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Abstract 

The COVID-19 pandemic brought global attention to indoor air quality (IAQ), which is 

intrinsically linked to clean air change rates. Estimating the air change rate in indoor 

environments, however, remains challenging. It is primarily due to the uncertainties associated 

with the air change rate estimation, such as pollutant generation rates, dynamics including 

weather and occupancies, and the limitations of deterministic approaches to accommodate 

these factors. In this study, Bayesian inference was implemented on a stochastic CO2-based 

grey-box model to infer modeled parameters and quantify uncertainties. The accuracy and 

robustness of the ventilation rate and CO2 emission rate estimated by the model were confirmed 

with CO2 tracer gas experiments conducted in an airtight chamber. Both prior and posterior 

predictive checks (PPC) were performed to demonstrate the advantage of this approach. In 

addition, uncertainties in real-life contexts were quantified with an incremental variance 𝜎 for 

the Wiener process. This approach was later applied to evaluate the ventilation conditions 

within two primary school classrooms in Montreal. The Equivalent Clean Airflow Rate (ECAi) 

was calculated following ASHRAE 241, and an insufficient clean air supply within both 

classrooms was identified. A supplement of 800 cfm clear air delivery rate (CADR) from air-

cleaning devices is recommended for a sufficient ECAi. Finally, steady-state CO2 thresholds 

(Climit, Ctarget, and Cideal) were carried out to indicate when ECAi requirements could be 

achieved under various mitigation strategies, such as portable air cleaners and in-room 

ultraviolet light, with CADR values ranging from 200 to 1000 cfm.  

Keywords: indoor air quality, Bayesian inference, stochastic CO2 model, grey-box model 

  

1. Introduction  

Since the COVID-19 pandemic started, more than 775.3 million individuals worldwide have 

been infected, and approximately 7.0 million deaths have been attributed to the disease as of 

April 7, 2024 [1]. The pandemic has significantly highlighted public concerns about 

maintaining healthy indoor environments to limit the spread of virus-laden respiratory aerosols 

[2, 3]. As hygiene and self-protective measures have eased, there are fewer people wearing 

masks and maintaining social distancing in public spaces. The respiratory diseases, which 

include not only SARS-CoV-2 but also influenza, respiratory syncytial virus (RSV), etc., 

would continue to pose health threats [4]. In daily life settings, classrooms in schools are 

particularly vulnerable [5], where face-to-face interactions are inevitable and frequent. To 

mitigate health effects from respiratory infections, ensuring sufficient clean air ventilation 



 

 

plays an essential role. Effective ventilation can significantly dilute aerosol concentrations and 

reduce the quantity of inhaled infectious pathogens. Consequently, assessments of indoor air 

quality (IAQ) and, more specifically, characterizations of ventilation in schools have become 

more crucial than ever.  

Carbon dioxide (CO2), which serves as an indicator of indoor ventilation conditions, is 

recommended for managing the risk of airborne transmission [6]. This is because the indoor 

CO2 level could reflect the outdoor ventilation rate per person, provided that information on 

occupancy and specific space ventilation requirements is available [7]. During occupants’ 

exposures, indoor CO2 levels will gradually increase until equilibrium is achieved. Poor 

ventilation conditions will elevate the steady-state CO2 levels, causing them to exceed the 

recommended CO2 metrics. Meanwhile, its concentration can be conveniently measured with 

portable low-cost sensors installed in classrooms. St-jean et al. [8] found elevated CO2 levels 

in 21 day-care centers (DCCs) in Montreal. Andamon et al. [9] reported the elevated CO2 

concentration in 10 classrooms of a secondary school in Victoria, Australia. In response to the 

COVID-19 pandemic, the province of Quebec, Canada, equipped all kindergarten, elementary, 

high school, vocational, and adult education classrooms with CO2 sensors to monitor indoor 

air quality and improve ventilation conditions [10]. The widespread installation of CO2 sensors 

has facilitated enhanced monitoring of indoor ventilation conditions in classrooms. 

In addition, there are several CO2-based ways to determine ventilation rates from field 

measurements: steady-state, decay, build-up, and transient mass-balance approach. Andamon 

et al. [9] used average peak CO2 concentrations as steady-state values to estimate ventilation 

rates for investigated classrooms. Kabirikopaei et al. [11] estimated ventilation rates for 220 

classrooms in the Midwestern region of the US using three methods (steady-state, decay, and 

build-up) and found that CO2 readings can contribute the most uncertainty. Batterman [12] 

suggested that the transient mass balance method can provide the most accurate results when 

occupancy is available.  

While these traditional approaches have been widely used for indoor ventilation rate 

evaluations, there are several limitations. Firstly, most of these approaches adopted 

deterministic CO2 mass-balance equations, assuming parameters in the model to be constants. 

In practical settings, however, multiple sources of uncertainties may exist in the room. 

Secondly, in real-time CO2 measurements, occupancy data are often unavailable. Inaccurate 

estimates of occupancy can introduce biases into final evaluation results. Meanwhile, current 



 

 

CO2 metrics are established only for ventilation standards such as ASHRAE 62.1 [13], and the 

metrics for managing the long-range transmission of airborne aerosols are yet to be determined.  

To capture the uncertainties in the CO2-based ventilation evaluation process, a grey-box model 

[14] can be used, which usually integrates a partial theoretical structure with data to complete 

the model. Compared with white-box (e.g., physically-based) and black-box (e.g., data-driven) 

models, the grey-box model can be structured with physical knowledge, and the parameters are 

estimated with the measured data from the system. The stochastic grey-box model often 

includes stochastic items to account for uncertainties and variability in the system [15]. The 

randomness of input parameters will allow for the consideration of uncertain components [16] 

such as measurement errors, fluctuations in the system, unmodelled parameters, etc.  

Haghihat et al. [17] introduced a predictive stochastic model for indoor air quality in 1988, 

allowing the incorporation of inputs as random variables within the stochastic differential 

equation (SDE) model. The model can capture variability in predictions of contaminant 

concentrations. The moment equations for mean, variance, and skewness were given based on 

stochastic Itô calculus [17]. It was indicated that the ‘white noise’ term not only described the 

system randomness but also provided a unique and satisfactory solution. It is worth noting that 

the solution of the SDE model is an Itô stochastic process with the Markov property and the 

strong Markov property, which enables future predictions to rely only on the current state [18]. 

Marcel et al. [16] proposed a predictive control approach to model the CO2 concentrations 

using a grey-box model, in which SDE equations were established based on tracer-gas mass 

balance. The study suggests that the parametrization of the model was suitable and applicable, 

and the prediction tends to be more accurate than traditional deterministic approaches. Until 

now, studies that attempted to interpret indoor ventilation conditions using the grey-box model 

are still rare [15, 16]. 

Parameter estimation plays a key role in developing a stochastic grey-box model. 

Contemporary improvements in computational power have substantially enhanced Bayesian 

inference, making it a robust tool for precise parameter estimations, uncertainty quantification, 

and effective incorporation of prior knowledge. Many previous efforts have been delivered to 

apply Bayesian inference to interpret parameters in IAQ models. Wang et al. [19, 20] applied 

the Bayesian approach to a source-detector relationship established from CFD simulations of 

flow fields in indoor spaces and underground utility tunnels for estimating source parameters 

(leakage rate and location). Septier et al. [21] proposed a Bayesian inference procedure on 



 

 

inverse dispersion modeling to solve the challenging source term estimation (STE) problem. 

The Gaussian assumption was made for the source emission rate for its satisfactory 

performance in practice, even though the emission rate cannot take negative values. To assess 

ventilation conditions with CO2 meters in primary schools, Hou et al. [22] applied a Bayesian 

inference approach to indoor CO2 concentration models. This study identified the outdoor 

ventilation rate, CO2 generation rate, and occupancy level as the most sensitive variables to 

indoor CO2 levels. Rahman et al. [23] developed an approach to estimate the occupancy 

distribution in a mechanically ventilated multi-room office using Bayesian inference. The CO2 

concentration, simulated by the CONTAM program, was taken as input for the investigation 

under the circumstances with and without a 5% random noise considered for uncertainty. The 

study found a significant increase in the RMSE in estimating occupancy as the sensor 

measurement uncertainty increases. By applying the moving-average filtering method, the 

RMSE on estimation was reduced, however it became insensitive to the abrupt occupancy 

change. It was suggested that the Bayesian inference would be more powerful in solving 

inverse problems if it could handle realistic data including noises. However, existing literature 

reveals a noticeable scarcity of interpreting parameters from stochastic models with Bayesian 

inference. 

To summarize, most traditional ventilation evaluation approaches utilize deterministic 

approaches that cannot accommodate real-life uncertainties. The accuracy of these approaches 

would rely on how the real situations approach the idealized assumptions, the accuracy and 

comprehensive collection of inputs, the correct and comprehensive model development, and 

no disturbances during the measurements, etc. Idealized situations seldom happen in reality, so 

quantifying uncertainties is essential.  

In this study, we employed Bayesian inference on a CO2-based grey-box SDE model for 

assessing ventilation conditions for two classrooms in Montreal with CO2 field measurement 

data. The methodology and data used in this study will be introduced in Section 2. In Section 

3, the modeling results will be presented and discussed. In Section 3.1, a prior sensitivity 

analysis was conducted on the model. In Section 3.2, model validations from an airtight 

chamber are demonstrated for ventilation rate (Section 3.2.1) and CO2 emission rates (Section 

3.2.2). The posterior predictive checks (PPC) and noise-level estimation results are discussed 

in Sections 3.2.3 and 3.2.4, respectively. Section 3.3 illustrates the case study outcomes, 

evaluating the ventilation conditions and providing ECAi across three seasons: Spring (March 

to May), Autumn (September to November), and Winter (December to February). The CO2 



 

 

threshold necessary to meet ECAi requirements from ASHRAE 241 was estimated for the 

classrooms to manage the long-range aerosol exposures. The conclusions of this study are 

presented in Section 4. 

2. Methodology 

The methodology used in this study implemented Bayesian inference on a stochastic CO2-

based grey-box model to interpret parameters and quantify the modeling uncertainties. In 

Section 2.1, the stochastic CO2-based grey-box SDE model will be introduced, followed by the 

principles of Bayesian inference to be explained in Section 2.2. The validation and PPC process 

are detailed in Section 2.3. The model development process is illustrated in Fig. 1. 

 

Fig. 1 The model development process 

 

2.1 Stochastic CO2-based grey-box model  

When establishing models for IAQ problems, the deterministic mass-balance equation is often 

established for the contaminants as an ODE. If the randomness of some coefficients is allowed, 

it will become an SDE, and it tends to be more realistic to the real-life problems of interest. 

The establishment of a stochastic CO2 grey-box model is composed of two components [18]: 

a drift component, which represents the deterministic description of the system, and a diffusion 

term, which represents the stochastic or random evolution of the system. The diffusion 



 

 

component captures the variability or uncertainty in the system's behavior attributable to 

random forces or noise.  

The drift components derived from the traditional deterministic CO2 mass-balance model, or 

ODE, are represented by Eq. 1:  

𝑉
𝑑𝐶𝑟

𝑑𝑡
= (𝐶𝑜𝑢𝑡 −  𝐶𝑟) ∙ 𝑄 + 𝐸 ∙ 𝐶𝐸   

        
1) 

 

Where V is the room volume (L); Cr is the CO2 concentration in the room (ppm); Cout is the 

CO2 concentration of outdoor air or the ventilation flows (ppm); Q is the ventilation rate (L/s);  

E is the total volumetric CO2 generation rate in the room (L/s); CE is the conversion factor from 

volumetric concentration to ppm, which equals to 106.  

The diffusion component can be considered as a ‘white noise’ term added to Eq. 1 accounting 

for the uncertainty associated with unknown model inputs and other noises in the system. The 

stochastic CO2 grey-box model could, therefore, be expressed as an SDE as shown in Eq. 2: 

𝑑𝐶𝑟 =
(𝐶𝑜𝑢𝑡 −  𝐶𝑟) ∙ 𝑄 + 𝐸 ∙ 𝐶𝐸

𝑉
∙  𝑑𝑡 + 𝜎 ∙ 𝑑𝑊𝑡 2) 

  

Where 𝑊𝑡 is a Wiener process, which is also known as Brownian motion, is a continuous-time 

stochastic process that has been widely explored in physics, economics, and applied 

mathematics [24], and 𝜎 is the incremental variance in the Wiener process (ppm/√𝑑𝑡).  

In this study, the Euler-Maruyama method was used for discretization [25], which provides an 

approximate solution to the SDE equation over discrete time steps. The Euler-Maruyama 

approximation is provided through Eq. 3 :  

∆𝐶𝑟 = (𝐶𝑜𝑢𝑡 −  𝐶𝑟) ∙ 𝑄 + 𝐸 ∙ 𝐶𝐸)/𝑉 ∙ ∆𝑡 + 𝜎 ∙ √∆𝑡 ∙ 𝑍 3) 

Where ∆𝐶𝑟 is the change in 𝐶𝑟 over the time step ∆𝑡; Z is a standard normal random variable 

(from a normal distribution with mean 0 and variance 1).  

In this study, the inclusion of the ‘white noise’ component assists in quantifying the uncertainty 

levels in model predictions. Such uncertainties might arise from various sources, including air 

turbulence, systematic measurement errors, inaccuracies in estimating modeled parameters, 

effects of unmodeled parameters, variability in the distribution of occupants within a room, and 

the positioning of sensors. The component also covers factors that are not accounted for in 

traditional deterministic models, which could lead to discrepancies between the models and the 



 

 

observations. Assumptions made in this study to use this model are: The room is a well-mixed 

single-zone space; The estimated parameters are assumed to be constant throughout the 

evaluation duration; The differences of density between indoor and outdoor air are ignored.   

2.2 Bayesian inference 

Bayesian inference is a powerful tool for quantifying uncertainty in estimated model 

parameters [26-29]. It considers the inferred parameters as random variables with prior 

information, and then a likelihood function (based on the measurement data) is used to update 

prior distribution following Bayes theorem [30]. The updated results are the posterior 

distributions, which are the new beliefs of the interested variables. In recent years, with the 

advancement in computational capabilities and the development of Markov Chain Monte Carlo 

(MCMC) algorithms such as Metropolis-Hastings, Gibbs sampling, and Hamiltonian Monte 

Carlo, an increasing number of studies in the built environment field started to utilize this 

approach for parameter inferences in established models [29]. 

In the defined stochastic CO2 grey-box model, there could be multiple variables required to be 

estimated. In this study, parameters to be estimated in the model are ventilation rate Q, outdoor 

CO2 concentration Cout, generation rate E, and incremental variance 𝜎 in the Wiener process. 

By placing prior distributions on all estimated parameters and updating these beliefs, a joint 

posterior distribution for the entire set of parameters can be obtained. If one parameter is 

selected as the interested parameter, its marginal posterior distribution will need to be carried 

out, and the remaining parameters will be regarded as nuisance parameters. With the MCMC 

algorithms, samples could be drawn from the joint posterior distribution to estimate the 

conditional posterior distribution of interested parameters. For example, the estimation process 

for the ventilation rate Q is illustrated as follows:  

Step 1: Assume prior distributions for estimated parameters; 

Step 2: Obtain the joint posterior distribution of all estimated parameters; 

Step 3: Yield the conditional posterior distribution on ventilation rate Q 

The prior assumptions are the prior beliefs of the estimated parameters. An example of the 

prior settings is illustrated in Fig. 2. The impact of informative priors and non-informative priors 

(flat priors) on posterior distributions will be evaluated in this study. For example, for the 

outdoor CO2 concentrations, a uniform distribution is assumed to be in the range of 350 ppm 



 

 

to 550 ppm [31]. If there is some information about the outdoor CO2 level available, a normal 

distribution could then be assumed with a specific mean value and variance level. 

Then, the probability of the estimated parameters could be inferred based on the prior 

distributions estimated for them. The likelihood of the estimated parameters given the 

measured data Cr (CO2 indoor concentration) is demonstrated as follows in Bayes’s theorem 

(Eq. 4): 

P ( Q , Cout , E , σ | Cr ) =
P ( Cr | Q , Cout ,E ,σ)∙ P ( Q ,Cout ,E ,   σ )

P ( Cr )
 4) 

Where P ( Cr | Q , Cout , E , σ) is the likelihood probability that measurement data Cr occurs 

given the prior information, P ( Q , Cout , E , σ ) is the joint prior distribution of parameters 

Q , Cout , E , and 𝜎, and P ( Cr ) is the probability of seeing the measurement results, which is a 

normalized constant.  

After obtaining the joint posterior distribution P ( Q , Cout , E , 𝜎 | Cr ), samples could be drawn 

from this joint posterior distribution for the nuisance parameters for Cout , E, 𝜎 to estimate the 

conditional posterior distribution on ventilation rate Q , which is P ( Q | Cout , E , 𝜎 , Cr ). The 

process for estimating other parameters follows the same procedure. 

 
Fig. 2 The illustration of modeling inputs and outputs 

 

 
In this study, the likelihood function will be estimated using the Euler-Maruyama 

approximation [25]. The Markov chain Monte Carlo (MCMC) method was applied for 



 

 

reconstructing the uncertain parameters. Given the prior distribution and likelihood, the 

posterior distribution could be obtained. Five thousand draws from the No-U-Turn Sampler 

(NUTS) algorithm were performed on two chains to sample the parameter intervals using 

MCMC. The ‘burn-in’ was set at 500 to help the Markov chain start near the center of 

equilibrium distribution. The Bayesian stochastic modeling process was established in the 

Python module PyMC [32].  

2.3 Validations and PPC evaluations 

Experimental validations and PPC evaluations were carried out to assess the performance and 

validity of the Bayesian inference results on the stochastic CO2-based grey-box model. 

Experimental validations are designed to help confirm the model estimation accuracy on 

ventilation rates and CO2 emission rates. Meanwhile, the PPC will help evaluate how well the 

developed model fits the observed data. It is conducted to assess the goodness of fit and 

adequacy. If the fitness is good, it indicates that the model can generate data in patterns similar 

to those observed.  

2.3.1 Experimental validations 

CO2 tracer gas experiments were conducted in an airtight chamber located at the University 

Institute of Cardiology and Pneumology of Quebec - Université Laval (IUCPQ - ULaval). The 

dimension of the airtight chamber is 2.3 m (width) × 3.5 m (length) × 2.4 m (height). The inlet 

and outlet of the mechanical system are at the top of the chamber with a diameter of 5.1 cm (2 

in). Two sensor trees were set up in the chamber, and each of the trees is equipped with mounts 

at six different heights [33]: 0.6 m, 1.1 m, 1.5 m, 1.7 m, 2 m, and 2.3 m. The sensors were 

established to confirm the uniform distributions of CO2 inside the chamber. Each of the mounts 

carries six sets of sensors measuring CO2 (Vaisala - GMP252), air temperature and relative 

humidity (Vaisala - HMP110), and air velocity (SWEMA 03+), respectively. Details of the 

sensor specifications are listed in Table 1. The CO2 was generated through the CO2 tank outside 

the chamber (Fig. 3 (b)), and a mass flow controller was used to control the generation rate. 



 

 

 

Fig. 3 Experimental set-ups of the airtight chamber; (a) chamber dimensions and designated 

measurement locations (red point- CO2 sensors, yellow point-CO2 generation location); (b) detailed 

view of the gas injection and sealing mechanisms; (c) experimental set-ups in the chamber 
 
Table 1 Sensor specification details  

Reading Type Sensor Name 
Measurement 

range 
Accuracy 

Sampling 

Frequency 

CO2 
Vaisala 

GMP252 

0 – 10000 ppm 

 
± 40 ppm 0.05 Hz 

Relative Humidity 

and Temperature 

Vaisala 

HMP110 

0–100 % RH 

-40 – 80 °C 

± 1.5 % RH 

± 0.2 °C 
0.05 Hz 

Airspeed Swema 03+ 0.05 – 3 m/s ± 0.03 m/s 100 Hz 

 

The experiments were completed in two sessions: concentration decay and constant injection. 

In decay measurements, three ventilation conditions (Test 1: Ventilation mode 1- 1.9 ± 0.03 

ACH; Test 2: Ventilation mode 2 - 1.51 ± 0.02 ACH; Test 3: Ventilation mode 3 - 0.53 ± 0.01 

ACH) were measured. Due to the limited conditions for directly measuring the supply airflows, 

the referenced ventilation rates for the three different ventilation conditions were calculated 

from the CO2 decay approach. A fan was operated during the initial mixture period. The CO2 

injection stops upon the peak and stabilization of CO2 concentration, and the concentration is 

recorded throughout the subsequent decay period. During the constant CO2 injection tests, two 

distinct CO2 generation rates, 0.8 L/min, and 1.6 L/min were examined with and without fan 

operation (Test 4: 0.8 L/min, fan-off; Test 5: 0.8 L/min, fan-on; Test 6: 1.6 L/min, fan-off; Test 

7: 1.6 L/min, fan-on). These measurements were conducted under the chamber’s Ventilation 

mode 1. After the CO2 tracer gas experiments, the measured CO2 data are used as observational 

data for the model, as illustrated in Fig. 2.  

2.3.2 PPC evaluation  



 

 

PPC is a useful way of assessing the model and determining if it fits the data directly. 

Specifically, to check the model’s fit, the simulated values were drawn from posterior 

predictive distributions, and the samples were compared with the observed data. If the proposed 

model fits, the regenerated simulations from the model should resemble the observations and 

no major discrepancy would be observed. Traditionally, the previous classical approaches 

mainly focus on various goodness-of-fit tests, comparing a tested statistic derived from 

observed data to its distribution under the null hypothesis. Unlike the traditional p-value in 

frequentist statistics, the Bayesian p-value helps to evaluate how well a Bayesian model 

describes the observed data. The Bayesian p-value is defined in Eq. 5. 

Bayesian p-value ≜ p (Tsim ≥ Tobs | Cr) 5) 

Where Tsim is the simulated statistic, Tobs is the statistic for observations, and Cr is the 

conditions of the observations. A Bayesian p-value close to 0.5 would suggest a good fit, 

indicating that the observed data appears typical of the data predicted by the model. When 

values close to 0 or 1, however, would indicate a poor fit, suggesting that observations are 

impossible under the model. In this study, the target test statistic is the posterior mean value. 

 

3 Results and discussion 

3.1 Prior sensitivity analysis on inferred parameters  

A crucial component in the Bayesian modeling and inference process is the prior distribution, 

which represents our initial assumptions or knowledge about unknown model parameters. In 

Bayesian analysis, this prior distribution is subsequently combined with the likelihood, which 

is the probability that observation occurs, given the parameters, to obtain the posterior 

distribution. The posterior distribution thus reflects an updated belief of the parameters, 

incorporating both our prior knowledge and the new evidence. Therefore, the prior assumptions 

may have a significant impact on the posterior estimates of mean, bias, quantiles, etc. In this 

section, a prior sensitivity analysis was conducted for the stochastic CO2 grey-box model to 

help assess whether the inferred results are influenced by the prior assumption settings. 

The prior sensitivity analysis was conducted for four hyperparameters in the model: ventilation 

rate Q, outdoor CO2 concentration level Cout, CO2 emission rate E, and incremental variance σ. 

In addition, two types of priors are chosen for the investigation: vague proper prior and 

informative prior. There are two main objectives for this prior sensitivity analysis. The first is 

to investigate whether different prior assumptions will influence the parameter of interest, for 



 

 

example, ventilation rate Q and CO2 emission rate E. The second is to investigate whether the 

prior assumption of nuisance parameters, which are the parameters that are not of direct interest, 

would play an important role in estimating the interested parameters. The nuisance parameter 

investigated in this study is the outdoor CO2 concentration level Cout.  

The prior sensitivity analysis for one case of this study will be demonstrated here, using the 

observational data from one constant injection experimental test conducted in the airtight 

chamber (Test 4). The observational data for this investigated scenario is illustrated in Fig. 4. 

The metabolic chamber was set at its Ventilation mode 1 (ACH = 1.9 ± 0.03), and CO2 tracer 

gas was constantly injected into the chamber at a rate of 0.8 L /min (0.013 L/s). The information 

on the investigated priors is listed in Table 2. 

  
Fig. 4 The investigated test for prior sensitivity analysis 

              (Test 4 in the airtight chamber) 

Table 2 Evaluated priors for inferred parameters 

Parameter Unit Default Prior 
Vague Proper 

Prior 

Informative 

Prior 

Q ACH U (0,3) U (0,10) N (2, 0.2) 

Cout ppm U (350,550) U (350,550) 
U (396,416) 

N (400,20) 

E L/s U (0,0.05) U (0,0.1) N (0.013,0.005) 
Note. U = Uniform; N = Normal  

 



 

 

 
Fig. 5 Prior sensitivity analysis on estimated parameters; U = Uniform; N = Normal; When 

investigating a specific prior assumption for a given parameter, default priors will be applied to other 

parameters; (a) – (c): The influence of prior assumptions of Q, E, and Cout on Q; (d) – (f): The 

influence of prior assumptions of Q, E, and Cout on E 

 

As depicted in Fig. 5, the influence of prior assumptions on parameter inference was 

investigated within the stochastic CO2 grey-box model. Specifically, we focus on the 

ventilation rate (Q) and the CO2 emission rate (E), aiming at elucidating the model’s sensitivity 

and robustness to varying prior assumptions. The robustness of the model estimations for 

ventilation rate Q, under varying prior assumptions, is illustrated in Fig. 5 (a) - (c). It is 

observed that the adoption of a vague uniform prior (Q ~ U (0,10)) does not introduce 

significant deviations from the results generated by the default uniform prior (Q ~ U (0,3)). 

This indicates that a broader assumption range will not influence final evaluations. As a result, 

both of the two prior assumptions can be considered proper priors in this study. Furthermore, 

the adoption of an informative prior (Q ~ N (2, 0.2)) could enhance the model’s prediction 

performance on Q (Fig. 5 (a)), as would be expected. Besides, the changes in prior assumptions 

regarding the CO2 emission rate (E) and outdoor CO2 concentration level (Cout) demonstrate 

negligible impacts on the model’s inference performance for Q, as illustrated in Fig. 5 (b) and 

Fig. 5 (c). It suggests the model’s insensitivity to these prior assumptions, thereby reinforcing 

the robustness of its estimations on the parameter Q. 

Similar findings were also observed for the estimations of CO2 emission rate E, as shown in 

Fig. 5 (d). The model achieves good accuracy in estimating E, even under the vague prior (E ~ 

(a) (b) (c)

(d) (e) (f)



 

 

U (0, 0.1)). This capacity is further demonstrated in Fig. 5 (e) and Fig. 5 (f), where the 

estimation accuracy for E was not affected by the varying priors for Q and Cout. 

In conclusion, employing Bayesian inference on the stochastic CO2 grey-box model exhibits 

good robustness to the variations in prior assumptions for both Q and E. The model could 

maintain its predictive accuracy across a range of prior assumptions, from vague proper to 

highly informative prior. This evaluation results prove the rationality of the prior assumptions 

made for the model.  

3.2 Model validation  

In this section, the accuracy of the inferred parameters (Q and E) was further validated, 

adopting the verified default prior assumptions listed in Table 2. Two types of CO2 tracer gas 

tests were used as observational data inputs in this model validation process, distinguished by 

the CO2 generation situations: with or without CO2 release. Detailed information for the 

validation scenarios is listed in Table 3 and Table 4. The validation results for the model’s 

estimation performance are presented in the following subsection. 

3.2.1 Validation of the inferred ventilation rate Q  

One of the main purposes of this study is to make reasonable inferences of ventilation rate Q 

from the indoor CO2 measurement with the proposed approach. The model estimation 

performance for Q was compared with the ventilation rate obtained from standard tracer-gas 

decay tests. For the concentration decay tests, there were three ventilation modes investigated.  

The comparison results are illustrated in Table 3 and Fig. 6. For the concentration decay test, 

the difference is less than 5% for the three ventilation modes.  

When the CO2 release was considered in the model (constant injection test), the relative errors 

for the two release conditions 0.8 L/min (0.013 L/s) and 1.6 L/min (0.026 L/s) were 5.7% and 

3.1% under fan-off situations. For the “fan on” scenarios, the differences increase to 12.6% 

and 11% for the two release conditions. The reasons for this increase in differences are probably 

due to the fan actively circulating air in the small chamber, leading to a higher actual ventilation 

rate. It should be noted that there was no obvious difference in the CO2 measurements observed 

at the twelve sensors in the two sensor trees, thus the influence of non-uniformity could be 

ignored. To summarize, the proposed approach in this study can make reasonable ventilation 

rate estimations for both decay and constant injection scenarios.  



 

 

Table 3 Validations for inferred ventilation rate Q 

CO2 Tracer 

gas 

measurements 

Test 

number 

Experimental 

conditions 

Estimated Q (ACH) Experimental 

Q (ACH) 

Relative 

Error 

(%)  mean sd mean sd 

Concentration 

decay 

Test1 Ventilation 1 1.90 0.03 1.91 0.03 0.5% 

Test2 Ventilation 2 1.52 0.02 1.51 0.04 0.6% 

Test3 Ventilation 3 0.51 0.01 0.53 0.03 3.8% 

Constant 

injection 

Test4 Ventilation1, 

CO2 release =0.013 

L/s (0.8 L/min), 

fan off 

1.80 0.20 1.91 0.03 5.7% 

Test5 Ventilation1, 

CO2 release =0.013 

L/s (0.8 L/min), 

fan on 

2.15 0.26 1.91 0.03 12.6% 

Test6 Ventilation1, 

CO2 release =0.026 

L/s (1.6 L/min), 

fan off 

1.85 0.31 1.91 0.03 3.1% 

Test7 Ventilation1, 

CO2 release =0.026 

L/s (1.6 L/min), 

fan on 

2.12 0.06 1.91 0.03 11.0% 

 

 
Fig. 6 Posterior distribution on inferred ventilation rate Q; a) Inferred ventilation rate under three 

ventilation conditions from CO2 decay tests; b) Inferred ventilation rate under normal ventilation 

conditions from CO2 constant injection tests; The black dashed line indicates the referenced value 

measured from the airtight chamber 

 

 

3.2.2 Validation of the inferred CO2 emission rate E  

In addition to the ventilation rate Q, the CO2 emission rate E was another parameter of interest, 

which can be inferred from the model simultaneously. The interpretation of the CO2 emission 

rate in the room can help estimate the occupancy based on the CO2 emission rate per person 



 

 

under certain ages and physical activity levels. The comparisons between the inferred CO2 

emission rates E and the CO2 emission readings from the mass flow controller are illustrated 

in Table 4 and Fig. 7.  

From Fig. 7, it could be found that the inferred CO2 emission rate E is in good agreement with 

the measurements obtained from the emission mass flow controller for all tested scenarios. As 

shown in Table 4, in the “fan off” scenario, the estimation errors for the release rates of 0.8 

L/min and 1.6 L/min were 2.3 % and 3.8%, respectively. However, when the fan was turned 

on, the discrepancies widened, increasing to 12.8 % for 0.8 L/min and 11.5 % for 1.6 L/min. 

Though the differences increased in the “fan on” conditions when compared with the “fan off” 

ones, the estimated errors remained in an acceptable range of 5% - 15%.  

Table 4 Validations for inferred CO2 emission rates E 

Constant 

injection 

Experimental 

conditions 

CO2 emission 

rate E (L/s) 

CO2 emission readings 

from mass flow 

controller (L/s) 

Relative 

Error (%) 

mean sd mean sd 

Test 4 Ventilation 1, 

CO2 release =0.013 

L/s (0.8L/min), fan 

off 

0.013 0.001 0.0133 0.0001 2.3 % 

Test 5 Ventilation 1, 

CO2 release =0.013 

L/s (0.8L/min), fan 

on 

0.015  0.001  0.0133 0.0001 12.8 % 

Test 6 Ventilation 1, 

CO2 release =0.026 

L/s (1.6L/min), fan 

off 

0.025  0.003  0.0267 0.0002 6.4 % 

Test 7 Ventilation 1, 

CO2 release =0.026 

L/s (1.6L/min), fan 

on 

0.029  0.001  0.0267 0.0002 8.6 % 

 



 

 

 
Fig. 7 Posterior distribution on CO2 emission rate E; a) Inferred CO2 generation rate under CO2 

release = 0.013 L/s (0.8 L/min); b) Inferred CO2 generation rate under CO2 release = 0.026 L/s (1.6 

L/min); The black dashed line indicates the referenced value measured from the airtight chamber 

 

3.2.3 PPC evaluation results  

The PPC evaluation results for decay and constant injection scenarios are shown in Fig. 8 and 

Fig. 9 as follows. It suggests that the generated data closely align with the observed data, which 

further validates the accuracy of the inferred parameters. The Bayesian p-value for the decay 

and constant injection scenarios fall in the range of 0.37 - 0.40 and 0.63 - 0.66, respectively, 

all close to 0.50, which suggests a reasonable fit for the model.   

 
Fig. 8 Posterior predictive simulations for decay scenarios (HDI =Highest Density Interval, indicating 

the probability that true value drops in this interval) ((a) Ventilation 1, (b) Ventilation 2, (c) Ventilation 

3) 



 

 

 
 

Fig. 9 Posterior predictive simulations for constant injection scenarios (HDI =Highest Density 

Interval, indicating the probability that true value drops in this interval; scenario details see Table 4) 

 
3.2.4 Noise level estimations in CO2 trend predictions 

In this section, the posterior means from the constant injection scenarios (Table 5) are taken as 

inputs for the ODE and SDE CO2 mass-balance models (Eq. 1 and Eq. 2), respectively. One 

hundred simulations were conducted for the SDE model. The CO2 trend predictions and noise 

level estimations are illustrated in Fig. 10. The SDE model could capture the variability in the 

observational data and make reasonable estimations for the CO2 trend. Compared with the 

traditional ODE model, SDE predictions could consider real-life noise estimations and make 

unbiased predictions. The posterior distributions estimated for 𝜎, which is the incremental 

variance in the Wiener process to scale the magnitude of the random fluctuation, were shown 

in Table 5. Correspondingly, the noise level estimations are shown in Fig. 10 (b) (d) (f) (h).  

For the scenarios with a CO2 release rate of 0.013 L/s, the disturbances in the system illustrated 

similar magnitudes with 𝜎  estimations at 72.7 ±  5.8 (fan off) and 75.4 ± 7.1(fan on), 

respectively. No significant differences were observed, and the predicted noise levels both fall 

in the range of -100 ppm to 100 ppm. In scenarios where the CO2 release rate was 0.026 L/s, 



 

 

the disturbances were significantly reduced when the fan was on. For the fan-off condition, the 

𝜎 was estimated to be 157.3 ± 16.9, whereas this estimation dropped to 48.6 ± 3.6 when the 

fan was turned on. The fan’s operation appeared to reduce the variability in the observed data 

and this effect was not obvious when the CO2 release rate was low. It should be noted that 

throughout the experiments, the fan was controlled remotely, ensuring its operation was the 

only altered condition. All other experimental conditions were kept constant during these tests. 

According to the manufacturers, the sensor measurement errors are ± 40 ppm, which is captured 

by the scenarios listed in Table 5.  

Table 5 Posterior distributions estimated for the incremental variance 

Test number 

(for constant 

injection) 
Experimental conditions 

𝜎 (ppm/√ℎ) Relative ratio to 

steady-state CO2 level 

in ppm (mean 

estimations from one 

hundred SDE 

simulations) 

mean sd 

Test 4 

Ventilation 1, 

CO2 release =0.013 L/s  

(0.8 L/min), fan off 

72.7 5.8 ± 1 % 

Test 5 

Ventilation 1, 

CO2 release =0.013 L/s  

(0.8 L/min), fan on 

75.4 7.1 

 

± 2.2 % 

Test 6 

Ventilation 1, 

CO2 release =0.026 L/s  

(1.6 L/min), fan off 

157.3 16.9 

 

± 1.1 % 

Test 7 

Ventilation 1, 

CO2 release =0.026 L/s (1.6 

L/min), fan on 

48.6 3.6 

 

± 0.9 % 



 

 

 
Fig. 10 ODE- and SDE-based CO2 trend predictions and noise level estimations  

 

3.3 Case Study 

Indoor whole-year field measurements of CO2 levels from two Montreal primary schools (from 

2020 to 2021) were used to employ the proposed approach in real-life settings. The selected 

classrooms have a floor area of 9.4 m × 6.6 m (Classroom 1) and 8.8 m × 7.1 m (Classroom 2), 

respectively, and both are naturally ventilated. The HOBO Bluetooth Low Energy Carbon 

Dioxide- Temp / RH Data Logger was installed in classrooms at 1.7 meters height on the west 

internal wall right above the thermostat (1.5 m height). The detailed information on the data 

logger is listed in Table 6.  



 

 

Table 6 Detailed information for the HOBO Data Logger 

Reading Type Measurement range Accuracy Resolution 

CO2 
0 – 5000 ppm 

 
± 50 ppm – 

Relative Humidity  1% – 90% RH ± 2 % RH 0.01 % 

Temperature -20 – 70 oC ± 0.21 oC  
 0.024 °C at 

25°C 
 

Table 7 Measurements information in the classroom 

Classroom Location Age 
Dimensions 

(m) 

Ventilation 

Type 
Measurement Periods 

Classroom 1  Montreal 5-8 9.4 × 6.6 ×3.47 
Natural 

ventilation 
2020/06/22 - 2021/06/21 

Classroom 2 Montreal 5-8 8.8 × 7.1 × 3.2 
Natural 

ventilation  
2020/08/26 - 2021/08/25 

 

Table 7 illustrates the measurement information for the two primary classrooms. One week of 

weekday data (from Monday to Friday, represented as Day 1 to Day 5 in later discussions) was 

selected from Autumn, Winter, and Spring for each of the classrooms (Fig. 11). Since the 

classrooms remained unoccupied for most of the summer vacation, this period was not included 

in our analysis. For each day, the data was selected from the first class start to the first CO2 

peak to do the evaluation. It is based on the assumption that the ventilation conditions remain 

the same for the whole day, and the number of students who attend the first class will be 

considered as the maximum attendance on that day. The ventilation rate and CO2 emission rates 

were estimated using the developed approach, and occupancy was also calculated under the 

assumption that the average CO2 generation rate per person was 0.0047 L/s [7].  

Based on the estimated ventilation rates and occupancy levels, the equivalent clean airflow 

delivery rates per person were carried out (ECAi) and compared with the minimum values 

recommended by ASHRAE Standard 241 [34]. The ECAi sums the clean air supply rates 

contributed by indoor mitigation measures, including outdoor air ventilation, HVAC filtration, 

and air-cleaning devices such as portable air cleaners (PAC) or germicidal ultraviolet (GUV) 

[35-37]. This will assess the capability of the classroom to mitigate long-range aerosol 

exposures. In addition, it will help clarify the efforts required to achieve the infection risk 

management target established by ASHRAE 241 and figure out proper mitigation measures. 

The Equivalent Clean Air Calculator will be used for the assessment [34]. A steady-state CO2 

threshold that achieves minimum ECAi requirements was carried out for the evaluation periods 



 

 

and summarized with mean and pooled standard deviation for each classroom. Thresholds were 

established for scenarios involving pure ventilation, combined mitigation strategies, and 

various occupancy levels based on the summary of 2,000 runs of SDE model simulations for 

each scenario. 

 

 
Fig. 11 One-week CO2 measurements selected from Autumn, Winter, and Spring for two classrooms  

 

3.3.1 Estimated parameters and ECAi 

The proposed approach was subsequently employed to evaluate the ventilation conditions of 

two classrooms from two Montreal primary schools. As illustrated in Table 8, it could be found 

that the ventilation rates for Classroom 1 and Classroom 2 were inferred to be in the range of 

0.11 – 1.38 ACH and 0.11 – 3.66 ACH, respectively. In evaluated days, the largest ventilation 

rate appears in Spring for both classrooms, which turns out to be Day 3, Spring (2021-04-14) 

for Classroom 1 and Day 2, Spring (2021-04-13) for Classroom 2. The occupancy turns out to 

be ranging from 9 - 20 for Classroom 1 and 14 - 20 for Classroom 2, with one exceptional day 



 

 

of only 3 students attending the class. The ECAi provided for each day was evaluated, ranging 

from 0.6 to 24.7 L/s/person. In the evaluated days, the ECAi provided in most of the days was 

significantly lower than the value recommended by ASHRAE 241 (20 L/s/person for 

Classroom) [34]. This suggests that, throughout the evaluation period, the clean air introduced 

into the two classrooms had limited capabilities in removing aerosols and failed to meet the 

ECAi requirements. 

Table 8 Evaluation results for the two classrooms in Autumn, Winter, and Spring   

Classroom1, Autumn Day1 Day2 Day3 Day4 Day5 

Ventilation rate (ACH) 0.35 0.63 0.24 0.34 0.25 

Total CO2 emission rate (L/s) 0.044 0.079 0.09 0.083 0.088 

Estimated occupancy 9 17 19 18 19 

ECAi provided (L/s/person) 2.3 2.2 0.8 1.1 0.8 

Classroom1, Winter Day1 Day2 Day3 Day4 Day5 

Ventilation rate (ACH) 0.58 1.24 0.96 0.81 0.2 

Total CO2 emission rate (L/s) 0.044 0.069 0.078 0.081 0.091 

Estimated occupancy 9 15 17 17 19 

ECAi provided (L/s person) 3.9 5.0 3.4 2.9 0.6 

Classroom1, Spring Day1 Day2 Day3 Day4 Day5 

Ventilation rate (ACH) 0.11 0.44 1.38 0.48 0.14 

Total CO2 emission rate (L/s) 0.046 0.087 0.079 0.083 0.092 

Estimated occupancy 10 19 17 18 20 

ECAi provided (L/s/person) 0.7 1.4 4.9 1.6 0.4 

Classroom2, Autumn Day1 Day2 Day3 Day4 Day5 

Ventilation rate (ACH) 0.21 0.26 0.3 0.24 0.11 

Total CO2 emission rate (L/s) 0.084 0.089 0.085 0.083 0.092 

Estimated occupancy 18 19 18 18 20 

ECAi provided (L/s/person) 0.6 3.2 0.9 0.7 0.3 

Classroom2, Winter Day1 Day2 Day3 Day4 Day5 

Ventilation rate (ACH) 1.18 0.6 0.51 0.79 0.2 

Total CO2 emission rate (L/s) 0.071 0.083 0.085 0.071 0.09 

Estimated occupancy 15 18 18 15 19 

ECAi provided (L/s/person) 4.4 4.5 1.6 2.9 0.6 

Classroom2, Spring Day1 Day2 Day3 Day4 Day5 

Ventilation rate (ACH) 1.33 3.66 0.81 0.88 1.74 

Total CO2 emission rate (L/s) 0.015 0.068 0.086 0.081 0.069 

Estimated occupancy 3 14 18 17 15 

ECAi provided (L/s/person) 24.7 17.9 2.5 2.9 6.5 
Note. The average CO2 generation rate per person was assumed to be 0.0047 L/s for Classrooms (5-8 years) [7].  

 

3.3.2 Steady-state CO2 threshold achieving minimum ECAi requirements  

To satisfy the minimum ECAi requirements, the steady-state CO2 threshold was determined 

with the stochastic CO2 grey-box model, employing outdoor ventilation as the only air-cleaning 

strategy. The minimum ECAi requirement of 20 L/s/person was used to determine the 

ventilation rate ‘Q’ in the model, alongside other parameters estimated from the previous 

evaluation phase. Two thousand CO2 steady-state concentration simulations were conducted 



 

 

for each day evaluated in Table 8, and the summarized CO2 steady-state concentration was 

shown in Fig. 12 for each of the classrooms (Classroom 1: 688.2 ± 132.4 ppm, Classroom 2: 

690.3 ±  158.2 ppm). Daily evaluation results are shown in Appendix 1. The cumulative 

distribution of school-hour CO2 measurements in Autumn, Winter, and Spring for Classroom 

1 and Classroom 2 were also demonstrated in Fig. 12. In Classroom 1, only 25% of 

measurements fall into the established steady-state CO2 threshold that achieves minimum 

ECAi requirements, while this number for Classroom 2 was 35%. This shows that during at 

least two-thirds of school hours, the minimum ECAi requirements are not met throughout the 

academic year. Natural ventilation alone is insufficient to ensure safe and healthy learning 

environments. Therefore, an increased supply of clean air in classrooms is necessary. 

 
 

 
Fig. 12 Whole year CO2 measurements in two classrooms; a) Cumulative distribution of school-hour 

CO2 measurements in Autumn, Winter, and Spring for Classroom1; b) Cumulative distribution of 

school-hour CO2 measurements in Autumn, Winter, and Spring for Classroom2 

 

3.3.3 Retrofits to achieve the minimum ECAi required by ASHRAE 241 

The impact of different exposure mitigation measures, with clean air delivery rates (CADR) 

ranging from 200 to 1000 cubic feet per minute (cfm), on ECAi was investigated, and the 

results are presented in Table 9. Various combinations of in-room UV devices and air cleaners 

(fan filter type) were evaluated to achieve varying levels of CADR. The findings suggest that 

a supplement of air-cleaning devices with a CADR of 800 cfm or more ensures that ECAi 

requirements are consistently achieved in both classrooms. 

 

 



 

 

Table 9 ECAi under different mitigation measures  

Classroom1, Autumn Day1 Day2 Day3 Day4 Day5 

In-room UV (200 CADR) 12.8 7.8 5.7 6.4 5.8 

In-room air cleaner (400 CADR) 23.3 13.3 10.7 11.6 10.7 

In-room UV + In-room air cleaner (600 CADR) 33.8 18.9 15.7 16.9 15.7 

2 × In-room air cleaner (800 CADR) 44.3 24.4 20.6 22.1 20.7 

In-room UV + 2 × In-room air cleaner (1000 

CADR) 
54.8 30.0 25.6 27.4 25.6 

Classroom1, Winter Day1 Day2 Day3 Day4 Day5 

In-room UV (200 CADR) 14.4  11.2  8.9  8.4  5.6  

In-room air cleaner (400 CADR) 24.8  17.5  14.5  14.0  10.6  

In-room UV + In-room air cleaner (600 CADR) 35.3  23.8  20.0  19.5  15.5  

2 × In-room air cleaner (800 CADR) 45.8  30.1  25.6  25.1  20.5  

In-room UV + 2 × In-room air cleaner (1000 

CADR) 
56.3  36.4  31.2  30.6  25.5  

Classroom1, Spring Day1 Day2 Day3 Day4 Day5 

In-room UV (200 CADR) 10.1  6.4  10.4  6.8  5.1  

In-room air cleaner (400 CADR) 19.5  11.3  16.0  12.1  9.9  

In-room UV + In-room air cleaner (600 CADR) 29.0  16.3  21.5  17.3  14.6  

2 × In-room air cleaner (800 CADR) 38.4  21.3  27.1  22.6  19.3  

In-room UV + 2 × In-room air cleaner (1000 

CADR) 
47.9  26.2  32.6  27.8  24.0  

Classroom2, Autumn Day1 Day2 Day3 Day4 Day5 

In-room UV (200 CADR) 5.9  8.2  6.2  6.0  5.0  

In-room air cleaner (400 CADR) 11.1  13.2  11.4  11.2  9.7  

In-room UV + In-room air cleaner (600 CADR) 16.4  18.2  16.7  16.5  14.5  

2 × In-room air cleaner (800 CADR) 21.6  23.1  21.9  21.7  19.2  

In-room UV + 2 × In-room air cleaner (1000 

CADR) 
26.9  28.1  27.2  27.0  23.9  

Classroom2, Winter Day1 Day2 Day3 Day4 Day5 

In-room UV (200 CADR) 10.7  9.7  6.8  9.2  5.6  

In-room air cleaner (400 CADR) 17.0  15.0  12.1  15.5  10.5  

In-room UV + In-room air cleaner (600 CADR) 23.3  20.2  17.3  21.8  15.5  

2 × In-room air cleaner (800 CADR) 29.6  25.5  22.6  28.1  20.5  

In-room UV + 2 × In-room air cleaner (1000 

CADR) 
35.8  30.7  27.8  34.4  25.4  

Classroom2, Spring Day1 Day2 Day3 Day4 Day5 

In-room UV (200 CADR) 56.2  24.7  7.7  8.4  12.8  

In-room air cleaner (400 CADR) 87.6  31.4  13.0  14.0  19.0  

In-room UV + In-room air cleaner (600 CADR) 119.1  38.2  18.2  19.5  25.3  

2 × In-room air cleaner (800 CADR) 150.6  44.9  23.5  25.1  31.6  

In-room UV + 2 × In-room air cleaner (1000 

CADR) 
182.0  51.6  28.7  30.6  37.9  

Note: The conditions that satisfy the EACi requirements in ASHRAE 241 (20 L/s/person) are in bold 
 
3.3.4 Manage long-range indoor aerosol exposures using CO2 as a proxy 

For the purpose of creating a clean and healthy indoor environment, the CO2 thresholds were 

established for indoor ventilation designs and operations in the classrooms. The steady-state 

CO2 levels were carried out using the stochastic CO2-based grey-box model. Three aerosol 

exposure management levels were established from two thousand predictive outcomes of the 

model: Climit (Mean + SD) as the maximum threshold indicating poor ventilation beyond this 



 

 

limit, Ctarget (Mean) as the expected CO2 concentration limit, under which conditions are 

deemed acceptable and generally comply with ECAi, and Cideal (Mean – SD) as the optimal 

threshold, recommended when infection risk of respiratory diseases in the classroom is a 

significant concern. These thresholds could help manage long-range indoor aerosol exposures 

by using CO2 as a proxy while taking real-life uncertainties into consideration. 

The design Ctarget levels were evaluated for classrooms under varying occupancy and CADR 

conditions (Fig. 13). When no additional CADR is supplied, a ventilation rate of 20 L/s per 

person is required, resulting in an average Ctarget level of 683 ppm and 686 ppm for the 

classrooms respectively. Thus, it is suggested to set Ctarget below 690 ppm when managing 

indoor aerosol exposures is a priority. In scenarios where air-cleaning devices with sufficient 

CADR are adopted (800 cfm), the Ctarget stabilizes around 1000 ppm. Conversely, when limited 

CADR is supplemented such as 200 cfm, the Ctarget level initially rises with increased 

occupancy but subsequently falls as additional ventilation is needed to maintain the effective 

clean air level (ECAi). 

Uncertainties in real-life operations can influence the estimated maximum CO2 levels used to 

indicate whether a room meets ECAi requirements. For instance, actual attendance may vary 

from the designed occupancy levels. As a result, the CO2 thresholds (Climit, Ctarget, and Cideal) 

were carried out for different mitigation measures with CADR ranging from 200 to 1000 cfm. 

These thresholds are depicted in  Fig. 14 for Classroom 1 and Classroom 2, and generalized 

equations derived from the average of their coefficients are presented in Eq. 6 to Eq. 8. When 

the CADR is below 600 cfm, enhancing air-cleaning capacity improves ECAi, thereby 

reducing reliance on outdoor ventilation for achieving ECAi requirements. While the 

contribution from outdoor ventilation can decrease from the initial 20 L/s/person, it must still 

meet the minimum ventilation rate of 7.4 L/s/person recommended in ASHRAE 62.1 for 

classrooms [13]. Once air-cleaning devices provide sufficient ECAi, the steady-state CO2 

thresholds indicating ECAi satisfaction remain stable. 



 

 

 

Fig. 13 Design Ctarget level for different occupancy in two classrooms; a) Classroom 1; b) Classroom 2 

 
 

 
Fig. 14 Steady-state CO2 thresholds that achieve minimum ECAi requirements with the employment 

of air-cleaning devices under different CADR; a) Classroom 1; b) Classroom 2 

 
 

Climit  = {
0.8 × CADR + 829.1     (CADR ≤ 600)

 1309.1                                (CADR > 600)
 

6 ) 

 

Ctarget  = {
 0.7 × CADR + 684 .6   (CADR ≤ 600) 
1104.6                                (CADR > 600)

 
7 ) 

 

Cideal  = {
 0.5 × CADR + 540.1  (CADR ≤ 600) 
 840.1                                (CADR > 600)

 
  8 ) 

 

 

When the CADR level of air-cleaning devices introduced into classrooms is set, the Climit, Ctarget, 

and Cideal can be respectively calculated for classrooms with similar designs as the two Montreal 

primary classrooms investigated in this study. The ‘similar designs’ refer to aspects such as 

dimensions, occupancy, attendance, ventilation mode, etc. For other public indoor facilities 

with distinctive ventilation designs, measuring CO2 concentrations during occupied hours is 

advised to obtain the data for inference. Subsequently, case-specific CO2 thresholds can be 

determined using the methodology established in this study.  



 

 

It should also be noted that the CO2 thresholds established here aim at indicating whether the 

IAQ in classrooms complies with ASHRAE standard 241 [34] and ASHRAE standard 62.1 

[13]. ASHRAE standard 241 outlines the clean-air requirements within an Infection Risk 

Management Mode (IRMM) during an outbreak, requiring higher cleaning air delivery levels 

when compared with ASHRAE standard 62.1. In scenarios where air-cleaning devices are 

absent or limited, a considerable volume of outdoor ventilation is recommended to maintain 

air quality (e.g., when the CADR is 0, a ventilation rate of 20 L/s/person is advised). As the 

CADR available to the room increases, the requirement for outdoor ventilation decreases 

accordingly. Nonetheless, it needs to be realized that even when air-cleaning devices supply 

sufficient ECAi, the outdoor ventilation rates must still adhere to the minimum requirements 

outlined in ASHRAE standard 62.1 to ensure adequate air quality (for instance, when CADR 

is equal to or greater than 600 cfm, a minimum ventilation rate of 7.4 L/s/person is still 

mandated). When the community infection risk of respiratory diseases is low, it is also 

appropriate to utilize the thresholds designed for scenarios with sufficient CADR, such as 

during the plateau periods when the CADR exceeds 600. These thresholds align with the 

ventilation requirements specified by ASHRAE Standard 62.1 only.   

 

4. Conclusions 

In this study, we provide an innovative approach to quantify uncertainties in indoor ventilation 

condition evaluations of Canadian primary schools. The approach proposed by this study can 

help interpret CO2 recordings in real classroom settings and predict steady-state CO2 levels 

considering uncertainties. Here are the main contributions of this study:   

 By employing Bayesian inference on a CO2-based grey-box SDE model, the ventilation 

rate and CO2 emission rate can be accurately predicted. Uncertainties come from 

measurements, the randomness of air movements, and modeled or unmodelled parameters, 

which can be quantified using the incremental variance 𝜎.  

 The robustness and reliability of the model were validated with CO2 tracer gas experiments 

in an airtight chamber. Prior sensitivity analysis was conducted to verify the rationality of 

assumed prior assumptions. Parameters inferred from the model were compared with 

chamber measurements to confirm its estimation accuracy. The PPC evaluations were 

conducted to see whether the estimated parameters for the model could work well to 

represent the observations. The results suggested that the model is robust to its prior 

assumptions and can estimate the interested parameters with reliable accuracy. 



 

 

 Applications were conducted to interpret the real-life CO2 measurements in two 

classrooms in Montreal. Using the estimated ventilation and occupancy, the provided 

ECAi and the steady-state CO2 threshold for achieving minimum ECAi requirements were 

calculated, suggesting natural ventilation is insufficient to achieve ECAi standards 

established by ASHRAE 241 for all three seasons.  

 Adopting a CADR of 800 cfm can help the classrooms to effectively manage aerosol 

exposures. In addition, steady-state CO2 thresholds (Climit, Ctarget, and Cideal) to indicate the 

ECAi satisfactory status were carried out for different mitigations using the stochastic CO2 

grey-box model and inferred parameters.  

 To achieve the minimum ECAi level required by ASHRAE 241, the target CO2 level is 

suggested to be below 690 ppm for similar classrooms without additional clean-air 

treatment. When sufficient clean air is supplemented, the design Ctarget is appropriately set 

at 1000 ppm. Empirical equations were also established for classrooms that share the 

ventilation design featured in this study. In real-life operations and management, it is 

recommended to reference Fig. 14 to consider uncertainties. 

Limitations do exist in this study for only two classrooms were investigated, and occupancy 

information was not available for further verifications of the model. For people who are 

interested in understanding the ECAi-compliant steady-state CO2 thresholds for a specific 

indoor environment, it is advisable to conduct consistent field CO2 measurements in occupied 

hours for the intended scenario and apply the approach developed in this study. 
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Appendix1 The daily steady-state CO2 threshold for achieving minimum ECAi requirements  

 

 
Fig.A 1 The selected daily steady-state CO2 threshold evaluated for Classroom 1 to achieve minimum 

ECAi requirements 

 

 
Fig.A 2 The selected daily steady-state CO2 threshold evaluated for Classroom 2 to achieve minimum 

ECAi requirements
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