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ABSTRACT

Deep learning models have raised privacy and security concerns due to their reliance on large datasets
on central servers. As the number of Internet of Things (IoT) devices increases, artificial intelligence
(AI) will be crucial for resource management, data processing, and knowledge acquisition. To
address those issues, federated learning (FL) has introduced a novel approach to building a versatile,
large-scale machine learning framework that operates in a decentralized and hardware-agnostic
manner. However, FL faces network bandwidth limitations and data breaches. To reduce the central
dependency in FL and increase scalability, swarm learning (SL) has been proposed in collaboration
with Hewlett Packard Enterprise (HPE). SL represents a decentralized machine learning framework
that leverages blockchain technology for secure, scalable, and private data management. A blockchain-
based network enables the exchange and aggregation of model parameters among participants, thus
mitigating the risk of a single point of failure and eliminating communication bottlenecks. To the
best of our knowledge, this survey is the first to introduce the principles of Swarm Learning, its
architectural design, and its fields of application. In addition, it highlights numerous research avenues
that require further exploration by academic and industry communities to unlock the full potential
and applications of SL.

Keywords IoT, Blockchain, Swarm Learning; Edge Computing, Security, Decentralized Machine Learning, Federated
Learning, Privacy Preservation

1 Introduction

The next five years are expected to witness a significant increase in the number of IoT devices. In 2019, the healthcare
sector utilizes one-third of all IoT devices, which are expected to climb to 40%, or $6.2 trillion, of the total global
IoT technology market value by 2025 [1]. The global adoption of IoT devices is expected to reach 29 billion by 2030,
covering a wide range of economic sectors and disciplines [2]. Particularly, IoMT devices are poised to save $300
billion, predominantly in the chronic illness and telemedicine sectors. This market is considered attractive for investors,
with projections that estimate revenues of $135 billion by 2025 [3]. Moreover, the global healthcare market is expected
to grow to $6.2 trillion by 2028 [4], necessitating advancements in AI, resource management, data processing, and
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knowledge mining. The rapid advancement of the 5G standard and Multi-Access Edge Computing (MEC) has markedly
improved productivity [5].

Modern deep learning models are raising concerns about privacy and security due to their reliance on centralized servers
to store large datasets [6]. Although cloud-based local learning allows some level of collaboration and improvement of
results, it introduces several inherent challenges to this centralized approach, such as data redundancy, increased data
traffic, and increased security and privacy risks. Two primary challenges associated with traditional centralized learning
methods are data ownership and privacy [4]. Federated learning (FL) emerges as a viable solution to these challenges,
potentially aligning with data protection standards that could conflict with traditional centralized learning approaches
[7]. FL promises notable improvements in security, fairness, and transparency, setting a new benchmark for digital data
management and model training [8].

FL facilitates collaborative learning that preserves privacy. It addresses central data storage issues by allowing the raw
data to remain on local devices at each participating node [5],[9],[10]. However, FL is still vulnerable to sophisticated
cyber threats, including membership inference and data reconstruction attacks, which pose significant risks of data
breach. FL also has limitations in network bandwidth that cause delays. To mitigate these vulnerabilities, two approaches
are introduced: 1) Distributed FL (DFL [11]) and 2) a novel approach called Swarm Learning (SL) that was developed
in collaboration with Hewlett Packard Enterprise (HPE[6]).

DFL and SL are approaches to machine learning that improve privacy and reduce reliance on centralized data storage.
DFL extends the traditional federated learning model by allowing multiple nodes to train models collaboratively without
a central server[12],[13], [14], while Swarm Learning uses blockchain technology to create an autonomous peer-to-peer
network without a central authority. Both approaches aim to decentralize learning and enhance privacy, but SL employs
blockchain for even greater security and decentralization.

SL is a decentralized machine learning framework that combines the principles of blockchain technology with federated
learning. Instead of using a central server to compile model updates as in standard FL, SL uses a peer-to-peer network
that is managed by blockchain to guarantee member validity, data integrity, and security. SL trains models locally,
and only parameter weights are transmitted on a network of numerous swarm devices. The integration of blockchain
technology ensures secrecy and security, enabling effective collaboration among disparate entities. Transactions can
only be performed by preauthorized parties through computationally efficient consensus mechanisms. SL eliminates
the need for a central server, reducing the risk of single points of failure and centralized data breaches. Unlike FL,
which ensures data privacy through aggregating initial local gradients, SL facilitates data sharing among registered
customers via smart contracts, thus preserving data privacy. A node in SL must undergo registration, authentication,
model retrieval, local training, gradient sharing, and finally, result aggregation using the Federated Average method
[15].

SL enhances fault tolerance, reduces vulnerability to attacks, and supports scalability, making it ideal for applications
requiring high data privacy and system robustness, such as healthcare, the automotive industry, financial services,
smart cities, edge computing, IoT, and the metaverse. In healthcare, SL guarantees the preservation of data privacy
by allowing hospitals and research institutions to train models collaboratively without sharing sensitive patient data
[16]. In the industry, SL enables machines and system components to act as individual learning agents, allowing
real-time decision-making and adjustments without central oversight. It aligns well with Industry 4.0 principles,
supporting advanced manufacturing technologies requiring high levels of data integrity, flexibility, and automation [17],
[18], [19], [20]. In financial services, SL can enhance fraud detection systems by learning transaction data between
different entities without compromising client confidentiality [21]. In smart cities, SL can optimize traffic flow and
public transport management by allowing multiple sensors and nodes to learn and adapt to real-time traffic conditions.
SL supports data sovereignty and auditability, ensuring compliance with data protection regulations. It also offers
innovation and competitive advantage, allowing faster time to market and customization[22].

HAN et al. [23] sought to bridge the gap between the theoretical aspects of SL and its practical application, providing
empirical evidence through experiments carried out on three public datasets. Their findings have evidenced that SL is
supposed to be suitable for most application scenarios, no matter whether the dataset is balanced, polluted, or biased
over irrelevant features. However, challenges remain, such as backdoor attacks against SL, managing blockchain
integration complexity, and dealing with computational overhead.

1.1 Paper objectives and contribution

The considerable advantages offered by SL require a detailed examination to understand its current research landscape
and practical applications, as well as to pinpoint areas requiring further improvement. To this end, this SL survey
aims to investigate its capabilities within decentralized learning environments. Our objectives are to assess its
practical implementation, identify both technical and operational challenges, and highlight potential avenues for future
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innovations. Furthermore, the survey seeks to explore forward-looking developments, such as the integration of
advanced cryptographic techniques to enhance security and the adaptation of SL to support emerging technologies such
as edge computing and the IoT.

This effort will consolidate existing knowledge, clarify research gaps, and outline strategic directions to expand the
adoption of SL. As a resource, this survey will be invaluable for scholars, researchers, and practitioners. By improving
academic discourse and guiding practical implementations, it aims to pave the way for a broader application and
optimization of SL in various industries, thus expanding its impact and utility.
To sum up, the main contribution of this paper can be presented as follows:

• We present the first survey paper in the field of swarm learning (SL). To the best of our knowledge, this
literature review is the first review on SL.

• We provide a comprehensive overview of the existing literature on Swarm learning and its current applications
to give readers a complete picture of this new and promising research direction.

• We studied and analyzed the current applications of SL. We categorized them into healthcare, transportation,
industry, robotic systems, smart homes, financial services, multimedia IoT, fake news detection, and Metaverse.

• We present an in-depth analysis of the current limitations and challenges facing SL. We explore how these
issues impact their development and deployment. Additionally, we discuss potential future directions to
improve SL technologies and applications. We suggest paths for advancement and areas ripe for further
research to enhance the effectiveness and applicability of SL technologies.

The road map of this paper, as shown in Fig.1 is outlined as follows: Section 2 provides an introduction to swarm
learning and its fundamental concepts and components. Sections 3 and 4 explore the applications of swarm learning
and its associated challenges, respectively. Section 5 highlights potential directions for future research in SL. The paper
is concluded in Section 6.

1.2 Paper Selection

We conducted a comprehensive search in six databases, namely IEEE, PubMed, Science Direct, Scopus, Springer, and
Web of Science. Specifically, we retrieved 25 papers from IEEE, 10 from PubMed, 116 from Science Direct, 72 from
Scopus, 28 from Springer, and 43 from Web of Science. Subsequently, we meticulously screened these papers, focusing
on those directly related to swarm learning, while excluding articles on swarm intelligence and swarm optimization.
Following this screening process, we identified a total of 56 papers that met our inclusion criteria.

The number of research papers has increased each year, as shown in Fig. 2. Research on SL has steadily increased since
its humble beginnings in 2020. By 2024, it experienced a significant increase, indicating the growing importance of SL
in various fields. This surge highlights the growing interest of the academic community in exploring and maximizing
the potential of this advanced technology. The surge in SL research is driven by advances in computational power, data
availability, the proliferation of IoT devices, privacy-preserving AI techniques, and the emergence of complex problems
such as healthcare, autonomous driving, and smart cities, which require scalable and decentralized learning methods.

1.3 Research Questions

1. What are Swarm Learning concepts, architecture, and components?

2. What is the difference between Swarm Learning and Federated Learning, Distributed FL/Decentralized
Federated Learning, and Swarm Intelligence?

3. What are the applications of swarm learning?

4. What challenges do we see in the adoption and implementation of swarm learning in real-world applications?

2 Swarm Learning (SL)

SL is a decentralized machine learning framework that enables the training of the on-device model without the need
to transfer raw data. In the SL model, the data is kept localized at the data owner’s site, substantially reducing data
traffic by avoiding the transmission of raw data [24]. Using blockchain technology, SL enhances privacy and security
through the exchange of only the model parameters and weights, not the actual data itself. This approach incorporates
smart contracts to manage the training and updating of the decentralized machine learning models using local user data,
distinguishing it significantly from traditional centralized systems or even FL frameworks that rely on a central server
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Figure 2: Annual increase in the number of Swarm Learning research papers.

for aggregating model updates [21]. Additionally, SL incorporates advanced data privacy and security mechanisms,
making it an ideal, flexible, and secure solution for content caching within contemporary network architectures [25].

SL employs a permissioned blockchain network and a decentralized hardware infrastructure to facilitate secure member
onboarding, dynamic leader election, and efficient merging of model parameters. The system utilizes standardized AI
engines within a distributed machine learning context to ensure secure and reliable operations. An SL library supports
an iterative AI learning process that leverages decentralized data, adhering rigorously to the prevailing privacy and
security standards [26]. This structured approach secures data and also streamlines the computational process across
diverse network nodes.

2.1 Swarm Learning Architecture

The SL architecture encompasses two primary layers: the application layer and the infrastructure (or hardware) layer.
The application layer includes the Machine Learning (ML) platform, blockchain, and the Swarm Learning Library
(SLL). The hardware layer consists of data sources and models relevant to specific domains, such as datasets related to
missions or geographic locations [4].

The SL system consists of two components: Swarm edge nodes and Swarm network (blockchain) [24]. With blockchain
technology, SL has the following characteristics and advantages: (1) storing vast amounts of data locally; (2) reducing
data traffic by not requiring the exchange of original data; (3) not requiring a secure central network; (3) offering
high-level data security and shielding the model from attacks; and (5) allowing all members to merge parameters with
equal rights [26].

Fig. 3 [6],[16], [27] depicts the architecture of the swarm learning system. There are several swarm edge nodes (let us
say, M nodes), and each node Ci uses local private data Di, i = 1, 2, 3,..., M, to train its model Li after downloading an
initial model from the network. Then, every node Ci distributes its model parameters throughout the network. These
nodes are recognized, permitted, and registered with a smart contract in a peer-to-peer blockchain network to safeguard
network security. Each node Ci has an opportunity to be chosen as a temporary leading node C for model aggregation
in a training cycle t. When the local model Li is trained to satisfy predetermined synchronization requirements (such
as a predetermined training batch), several chosen nodes will disclose their model parameters to a storm API. As a
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result, each chosen node will get the global model parameters from the leading node C, which will then use a weighted
average approach to aggregate them into a global model G [6].

Parameters Parameters

Parameters Parameters

Swarm Edge Node

Model

Private Data

Swarm Network

Private 
Permissioned 

Blockchain Network

Figure 3: Swarm learning system architecture

The Swarm network diagram shows how edge nodes are set up to exchange parameters to learn, with blockchain
technology serving as a facilitator. Private data is used at each node in combination with models provided by the Swarm
network, guaranteeing a decentralized and secure method of collaborative learning [16]. To take part in model training,
Swarm edge nodes must register via the blockchain’s smart contract. After registering, every node uniformly downloads
the first global model from the blockchain and trains the local model using its local data. Swarm edge nodes upload
the local model parameters of the training to the leader via the Swarm network. The smart contract on the blockchain
selects the Swarm edge node leader in real-time. The leader will average the collected local model parameters. To
continue local model training, each Swarm edge node will download the aggregate model from the Swarm network until
the aggregation model meets the requirements of the trained aggregation model. If not, the leader in a block generates
the aggregation model [24].

The workflow for updating the model in SL, as shown in Fig.4 [28], consists of two primary stages. Initially,
individual organizations trained their local models and updated them using their own SL nodes. These updates are then
consolidated on their respective permissioned blockchains. In the subsequent stage, organizations use a network of
multiple blockchains to further refine their local models and synchronize the global model’s state. This approach of
sharing models across various blockchains fosters a more decentralized SL process and mitigates security risks from
external entities [28].

In SL, model sharing is seen as a data-transfer process among participating blockchains. The challenge lies in creating
a method for blockchain data interplay that remains consistent and secure and is adaptable to various blockchain types
without altering the core operations. The diversity in blockchain structures and consensus protocols used by different
organizations adds to the complexity of enabling interblockchain interactions. Traditional methods of cross-chain
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Figure 4: Workflow of SL with multiple permissioned blockchains. The chains of different colors belong to different
participating organizations
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communication, which often rely on a third-party trust entity, contradict the decentralized nature of SL and are therefore
not suitable. Solutions such as the Cosmos architecture, which relies on a central hub for blockchain interoperability,
also fall short of the ideal decentralized approach required for SL [28].

2.2 Leader Election Algorithm (LEA)

In SL, the fairness and performance of the network are greatly affected by the leader election process. Swarm edge
nodes in SL are best placed on instances with plenty of bandwidth and processing power to handle the demands of
decentralized decision-making. However, the unfairness of the leader election mechanism could cause nodes to use
excessive amounts of bandwidth, which would result in inefficiencies and possibly bottlenecks. Participants may be
unhappy with this discrepancy because they believe it is unfair and because nodes with higher data traffic may be more
easily targeted by attackers[23]

The current LEA speculated to be a Proof of Stake (PoS), relies on leadership election on nodes’ stakes or account
balances. The authors in [23] recommended switching from PoS to a Proof of Work (PoW) model, in which nodes
compete to solve cryptographic puzzles and leadership is established by meeting predetermined hash value requirements.
By equating the likelihood of becoming a leader based on processing power, this technique seeks to guarantee a
more fair distribution of network load among nodes. Future efforts will focus on collaborating with Hewlett Packard
Enterprise (HPE) to enhance the fairness and effectiveness of LEA in SL.

2.3 Concept of Swarm Learning

ML, in theory, can be carried out locally if enough data and computing equipment are available. The data and
computation existed at different, disconnected locations (Fig. 5 (A) [16]). In cloud-based computation, data are
transported centrally (Fig. 5 (B)[16]) so that centralized computing can be used to perform machine learning. It greatly
improves the amount of data available for training, and thereby improves machine learning outcomes. However, there
are some disadvantages, such as increased data traffic and duplication, as well as problems with data privacy and security.
In FL, parameter settings are managed by a central parameter server, while data remain with the data owner/contributor,
and computing is performed at the location of local data storage and availability. Dedicated parameter servers are in
charge of gathering and dispersing local learning in FL (Fig. 5 (C) [16]). Alternatively, SL eliminates the need for
a dedicated server, as shown in Fig. 5 (D).SL distributes the parameters over the swarm network and develops the
models separately at each location using private data [16].

The integration of ML methods into the SL framework can increase training rates. SL’s decentralized nature allows local
data processing at edge nodes, reducing latency, and potentially speeding up the training process. It also leverages the
computational power of multiple decentralized nodes, improving training speed. SL reduces communication overhead
by distributing workloads across multiple nodes, reducing the need for frequent communication between nodes. The
blockchain component in SL manages model updates securely and efficiently, minimizing delays. Dynamic leader
elections optimize the training process by choosing the most capable nodes for crucial tasks. SL’s approach to handling
non-IID data across different nodes can enhance model robustness and accuracy faster than centralized approaches.
SL’s ability to operate on nodes with varying computational capacities allows for resource optimization[16].

However, integrating ML methods into SL can introduce complexities, making it difficult to analyze training rate
improvements. Traditional machine learning methods can vary in architecture and complexity, affecting learning rates,
convergence behaviors, and efficiencies. SL’s decentralized nature and varying computational resources may affect
efficiency and scalability. Blockchain technology for synchronization may introduce overhead, and adjusting ML
methods to fit SL could complicate performance assessment. Empirical studies and benchmarking against traditional
centralized and federated learning systems are needed to quantify the benefits of SL in real-world scenarios.

2.4 Swarm Learning Components

As shown in Fig. 6 [29], the SL framework consists of various nodes:

• Swarm Learning (SL) node: SL nodes run the core of SL, sharing learnings and incorporating insights.

• Swarm Network (SN) node: Using the Ethereum blockchain, the SN nodes communicate with each other to
track training progress and save global state information about the model. Additionally, during initialization,
every SL node registers with an SN node, and each SN node manages the training pipeline for its corresponding
SL nodes. Note that the model parameters are not recorded by the blockchain; instead, it simply stores metadata
such as the model state and the training progress.
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Figure 5: Comparative overview of learning models

• Swarm Operator (SWOP) nodes: SWOP nodes manage SL operations, performing tasks such as starting
and stopping Swarm runs, building and upgrading ML containers, and sharing models for training.

• Swarm Learning Command Interface (SWCI) nodes: SWCI nodes monitor the framework and can connect
to any SN node in a given framework.

• Swarm Learning Management User Interface (SLM-UI): SLM-UI nodes are GUI management tools used
to install the framework, deploy Swarm training, monitor progress, and track past runs[29].

• SPIFFE SPIRE Server node: SPIFFE SPIRE Server node ensures the SL framework’s security. A SPIRE
Agent Workload Attestor plugin is included in each SN or SL node, and it interacts with the SPIRE Server
nodes to verify the identities of each node and to get and maintain an SPIFFE Verifiable Identity Document
(SVID) [23].

• License Server (LS) node installs and manages the license to run the SL framework[23].

SL security and digital identity are handled by X.509 certificates, which can be generated by users or standard security
software like SPIRE. SL components communicate using TCP/IP ports, and participating nodes must be able to access
each other’s ports[29].

2.5 Features of Swarm Learning

Swarm learning encompasses several distinct features that strengthen its application in decentralized settings:
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Figure 6: Swarm learning Components

A. Privacy Preservation: SL keeps data at each node which minimizes the risk of privacy breaches and
confidentiality.

B. Decentralization: SL reduces the risk of a single point of failure or data monopoly by eliminating the need
for a central data storage or authority for model aggregation.

C. Continuous Learning: Models are continuously updated with new data available at each node, adapting to
new conditions such as emerging diseases.

D. Data Diversity and Volume: SL handles larger and varied datasets from multiple nodes, enhancing model
robustness and generalization.
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E. Collaborative Learning: Nodes collaborate to train a shared model, benefiting from shared insights without
actual data transfer, crucial to maintaining patient confidentiality.

2.6 Swarm Learning vs. Federated Learning

SL and FL are two distributed learning techniques that provide aggregation of cooperative models from numerous
participating nodes [30],[31]. Several training rounds will result in the generation of a global model. Furthermore, to
guarantee equitable and safe model aggregation, these participating nodes are not required to disclose their proprietary
datasets. However, there are two key distinctions between them [26], [32].

• Information transmission: In FL, participating nodes and the central server exchange local model parameters
as well as global model updates. However, in SL, peer-to-peer networks based on blockchain technology and
edge computing work together to ensure that participating nodes can transmit safely and fairly without the
need for central server coordination [6], [33],[34], [35].

• With or without a central server: In FL, a central server is utilized to collect model parameters from involved
nodes and employ model aggregation to generate a global model. On the other hand, SL does not make use
of a central server. During each training cycle, every participating node has the opportunity to be randomly
selected to serve as a temporary server to compile model modifications. [6]. Using a blockchain-based Swarm
network for safe and decentralized parameter exchange and aggregation of the model, SL eliminates the need
for a central server [26].

SL addresses several key issues in FL and provides many benefits in security, privacy, and scalability. SL can envision
ways to develop more secure, private, and faster distributed machine learning applications from different domains.

To tackle the gradient leakage and data privacy issues in FL, Madni et al [15] developed a secure, collaborative, and
decentralized framework for machine learning training by combining blockchain technology with SL. SL protects the
privacy of the data and the secrecy of the model parameters without unattended accesses and guarantees data integrity,
since it authenticates only trusted nodes and deploys blockchain mechanisms. Research has been conducted against
common machine learning approaches for anomaly detection, where it is demonstrated that the SL method gives better
precision than current methods and addresses gradient leakage, which is the current major limiter of the FL.

In their two articles [36], [37], Xu et al. addressed issues such as data heterogeneity, security, and communication
bottlenecks in FL by creating a strong edge learning framework for smart IoT devices. They presented a new technique
called Communication-Efficient and Byzantine-Robust Distributed Swarm Learning (CB-DSL). This work is the
first thorough theoretical examination of FL in conjunction with PSO (particle swarm optimization). It provides a
closed-form formula to assess the projected convergence rate of CB-DSL, which makes it superior to traditional FL
approaches such as Federated Averaging (FedAvg). It also offers a model divergence analysis to assess the possible
advantages of adopting a globally shared dataset for enhancing learning outcomes in non-IId. situations.

2.7 Swarm learning vs Distributed FL/Decentralized FL

Decentralized FL and SL are two approaches to distributed machine learning that combine edge computing, blockchain
technology, and peer-to-peer networking [38]. Decentralized FL eliminates the need for a central server, allowing
for peer-to-peer communication and a more structured system, such as blockchain technology [39]. It also includes a
consensus mechanism for updating the global model [40]. SL, developed by HPE Enterprise, integrates blockchain
technology into its core operation, ensuring data integrity, node authenticity, and traceability. It also improves data
privacy by keeping the data localized and maintaining security through cryptographic measures.

Decentralized FL involves various nodes working together to train a global model without a central coordinator, while
Swarm Learning uses a leader election mechanism to aggregate updates and update the blockchain. Both approaches
aim to decentralize the machine learning process and maintain data localization, but SL incorporates blockchain for
security and dynamic network management. Both approaches are suitable for environments requiring high levels of
data integrity and auditability. SL offers advantages such as enhanced privacy and security but may face challenges in
privacy preservation and server-centric issues. Future research could explore empirical comparisons and develop hybrid
models that combine the strengths of both SL and FL.

Beltrán et al.[12] explored the evolution of Decentralized Federated Learning (DFL) compared to Centralized Federated
Learning (CFL), highlighting its benefits like improved fault tolerance and scalability. They compared DFL frameworks
and their implementation in various applications, including healthcare, Industry 4.0, mobile services, military uses, and
vehicular networks. Hallaji et al.[41] explored the security and privacy of DFL, highlighting its robustness and potential
threats. They emphasized the need for comprehensive security analyses and ongoing research to mitigate inherent
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risks in DFL systems. The integration of blockchain technology with decentralized federated learning (DFL) has been
surveyed by Zhang et al.[11], [42], highlighting its operational workflow and applications in the IoT and Internet of
Vehicles (IoV) domains. It discusses challenges like communication overhead and system complexity, recommending
further research.

The choice between DFL and SL depends on the application’s specific requirements, such as security, trust requirements,
operational complexity, regulatory compliance, scalability, flexibility, real-time performance, data privacy, and cost
implications. SL is ideal for fields like healthcare and finance, where data breaches or tampering could have severe
consequences. DFL is suitable for scenarios where operational complexity and resource availability are concerns. SL
is more suitable for highly regulated environments and requires strict data provenance and audit trails. DFL offers
better scalability and flexibility, while SL may offer enhanced security features. However, the implementation and
maintenance of a blockchain for SL can be more costly.

2.8 Swarm learning vs swarm intelligence

Swarm intelligence is a branch of artificial intelligence that uses the principles of basic agent behavior research to
provide algorithms for scheduling, routing, and optimization issues. Particle Swarm Optimization (PSO), Bee Colony
Optimization (BCO), and Ant Colony Optimization (ACO) are examples of swarm intelligence algorithms. In contrast,
SL is a subset of machine learning that focuses on distributed and dedicated learning without sharing raw data. SL
emphasizes decentralized and collaborative machine learning in a privacy-preserving manner, while swarm intelligence
focuses on problem solving and process optimization, drawing natural influences from a variety of systems.

Although SL and Swarm Intelligence have related names and are inspired by natural swarm behaviors, which may
be confusing, it is important to compare them because, in computational and system design settings, they serve
distinct purposes and operate on different principles within computational and system design contexts. Exploring the
intersections and differences between SL and swarm intelligence can lead to the development of hybrid approaches
that leverage the strengths of both. By comparing SL and swarm intelligence, researchers can identify new application
areas that may benefit from either approach or a combination of both, aiding in educational and research development.
Ultimately, comparing SL and swarm intelligence enhances the deployment of these technologies effectively across
various domains.

SL provides an innovative set of effective solutions to the difficulties of conventional optimization algorithms in
swarm intelligence. By addressing these issues, Swarm Learning overcomes the limitations of traditional optimization
algorithms in swarm intelligence and also opens new possibilities for solving complex, dynamic, and large-scale
optimization problems in a secure, efficient, and privacy-preserving manner.

The Bacterial Foraging Optimization (BFO) algorithm, introduced by Kevin M. Passino in 2002, is a nature-inspired
optimization technique based on E. coli’s natural foraging behavior. It has been applied in various fields, including
engineering, control systems, and optimization problems. However, BFO has limitations depending on the problem’s
nature and implementation details, and its performance may not be ideal in all cases. Gan and Xiao [43] introduced
swarm learning strategies to improve convergence accuracy and prevent premature convergence in BFO. This includes
cooperative communication with the global best bacteria and competitive learning mechanisms, improving optimal
solutions and swarm diversity, and addressing standard BFO deficiencies.

Bolshakov et al. [44] have developed a deep reinforcement learning algorithm called Deep Reinforcement Ant Colony
Optimization (DRACO), inspired by traditional ant colony optimization and designed for cooperative homogeneous
swarm learning. DRACO aims to shape collective behavior in decentralized systems of independent agents, offering an
alternative to centralized learning. The algorithm’s advantages include natural parallelization, solving collective tasks
beyond the reach of single agents, increased reliability, faster environmental exploration, and economic and energy
efficiency.

2.9 Swarm Learning and IoT

In conventional cloud-based structures, IoT devices send data to central servers for analysis. This approach can lead to
potential bottlenecks, compromise data privacy during transmission, and also increase latency. SL, on the other hand,
facilitates local data processing either on the device itself or on proximate edge servers, thereby decreasing the necessity
to transmit sensitive data over the network and improving response times. SL enhances data privacy and security by
keeping data localized and using blockchain technology for secure data sharing. This method ensures that sensitive
data remain within the local environment, complying with data protection regulations such as GDPR. SL enables IoT
devices to continuously learn and adapt in real-time, providing real-time insights and real-time updates. The distributed
nature of SL provides excellent fault tolerance, making it suitable for IoT applications such as healthcare monitoring
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Figure 7: Swarm learning applications

systems and industrial automation. It scales well without relying on a central server, making it suitable for sprawling
IoT networks. Implementing SL improves IoT networks’ efficiency, security, and privacy compliance, making them
better suited to handle vast amounts of data. The next section will explore more into the applications of swarm learning
in IoT.

3 Applications of SL

SL is used in many fields, such as healthcare, autonomous vehicle systems, environmental monitoring, and robotics,
as shown in Fig.7, to improve diagnostic accuracy, traffic flow, and safety. SL enables data aggregation without
compromising privacy, allows communication and learning from experiences, and encourages cooperative robots for
complex tasks. Its potential to revolutionize distributed systems and information processing is significant. The following
subsections discuss the applications of SL in the reviewed papers.

3.1 Healthcare

Modern hospitals collect substantial volumes of private patient information electronically. These data are extremely
private and secret because they pertain to both national security and individual privacy. The exchange of medical data
between institutions is restricted by legal and privacy concerns, which impact the effectiveness of AI models trained on
small datasets. While distributed deep learning reduces communication and computing costs by making optimal use
of scattered data, it also poses privacy problems [24],[45]. SL enables local machine learning model training using
data from multiple health nodes, such as hospitals. To maintain data privacy, the trained model parameters are then
exchanged, combined, and dispersed among nodes without the requirement of a central collecting entity. By using
blockchain, SL ensures data security and confidentiality [45].

As shown in Fig.8[46], the SLN plays a central role by using its unique digital identifier to train local models with
private data and contribute to a collective global model. The SNN, pivotal for consensus within the blockchain, manages
communication between the SLN and PBN, overseeing the training process, and maintaining the model’s status. Lastly,
the permissioned blockchain network underpins the model-sharing aspect of swarm learning, safeguarding the security
and confidentiality of the process, and facilitating effective collaboration between the SLNs.

SL has demonstrated better performance in healthcare applications, such as COVID-19 profiles and chest X-ray images,
allowing ongoing learning and enhancement across many data sources while closely respecting privacy laws such
as the General Data Protection Regulation (GDPR) and the Health Insurance Portability and Accountability Act
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(HIPAA). It offers opportunities for the development of cooperative research and diagnostics across hospitals and
research institutions networks and is flexible enough to fit a variety of medical data environments. For example, German
university hospitals are using SL to evaluate COVID-19 patient data and create AI-based algorithms for the detection
of novel biomarkers. SL will develop into a crucial tool for collaborative healthcare research and precision treatment
[24],[45],[47].

For example, when hospitals use SL to manage COVID-19 data, they first gather encrypted and anonymized patient
data, including symptoms and treatments. Every hospital sets up a separate SL node for safe local data processing.
By eliminating raw data exchange, these nodes preserve data privacy by locally training models and sharing just the
model parameters over a blockchain. These parameters are then combined by a blockchain consensus method to
update and synchronize the global model across all nodes. Real-time deployment of this continuously improving
model enables more effective diagnosis and treatment plans. SL improves predictive models by integrating diverse
datasets from multiple nodes, improving accuracy and treatment efficacy. It prioritizes privacy and security by keeping
sensitive patient data on-premises, reducing reliance on central repositories. SL also increases efficiency in hospitals
by implementing personalized treatment plans. It is highly scalable, allowing easy integration of new nodes without
significant infrastructure changes.

Warnat-Herresthal et al. in their novel study [16] use SL to train AI models on large datasets of histopathology images
of more than 5,000 patients. SL was demonstrated for disease classifier development using distributed data from
COVID-19, tuberculosis, leukemia, and lung pathologies, using over 16,400 blood transcriptomes. The study shows
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SL’s effectiveness in predicting molecular alterations in colorectal cancer, demonstrating its potential for enhancing
medical imaging analysis without centralized data collection.

Fan et al. [26] was the first to examine the fairness problem in SL as it relates to healthcare, mainly in duties related to
the class of skin lesions. They evaluated the fairness of the SL model for medical applications, comparing performance
and fairness with the single, centralized, and SL models. The results show that SL can achieve better performance than
single-institution training and does not amplify biases. However, the study acknowledges the high complexity of SL
implementation due to the complex configurations of the blockchain network.

To overcome the difficulties presented by non-independent and identically distributed (non-IID) data in decentralized
machine learning, notably in clinical contexts, Wang et al. [48] introduced a generative augmentation framework called
SL-GAN, which combines a GAN in a swarm learning network to augment non-IID data into IID data. The non-IID
problem is directly addressed for the first time in the context of SL in this paper, which is emphasized as a significant
advancement in decentralized clinical machine learning research. The authors suggested improving synthetic data
quality by introducing differential privacy and studying synthetic data privacy.

DeMed, a decentralized privacy-preserving system for medical image processing that uses blockchain technology, was
proposed by Aggarwal et al. [49]. The approach aggregates data into a classifier using smart contracts after using
self-supervised learning to create low-dimensional representations of medical images. This paradigm seeks to address
security and resilience concerns in decentralized learning systems, with a particular focus on preventing malicious or
unintentional data alterations. The efficacy of the system is demonstrated by independent medical picture classification
tasks, such as chest X-rays and pathological data.

By integrating swarm learning with homomorphic encryption. These papers [24], [50] addressed a significant gap in
distributed machine learning privacy-preserving techniques. Swarm learning participants can securely share model
updates without disclosing sensitive data by incorporating homomorphic encryption. To maintain participant privacy,
the authors devised a partial decryption algorithm that only required a fraction of the private key to allow participants to
decrypt aggregated model information locally. This significantly advances the creation of machine learning applications
in domains where privacy is a concern. They recommended handling offline participants, guarding against model
poisoning, and maximizing encryption trade-offs as areas of future research.

Gao et al.[8] proposed a unique strategy for SL that gathers local knowledge from each center to overcome the forgetting
of global knowledge during local training. The proposed methodology demonstrates how utilizing data from several
centers can enhance medical picture segmentation while preserving data privacy and resolving skew problems with
non-IID data. The Label Skew-Aware Loss (LaSA) is introduced to address label skew, preserving global label
information during local training. LaSA maximizes the forecast for the most likely class determined by the global
model. Feature Skew-Aware Regularization (FeSA) is used to align local feature distributions with the global model,
mitigating the effects of feature skew caused by different imaging techniques or demography.

Yuan et al. [51] developed a cooperative deep neural network (DNN) partitioning system to accelerate disease diagnosis
in multi-access edge computing (MEC) networks. They used Swarm Reinforcement Learning (SRL) to tackle the
optimization problem of DNN partitioning and offloading and blockchain technology to address challenges such as
limited resources and dynamic network environments. The algorithm allows agents to learn from local data and generate
judicious offloading actions.

A study by Saldanha et al. [33] used SL to identify molecular biomarkers in gastric cancer from pathological images.
They focused on microsatellite instability (MSI) and Epstein-Barr virus (EBV) status. Patients cohorts from the UK,
USA, Switzerland, and Germany are included in their study. Every dataset is kept apart from the others. However, the
study was constrained by uneven label classifications and the small number of biomarkers examined. Future research
must use a larger number of biomarkers and larger and more diverse cohorts. To further enhance model performance
and interpretability, the authors recommended investigating attention-based deep learning techniques.

Pan et al.[52] made a significant contribution to the field of drug development. The study presented a "Nanonitrator," a
nitrate nanoparticle made of 3000 chitosan, sodium nitrate, and vitamin C as its main constituents. It was produced
utilizing the microencapsulation technique. The purpose of this innovative nanoparticle is to improve nitrate’s long-
circulating delivery capability, extending its effects on the body’s duration and potency without sacrificing safety. The
authors described a novel method that uses a combination drug prediction system driven by SL technology to improve
the bioavailability and protective effects of inorganic nitrate.

To predict molecular changes directly from hematoxylin and eosin (H&E)-stained pathology slides of colorectal cancer,
the study by Saldanha et al. [34] uses SL to train AI models on large datasets of histopathology images from over 5,000
patients. The study shows the effectiveness of SL in predicting the BRAF mutational status and microsatellite instability,
demonstrating its potential to improve medical imaging analysis without centralized data collection or control.
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A unique methodology based on SL was presented by Zhang et al. [46] for the safe and equitable sharing of AI
models in metaverse healthcare. The framework addresses security, fairness, and data quality issues, improving model
accuracy and reliability. A novel parameter merging approach is devised to maximize local models of SL nodes using
lower-quality data. A permission blockchain is used to incentivize high-quality data resources.

Mohammed et al. [53] developed a system using machine learning and SL to diagnose diseases from nail images.
The system uses transfer learning models, InceptionV3 and VGG16, with an accuracy rate of 80%. The decentralized
approach eliminates trust and uses blockchain technology for parameter merging. Despite limited training data, the
system achieves an accuracy comparable to or better than centralized models.

The problem of using vast amounts of medical data for cancer research, particularly breast cancer, while adhering to
privacy rules was the main focus of the study by Shashank et al. [54]. The primary contribution lies in showcasing
SL, as a productive, privacy-preserving approach to improve clinical research through the analysis of varied datasets
from various sources. They used 1,300 histochemical pictures of breast cancer tumors and follow-up records to analyze
diverse datasets, demonstrating how SL can enhance clinical research, improve machine learning models, and maintain
data privacy without compromising quality.

By integrating user feedback into AI model training, Purkayastha et al.[55] introduced a comprehensive approach that
enables a more reliable and efficient collaboration between radiologists and AI. The system uses few-shot learning
and SL, allowing continuous retraining of AI models based on active learning strategies. The platform presents new
capabilities for human-AI partnerships, such as SL and few-shot learning methods. These techniques enable AI models
built on active learning algorithms to be continuously retrained. Through the use of tailored model changes and
collective knowledge, this approach facilitates more accurate and repeatable radiological assessments.

Shriyan et al. [56] introduced a novel method to detect cataracts, which is one of the most common eye conditions in
the modern world, using SL. The authors highlighted the benefits of SL over conventional FL and centralized learning,
emphasizing its effectiveness in the healthcare industry, especially when data privacy is crucial. Hospitals can improve
early cataract detection by working together to create a global model while maintaining data privacy through the use of
SL. The method advocates for a scalable paradigm that might include more nodes for higher data diversity and also
proposes possible applications in identifying other retinal illnesses.

Table 1 summarizes the main contributions of those articles.

3.2 Transportation

Innovations in communication and computing technologies have significantly advanced the Internet-of-Vehicles (IoV).
IoV is crucial to improving traffic management, emergency responses, flow control, and efficiency in Intelligent
Transportation Systems (ITS). FL and Federated Deep Learning (FDL) have been introduced to address privacy issues
in IoV [57],[58]. Despite the benefits of SL, there are drawbacks to using SL for collaborative Vehicle Trajectory
Prediction (VTP). For example, the need for global communication across a large-scale network results in significant
communication overhead, and the cost of blockchain increases with the number of participants, making SL less effective
for large networks [57].

A framework that allows Vehicle Users (VUs) to cooperatively train and aggregate models without the requirement
of a central coordinator was suggested by Lin et al. in [59]. An important consideration in the IoV environment is
the mobility of VUs, which is taken into account in the proposed cooperative SL architecture. The authors create an
incentive system based on an iterative double auction to entice VUs to participate in the SL process. An incentive
mechanism and real-time models are included for dynamic vehicle environments. The authors developed an optimization
problem that maximizes social welfare while achieving market equilibrium.

A novel SL approach for edge IoT contexts, communication-efficient, and Byzantine-robust distributed swarm learning
(CB-DSL). To solve issues like data heterogeneity, communication constraints, and security concerns, CB-DSL
integrates biological intelligence and AI. To strengthen the local model and the aggregation mechanism within the
Direction Decide as a Service (DDaaS) scheme, they used a three-layer service architecture to transfer traffic data
and control instructions, boosting forecast accuracy and real-time signal light switching management. The CB-DSL
framework is validated using real-world healthcare datasets and simulation experiments with SUMO (Simulation of
Urban MObility) to demonstrate its effectiveness in reducing traffic congestion compared to other existing methods.

IoV-SFDL (Internet of Vehicles-Swarm Federated Deep Learning) is a unique framework that was presented by Wang
et al.[58]. It combines SL into the FDL framework and is specifically tailored for the IoV scenario. The goal of this
framework is to overcome the drawbacks of FDL in IoV, including significant communication overhead, risks to data
privacy, and difficulties brought on by vehicle movement, erratic communication, and dynamic settings. The system
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Table 1: Swarm Learning in Healthcare
Ref Application Contributions Methodology Used Datasets Key Findings Future Work
[16] Medical

imaging
Demonstrated the po-
tential of SL for en-
hancing medical imag-
ing analysis.

SL for large-scale pathology image anal-
ysis

Tuberculosis,
leukemia,
COVID-19,
and lung
pathologies

SL enhanced medical imaging
analysis by facilitating multi-
centric collaboration and main-
taining data privacy

Exploring additional medical
fields where large, diverse
datasets are crucial, possibly
extending the decentralized
model to more global collab-
oration.

[26] Skin dis-
ease

Examined the fairness
problem in SL

SL in skin lesion classification Skin lesions Investigated the fairness as-
pect of SL, showing robust-
ness to heterogeneous data dis-
tributions and maintaining fair-
ness without degrading perfor-
mance

Future studies to improve
model performance within
the SL framework, focusing
on managing model fairness
and designing bias mitigation
strategies for SL

[48] Clinical
settings

Overcame the difficul-
ties presented by non-
IID data in decentral-
ized ML.

SL-GAN for non-IID data Tuberculosis,
Leukemia, and
COVID-19
datasets

Addressed challenges posed by
non-IID data in decentralized
machine learning, specifically
in clinical environments

Continued research to optimize
decentralized clinical ML re-
search, potentially exploring
new algorithms and integration
methods

[49] Medical
image
analysis

A privacy-preserving
decentralized frame-
work for medical
image analysis using
blockchain technology.

Distributing a pre-trained Masked Au-
toEncoder (MAE) as a feature extractor
and aggregating trained weights through
smart contracts on the blockchain

Chest X-rays
and pathologi-
cal data

Developed a decentralized
framework for medical im-
age analysis, leveraging
self-supervised learning
and blockchain for privacy-
preserving model training

Expanding the framework to in-
clude more complex medical
imaging tasks, potentially in-
creasing the variety of diseases
that can be diagnosed using the
system

[24],
[50]

Privacy-
preserving
tech-
niques

Including homomor-
phic encryption into
SL.

Enhancing the Paillier homomorphic en-
cryption using the Chinese Remainder
Theorem for efficient operations and in-
tegrating a blockchain-based SL architec-
ture for decentralized model aggregation
through FedAvg

MNIST dataset Significantly advanced ma-
chine learning applications in
privacy-sensitive areas by al-
lowing secure model updates
sharing without revealing sen-
sitive data

Enhancing defenses against
model poisoning, optimizing
encryption trade-offs, and han-
dling offline participants

[8] Medical
imaging

Overcoming forgetting
global knowledge
during local training.
Solves skew issues with
Non-IID data.

Local knowledge assembly, LaSA loss,
FeSA regularization

FeTS, M&Ms,
MSProsMRI,
MMWHS
datasets

Enhanced medical image seg-
mentation by handling Non-
IID data issues, preserving data
privacy

Further application to systems
with unidirectional input con-
straints and expanding to other
medical imaging tasks

[51] Disease
diagnosis

A cooperative DNN par-
titioning system for ac-
celerating disease diag-
nosis in MEC networks.

Swarm Reinforcement Learning (SRL) in
MEC networks

VGG16,
AlexNet,
ResNet18, NiN

Accelerated DNN-based dis-
ease diagnosis through coop-
erative DNN partitioning and
offloading, minimizing service
latency

Real-world applicability vali-
dation in clinical settings with
specific constraints.

[33] Molecular
biomarker
prediction

Predicting molecular
biomarkers in gastric
cancer from pathologi-
cal images.

training MSI and EBV prediction mod-
els in individual merged cohorts and SL
trained, using statistical analysis to as-
sess prediction accuracy and explainabil-
ity through pathologist-reviewed visual-
izations

Datasets from
Bern, Leeds,
TUM Cohort,
TCGA

Improved prediction of molecu-
lar biomarkers in gastric cancer
using multicentric data without
compromising privacy

Expansion to include more
biomarkers and larger datasets,
exploring attention-based DL
methods for improved model
performance

[52] Drug
develop-
ment

SL-based combination
drug prediction system
that identified vitamin
C as the drug of choice
to be combined with ni-
trate

AI-driven drug discovery, "Nanonitrator"
nanoparticles

DPN, DDN,
DTN from
DrugBank,
ChEMBL,
UniProt

Enhanced bioavailability and
therapeutic effects of inorganic
nitrate for prolonged efficacy
and safety

Not explicitly mentioned, but
likely involve further clinical
trials and detailed pharmacoki-
netic studies

[34] Medical
imaging

Predict molecular al-
terations from H&E-
stained slides of col-
orectal cancer

A retrospective analysis of colorectal can-
cer patient images from five cohorts, us-
ing SL to train and validate ML mod-
els for predicting molecular features like
MSI and BRAF mutations

Datasets from
Northern Ire-
land, Germany,
UK, TCGA,
YCR BCIP

Demonstrated feasibility and
effectiveness of SL in training
AI models to predict molecu-
lar alterations in colorectal can-
cer using large, multicentric
datasets

Expanding the SL application
to other oncology areas and en-
hancing scalability and appli-
cability of AI technologies in
routine diagnostics.

[46] Metaverse
health-
care

Safe and equitable
sharing of AI models in
metaverse healthcare.
A novel parameter
merging approach for
SL nodes.

SL nodes that train local models using pri-
vate data, Swarm Network Nodes (SNN)
for blockchain communication and mon-
itoring, and a Permissioned Blockchain
Network (PBN) for secure collaboration

COVID-
19 dataset,
PAMAP
dataset

Improved accuracy and reliabil-
ity of healthcare AI models in
metaverse by ensuring security,
fairness, and data quality distri-
bution

Enhancing security and fair-
ness in model-sharing pro-
cesses through further integra-
tion of decentralized technolo-
gies

[53] Disease
diagnosis

Diagnose diseases from
nail images.

Integrating three components: SL
Node for managing insights, SNN for
blockchain operations, and ML Node for
training models using pre-trained bases

Four nail dis-
ease classifica-
tion datasets on
Google Cloud
Drive

Achieved high diagnostic ac-
curacy with a decentralized
approach using transfer learn-
ing models, maintaining pa-
tient privacy

Expansion to other types of
medical data and further en-
hancement of model training
processes to maintain high ac-
curacy with limited data

[54] Cancer re-
search

Using vast amounts of
medical data for cancer
research while adhering
to privacy rules.

SL for training decentralized cancer di-
agnosis model across two nodes simulat-
ing different medical data sources. Data
from the WDBC, WPBC, and BreakHis
datasets, featuring both tumor characteris-
tics and images, were split between nodes
to reflect diverse medical scenarios

BreakHis,
WDBC,
WPBC

Utilized large volumes of
medical data for cancer re-
search while adhering to pri-
vacy norms showing how SL
facilitates decentralized learn-
ing

Extending the decentralized
model training to improve
oncology research outcomes,
leveraging larger and more di-
verse datasets

[55] Radiology A new capability for
Human-AI partner-
ships.

SL with user feedback in AI model train-
ing

WDBC,
WPBC,
BreakHis

Introduced a system that incor-
porates user feedback in AI
training, promoting personal-
ized and efficient radiological
assessments

Further development of
Human-AI partnership capabil-
ities, optimizing the interaction
between radiologists and AI
models

[56] Eye
disease
detection

A novel method for de-
tecting cataracts.

Pre-processing and data splitting, model
training with the VGG-19 architecture,
and Swarm Learning integration.

ODIR dataset,
a collection of
retinal images

Highlighted the advantages of
SL over traditional centralized
and federated learning systems
in detecting cataracts

Expanding the model to in-
clude more diseases and larger
networks for richer data diver-
sity
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is more effective for IoV situations where the model training convergence speed is accelerated through the use of an
algorithm in the framework to anticipate the credibility of weights.

The directed acyclic graph (DAG)-based Swarm Learning (DSL) framework was created by Huang et al.[60] to address
challenges such as unreliable communications and vulnerability to malicious attacks in IoV. DSL combined blockchain,
Edge Computing (EC), and FL technologies to provide asynchronous model training and data sharing in IoV. The
authors created a Dynamic Vehicle Association (DVA) algorithm based on DSL to handle vehicle movement and
enhance model training efficiency by maximizing the links between Vehicle Nodes (VNs) and Road Side Units (RSUs).
The DSL framework uses a method to detect malicious attacks, ensuring security and resilience. It also introduces
a reward mechanism to encourage honest participation in model training, promoting a collaborative and trustworthy
learning environment.

Hou et al. [57] proposed Hierarchical Swarm Learning (HierSL), a novel edge-assisted framework for Vehicle
Trajectory Prediction (VTP). HierSL is proposed to improve efficiency and security in the collaborative learning process,
particularly for large-scale edge-assisted IoV systems. HierSL reduces global communications reliance and blockchain
costs. Tests are carried out on an actual NGSIM US-101 data set, and the outcomes demonstrate that the suggested
approach outperforms vanilla Swarm Learning and as well as centralized learning.

Yin et al. [22] proposed a Multi-Region Asynchronous Swarm Learning (MASL) framework. MASL is a hierarchical
blockchain-powered framework for large-scale data exchange in IoV. The blockchain, EC, and FL technologies were all
merged by MASL to ensure the anonymity and security of the sharing process. Secure asynchronous model training
and identity authentication have been accomplished by coordinating the intra-regional (IR) and cross-regional (CR)
sharing and the non-IID data issues between regions. Furthermore, the DAG-enabled MASL is a fully asynchronous
system that is capable of responding to anomalous vehicles on the IoVs.

Liu et al. [61] introduced a 6G-driven urban traffic congestion mitigation solution called DDaaS. DDaaS includes a
model layer for data collection, parameter training, and congestion value prediction, a Swarm Network (SN) layer for
safe parameter transmission, and a decision-making layer for signal light switching. Based on SUMO, simulation trials
demonstrate that DDaaS can reduce traffic congestion and achieve accurate prediction.

Autonomous driving technology has advanced significantly, but privacy concerns arise due to the use of sensors and
cameras. Mishra et al. [62] proposed an SL-based training approach to address these concerns. By sharing model
learnings across nodes, SL protects sensitive information and reduces privacy breaches. SL presents a promising
solution to create effective and respectful autonomous driving systems. This approach offers performance comparable
to traditional methods and outperforms other distributed machine learning techniques like FL. Table 2 shows the main
contributions of these articles.

3.3 Industry

The Industrial Internet of Things (IIoT) is being developed using technologies such as IoT, big data and digital twin
(DT). Combining IIoT with AI algorithms can improve productivity and interoperability, offering solutions for advanced
manufacturing systems. However, the DT technique faces challenges in capturing dynamic industrial environments
due to its data-driven nature and security and privacy concerns[64]. SL is revolutionizing manufacturing by providing
real-time intelligent agents that improve operational efficiency by streamlining manufacturing lines, dynamically
allocating resources, and instantly resolving problems. This approach allows for production line optimization, dynamic
resource allocation, and real-time problem solutions without centralized control. SL is ideal for companies aiming
to use Industry 4.0 and smart manufacturing, creating more resilient and intelligent factories for the future [65],[20].
However, there is limited research on integrating SL with IIoT. Reliability issues in industrial systems are crucial,
especially in emergencies. Industrial environments are complex and subject to high temperatures and noise, making
them more complex than normal environments. With automation, competition for limited communications resources
increases the unreliability of IIoT systems[64].

Pongfai et al.[17] developed a Dragonfly Swarm Learning Process (D-SLP) algorithm for nonlinear feedback control
systems, improving robustness, performance, and stability. The D-SLP controller demonstrated superior performance in
simulations of a permanent magnet synchronous motor control system compared to other control methods. However,
the study acknowledges limitations and suggests future work for unidirectional input constraints and input dead zones
in systems.

Using a deterministic Q-Swarm Learning Process (Q-SLP) algorithm and SL principles, Pongfai et al.[18] created an
enhanced control approach. This method optimizes proportional integral and derivative (PID) controller parameters,
improving system performance, stability, and convergence. The approach improves convergence time and performance
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Table 2: Swarm Learning in Transportation
Ref Application Contributions Methodology Used Datasets Key Findings Future Work
[59] IoV A new framework that

allows VUs to coopera-
tively train and aggregate
models without the re-
quirement for a central co-
ordinator.
An optimization problem
that maximizes social wel-
fare while achieving mar-
ket equilibrium.

Cooperative SL framework
with an incentive mechanism
based on the mobility of vehi-
cle users

- Proposes a more
communication-efficient
method than FL; enhances
social welfare and dynamic
adjustment to mobility

Develop the incentive mecha-
nism to ensure fair participa-
tion and better model aggrega-
tion methods

[63] Edge IoT Communication-efficient
and Byzantine-robust Dis-
tributed Swarm Learning
(CB-DSL) combining AI
with BI principles

Evaluating the model perfor-
mance under both i.i.d. and
non-i.i.d. conditions and in the
presence of Byzantine attacks.

CIFAR-10
and MNIST
datasets

Improves local model accuracy
and decision-making in traffic
management; addresses local
optima issues

Validate the framework in real-
world settings and address
more inherent challenges in
edge IoT environments

[58] IoV IoV-SFDL: Overcomes
the drawbacks of FDL in
IoV, including significant
communication overhead,
risks to data privacy,
and challenges caused
by vehicle movement,
erratic communication,
and dynamic settings

Integrates SL into Federated
Deep Learning framework

Next-
Generation
Simulation
(NGSIM)
dataset

Addresses communication
overhead, improves model
convergence speed in IoV
contexts

Explore additional IoV-specific
challenges and expand the
framework to more dynamic
scenarios

[60] IoV Improve data sharing and
model training in the con-
text of IoV

Directed Acyclic Graph-based
SL (DSL) combining edge
computing, FL, and blockchain

Traffic Signs
Preprocessed
dataset based
on GTSRB

Enhances data sharing and
model training; Introduces dy-
namic vehicle association and
malicious attack detection

Develop more robust mecha-
nisms for attack detection and
introduce more adaptive algo-
rithms for vehicle mobility

[57] Vehicle Trajec-
tory Prediction
(VTP) in IoV

A novel edge-assisted
framework for VTP

Hierarchical SL with a two-
layer learning framework

NGSIM US-
101 dataset

Reduces global communica-
tion reliance and blockchain
costs; improves security in
large-scale IoV systems

Optimize synchronization
steps and system topology for
better accuracy and efficiency

[22] IoV A secure, efficient frame-
work for large-scale data
sharing in IoVs

Multi-Region Asynchronous
Swarm Learning (MASL) with
hierarchical blockchain for par-
allel execution

Traffic Signs
Pre-processed
dataset based
on GTSRB

Addresses scalability, security,
and data heterogeneity; main-
tains user data privacy in large-
scale data sharing

Improve the asynchronous
training methods and expand
blockchain integration for
better data privacy and security

[61] ITS Direction Decide as a Ser-
vice (DDaaS) to Reduce
Traffic Congestion in 6G-
Driven ITS.
A traffic simulation and
congestion prediction ex-
periment using SUMO in
Beijing, China.

Direction Decide as a Service
(DDaaS) with a novel three-
layer architecture incorporat-
ing SL

- Facilitates the orderly transmis-
sion of traffic data and control
instructions; improves traffic
management and reduces con-
gestion

Enhance the traffic control al-
gorithm for more adaptive and
timely decisions; expand to
more complex ITS scenarios

[62] Autonomous
Driving Sys-
tems

Training autonomous
driving systems

SL-based training method for
privacy preservation and per-
formance enhancement

Kitti 3d dataset Claims superior privacy preser-
vation and potentially better
performance over traditional
methods

Expand research to compare
with more distributed machine
learning techniques and vali-
date in practical autonomous
driving contexts

by addressing shortcomings in conventional techniques. Simulations showed superior performance and convergence
over traditional SLP, improved particle swarm optimization (IPSO), and the whale optimization algorithm (WOA).

Pongfai and other authors created an adaptive SLP method in a different work [66]to create the best PID controller
possible for multiple-input/multiple-output (MIMO) systems. The approach dynamically updates online weights
depending on system failures, improving PID parameter autotuning performance, stability, and resilience. The authors
evaluated the algorithm against conventional techniques using a two-wheel inverted pendulum system as a case study.
The method could be investigated to approximate discrete-time responses, predict behavior, and observe systems.

Sun et al.[19] proposed a new diagnostic framework for bearing faults in rotating machinery, addressing data privacy
concerns and insufficient labeled data in factories. The framework uses convolutional neural networks and adversarial
domain networks to train local diagnostic models without sharing data. Sun et al. in another paper [20] proposed a
framework using SL to diagnose faults in multiple components of the machinery, addressing data privacy and insufficient
data. The framework uses local diagnosis models like AlexNet and the Chebyshev filter, enhancing efficiency and
accuracy.

Xiang et al.[64] presented a ground-breaking architecture for IIoT that is enhanced by DT technology and powered by
credibility-weighted SL. Their method tries to solve the privacy risks and significant communications costs. With the
aid of DT, they developed a DRL technique to simultaneously optimize energy consumption and IIoT system reliability.
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Table 3: Swarm Learning in Industry
Ref Application Contributions Methodology Used

Datasets
Key Findings Future Work

[17] Nonlinear control
systems

A Dragonfly Swarm
Learning Process (D-
SLP) algorithm for
nonlinear feedback
control systems

Blendsing dragonfly algorithm behaviors
with SL protocols to adaptively tune con-
trol parameters amidst system variations;
A two-layer blockchain framework to en-
sure secure and private intra-regional and
cross-regional data sharing among vehi-
cles and base stations

- Superior control performance
in nonlinear systems compared
to conventional methods

Explore application
to systems with spe-
cific constraints like
PAM

[18] PID controller opti-
mization

Use a determinis-
tic Q-SLP algorithm
to optimize and im-
prove the PID pa-
rameter’s autotuning
process

A Deterministic Q-SLP Algorithm for
optimizing PID controllers, combining
swarm and learning to refine control pa-
rameters KP, KI, and KD, enhancing sys-
tem response and stability

CPC sys-
tem

Improved convergence and per-
formance optimization over tra-
ditional methods

Not specified

[19] Diagnostic frame-
works for rotating
machinery

A new diagnostic
framework for bear-
ing faults in rotating
machinery

Integrates adversarial domain networks
with CNNs

CRWU,
HITsz,
XJTU-SY,
and SCU

Increased efficiency and accu-
racy in fault diagnosis without
compromising data privacy

Not specified

[64] Industrial Internet of
Things (IIoT)

A revolutionary
architecture for
IIoT powered by
credibility-weighted
SL and improved by
DT technology

Digital Twin technology with credibility-
weighted SL

real-
world
MNIST
dataset

Enhancing IIoT system relia-
bility and reducing energy con-
sumption

Further address
practical concerns in
IIoT for operational
efficiency

[65] Reconfigurable
robotic assembly
cells

A method for opti-
mizing the layout
of reconfigurable
robotic assembly
cells in manufactur-
ing environments

Multi-agent cooperative swarm learning
with digital twin

- Improved layout optimization
and operational efficiency in
manufacturing

Enhance the frame-
work to adapt to
rapid changes in
manufacturing
demands

[67] Data management in
engine lifecycle

A blockchain-based
data management
method to ensure
engine data integrity

Utilizing blockchain for secure data inter-
actions, and employs a trusted application
(BCAPP) for data processing and valida-
tion

NASA
open
dataset

Enhanced data integrity and se-
curity throughout the engine’s
lifecycle

Optimize multi-
party collaborative
learning and data
usage

To address issues with operational efficiency and sustainability, they also developed and solved an optimization problem
in the recommended DT architecture to optimize system reliability and minimize energy usage.

Wang et al.[65] have introduced a novel approach that utilizes cooperative multi-agent SL and DT to optimize robot
assembly cells and thus can be adapted to any manufacturing environment. This model of interaction, where each
element acts as an autonomous agent, permits these agents to respond instantaneously to issues of mechanical structure,
networked software, and hardware integration. The approach considers each component as an agent, allowing them
to interact dynamically to address mechanical structure, software, and hardware integration changes. The framework
supports dynamic reconfiguration, ensuring efficient manufacturing systems in response to varying product demands
and production cycles.

Luo and Zhang [67] have developed a blockchain-based data management method to ensure the integrity of the engine
data, preventing tampering and deletion. The method uses SL to verify the integrity of engine test data and protect
privacy. The integrated approach improves trustworthiness, supports collaborative learning, and optimizes data usage
while protecting privacy.

Table 3 shows the main contributions of these articles.

3.4 Robotic systems

Learning processes can be significantly accelerated when multiple robots work together to form a swarm. Such entities
could exchange learned information in a decentralized or centralized fashion. In SL, nodes in the network pool share
locally learned models among themselves without the need for a central authority. When using SL in networked robotic
applications, a collection of linked robots must be able to operate together or independently to complete tasks. Rangu
and Nair [68], offered a method that uses mobile agents to execute SL on a group of robots and each learns a task. The
learning process is distributed, with a mobile agent compiling and disseminating the models learned locally as it moves
seamlessly across the network of both simulated and actual robots. The authors demonstrated the SL approach using a
mixed group of both simulated and real robots, considering that assembling a swarm solely of real robots would be
cost-prohibitive. The application of reinforcement learning at the local level to groups consisting of simulated, real, and
combinations of these robots has proven the viability and efficiency of SL within a diverse network of robots.
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3.5 Smart home

Edge Intelligence (EI) integrates edge computing and AI in smart homes, real-time video analysis, and precision agri-
culture. However, centralized machine learning models have limitations like data privacy breaches and communication
overhead[69]

SL is transforming smart home ecosystems by enabling decentralized decision-making processes. This allows smart
devices to communicate and learn from each other’s experiences, optimizing energy consumption, security, and
automation. Smart thermostats, lighting, and appliances can adjust settings based on occupants’ habits, ensuring
comfort and energy efficiency. Swarm learning also allows security networks to analyze data and adapt without human
intervention.

Xu et al. [69] introduced a novel cooperative SL framework to overcome Central Machine Learning issues by leveraging
decentralized SL for the prediction of thermal comfort. This approach reduces communication overhead and improves
model performance by leveraging real data from all nodes within the edge computing network. The framework’s
effectiveness was demonstrated through an extensive empirical investigation using a Non-IID thermal comfort dataset.

Liu et al.[70] developed ADONIS, a framework for detecting abnormal behavior in IoT devices. It uses Swarm Learning,
knowledge distillation, and human-computer interaction (HCI) to improve security and operational efficiency. The
decentralized approach reduces central node failure risk and reduces latency and energy consumption. ADONIS can be
applied to smart cities and IoVs, and its adaptability makes it suitable for various applications. Future research includes
further enhancements and refinement of parameter aggregation methods.

3.6 Financial services field

By using decentralized networks for data analysis, decision-making, and risk management, SL is completely changing
the financial services industry. Swarm learning’s decentralized nature reshapes data-driven decisions in the complex
financial landscape. Enhance investment recommendations and fraud detection rates while protecting against single
points of failure. By using SL, financial organizations can modify their strategy in response to current market conditions
and consumer trends. John et al.[21] used SL for credit scoring in Peer-to-Peer lending on a blockchain platform in the
financial services industry, ensuring user data privacy and secure transactions. The decentralized model training and
credit scoring process eliminate centralized data storage risks. Future work includes testing with real-time datasets and
improving user experience.

3.7 Multimedia Internet of Things

By enabling the processing and dissemination of decentralized content in real-time in environments containing IoT
devices, swarm learning is transforming the Multimedia IoT ecosystem. This method guarantees that content is
personalized for each user, minimizes latency, and maximizes network capacity utilization. Additionally, processing
data locally on devices improves security and privacy by lowering the possibility that private information will be hacked.

Zhang et al.[71] have improved the privacy and security of multimedia IoT devices using Radio Frequency Fingerprinting
(RFF) for identity authentication. They integrated differential privacy, specifically the Gaussian mechanism, into SL to
protect RFF data. They also proposed a novel node evaluation mechanism to prevent malicious nodes from affecting the
model’s accuracy and integrity. By guaranteeing the security of the underlying IoT devices through enhanced privacy
protection in SL, the research paves the way for safe multimedia services.

3.8 Fake news detection

Social media has significantly impacted the distribution of information, but the lack of systematic management
has led to the spread of fake news. Machine learning techniques like convolutional neural networks (CNN) and
recurrent neural networks (RNN)can detect fake news, but centralized detection can violate user privacy. Decentralized
methods like SL offer privacy-preserving learning on local data, reducing hacking risks and allowing users to maintain
confidentiality without sharing data [72]. Dong et al.[72] developed Human-in-the-loop Based Swarm Learning (HBSL),
a decentralized method for detecting fake news. HBSL uses SL and human-in-the-loop (HITL) techniques to detect fake
news across nodes, ensuring user privacy. It incorporates user feedback, allowing models to be continuously updated.
The method was validated using a benchmark dataset (LIAR), showing its superiority over existing methods.
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Table 4: Swarm Learning Applications
Field Ref Application Contributions Methodology Used

Datasets
Key Findings Future Work

Robotic
systems

[68] Networked
robotic applica-
tions

A method that uses mo-
bile agents to execute SL
on a group of robots

Mobile agents executing SL
on a group of robots; Each
robot learns individually, and
a mobile agent facilitates the
aggregation and sharing of lo-
cally learned models across the
swarm

- Demonstrated viability
and efficiency of SL in a
mixed robot swarm; rein-
forced learning applied
locally to enhance task
completion

Not specified

Smart
home

[69] Edge intelli-
gent computing
networks

Cooperative SL frame-
work with cyclic ring all
reduce topology for ther-
mal comfort prediction

utilizing stochastic gradient de-
scent within a cyclic edge intel-
ligent computing network.

Non-IID
thermal
comfort
dataset

Demonstrates reduced
communication overhead,
enhanced data privacy,
and improved model
performance by leverag-
ing data from all nodes
without sharing it

Extend empirical investi-
gations, optimize model
performance and handle
real-world applications’
data distribution issues

[70] IoT, specifi-
cally abnormal
behavior detec-
tion

ADONIS, a framework
for detecting abnormal be-
havior in IoT devices

SL combined with knowl-
edge distillation and HCI for
anomaly detection in IoT de-
vices

Traffic
dataset

Enhanced security and op-
erational efficiency in IoT
networks by local data
fusion and a lightweight
model to accommodate
resource-constrained en-
vironment

Further framework en-
hancement, increase
communication ef-
ficiency, and refine
parameter aggregation for
non-IID data

Financial
services
field

[21] Credit scoring Credit scoring in Peer-
to-Peer lending on a
blockchain platform in
the financial services in-
dustry

Lending platform on Web 3.0
that connects lenders and bor-
rowers using blockchain tech-
nology to ensure secure, peer-
to-peer transactions without in-
termediaries

Universal
Bank
dataset

Ensures data privacy and
secure transactions, with
model performance com-
parable to centralized ap-
proaches

Test model with dynamic
datasets, explore other
decentralized platforms
(Solana, Hyperledger,
Corda), and enhance user
experience

Multimedia
IoT

[71] Multimedia
IoT device
security using
RFF

Improved the privacy and
security of multimedia
IoT devices using RFF for
identity authentication

Integration of differential pri-
vacy and a novel node evalua-
tion mechanism in SL

RFF
dataset

Enhancing privacy and
security for IoT devices
by protecting RFF data
and making the system re-
silient against various cy-
ber attacks

Future research could fo-
cus on extending these
methodologies to broader
IoT applications and fur-
ther improving the robust-
ness of the security mea-
sures

Fake news
detection

[72] Decentralized
fake news
detection

Human-in-the-loop-
based swarm learning
(HBSL), a decentralized
method that incorporates
user feedback for detect-
ing fake news

The methodology involves
local learning, collaborative
model update and human
feedback to enhance detection
capabilities across the network
through a cyclic process

LIAR
dataset

Significantly improves
the accuracy of fake news
detection using local data
and user feedback

Design detection models
tailored to specific node
features to enhance effec-
tiveness

Metaverse [73] 6G-Metaverse
XR communi-
cation

SL-based secure config-
urable resource trading
mechanism for reliable
6G-Metaverse XR com-
munication.

A decentralized trading
framework using SL for
resource management in
a 6G-Metaverse environ-
ment, facilitated by IRS and
blockchain technology, and
Federated Learning for privacy
enhancement.

Custom
dataset

Effective in reliable XR
communication via decen-
tralized management and
smart contract-based re-
source trading

Investigate customization
of SL for more fine-
grained communication
hardware resource man-
agement and scheduling

3.9 Metaverse

The Metaverse faces challenges in reliable extended reality (XR) data transmission due to a lack of incentives and untrust
among users. To address these issues, a configurable secure resource trading mechanism based on swarm learning is
proposed in [73]. This framework includes subchains for decentralized Intelligent Reflecting Surfaces (IRS) resource
management and intelligent allocation, a smart contract-enabled scheme, and a decentralized federated learning-driven
IRS allocation scheme. Experimental results demonstrate the effectiveness of this configurable SL-based resource
trading for reliable XR communication.

Table 4 shows the main contributions of those articles.

4 Challenges

4.1 Non-IID Problem in SL

SL enables participants to register, train models, and exchange parameters through edge nodes, ensuring data sovereignty
and confidentiality. However, SL performance is significantly affected by non-independent and identically distributed
(Non-IID ) data[48], which can lead to inconsistent model updates and degraded aggregate performance. When data is
dispersed unevenly among various network nodes or participants, it is called the non-IID problem in SL. This implies
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that distinct statistical characteristics, such as mean, variance, and data distribution patterns, may exist in the dataset at
each node. Several factors, including variations in patient demographics, the type of medical equipment utilized, or even
the particular focus or specialization of the medical institutes providing the data, might contribute to this heterogeneity
in the data. Non-IID data problems include quantity, label, and feature skews. Feature skew and label skew are caused
by differences in imaging protocols or demographics, leading to inconsistencies in annotations and Non-IID label
distributions. Various strategies, including elastic weight consolidation and batch normalization, have been proposed to
address feature, label, and quantity skew in classification tasks. However, these methods do not fully consider label
skew, which could cause suboptimal performance[8], [74].

Two types of strategies are now being used to tackle the non-IID challenge: algorithm-based and data-based approaches.
Algorithm-based methods align local models with global models, while data-based methods balance distribution but
require a trusted central coordinator. Furthermore, with non-IID data, convergence problems may arise when utilizing
Generative Adversarial Networks (GAN) for data augmentation[48].

To address the non-IID problem in SL, methods must be created that can either reduce the impact of data heterogeneity
or take advantage of it to increase the global model’s resilience and generalizability. Strategies such as advanced
aggregation techniques, personalized models, and data augmentation can improve the robustness and generalizability of
the global model[8]. Currently, effective solutions to address the non-IID problem in SL are yet to be established[48].

4.2 Fairness and bias in SL

Fairness and bias in machine learning models indicate how they could perform or reflect dominant groupings in the
data in an unbalanced way. The impact of SL on model bias and fairness has not yet been fully assessed, even though
fairness issues have been considered in the context of FL. In[26], the authors suggested comparing SL with centralized
learning and subgroup-specific model training to investigate the fairness of SL in medical imaging tasks without the
need for additional bias mitigation techniques. To provide insight into how SL might balance performance and fairness
in healthcare applications, their study seeks to determine if SL’s fairness features are more in line with centralized
learning or subgroup-specific training.

4.3 Attacks on swarm learning

SL has the potential to handle distributed large-scale data better than FL, but it also faces significant security issues that
require more scrutiny. In the stages of SL, as shown in Fig.9 [6], different attacks can occur: unreliable parties may
compromise data during local training and before the locally trained metadata are secured on the blockchain, it might
be vulnerable to various network attacks like Eclipse and DDoS. Furthermore, malicious participants could introduce
harmful parameters during the merging process, potentially introducing backdoors into the global model. 1) Data
poisoning might occur in the local training phase; 2) eclipse attacks could occur in the blockchain P2P network in the
metadata upload phase; and 3) the global model could be hacked by poisoned parameters in the parameter aggregation
phase [6].

4.3.1 Backdoor attacks against distributed swarm learning

Despite its privacy and decentralized training benefits, SL faces significant security threats, such as backdoor attacks,
which need to be addressed to ensure the integrity and reliability of SL systems. Backdoor attacks in machine
learning, especially SL, manipulate data and training processes to produce incorrect outputs. In SL, where multiple
nodes collaborate, a backdoor attack could be particularly insidious. Moreover, the decentralized nature of SL makes
detecting such attacks challenging due to the non-IID nature of real-world data. Addressing backdoor attacks requires
technological solutions, robust security practices, and new collaborative learning approaches to ensure integrity and
trustworthiness in decentralized machine learning environments[6],[35].

Chen et al.[6] conducted a study on security threats in SL using a pixel pattern backdoor attack method. Their research
consists of a number of studies that evaluate the effectiveness of backdoor attacks in diverse scenarios utilizing a
variety of datasets (MNIST, CIFAR-10, SVHN). These circumstances include varied network sizes, different data
distributions (IID vs. non-IID), distinct attack targets (single vs. multitarget), and attack continuity policies (single-shot
vs. multiple-shot). To reduce the effects of backdoor attacks, they also suggested a number of security strategies,
including L2 regularization and the addition of noise. Experimental data verify the efficiency of these protections.

Yang et al.[35] identified a hybrid vulnerability in SL that uses backdoor and eclipse attacks to propagate backdoors
secretly. They introduced a strategy called sample-specific eclipse (SSE) to target high data contribution nodes, reducing
attack costs and accelerating backdoor propagation. The study investigates the use of distributed backdoor poisoning
attacks in conjunction with Eclipse assaults for the first time, showing how they can be used together to allow backdoors
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Figure 9: Attack on swarm learning

to spread covertly among innocent users on the SL network. Afterward, they suggested a fresh assault plan that
concentrates on nodes that contribute a lot of data, speeding up the spread of backdoors and requiring fewer resources
overall to be effective.

4.3.2 Poisoning attack

SL faces unique challenges from poisoning attacks. Poisoning can compromise the collective learning process, affecting
model parameters and performance. The decentralized nature of SL complicates detection, as there is no central
authority to monitor data quality or model updates. Therefore, robust decentralized consensus mechanisms are needed
to detect and mitigate poisoned inputs [35], [71],[28]. Qi Y. et al.[28] developed strategies to prevent poisoning attacks
and ensure the integrity and security of the SL process.

Rongxuan et al.[75] introduced a Zero Trust Architecture (ZTA)-based defense scheme for SL to combat poisoning
attacks in decentralized learning environments. It identifies a unique vulnerability where a malicious ’header’ node
can compromise the model. The defense mechanism emphasizes continuous risk calculation and anomaly detection,
allowing dynamic responses to threats. The scheme also uses Manhattan distance and accuracy differences to identify
and mitigate risks from both the header and edge nodes. The effectiveness of the proposed defense strategy is
demonstrated through systematic experiments, proving its practical applicability in real-world scenarios.
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4.3.3 Eclipse attack

An Eclipse attack in SL involves an attacker controlling the network communication between nodes. This is particularly
relevant in peer-to-peer networks where nodes share information and model updates without a centralized authority
[35]. An attacker can isolate a target node or group of nodes by monopolizing their network connections, potentially
introducing false data or model updates [76]. This could impact the integrity of the model and degrade performance. To
protect against Eclipse attacks, robust peer discovery and management mechanisms should be implemented, including
diverse peer connections, validating peer identities, and detecting network patterns that might indicate control of
communication channels[35].

4.3.4 Inference attacks

Inference attacks aim to deduce sensitive information about the training data used by a model, such as recovering
private or sensitive attributes. They can be used to determine if a specific data record was part of the training set, infer
specific attributes or features of data instances, or attempt to reconstruct a model’s parameters. Inference attacks focus
on extracting information about the training data or model behavior, such as determining if specific data were used in
training or guessing private attributes based on model outputs. Decentralized machine learning methods allow multiple
nodes to collaboratively learn a shared model without exchanging local data, typically through blockchain technology
[77]. Inference attacks exploit shared model updates or the final model to infer properties of the training data or identify
unique characteristics of individual participants’ datasets. To protect against inference attacks, advanced cryptographic
and privacy-preserving techniques such as homomorphic encryption, secure multi-party computation, and differential
privacy are employed. However, the balance between privacy protection and model performance is a critical challenge
in SL[71].

4.3.5 Model inversion attacks

Model inversion attacks aim directly at reconstructing the inputs used to train the model, effectively reversing the
model’s computations to approximate or reveal the actual data. They often target models that provide detailed or
confident predictions, which can inadvertently reveal information about the training data [78]. While inference attacks
often derive indirect information about the data or its attributes, model inversion attacks engage in a more direct and
complex effort to recreate the original training inputs themselves. In SL, where nodes collaborate to train a model
without sharing their local datasets. The decentralized nature of SL allows each node to contribute to the model’s
learning by updating it based on local data. However, shared model updates or predictions can leak information,
potentially inferring specific characteristics or reconstructing aspects of the original training data. To defend against
model inversion attacks, strategies such as output perturbation, differential privacy mechanisms, access controls, and
strict query limits can be implemented[71].

5 Future Research

SL addresses privacy and data integration issues, but research gaps exist, indicating potential areas for further exploration.

• Security and Trust: Although SL uses blockchain technology to ensure security and trust, more investigation
is required to solve potential security flaws, such as sophisticated cyber threats and insider attacks. It is
essential to have strong trust mechanisms and security measures specifically designed for SL networks.
Swarm-FHE [79] offers a significant advancement in SL security by integrating fully homomorphic encryption
and blockchain technology. This method ensures that collaborative model training is conducted without
compromising data, even in the presence of compromised or malicious participants. Blockchain technology
and lightweight homomorphic encryption are also combined in a privacy-preserving SL by Li et al. [44], which
promotes model security, data privacy, and computational performance and offers a competitive substitute for
FL in remote machine learning applications [80].

• Dynamic Node Management: Enhancing the robustness and dependability of SL systems may involve inves-
tigating dynamic techniques for node participation and incentive mechanisms to guarantee nodes’ continued
and productive engagement in the swarm network.

• Optimizing Leader Election: The leader election process in SL can lead to disproportionate bandwidth
consumption, inefficiencies, and potential bottlenecks, causing dissatisfaction among participants and poten-
tially compromising network security. To address these challenges, [23] suggested refining the leader election
mechanism for more equitable network load distribution.

• Scalability and Efficiency: The ability of SL to expand across a growing number of nodes and a variety
of data formats while maintaining efficiency and model performance should be investigated. Enhancing
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model aggregation techniques and communication protocols could be the main areas of research to facilitate
widespread implementations of SL.

• Interoperability and Standards: For SL to succeed, standards compliance and interoperability amongst
various systems are essential. To solve issues with data format, protocols, and compliance, research could
examine methods for SL to seamlessly integrate into existing IT systems. Qi et al.[28] developed a blockchain
twin mechanism to improve the interoperability and efficiency of SL on different blockchains, introducing an
incentive mechanism for active participation, thus improving the overall performance and security of the SL
process.

• Energy Efficiency: Considering the possible magnitude of SL deployments, especially in the context of IoT,
the development of power-saving learning algorithms is of the utmost importance. The emphasis of such
research would be on minimizing the energy usage of devices involved in the SL process, a factor that is
particularly critical for devices running on batteries or sensors located remotely.

• Cross-domain Applications: Investigating the potential use of SL in diverse sectors like healthcare, au-
tonomous vehicles, smart cities, and manufacturing can be extremely advantageous. Each of these areas poses
distinct challenges and demands, and customized SL approaches could result in significant advancements in
the way these sectors employ decentralized learning.

• Data Heterogeneity and Non-IID Data: To efficiently tackle the non-IID issue in SL, forthcoming studies
might concentrate on the creation of a hybrid model adaptation method that merges both algorithmic innovations
and robust data management strategies. The goal of this method should be to reduce the effects of data
heterogeneity and boost the performance and unification of the global model in a distributed environment.

• Advanced-Data Augmentation Techniques: Investigate the application of advanced generative models, like
variational autoencoders (VAEs) or enhanced GANs, for the production of synthetic data samples. These
samples can efficiently supplement sparse or imbalanced datasets across different nodes, thereby addressing
the non-IID problem.

• Ethical AI and Fairness: As SL models become more widespread, it is crucial to ensure that these models do
not perpetuate or exacerbate biases. Research could focus on developing fairness-sensitive algorithms that
promote ethical AI practices within SL frameworks.

• Resource Management: As mentioned in[23], the impact of adding more Swarm coordinator nodes on
resource overhead is negligible. However, the resource overhead increases linearly with the number of
Swarm edge nodes added, indicating that scaling these nodes should be done with care. This observation
provides valuable guidance and actionable recommendations for developers and researchers looking to apply
SL effectively in real-world scenarios.

• Integrating ML into SL: The integration of ML methods into the SL framework can introduce challenges
in analyzing the specific contributions of SL to training rate improvements. SL uses blockchain technology
to synchronize model updates amongst nodes. Although confidentiality and integrity are guaranteed, the
overhead resulting from blockchain operations (such as consensus processes and transaction validations) may
outweigh the anticipated gains in training speed from concurrent decentralized training. Therefore, integrating
ML methods into SL may complicate the assessment of training rate improvements. Empirical studies and
benchmarking against traditional systems are needed to assess its benefits in real-world scenarios.

6 Conclusion

SL is a promising advancement in decentralized machine learning that enables efficient, secure, and privacy-preserving
collaborative learning without central data storage. This review provides invaluable information on the advantages
of SL and emphasizes how SL can facilitate safe, confidential, and effective collaborative machine learning across
dispersed networks. Highlights the benefits of SL, such as improved data privacy, reduced risk of centralized breaches,
and the ability to learn from diverse data sources without data transfer. SL has potential applications in healthcare,
IoV, industry, etc. However, challenges like non-IID problems, fairness, bias, and vulnerability to attacks need to
be addressed. Robust decentralized consensus mechanisms and advanced cryptographic techniques are essential for
the integrity and privacy of SL. These research gaps offer a wide range of opportunities for researchers interested in
advancing the field of decentralized machine learning.
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