := Smokes(x), a2 := Cancer(x, a1)

(true(a1) ⇒ true(a2)))

Next, we have labelled examples for each relationship. For example, for Friends(), drawing examples from a dataset
TFriends:

∀t ∈ TFriends

(l := Friends(t.x, t.y)

(l = t.label))

B Gradient estimation

The sampling semantics in Equation 26 is a simple way to estimate the truth value of a formula. However, since
sampling is not a differentiable operation, it is not possible to use this semantics to train the neural networks. Instead,
we can use the score function gradient estimation method [39] to estimate the gradient of the truth value of a formula
with respect to the parameters of the neural networks. However, this requires adapting the evaluation of the formula to
incorporate score function terms. We give a brief description of how one might go about doing that in Appendix B.

One way to implement gradient estimation methods for simple ULLER programs is to use the DiCE estimator [19]
which introduces the MagicBox operator (x) = exp(x−⊥(x)), where ⊥ is the StopGradient operator used in deep
learning frameworks. This operator allows us to add a term that only appears when we differentiate it, and equals 1
during the forward pass. To incorporate DiCE for Unified Language for LEarning and Reasoning, we have to modify
Equation 15

Jx := f(T1, . . . , Tn)(F) KS = JF KC
I,A(η,S) ·

n∑
i=1

(log pfi(A(η, S)[xi])) (29)

Extensions of the DiCE estimator can be used to implement a wide variety of gradient estimation methods [50].

C Classical in the limit

C.1 Probabilistic semantics

The probabilistic semantics is classical in the limit. To show this, we note that we require that the domain becomes
{0, 1} instead of probabilities [0, 1]. Under this domain, the product is equal to the min function. We can use this to
rewrite all but the interpretation of statements into the classical semantics.

Next, take for a statement x := f(T1, ..., Tn)(F) the induction assumption that JF KP
Î,η

= JF KC
I,η, where Î is defined

as in Definition 3.4. Then the interpretation of a statement is:

Ea∼pf̂ (·|T1,...,Tn)[JF KP
Î,η[x 7→a]

] = JF KP
Î,η[x 7→argmaxa∈Ωn+1

pf (a|T1,...,Tn))]

Here, we reduce the expectation by noting that since pf̂ (a|T1, ..., Tn) = δ(a − argmaxa′ pf (a
′|T1, ..., Tn)), exactly

one element gets 1 probability (or a single element with non-zero probability, in the case of continuous distributions).
This single element is chosen on the right side. Then, we use the induction assumption to find that this is equal to the
classical semantics of statements given in Equation 15.

C.2 Fuzzy semantics

Using the axioms of t-norms, we find that the fuzzy semantics is also classical in the limit. This again can be proven
by induction. For Equations 21 and 23, we use the boundary conditions of t-norms, which states that x⊗ 1 = x for
x ∈ [0, 1]. Therefore, if x = 0, 0⊗ 1 = 0 and if x = 1, 1⊗ 1 = 1, meaning t-norms act as the min operator under the
domain {0, 1}.

13

ULLER: A Unified Language for Learning and Reasoning A PREPRINT

Next, consider the program fragment x := f(T1, ..., Tn) (F) and take the induction assumption JF KF
Î,η

= JF KC
I,η.

First, assume the domain Ωn+1 = {0, 1} and assume argmaxa∈{0,1} pf (a|T1, ..., Tn) = 1. Then, the interpretation
of the statement is JF KF

Î,η[x 7→pf̂ (a=1|T1,...,Tn)]
= JF KF

Î,η[x 7→1]
, since the Dirac distribution will put all its mass on the

output 1. Similarly, if argmaxa∈{0,1} pf (a|T1, ..., Tn) = 0, then the interpretation is JF KF
Î,η[x 7→0]

. Then we can
simply use the induction assumption.

Finally, if Ωn+1 ̸= {0, 1}, then we know there is a unique output a ∈ Ωn+1 such that pf̂ (a|T1, ..., Tn) = 1, while
for the other outputs pf̂ (a|T1, ..., Tn) = 0. Then, using associativity and commutativity of the t-conorm ⊕, the
interpretation of the statement is

JF KF
Î,η[x 7→a]

⊗ pf̂ (a|T1, ..., Tn)⊕
⊕

a′∈Ωn+1\{a}

JF KF
Î,η[x 7→a′]

⊗ pf̂ (a
′|T1, ..., Tn)

JF KF
Î,η[x 7→a]

⊗ 1⊕
⊕

a′∈Ωn+1\{a}

JF KF
Î,η[x 7→a′]

⊗ 0

JF KF
Î,η[x 7→a]

⊕
⊕

a′∈Ωn+1\{a}

0 = JF KF
Î,η[x 7→a]

where we again use the boundary conditions of the t-norm ⊗ (1⊗x = x) and t-conorm (0⊕ x = x).

D Relation of Probabilistic semantics to the Semantic Loss

Here, we show why the probabilistic semantics is equivalent to the weighted model counting semantics used in,
for instance, the Semantic Loss. Let F be a closed formula without any statements x := f(T1, . . . , Tn)(F

′) that
only involves variables x1, ..., xn over finite domains. The weighted model count (WMC) is the evaluation of the
classical semantics weighted by probabilities of the assignments to variables. These probabilities are often assumed
to be independent, although our framework also allows for the probabilities to depend on previous variables. This is
illustrated in Example A.2. The definition of the WMC is

WMC =
∑

a1∈Ω1

...
∑

an∈Ωn

n∏
i=1

pfi(ai)JF KC
I,{x1 7→a1,...,xn 7→an}

=
∑

a1∈Ω1

pf1(a1)...
∑

an∈Ωn

pfn(an)JF KC
I,{x1 7→a1,...,xn 7→an}.

(30)

Next, we rewrite this into a program x1 := f1(), ..., xn := fn() (F) such that the probabilistic semantics in Definition
3.5 is equal to the weighted model count. For ease of notation, let us denote Si each statement xi := fi() for
i = 1, ..., n. Then, we find the probabilistic semantics of the program by sequentially expanding the interpretation of
the statements:

JS1, ..., Sn(F)KP
I,{} =

∑
a1∈Ω1

pf1(a1) · JS2, ..., Sn(F)KP
I,{x1 7→a1}

. . .

=
∑

a1∈Ω1

pf1(a1)...
∑

an∈Ωn

pfn(an)JF KC
I,{x1 7→a1,...,xn 7→an}

= WMC

(31)

where in the last step we use that since the domains are finite and F does not contain statements, the probabilistic
semantics of F is equal to the classic one.

E Relation of Fuzzy Semantics to Differentiable Fuzzy Logics

Fuzzy logics are actively used in NeSy [4, 48, 10, 21]. We show how existing NeSy systems using fuzzy logics
arise from the fuzzy semantics of ULLER. Existing fuzzy logics systems align with our interpretations of terms
and logical operators, but differ in their use of fuzzy predicates, which are interpreted as functions to [0, 1], that is,
INeSy(P) : Ω1 × · · · × Ωn → [0, 1]. Then, the truth value of a formula is computed by evaluating the formula with
the fuzzy semantics.

14

ULLER: A Unified Language for Learning and Reasoning A PREPRINT

We can emulate this in our fuzzy semantics with the true() predicate and proof by induction. For each neural predicate
INeSy(Pi) : Ω

i
1 × · · · ×Ωi

ni
→ [0, 1], we define a ULLER function I(fi) : Ω

i
1 × · · · ×Ωi

ni
→ ({0, 1} → [0, 1]) such

that:
INeSy(Pi)(T

i
1, . . . , T

i
ni
) = I(fi)(T

i
1, . . . , T

i
ni
)(1) (32)

Let F be a first-order logic formula with no statements nor functions, and JF KNeSy be its interpretation in a fuzzy NeSy
system. Let F contain k neural atoms Pi(T

i
1, . . . , T

i
ni
), i = 1 . . . k. Let S1, . . . , Sk (F ′) be a ULLER program with

k statements where Si defines xi := fi(T
i
1, . . . , T

i
ni
), i = 1, . . . , k, and F ′ is F where we replace every mention of

Pi(T
i
1, . . . , T

i
ni
) by true(xi). We have:

JS1, . . . , Sk (F ′)KF = JF ′KF
I,η[x1 7→pf1

(1|T 1
1 ,...,T

1
n1

),...,xk 7→pfk
(1|Tk

1 ,...,Tk
nk

)] (33)

= JF ′KF
I,η[x1 7→INeSy(P1)(T 1

1 ,...,T
1
n1

),...,xk 7→INeSy(Pk)(Tk
1 ,...,Tk

nk
)] (34)

= JF KNeSy (35)

Equality (34) stems from definition (32). We derive equality (35) by induction. First, note that according to the
definition of I(true) and the assignment in (34), we have:

Jtrue(xi)KF = INeSy(Pi)(T
i
1, . . . , T

i
ni
) = JP (T i

1, . . . , T
i
ni
)KNeSy for i = 1, . . . , k (36)

If our semantics use the same t-norm operator ⊗ as the NeSy system, then:

JF1 ∧ F2KF = JF1KF ⊗JF2KF = JF ′
1K

NeSy ⊗JF ′
2K

NeSy = JF ′
1 ∧ F ′

2K
NeSy (37)

where in the second equality we use the induction hypothesis JF1KF = JF ′
1KNeSy and JF2KF = JF ′

2KNeSy. The same can
naturally be derived for other logical connectives. It follows that we can emulate any formula F built with the neural
predicates P (T i

1, . . . , T
i
ni
), by building formula F ′ with the equivalently interpreted true(xi) (see Equation (34)) and

the same logical constructs, such that JF KNeSy = JS1, . . . , Sk (F ′)KF.

15

	Introduction
	ULLER, a Unified Language for LEarning and Reasoning

	Syntax of ULLER
	Statements

	Semantics of ULLER
	Interpretation of the Symbols
	Semantics of neuro-symbolic systems
	Classical semantics
	Probabilistic Semantics
	Fuzzy Semantics
	Sampling semantics

	Learning and Reasoning
	Related Work
	Conclusion
	Practical Examples
	Gradient estimation
	Classical in the limit
	Probabilistic semantics
	Fuzzy semantics

	Relation of Probabilistic semantics to the Semantic Loss
	Relation of Fuzzy Semantics to Differentiable Fuzzy Logics

