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Abstract

Interactive Segmentation (IS) segments specific objects
or parts in the image according to user input. Current IS
pipelines fall into two categories: single-granularity out-
put and multi-granularity output. The latter aims to allevi-
ate the spatial ambiguity present in the former. However,
the multi-granularity output pipeline suffers from limited
interaction flexibility and produces redundant results. In
this work, we introduce Granularity-Controllable Interac-
tive Segmentation (GraCo), a novel approach that allows
precise control of prediction granularity by introducing ad-
ditional parameters to input. This enhances the customiza-
tion of the interactive system and eliminates redundancy
while resolving ambiguity. Nevertheless, the exorbitant cost
of annotating multi-granularity masks and the lack of avail-
able datasets with granularity annotations make it difficult
for models to acquire the necessary guidance to control out-
put granularity. To address this problem, we design an
any-granularity mask generator that exploits the semantic
property of the pre-trained IS model to automatically gen-
erate abundant mask-granularity pairs without requiring
additional manual annotation. Based on these pairs, we
propose a granularity-controllable learning strategy that
efficiently imparts the granularity controllability to the IS
model. Extensive experiments on intricate scenarios at ob-
ject and part levels demonstrate that our GraCo has signifi-
cant advantages over previous methods. This highlights the
potential of GraCo to be a flexible annotation tool, capable
of adapting to diverse segmentation scenarios. The project
page: https://zhao-yian.github.io/GraCo.

1. Introduction

Interactive Segmentation (IS) aims to segment specific ob-
jects or parts according to user interactions, providing a

� Corresponding author.

(a) Single-granularity IS.

(b) Multi-granularity IS.
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Figure 1. (a): Single-granularity IS ignores spatial ambiguity. (b):
Multi-granularity IS is limited in the number of outputs and pro-
duces redundant results. (c): Our Granularity-Controllable IS al-
lows precise control of output granularity to match user expecta-
tions by attaching additional parameters to the input.

pixel-level interactive AI system that follows human in-
tent. Recently, remarkable progress has been achieved in
IS, resulting in various applications such as controllable
image generation [43, 51], image editing [4, 21], and the
well-known pixel-level annotation. Extensive research has
been undertaken on various types of interactive information,
such as bounding boxes [24, 50], scribbles [1, 12, 32], and
clicks [6, 7, 20, 36, 37, 39, 47, 49]. Among them, the click-
based interaction becomes mainstream due to its simplicity
and well-established training and evaluation protocols.

The current click-based IS methods are based on deep
learning technology. Xu et al. [49] first introduces this tech-
nology to formulate IS and establishes training and evalu-
ation protocols. Specifically, clicks are typically encoded
into distance maps and then combined with the image to
send the semantic segmentation model for interactive asso-
ciation training between clicks and GT masks. The emer-
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gence of SAM [23] strengthens the advancement of IS and
proposes multi-granularity output pipelines to alleviate spa-
tial ambiguity. The ambiguity refers to the concept that,
given an interaction click, the desired segmentation region
for the user may be the concept of objects with differ-
ent parts nearby. However, this multi-granularity output
pipeline suffers from limited scalability and produces re-
dundant results, requiring the selection of the optimal mask
based on confidence or user expectations.

Intuitively, the spatial ambiguity arises from the sparse
clicks information supplied by the user, which fails to
impose sufficient constraints for the model to establish
a distinctive dense mask. To address this, we aim
to achieve Granularity-Controllable Interactive Segmenta-
tion (GraCo), which introduces a granularity control pa-
rameter to the input to explicitly constrain the model. For
instance, the granularity can be controlled by a value rang-
ing from 0 to 1, where a lower value corresponds to a finer
granularity and vice versa, as shown in Figure 1. This
approach allows precise control of prediction granularity,
thereby enhancing the customization of pixel-level AI sys-
tems for human-machine interaction and eliminating redun-
dancy while resolving ambiguity. However, the exorbitant
cost of annotating multi-granularity masks and the lack of
available datasets with granularity annotations correspond-
ing to the masks make it difficult for models to acquire the
necessary guidance to control output granularity.

To acquire the any-granularity masks and granularity an-
notations at a low cost, we design an Any-Granularity mask
Generator (AGG) that is fully automated and does not re-
quire any additional manual annotation. Specifically, AGG
consists of two key components: a mask engine and a gran-
ularity estimator. For the mask engine, we observe that
object-level pre-trained IS models (e.g., SimpleClick [39])
demonstrate the semantic property in delineating local con-
cepts and object parts via appropriate interaction signals,
which has the potential to generate proposals of any gran-
ularity, shape and intricacy. Based on this observation,
we propose the multi-granularity loop simulation to auto-
matically simulate the human-in-the-loop mechanism and
generate diverse interaction signals to drive the mask en-
gine. To estimate the granularity of the masks, we design
the granularity estimator and establish computational rules
from both the scale and semantic perspectives to ensure that
the model behaviour is consistent with human cognition.
Based on the mask-granularity pairs generated by AGG, we
develop a simple yet efficient granularity-controllable learn-
ing (GCL) strategy, which incorporates the granularity em-
bedding into the input and employ LoRA [19] technology.
This enables the IS model to efficiently possesses granular-
ity controllability while maintaining the original IS perfor-
mance without requiring extensive computational cost.

To evaluate the performance of the IS models in multi-

granularity scenarios, we follow standard protocols [49] and
conduct experiments on both object and part level bench-
marks. For the object-level, we perform evaluation on four
commonly used datasets including GrabCut [44], Berke-
ley [41], SBD [15], and DAVIS [42]. For the part-level,
we employ the part segmentation datasets PascalPart [5]
and PartImageNet [16]. Thanks to the abundant mask-
granularity pairs generated by AGG and the GCL strategy,
the pre-trained IS model efficiently grasps the granularity
controllability, achieving inspiring performance across all
benchmarks on both levels. Specifically, our GraCo sur-
passes the state-of-the-art single-granularity IS methods on
all benchmarks, especially on part-level benchmarks. Fur-
thermore, GraCo outperforms the multi-granularity IS ap-
proach SAM [23] on all benchmarks and achieves compa-
rable performance on SA-1B [23].

The main contributions can be summarized as: (i).
We propose granularity-controllable interactive segmenta-
tion, which allows precise control of prediction granularity,
thereby enhancing the flexibility of IS models and elimi-
nating redundancy while resolving ambiguity; (ii). We ex-
plicitly exploit the semantic property of the pre-trained IS
models and design a fully automated any-granularity mask
generator to generate abundant mask-granularity pairs; (iii).
We propose granularity-controllable learning strategy that
enables the IS model to achieve inspiring performance on
all benchmarks at both object and part levels.

2. Related Work
Single-granularity Interactive Segmentation. Interac-
tive Segmentation (IS) is a thriving field due to its adapt-
ability and broad applications. Early studies for IS typi-
cally utilize the low-level features and build optimization-
based methods, including graph cut with max-flow algo-
rithm [3], random walk [12], geodesic distance [2], and
star-convexity [13]. These methods usually suffer from
unsatisfactory performance when processing complex sur-
roundings. DIOS [49] first introduces deep learning for IS,
which proposes a click sampling strategy and establishes
training and evaluation protocols. Based on this frame-
work, researchers propose a range of optimization schemes
from the perspectives of global segmentation and local re-
finement. FCA-Net [36] highlights the significance of first
click. RITM [48] propose an iterative sampling strategy in
training. BRS [20, 47] introduces online optimization to
correct mislabeled pixels. CDNet [6] designs a conditional
diffusion module to optimize segmentation. FocusCut [37]
and FocalClick [7] focus on local refinement to improve
the mask quality. GPCIS [52] formulates IS as a Gaus-
sian process classification to fully propagate click informa-
tion. SimpleClick [39] and iCMFormer [28] achieve su-
perior performance using a Transformer-based architecture
that has made brilliant achievements in the field of computer
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Figure 2. Illustration of our granularity-controllable interactive segmentation. Our GraCo consists of two stages. For the first stage,
the Any-Granularity mask Generator (AGG) is designed to automatically generate any-granularity proposals (mask engine) and granularity
annotations (granularity estimator) based on the object GT, without requiring additional manual annotation. For the second stage, the
mask-granularity pairs generated by AGG are utilized to perform Granularity-Controllable Learning (GCL) on the object-level pre-trained
IS model, enabling the model to efficiently possesses granularity controllability.

vision [27, 29, 40]. These methods are all single-granularity
output pipelines, ignoring spatial ambiguity.

Multi-granularity Interactive Segmentation. A few ef-
forts have been made to tackle the ambiguity in IS. LD [34]
proposes to overcome this challenge by using two convolu-
tional networks to select from coarse to precise. Recently,
the emergence of SAM [23] boosts the progress of IS. SAM
provides a unified interface to support multiple types of in-
teractions and utilizes the diversity training to attain multi-
granularity masks. Semantic SAM [25] extends the multi-
granularity output, but is limited to generating pre-defined
segments and only supports a positive click. These models
learn multiple possibilities [14] of sparse prompts to dense
masks mapping from large-scale multi-granularity annota-
tions [5, 16, 23, 35, 46], which requires expensive data
and training costs. Although the multi-granularity output
pipeline alleviates ambiguity, it results in excessive output
redundancy and limited scalability. Unlike previous works,
our GraCo resolves ambiguity without redundancy and al-
lows flexible control of prediction granularity without addi-
tional manual annotation and extensive training.

Instance and Part Segmentation. Instance segmentation
is a fundamental task in computer vision that aims to ac-
curately detect and segment each instance. Instance seg-
mentation has achieved remarkable results after decades of
development, and representative works include [8, 17, 26].
Part segmentation is a sub-task of image segmentation that
aims to segment instances into more fine-grained parts. By
identifying the internal structure of objects, part segmenta-
tion provides a more comprehensive visual understanding,
with typical works including [9, 31]. Although instance
and part segmentation are oriented towards different gran-
ularities, both only support segmentation at a fixed granu-
larity and cannot perform human-machine interaction. Our
GraCo supports not only the segmentation of specific parts,

but also the flexible manipulation of the granularity level.

3. The Proposed GraCo
3.1. Overall Approach

In this section, we elaborate how to construct the proposed
GraCo. The process of implementing GraCo consists of two
stages, cf. Figure 2. In the first stage, we design an Any-
Granularity mask Generator (AGG), which includes the
mask engine and the granularity estimator (cf. Section 3.2).
The mask engine employs the multi-granularity loop sim-
ulation to automatically generate abundant part proposals,
and the granularity estimator is responsible for quantify-
ing the granularity of each proposal. In the second stage,
the mask-granularity pairs generated by the previous stage
are utilized to perform Granularity-Controllable Learn-
ing (GCL) on the object-level pre-trained IS model (cf. Sec-
tion 3.3). The details are described as follows.

3.2. Any-Granularity Mask Generator

Mask Engine. The core of AGG is the automatic gener-
ation of abundant mask-granularity pairs. To achieve this
goal, we exploit the semantic property of the pre-trained
IS model to segment local concepts and object parts by
simulating appropriate interaction clicks. Specifically, we
first utilize the instance GT as the mask prompt, and ran-
domly select a positive point within the mask to input into
the model, marking the object to be parsed. To drive the
mask engine, we design a multi-granularity loop simulation
to generate diverse interaction clicks. At each loop iteration,
the click simulator takes a negative click from the current
mask and appends it to the click set (cf. Figure 3). The cur-
rent mask is then updated with the model prediction. For-
mulaically, given an image I ∈ Rh×w×3 and a click set C,
the positive and negative clicks in set C are transformed into
the disk map D ∈ Rh×w×2. The object GT is denoted as
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Figure 3. Illustration of the multi-granularity loop simulation and visualization of the mask proposals generated by AGG.

G ∈ {0, 1}h×w, the IS model F(·) outputs the probabil-
ity for each pixel being foreground. The mask generation
process is as follows:

Y0 = F(Fusion(I,D0,G)), Y0 ∈ [0, 1]h×w, (1)

Yt = F(Fusion(I,Dt,Yt−1)), t = 1, 2, . . . , N, (2)

where Yt represents the output mask in the t-th simulation,
N is the number of iterations, and Fusion(·) is a fusion op-
eration (e.g., addition) of all types of features. In each itera-
tion, we check that the new click is not too close to existing
clicks in C, to avoid confusion. After the loop simulation,
the mask engine generates abundant part proposals with di-
verse granularity. Furthermore, considering that an entire
object consists of multiple parts, we regard the complement
within the object of each proposal also as effective parts
to increase the diversity of proposals and improve the ef-
ficiency of the mask engine. All proposals are saved after
post-processing, which involves morphological processing
to eliminate mask holes and connected component filtering
to select the connected part.
Granularity Quantification. The granularity refers to the
level of detail in the segmentation of objects. Fine-grained
masks furnish rich internal details and part boundaries,
while coarse-grained masks provide more general object
representations. To endow the IS model with rational gran-
ularity controllability, it is necessary to quantify the gran-
ularity consistent with human cognition for each proposal.
Specifically, we consider the granularity quantification from
both semantic and scale perspectives. Semantic granular-
ity is estimated based on the image content covered by the
mask, while scale granularity is based on the ratio of the
mask in the area to the entire object. The rationality can be
explained as follows. The head of the cat is larger in scale
than the crane, as the head accounts for a larger proportion
of the cat, but semantically, the two have similar granular-
ity. On the contrary, the feline body can be divided into
different granularities, such as individual limbs or specific
left and right limbs. Although these two manners possess
semantic equivalence, they differ in scale granularity.
Granularity Estimator. The granularity estimator is re-
sponsible for quantifying the granularity of each proposal

P i
j ∈ {0, 1}h×w, where P i

j represents the i-th part of ob-
ject j. We calculate the scale and semantic granularity for
each proposal respectively. The former is directly calcu-
lated by dividing the area of the part proposal P i

j by the
corresponding instance mask Gj , and the latter is calculated
based on the probability map predicted by the pre-trained IS
model. Specifically, IS model predicts the probability that
each pixel belongs to the foreground, and then uses a pre-
set threshold to obtain the binarized mask. As the thresh-
old increases, the mask shrinks to parts of different scales.
Therefore, we calculate the semantic granularity by the ratio
of peak difference (max(Mp)−min(Mp))/(max(Mg)−
min(Mg)), where M is the probability map obtained from
the pre-trained IS model with a positive click at the cen-
ter of the mask, Mp and Mg is the probabilities within
the proposal P i

j and the corresponding instance mask Gj .
Formally, the probability map is calculated by Eq. (3), and
the calculation rules for scale and semantic granularity are
shown in Eq. (4) and Eq. (5).

M i
j = F(Fusion(I,Di

j ,Gj)), M
i
j ∈ Rh×w, (3)

Gi,j
scale = Area(P i

j ) / Area(Gj), (4)

Gi,j
semantic = ψ(M i

j ,P
i
j ) / ψ(M

i
j ,Gj), (5)

where Area(·) represents the mask area, ψ(·, ·) represents
the peak difference. Finally, the granularity of the proposal
P i

j is calculated as a linear combination as:

Gi,j = (1− λ) · Gi,j
scale + λ · Gi,j

semantic, (6)

where λ represents the weight coefficient, which is set to
0.5 in the experiments.

3.3. Granularity-Controllable Learning

Granularity Embedding. We transform the granularity
into the learnable embedding as an additional prompt to the
IS model. According to Equation (4) and Equation (5),
it is apparent that the granularity fall within the range of
[0,1]. Therefore, we discretize the interval from 0 to 1 into
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Method Backbone GrabCut Berkeley SBD DAVIS PascalPart PartImageNet
NoC@85 NoC@90 NoC@85 NoC@90 NoC@85 NoC@90 NoC@85 NoC@90 NoC@85 NoC@85

Single-granularity Interactive Segmentation
DIOS [49] FCN 5.08 6.08 - - 9.22 12.80 9.03 12.58 - -
LD [34] VGG-19 3.20 4.79 - - 7.41 10.78 5.05 9.57 - -
BRS [20] DenseNet 2.60 3.60 - 5.08 6.59 9.78 5.58 8.24 - -
FocalClick [7] MiT-B0 1.66 1.90 - 3.14 4.34 6.51 5.02 7.06 - -
FocusCut [37] ResNet-101 1.46 1.64 1.81 3.01 3.40 5.31 4.85 6.22 - -
PseudoClick [38] HRNet-32 - 1.84 - 2.98 - 5.61 4.74 6.16 - -
CDNet [6] ResNet-34 1.86 2.18 1.95 3.27 5.18 7.89 5.00 6.89 14.95 11.96
RITM [48] HRNet-18 1.76 2.04 1.87 3.22 3.39 5.43 4.94 6.71 10.95 9.02
GPCIS [52] ResNet-50 1.64 1.82 1.60 2.60 3.80 5.71 4.37 5.89 10.91 8.24
SimpleClick [39] ViT-B 1.40 1.54 1.44 2.46 3.28 5.24 4.10 5.48 10.97 8.58
SimpleClick [39] ViT-L 1.38 1.46 1.40 2.33 2.69 4.46 4.12 5.39 10.23 8.14
SimpleClick¶ [39] ViT-B 3.56 4.04 4.05 5.28 5.46 7.83 7.09 8.94 7.98 6.45
SimpleClick¶ [39] ViT-L 3.86 4.48 4.43 5.66 5.59 7.92 7.62 9.46 7.28 5.81
Multi-granularity Interactive Segmentation
SAM [23] ViT-B 2.42 2.72 2.21 2.96 7.22 11.05 6.13 7.88 13.89 13.32
SAM [23] ViT-L 1.86 1.96 1.84 2.42 5.99 9.52 4.94 6.48 13.15 11.94
SAM⋆ [23] ViT-B 1.56 1.68 1.35 1.91 6.53 10.38 4.81 6.44 13.68 12.98
SAM⋆ [23] ViT-L 1.72 1.92 1.37 2.01 5.74 9.32 5.04 6.48 13.45 12.76

Granularity-Controllable Interactive Segmentation (ours)
GraCo w/ GT ViT-B 1.46 1.64 1.73 2.85 3.82 5.35 5.34 7.16 6.12 6.05
GraCo w/ AGG ViT-B 1.34 1.46 1.37 2.21 3.44 4.89 4.44 5.72 6.38 6.01
GraCo w/ GT+AGG ViT-B 1.24 1.36 1.33 2.07 3.22 4.65 4.36 5.49 6.08 5.32
GraCo w/ GT ViT-L 1.74 1.88 1.71 2.70 3.49 4.90 5.65 7.13 5.81 5.34
GraCo w/ AGG ViT-L 1.18 1.24 1.23 1.73 2.73 3.96 4.24 5.19 6.12 5.26
GraCo w/ GT+AGG ViT-L 1.18 1.20 1.17 1.61 2.69 3.96 3.87 4.83 6.00 4.92

Table 1. Comparison with previous methods on both object and part level benchmarks. Single-granularity IS models listed and our
GraCo are trained on SBD [15] dataset, and SAM is trained on SA-1B [23]. All models listed are from official source and use specific
data pre-processing pipeline. ¶ represents fine-tuning the model utilizing the part annotation. ⋆ represents selecting the best matching
result from multiple predictions. For GraCo, we select the optimal granularity for each instance from 0 to 1 with a step of 0.1 to report the
average NoC. Bold indicates the best performance and underlined the second best.

B bins and establish a table that maps the discrete granu-
larities to high-dimensional embeddings. The prompts, in-
cluding granularity, clicks and mask, are integrated with the
image embedding and jointly fed into the feature extractor.
Proposal Sampling and Training. Considering the uneven
granularity distribution of mask-granularity pairs generated
by AGG, we formulate the sampling probability of each
mask as an inversely proportional function of the ratio of
the corresponding granularity in the proposal database to
improve the training stability. For training, the IS model
utilizes the iterative sampling strategy [39, 48]. The seg-
mentation of the previous iteration step serves as the mask
prompt for the model and we feed an empty mask for the
first iteration. The iterative sampling strategy achieves a
high-level of consistency in simulating the user behaviour,
thereby improving performance. We take the Normalized
Focal Loss (NFL) following [28, 39] for training.
LoRA Technology. We utilize LoRA technology [19] to
facilitate the object-level pre-trained IS model in efficiently
comprehending granularity controllability while preserving
its primary performance. For the feature extractor with a

weight matrix W ∈ Rd×d, we maintain the W frozen
while learning a new weight matrix BA. Formulaically,
given a feature extractor E(·) and input x, the forward pro-
cess is represented as:

E(x) = Wx+BAx, (7)

where B ∈ Rd×r and A ∈ Rr×d. The rank r is typi-
cally lower than the dimension d to reduce the computa-
tional cost. For implementation, A employs Gaussian ini-
tialization while B initializes with zero, ensuring that BA
is a zero matrix at the start of fine-tuning. We apply LoRA
to the projection layers of Q and K in each attention block.

4. Experiments
4.1. Experimental Settings

Dataset. To demonstrate the performance of the IS model
in multi-granularity scenarios, we utilize object and part
level benchmarks for evaluation. For the object-level, we
conduct evaluation on four commonly used benchmarks:
GrabCut [44], Berkeley [41], SBD [15], DAVIS [42]. For
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Figure 4. Verification of the granularity controllability. We calculate IoU@k under different granularities to plot IoU-granularity curves.
The optimal granularity (marked by the red star) of the objects is about 1.0, while for the parts of the cow from PascalPart [5] it is different.

the part-level, we utilize two part segmentation datasets:
PascalPart [5] and PartImageNet [16]. Note that we train
our GraCo on SBD and remove samples from the PascalPart
validation set that belong to the SBD training set. See the
Appendix for a detailed description of these datasets.

Implementation Details. We build our GraCo based on
SimpleClick [39], which consists of two patch embedding
modules for image and click map respectively (we intro-
duce an extra granularity embedding for our GraCo), a
ViT [10] backbone initialized with MAE [18], a simple fea-
ture pyramid [33], and an MLP segmentation head. The
IS model employed in AGG is SimpleClick with ViT-Base.
The multi-granularity loop simulation iterations for each in-
stance are randomly selected from a range of 3 to 6. For
LoRA [19], the rank is set to 8 and the discretization interval
for granularity is set to 0.1. We set the maximum number of
iterative clicks to 3 follow [39]. We train the GraCo for 55
epochs using the Adam [22] optimizer with a learning rate
of 5e-5, which decays by a factor of 10 at 50 epochs. For
inference, we set the threshold for binarizing the prediction
to 0.5 and use the same data augmentation as [30].

Evaluation Protocol. We conduct the evaluation follow-
ing the standard protocol of previous click-based IS meth-
ods [6, 7, 37, 39, 48, 49]. Specifically, the first positive
click is sampled in the center of the object, while the sub-
sequent clicks are derived from the largest error region by
comparing the current mask with the GT. For the metrics,
we adopt the Number of Click (NoC) to evaluate the perfor-
mance, which counts the average number of clicks required
to achieve a fixed Intersection over Union (IoU), with lower
values indicating better performance. We set two com-
monly used target IoU thresholds (85% and 90%, denoted
as NoC@85 and NoC@90 respectively) and 20 clicks as

the upper bound for interaction, which are same with pre-
vious works [28, 39, 48]. Moreover, the IoU-granularity
curves are drawn to verify the granularity controllability of
our GraCo. We also calculate the average IoU of the first
click, and the results are shown in the Appendix 2.1.

4.2. Main Results and Analysis

Comparison with Previous Method. We compare our re-
sults with previous single and multiple granularity IS meth-
ods on four object-level benchmarks and two part-level
benchmarks. Note that we report NoC@85 and NoC@90
for the object-level benchmarks and only NoC@85 for the
part-level benchmarks. The reason is that multi-granularity
parts are more difficult to segment than objects. As a result,
it is challenging to achieve an IoU of up to 90% within 20
clicks. The experimental results are shown in Table 1. We
present the results of single-granularity models equipped
with different backbones trained on SBD [15], alongside the
results of the multi-granularity model (i.e., SAM) trained
on SA-1B [23]. We utilize the official models and retain
their specific data pre-processing pipeline for evaluation.
For our GraCo, we present the performance using the mask
proposals generated by our AGG (denoted as GraCo w/
AGG in Table 1). Based on the results, single-granularity
IS methods show satisfactory performance in object-level
benchmarks, but poor performance in handling the part-
level, and the multi-granularity method perform poorly at
both levels. In contrast, our GraCo w/ AGG achieves supe-
rior performance on all benchmarks at both levels.

In addition, we fine-tune SimpleClick [39] and our
GraCo utilizing the training set of SBD [15] with part an-
notations from PascalPart (denoted as SimpleClick¶ and
GraCo w/ GT). The results of SimpleClick¶ indicate that
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1 click, IoU=0.65 2 clicks, IoU=0.66 3 clicks, IoU=0.69 4 clicks, IoU=0.74 0.6: 1 click, IoU=0.79Ground-truth

1 click, IoU=0.06 2 clicks, IoU=0.19 3 clicks, IoU=0.33 4 clicks, IoU=0.85 0.3: 1 click, IoU=0.81Ground-truth

1 click, IoU=0.01 2 clicks, IoU=0.01 3 clicks, IoU=0.04 4 clicks, IoU=0.05 0.1: 1 click, IoU=0.68Ground-truth

Part GT GraCo (ours)SimpleClick

Figure 5. Visualization of interactive segmentation on part GT using SimpleClick [39] and our GraCo. We note the input granularity
for our GraCo, which is roughly estimated based on human cognition.

fine-tuning the model with part annotations not only weak-
ens the object-level segmentation performance, but also
achieves a marginal improvement at the part-level. How-
ever, our GraCo w/ GT using the proposed GCL strategy
achieves significant performance improvements over vanilla
SimpleClick, demonstrating the effectiveness of GCL.

Failure Analysis of SAM. SAM [23], a representative of
multi-granularity IS methods, does not achieve ideal results
in Table 1, which is below our expectations. Upon our
analysis, we find that SAM has a bias towards segmenting
small components on object-level benchmarks even when
producing multiple masks. This factor causes SAM to re-
quire more clicks to reach the IoU thresholds, resulting in
unsatisfactory NoC. Furthermore, the mask distribution of
the selected part-level benchmarks deviates from its train-
ing set, exposing its limited generalization. To substanti-
ate this claim, we evaluate the performance of SAM, Sim-
pleClick [39], and our GraCo using the first 1000 images
from the SA-1B [23] as a dedicated test subset in Table 2.
Considering that each image in SA-1B contains an average
of 100 masks, covering diverse granularities and overlap-
ping, we select five non-overlapping masks for each image
(selecting 4987 masks in total) for evaluation. We con-
clude that SimpleClick performs poorly on such a multi-
granularity benchmark, while SAM achieves excellent per-
formance because it is a subset of its training set, which is
in line with our expectations. Our GraCo achieves com-
parable NoC@90 metrics to SAM, while significantly out-
performing SimpleClick. This demonstrates the robust gen-
eralization and excellent performance of GraCo in multi-
granularity segmentation. Furthermore, we also calculate

Method Backbone SA-1B [23]
NoC@85↓ NoC@90↓ IoU@1↑

SimpleClick [39] ViT-B 5.56 7.29 0.22
SAM [23] ViT-B 2.93 5.19 0.78
SAM⋆ [23] ViT-B 2.46 4.42 0.88
GraCo w/ AGG ViT-B 3.39 4.29 0.61
SimpleClick [39] ViT-L 4.98 6.74 0.29
SAM [23] ViT-L 1.99 3.31 0.81
SAM⋆ [23] ViT-L 1.77 2.97 0.91
GraCo w/ AGG ViT-L 3.10 3.96 0.65

Table 2. Experimental results on the first 1000 images of SA-
1B [23]. ⋆, Bold and underlined are the same as Table 1.

the IoU@1 on all benchmarks. We find that SAM achieves
superior performance when producing multiple masks, pro-
viding an excellent user experience. The detailed results are
shown in the Appendix 2.1.

Gains from AGG. We utilize part annotations, mask pro-
posals generated by AGG, and the combination of both to
perform the GCL strategy, corresponding to GraCo w/ GT,
GraCo w/ AGG, and GraCo w/ GT+AGG in Table 1. Taking
advantage of the any-granularity part proposals generated
by AGG, GraCo w/ AGG performs better than GraCo w/
GT on all benchmarks except PascalPart [5]. We argue that
this is due to the limited number of manual annotations and
the existence of granularity variance, which cannot cover
arbitrary granularities, resulting in sub-optimal generaliza-
tion. In contrast, AGG automatically generates abundant
any-granularity masks, thereby facilitating the IS model in
capturing granularity controllability. Moreover, the results
of GraCo w/ GT+AGG are superior to both GraCo w/ GT
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LoRA Granularity GrabCut Berkeley SBD PascalPart
Embedding NoC@85↓ NoC@90↓ IoU@1↑ NoC@85↓ NoC@90↓ IoU@1↑ NoC@85↓ NoC@90↓ IoU@1↑ NoC@85↓ IoU@1↑

- - 3.56 4.04 0.47 4.05 5.28 0.43 5.46 7.83 0.42 7.98 0.48
✓ - 3.24 3.68 0.45 3.67 4.97 0.41 4.66 6.68 0.48 8.68 0.43
- ✓ 2.14 2.52 0.79 1.90 2.78 0.79 4.20 5.99 0.64 5.84 0.59
✓ ✓ 1.46 1.64 0.86 1.73 2.85 0.80 3.82 5.35 0.66 6.12 0.52

Table 3. Results of ablation study on GCL. We utilize SimpleClick [39] with ViT-B to train on SBD [15] with part annotations.

and GraCo w/ AGG, further demonstrating that the propos-
als generated by AGG offer a greater level of granularity
abundance than GT and serve as an effective supplement.

Granularity Controllability Analysis. To verify the
granularity controllability of our GraCo, we calculate
the IoU@k at different granularities and plot the IoU-
granularity curves (cf. Figure 4). Based on the granularity
definition, 1.0 represents object-level segmentation, and the
closer to 0, the finer the prediction granularity. For three
object-level benchmarks, IoU@k increases with increasing
granularity, especially IoU@1, which is as expected. For
the part-level scenario, we randomly select three part cat-
egories belonging to the cow category for validation. For
highly detailed parts such as the right front upper leg and
left eye, GraCo performs optimally at a granularity of 0.1.
For coarse-grained parts such as the head, the optimal gran-
ularity for GraCo is around 0.6. The part-level results fur-
ther demonstrate that our GraCo possess granularity con-
trollability consistent with human cognition.

Qualitative Results. Figure 5 shows the qualitative results
using SimpleClick [39] and our GraCo on some segmen-
tation examples. We randomly select several parts from
PascalPart [5] annotations and automatically generate the
next click according to the evaluation protocol. We find that
SimpleClick requires multiple clicks to segment the desired
mask in multi-granularity scenarios. In contrast, our GraCo
requires only a single click to match expectations well based
on roughly estimated input granularity. This demonstrates
the flexibility of our GraCo to adapt to diverse scenarios.

4.3. Ablation Study

Granularity-Controllable Learning. To demonstrate the
effectiveness of the GCL strategy, we evaluate the contribu-
tions of its two key components, i.e., granularity embedding
and low-rank adaptation. Specifically, we conduct experi-
ments including removing granularity embedding, remov-
ing LoRA (i.e., full parameter fine-tuning), and removing
both simultaneously (cf. Table 3). We conclude that in-
corporating granularity embedding effectively enhances the
performance, whereas the LoRA technology preserves the
original performance of the pre-trained model. More de-
tailed ablation studies are provided in Appendix 2.2.

Granularity Definition. To demonstrate the necessity of
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Figure 6. Frequency distribution of optimal granularity.

both semantic and scale granularity, we conduct experi-
ments in two settings: with scale granularity only, and
with both scale and semantic granularity. We plot a his-
togram and line graph to display the frequency distribution
of optimal granularity on two object-level benchmarks, i.e.,
DAVIS [42] and SBD [15], Figure 6. We conclude that the
optimal granularity tends to be skewed to 1.0 when employ-
ing both scale and semantic granularity. This aligns with the
granularity definition for the whole instance. Moreover, we
quantitatively evaluate the performance of the two settings
on part-level benchmarks in Appendix 2.2, which demon-
strates the necessity of the two types of granularity.

5. Conclusion
In this work, we propose a novel paradigm for interactive
segmentation that allows users to control the segmentation
granularity to resolve ambiguity. Our GraCo fine-tunes the
pre-trained IS model to endow it with granularity controlla-
bility without requiring additional manual annotation, pro-
viding a non-redundant, low-cost and highly flexible solu-
tion to address spatial ambiguity. Excellent experimental
results demonstrate the effectiveness and generalization of
our method, and the granularity controllability analysis con-
firms the consistency of the model with human cognition.
We hope that our exploration will open up new avenues for
resolving ambiguity in pixel-level interactive AI systems.
Acknowledgements. This work was supported in
part by the National Key R&D Program of China
(No. 2022ZD0118201), Natural Science Foundation of
China (No. 61972217, 32071459, 62176249, 62006133,
62271465), and the Shenzhen Medical Research Funds in
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Subhransu Maji, and Jitendra Malik. Semantic contours from
inverse detectors. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 991–998.
IEEE, 2011. 2, 5, 6, 8, 1

[16] Ju He, Shuo Yang, Shaokang Yang, Adam Kortylewski, Xi-
aoding Yuan, Jie-Neng Chen, Shuai Liu, Cheng Yang, Qi-
hang Yu, and Alan Yuille. Partimagenet: A large, high-
quality dataset of parts. In European Conference on Com-
puter Vision, pages 128–145. Springer, 2022. 2, 3, 6

[17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 2961–2969,
2017. 3

[18] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 16000–
16009, 2022. 6

[19] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021. 2, 5, 6

[20] Won-Dong Jang and Chang-Su Kim. Interactive image seg-
mentation via backpropagating refinement scheme. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5297–5306, 2019. 1, 2, 5

[21] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen
Chang, Tali Dekel, Inbar Mosseri, and Michal Irani. Imagic:
Text-based real image editing with diffusion models. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6007–6017, 2023. 1

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[23] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 4015–4026, 2023. 2, 3,
5, 6, 7, 1

[24] Victor Lempitsky, Pushmeet Kohli, Carsten Rother, and
Toby Sharp. Image segmentation with a bounding box prior.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 277–284. IEEE, 2009. 1

[25] Feng Li, Hao Zhang, Peize Sun, Xueyan Zou, Shilong Liu,
Jianwei Yang, Chunyuan Li, Lei Zhang, and Jianfeng Gao.
Semantic-sam: Segment and recognize anything at any gran-
ularity. arXiv preprint arXiv:2307.04767, 2023. 3

[26] Feng Li, Hao Zhang, Huaizhe Xu, Shilong Liu, Lei Zhang,
Lionel M Ni, and Heung-Yeung Shum. Mask dino: Towards

9



a unified transformer-based framework for object detection
and segmentation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
3041–3050, 2023. 3

[27] Hao Li, Jinfa Huang, Peng Jin, Guoli Song, Qi Wu, and Jie
Chen. Weakly-supervised 3d spatial reasoning for text-based
visual question answering. IEEE Transactions on Image Pro-
cessing, 2023. 3

[28] Kun Li, George Vosselman, and Michael Ying Yang. Inter-
active image segmentation with cross-modality vision trans-
formers. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 762–772, 2023. 2,
5, 6

[29] Kehan Li, Zhennan Wang, Zesen Cheng, Runyi Yu, Yian
Zhao, Guoli Song, Chang Liu, Li Yuan, and Jie Chen. Ac-
seg: Adaptive conceptualization for unsupervised semantic
segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7162–
7172, 2023. 3

[30] Kehan Li, Yian Zhao, Zhennan Wang, Zesen Cheng, Peng
Jin, Xiangyang Ji, Li Yuan, Chang Liu, and Jie Chen. Multi-
granularity interaction simulation for unsupervised interac-
tive segmentation. Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 2023. 6

[31] Xiangtai Li, Shilin Xu, Yibo Yang, Guangliang Cheng, Yun-
hai Tong, and Dacheng Tao. Panoptic-partformer: Learning
a unified model for panoptic part segmentation. In European
Conference on Computer Vision, pages 729–747. Springer,
2022. 3

[32] Yin Li, Jian Sun, Chi-Keung Tang, and Heung-Yeung Shum.
Lazy snapping. ACM Transactions on Graphics (ToG), 23
(3):303–308, 2004. 1

[33] Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He.
Exploring plain vision transformer backbones for object de-
tection. In European Conference on Computer Vision, pages
280–296. Springer, 2022. 6

[34] Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Interactive
image segmentation with latent diversity. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 577–585, 2018. 3, 5

[35] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European Conference on Computer Vision, pages 740–755.
Springer, 2014. 3

[36] Zheng Lin, Zhao Zhang, Lin-Zhuo Chen, Ming-Ming
Cheng, and Shao-Ping Lu. Interactive image segmentation
with first click attention. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 13339–13348, 2020. 1, 2

[37] Zheng Lin, Zheng-Peng Duan, Zhao Zhang, Chun-Le Guo,
and Ming-Ming Cheng. FocusCut: Diving into a focus view
in interactive segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2637–2646, 2022. 1, 2, 5, 6

[38] Qin Liu, Meng Zheng, Benjamin Planche, Srikrishna
Karanam, Terrence Chen, Marc Niethammer, and Ziyan Wu.

Pseudoclick: Interactive image segmentation with click imi-
tation. In European Conference on Computer Vision, pages
728–745. Springer, 2022. 5

[39] Qin Liu, Zhenlin Xu, Gedas Bertasius, and Marc Nietham-
mer. Simpleclick: Interactive image segmentation with sim-
ple vision transformers. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 22290–
22300, 2023. 1, 2, 5, 6, 7, 8, 3

[40] Wenyu Lv, Shangliang Xu, Yian Zhao, Guanzhong Wang,
Jinman Wei, Cheng Cui, Yuning Du, Qingqing Dang, and Yi
Liu. Detrs beat yolos on real-time object detection. arXiv
preprint arXiv:2304.08069, 2023. 3

[41] Kevin McGuinness and Noel E O’connor. A comparative
evaluation of interactive segmentation algorithms. Pattern
Recognition, 43(2):434–444, 2010. 2, 5, 1

[42] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc
Van Gool, Markus Gross, and Alexander Sorkine-Hornung.
A benchmark dataset and evaluation methodology for video
object segmentation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
724–732, 2016. 2, 5, 8, 1

[43] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022. 1

[44] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake.
” grabcut” interactive foreground extraction using iterated
graph cuts. ACM transactions on graphics (TOG), 23(3):
309–314, 2004. 2, 5, 1

[45] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International Journal of
Computer Vision, 115:211–252, 2015. 2

[46] Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang
Yu, Xiangyu Zhang, Jing Li, and Jian Sun. Objects365:
A large-scale, high-quality dataset for object detection. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 8430–8439, 2019. 3

[47] Konstantin Sofiiuk, Ilia Petrov, Olga Barinova, and Anton
Konushin. f-brs: Rethinking backpropagating refinement for
interactive segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 8623–8632, 2020. 1, 2

[48] Konstantin Sofiiuk, Ilya A Petrov, and Anton Konushin. Re-
viving iterative training with mask guidance for interactive
segmentation. In IEEE International Conference on Image
Processing (ICIP), pages 3141–3145. IEEE, 2022. 2, 5, 6

[49] Ning Xu, Brian Price, Scott Cohen, Jimei Yang, and
Thomas S Huang. Deep interactive object selection. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 373–381, 2016. 1, 2, 5, 6

[50] Ning Xu, Brian Price, Scott Cohen, Jimei Yang, and Thomas
Huang. Deep grabcut for object selection. In Procedings
of the British Machine Vision Conference. British Machine
Vision Association, 2017. 1

10



[51] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3836–3847, 2023. 1

[52] Minghao Zhou, Hong Wang, Qian Zhao, Yuexiang Li,
Yawen Huang, Deyu Meng, and Yefeng Zheng. Interactive
segmentation as gaussion process classification. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 19488–19497, 2023. 2, 5

11



Appendix of “GraCo: Granularity-Controllable Interactive Segmentation”

1. Limitations

In this work, we introduce Granularity-Controllable in-
teractive segmentation (GraCo) that allows users to con-
trol the segmentation granularity to resolve ambiguity. Al-
though we develop a novel and flexible paradigm and
achieve inspiring results, the proposed method still has
some limitations: (i). Due to the randomness in the inter-
action signals generated by the multi-granularity loop sim-
ulation in the any-granularity mask generator, which causes
the object-level pre-trained IS model to generate semanti-
cally inconsistent parts or noisy boundaries, providing in-
accurate granularity-controllability guidance. (ii). Consid-
ering the variance in the computational cost of running the
mask engine at different granularities, we choose to gen-
erate proposals offline to improve the efficiency of paral-
lel computing. As a result, there is a trade-off between
storage space and granularity abundance. The online fine-
tuning paradigm of granularity-controllability is a future ex-
ploration to overcome this limitation.

2. Additional Experiments and Analysis

2.1. IoU@1 Analysis

Considering that the segmentation mask after the first click
directly affects the user experience, we evaluate the IoU@1
of the IS methods. As shown in Table A, we evaluate the
IoU@1 of SimpleClick [39], SAM [23] and our GraCo. For
SimpleClick, we report the results of the pre-trained model
and the model fine-tuned with part annotations. From the
results, we conclude that fine-tuning with part annotations
leads to a significant decrease in IoU@1 on object-level
benchmarks. In contrast, the results on part-level bench-
marks are effectively improved, indicating that the model
tends to perform fine-grained part segmentation after fine-
tuning. For SAM, we present the results for single-output
and multi-output (default 3) respectively. We observe that
SAM exhibits excellent performance. Specifically, the first
click performance of SAM is significantly superior than
SimpleClick, especially when selecting the optimal mask
from multiple outputs for each instance. Moreover, the
IoU@1 obtained by multi-output outperforms single-output
considerably, as denoted by the green-highlighted incre-
ment. This enhances SAM’s user experience. For our
GraCo, we present the results of fine-tuning with part an-
notations and AGG-generated mask proposals respectively.
We observe that GraCo w/ AGG is superior than GraCo w/
GT. We argue that this is because AGG generates a wealth
of mask proposals to cover a wider range of granularity. Our

GraCo achieves comparable first click performance to SAM
on all benchmarks at a low cost.

2.2. More Ablations

Proposal Sampling. We also conduct an ablation study on
the proposal sampling. We compare the performance of uni-
form sampling to inverse-proportional sampling with iden-
tical mask proposals (cf. Table B). The results show that
the inverse-proportional sampling method achieves a supe-
rior performance on all benchmarks, which indicates that
the method enables the IS model to learn uniformly from
any-granularity proposals in GCL.
LoRA. We supplement the ablation study on LoRA, as
shown in Table C. We employ identical AGG-generated
mask proposals to train our GraCo equipped with ViT-B
as backbone. We set the LoRA rank as 4, 8, 16, 32, re-
spectively, and evaluate the performance on both levels of
benchmarks. Based on the results, we conclude that the per-
formance of GraCo is not sensitive to the LoRA rank.
Granularity Definition. We evaluate the performance of
the two definitions on part-level benchmarks, which indi-
cates that employing only scale granularity leads to a slight
decrease (cf. Table D). This demonstrates the necessity of
the two types of granularity for definition.

3. Dataset Description
We evaluate both object-level and part-level benchmarks
to demonstrate the performance of the IS model in multi-
granularity scenarios. The details of these datasets are de-
scribed as follows.
• GrabCut [44]. The dataset contains 50 images, each con-

taining a single instance.
• Berkeley [41]. The dataset contains 96 images with 100

instances and some of them are more challenging for seg-
mentation.

• SBD [15]. The dataset contains 2,857 images with 6,671
challenging instances for evaluation and not be used for
training.

• DAVIS [42]. The dataset contains 50 high-quality videos
and we use 345 frames for evaluation.

• PascalPart [5]. The dataset provides part annotations of
20 Pascal VOC [11] classes, a total of 193 part categories.
As PascalPart contains a large number of parts, we ran-
domly select 5 out of 16 classes (excluding boat, chair,
dining table, and sofa which do not have part annotations)
to reduce the computational cost of conducting interactive
simulations during evaluation. The selected classes are
train, bicycle, cow, aeroplane, and bus in experiments.
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Method Backbone GrabCut Berkeley SBD DAVIS PascalPart PartImageNet

SimpleClick [39] ViT-B 0.90 0.85 0.74 0.76 0.17 0.30
SimpleClick¶ [39] ViT-B 0.47 (↓ 0.43) 0.43 (↓ 0.42) 0.42 (↓ 0.32) 0.31 (↓ 0.45) 0.48 (↑ 0.31) 0.49 (↑ 0.19)
SimpleClick [39] ViT-L 0.91 0.84 0.82 0.78 0.18 0.30
SimpleClick¶ [39] ViT-L 0.48 (↓ 0.43) 0.46 (↓ 0.38) 0.46 (↓ 0.36) 0.38 (↓ 0.40) 0.53 (↑ 0.35) 0.54 (↑ 0.24)

SAM [23] ViT-B 0.55 0.56 0.45 0.41 0.43 0.42
SAM⋆ [23] ViT-B 0.90 (↑ 0.35) 0.88 (↑ 0.32) 0.75 (↑ 0.30) 0.74 (↑ 0.33) 0.57 (↑ 0.14) 0.55 (↑ 0.13)
SAM [23] ViT-L 0.61 0.61 0.50 0.45 0.44 0.42
SAM⋆ [23] ViT-L 0.94 (↑ 0.33) 0.90 (↑ 0.29) 0.80 (↑ 0.30) 0.78 (↑ 0.33) 0.57 (↑ 0.13) 0.56 (↑ 0.14)

GraCo w/ GT ViT-B 0.86 0.80 0.66 0.62 0.52 0.53
GraCo w/ AGG ViT-B 0.89 (↑ 0.03) 0.84 (↑ 0.04) 0.72 (↑ 0.06) 0.70 (↑ 0.08) 0.53 (↑ 0.01) 0.55 (↑ 0.02)
GraCo w/ GT ViT-L 0.81 0.76 0.66 0.56 0.56 0.55
GraCo w/ AGG ViT-L 0.93 (↑ 0.12) 0.89 (↑ 0.13) 0.81 (↑ 0.15) 0.75 (↑ 0.19) 0.55 (↓ 0.01) 0.58 (↑ 0.03)

Table A. IoU@1 Analysis on both object and part level benchmarks. ¶ represents fine-tuning the model utilizing the part annotation,
and ⋆ represents selecting the best matching result from multiple predictions. SimpleClick [39] and our GraCo are trained on SBD [15]
and SAM are trained on SA-1B [23]. SimpleClick and SAM are from official models and use specific data pre-processing pipeline.

Sampling GrabCut Berkeley SBD PascalPart
NoC@85↓ NoC@90↓ IoU@1↑ NoC@85↓ NoC@90↓ IoU@1↑ NoC@85↓ NoC@90↓ IoU@1↑ NoC@85↓ IoU@1↑

Uniform 1.46 1.52 0.86 1.41 2.29 0.83 3.49 4.93 0.70 6.44 0.52
Inverse-prop. 1.34 1.46 0.89 1.37 2.21 0.84 3.44 4.89 0.72 6.38 0.53

Table B. Results of ablation study on proposal sampling.

LoRA GrabCut Berkeley SBD DAVIS PascalPart PartImageNet
Rank NoC@85 NoC@90 NoC@85 NoC@90 NoC@85 NoC@90 NoC@85 NoC@90 NoC@85 NoC@85

4 1.36 1.48 1.43 2.25 3.48 4.93 4.62 5.84 6.47 6.03
8 1.34 1.46 1.37 2.21 3.44 4.89 4.44 5.72 6.38 6.01

16 1.32 1.44 1.40 2.23 3.45 4.90 4.68 5.85 6.39 6.03
32 1.32 1.44 1.37 2.24 3.40 4.85 4.41 5.70 6.42 6.03

Table C. Ablation study on LoRA. We train our GraCo on the same AGG-generated proposals with different ranks of the LoRA. We
utilize ViT-B as the backbone. Bold indicates the best performance and underlined the second best.

Granularity PascalPart PartImageNet
Definition NoC@85↓ IoU@1↑ NoC@85↓ IoU@1↑

Scale-only 6.43 0.52 6.08 0.54
Scale & Semantic 6.38 0.53 6.01 0.55

Table D. Results of ablation study on granularity definition.

• PartImageNet [16]. The dataset groups 158 classes from
ImageNet [45] into 11 super-categories and provides a to-
tal of 40 part categories, which is a large, high-quality
dataset for part segmentation, offering part-level anno-
tations on a broad range of classes, including non-rigid,
articulated objects. We use the validation set of PartIm-
ageNet to evaluate the performance of IS model at the
part-level, which includes 1206 images and 5626 parts.

• SA-1B [23]. The dataset consists of 11M high-
resolution (3300×4950 pixels on average), diverse, and
licensed images and 1.1B high-quality segmentation
masks. To alleviate storage pressure, released images are

downsampled and their shortest side is set to 1500 pixels.
We use the first 1000 images to evaluate the performance
of different methods.

4. Additional Qualitative Results
We supplement more examples to demonstrate the granular-
ity controllability and excellent segmentation performance
of our GraCo in multi-granularity scenarios, cf. Figure A.
For complex scenarios, our GraCo allows the user to select
the appropriate granularity to generate the required mask.
Furthermore, our GraCo facilitates precise control over the
expansion of segmentation masks through multiple positive
clicks by applying a small granularity. This advantage ef-
fectively overcomes the limitations of current object-level
IS methods (e.g., SimpleClick [39]) when dealing with tiny
or detached components. We also demonstrate the qual-
itative results of the proposed GraCo on four object-level
benchmarks with a fixed input granularity of 1.0, cf. Fig-
ure B. Our GraCo achieves impressive qualitative results.
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Part GT GraCo (ours)SimpleClick

Ground-truth 1 click, IoU=0.33 2 clicks, IoU=0.50 3 clicks, IoU=0.58 4 clicks, IoU=0.82 0.4: 1 click, IoU=0.82

Ground-truth 1 click, IoU=0.18 2 clicks, IoU=0.39 3 clicks, IoU=0.51 4 clicks, IoU=0.91 0.5: 1 click, IoU=0.85

Ground-truth 1 click, IoU=0.04 2 clicks, IoU=0.04 3 clicks, IoU=0.08 4 clicks, IoU=0.63 0.2: 1 click, IoU=0.82

Ground-truth 1 click, IoU=0.18 2 clicks, IoU=0.41 3 clicks, IoU=0.57 4 clicks, IoU=0.73 0.2: 2 clicks, IoU=0.87

Ground-truth 1 click, IoU=0.19 2 clicks, IoU=0.21 3 clicks, IoU=0.31 4 clicks, IoU=0.78 0.4: 1 click, IoU=0.82

Ground-truth 1 click, IoU=0.06 3 clicks, IoU=0.14 5 clicks, IoU=0.22 8 clicks, IoU=0.72 0.1: 1 click, IoU=0.73

Ground-truth 1 click, IoU=0.08 2 clicks, IoU=0.23 3 clicks, IoU=0.49 4 clicks, IoU=0.70 0.3: 1 click, IoU=0.76

Ground-truth 1 click, IoU=0.05 2 clicks, IoU=0.27 4 clicks, IoU=0.54 5 clicks, IoU=0.79 0.4: 1 click, IoU=0.78

Figure A. More visualization examples of interactive segmentation on part GT using SimpleClick [39] and our GraCo. The proposed
method satisfies the user’s requirements with just one or two clicks.
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1 click, IoU=0.97

1 click, IoU=0.93

1 click, IoU=0.92

1 click, IoU=0.93

1 click, IoU=0.93

1 click, IoU=0.96

1 click, IoU=0.98

1 click, IoU=0.96

1 click, IoU=0.96

1 click, IoU=0.95

1 click, IoU=0.96

1 click, IoU=0.96

1 click, IoU=0.96

1 click, IoU=0.94

1 click, IoU=0.97

1 click, IoU=0.96

1 click, IoU=0.94

1 click, IoU=0.99

1 click, IoU=0.96

1 click, IoU=0.96

1 click, IoU=0.94

1 click, IoU=0.98

1 click, IoU=0.94

1 click, IoU=0.96

GrabCut

1 click, IoU=0.96

1 click, IoU=0.97

Berkeley

1 click, IoU=0.94

1 click, IoU=0.94

DAVIS

1 click, IoU=0.96

1 click, IoU=0.96

SBD

1 click, IoU=0.98

1 click, IoU=0.96

1 click, IoU=0.92

1 click, IoU=0.97

1 click, IoU=0.97

1 click, IoU=0.98

1 click, IoU=0.95

1 click, IoU=0.96

1 click, IoU=0.95

1 click, IoU=0.97

Figure B. Visualization on four object-level benchmarks. Note that the input granularity of GraCo is fixed to 1.0.
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